WO2012077356A1 - 光音響検査用探触子および光音響検査装置 - Google Patents

光音響検査用探触子および光音響検査装置 Download PDF

Info

Publication number
WO2012077356A1
WO2012077356A1 PCT/JP2011/006931 JP2011006931W WO2012077356A1 WO 2012077356 A1 WO2012077356 A1 WO 2012077356A1 JP 2011006931 W JP2011006931 W JP 2011006931W WO 2012077356 A1 WO2012077356 A1 WO 2012077356A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photoacoustic
subject
outer peripheral
unit
Prior art date
Application number
PCT/JP2011/006931
Other languages
English (en)
French (fr)
Inventor
覚 入澤
和宏 ▲辻▼田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012077356A1 publication Critical patent/WO2012077356A1/ja
Priority to US13/909,525 priority Critical patent/US20130261426A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements

Definitions

  • the present invention detects a photoacoustic wave generated in a subject by irradiating light to the subject and generates a photoacoustic image, and a probe used for a photoacoustic test and a photoacoustic test provided with the same. It relates to an apparatus.
  • ultrasonic waves are irradiated into the inside of the subject to detect an ultrasound wave reflected in the inside of the subject, and an ultrasound image is generated.
  • Ultrasonic imaging is known to obtain a morphological tomographic image of
  • an apparatus which displays not only a morphological tomographic image but also a functional tomographic image has been advanced in recent years. And there exists an apparatus using a photoacoustic analysis method as one of such an apparatus.
  • a subject is irradiated with light having a predetermined wavelength (for example, visible light, near infrared light or mid-infrared light), and a specific substance in the subject absorbs the energy of this light
  • the photoacoustic wave which is an elastic wave resulting from it is detected, and the concentration of the specific substance is measured quantitatively.
  • the specific substance in the subject is, for example, glucose or hemoglobin contained in blood.
  • a technique for detecting a photoacoustic wave and generating a photoacoustic image based on the detected signal in this manner is called photoacoustic imaging (PAI) or photoacoustic tomography (PAT).
  • PAI photoacoustic imaging
  • PAT photoacoustic tomography
  • the intensity of light irradiated to the object is significantly attenuated by absorption and scattering in the process of propagating through the object. Further, the intensity of the photoacoustic wave generated in the subject based on the irradiated light is also attenuated by absorption or scattering in the process of propagating in the subject. Therefore, in photoacoustic imaging, it is difficult to obtain information on the deep part of the subject. In order to solve this problem, it is conceivable to increase the generated photoacoustic wave, for example, by increasing the amount of light irradiated into the object.
  • MPE maximum allowable exposure
  • Patent Document 1 discloses an apparatus for irradiating light so that the intensity distribution of light becomes uniform so that a photoacoustic wave having a high S / N can be detected even if the light quantity is less than MPE.
  • the present invention has been made in view of the above problems, and it is possible to detect a photoacoustic wave having a higher S / N in a photoacoustic test using a photoacoustic effect, and a probe for a photoacoustic test, and
  • An object of the present invention is to provide a photoacoustic inspection apparatus.
  • a photoacoustic inspection probe concerning the present invention is: The object is irradiated with light, the light is guided to the object, and the light is irradiated to the object to detect a photoacoustic wave generated in the object to convert the photoacoustic wave into an electric signal.
  • a light irradiator for irradiating the light onto the subject; And an electro-acoustic conversion unit for converting the photoacoustic wave into an electrical signal, wherein the light irradiation unit is an irradiation range on the subject including all corresponding areas on the subject corresponding to the electro-acoustic conversion unit, It is characterized in that it is configured to be able to irradiate an irradiation range in which the minimum outer peripheral end distance between the outer peripheral end of the region and the outer peripheral end of the irradiation range is 5 mm or more.
  • corresponding region means the contact region when the electroacoustic transducer and the subject directly contact each other, and an acoustic matching layer or the like is present between the electroacoustic transducer and the subject.
  • the detection surface of the acoustic detection unit means the corresponding area on the subject via the acoustic matching layer or the like.
  • the “peripheral end of the irradiation range” means a set of positions on the subject at which the light intensity on the subject is half the average light intensity at the outer circumferential end of the corresponding region.
  • the “minimum outer edge spacing” means the smallest one of the widths of the annular region sandwiched between the outer edge of the irradiation range and the outer edge of the corresponding region.
  • the maximum perimeter end interval of the perimeter end of corresponding field and the perimeter end of irradiation range is 20 mm or less.
  • the “maximum outer circumferential end spacing” means the largest one of the widths of the annular region sandwiched between the outer circumferential end of the irradiation range and the outer circumferential end of the corresponding region.
  • a light irradiation part is provided with the several light guide part which branches the light arranged by fixed space
  • the light irradiation unit be provided with a combination of a plurality of light guiding units for branching light and a plurality of circular lenses.
  • the light irradiator includes a combination of a plurality of light guides and a square lens that branches light arranged at a constant interval.
  • a light irradiation part is provided with the light-diffusion part for irradiating the light of substantially uniform intensity
  • the light irradiator preferably has a light irradiation axis inclined 5 to 45 degrees toward the corresponding area with respect to the direction perpendicular to the corresponding area.
  • a light irradiation part is a light-guide plate arrange
  • the light guide plate preferably has a light diffusion portion at the tip of the light guide plate from which light is emitted, and the end is cut away so that the end of the light guide plate from which light is emitted has a slope. Is preferred.
  • the photoacoustic inspection apparatus is A photoacoustic wave is detected by detecting a photoacoustic wave generated in a subject by irradiating the subject with a light source that generates light to be applied to the subject, a light irradiation unit that applies light to the subject, and light.
  • a photoacoustic inspection apparatus comprising: an electroacoustic transducing unit that converts an electrical signal into an electrical signal; and an image generating unit that generates a photoacoustic image based on the electrical signal
  • the light irradiation unit is an irradiation range on the subject including all corresponding areas on the subject corresponding to the electroacoustic conversion unit, and the minimum outer peripheral end distance between the outer peripheral end of the corresponding area and the outer peripheral end of the irradiation range is It is characterized in that the irradiation range which is 5 mm or more can be irradiated.
  • the maximum perimeter end interval of the perimeter end of corresponding field and the perimeter end of irradiation range is 20 mm or less.
  • a light irradiation part is a light-guide plate arrange
  • a light irradiation unit that irradiates the object with the light, and electricity of the photoacoustic wave And an irradiation range on the subject including the corresponding area on the subject corresponding to the electroacoustic conversion unit, and the outer peripheral end of the corresponding area.
  • FIG. 1 is a block diagram showing a schematic configuration of the entire photoacoustic inspection apparatus 10 in the present embodiment.
  • FIG. 2 is a block diagram showing the configuration of the image generation unit 2 of FIG.
  • the photoacoustic inspection apparatus 10 generates a light L including a specific wavelength component and irradiates the subject 7 with the light L, and the subject 7 emits the light L to the subject 7.
  • An image generation unit 2 that detects photoacoustic waves U generated in a sample to generate photoacoustic image data of an arbitrary cross section, an electroacoustic conversion unit 3 that converts an acoustic signal and an electrical signal, and the photoacoustic image data It comprises a display unit 6 to be displayed, an operation unit 5 for the operator to input patient information and imaging conditions of the apparatus, and a system control unit 4 for overall control of these units.
  • the light transmitting unit 1 guides a light source unit 11 including a plurality of light sources having different wavelengths, a light combining unit 12 that combines light of a plurality of wavelengths on the same optical axis, and guides this light to the body surface of the subject 7
  • a multi-channel waveguide unit 14 an optical scanning unit 13 for scanning by switching channels used in the waveguide unit 14, and light irradiation for emitting light supplied by the waveguide unit 14 toward the subject 7
  • a unit 15 a unit 15.
  • the light source unit 11 includes one or more light sources that generate light of a predetermined wavelength.
  • a light source a light emitting element such as a semiconductor laser (LD), a light emitting diode (LED), a solid state laser, a gas laser or the like that generates monochromatic light containing a specific wavelength component or its component can be used.
  • the light source 16 preferably emits pulse light having a pulse width of 1 to 100 nsec as light. The wavelength of light is appropriately determined by the light absorption characteristics of the substance in the object to be measured.
  • Hemoglobin in the living body has different optical absorption characteristics depending on its state (oxygenated hemoglobin, deoxygenated hemoglobin, methemoglobin, etc.), but generally absorbs light of 360 nm to 1000 nm. Therefore, for example, when the measurement target is hemoglobin in a living body (that is, when imaging a blood vessel), it is generally preferable to set the thickness to about 600 to 1000 nm. Furthermore, from the viewpoint of reaching the deep part of the subject 7, the wavelength of the light is preferably 700 to 1000 nm.
  • the output of the light is preferably 10 ⁇ J / cm 2 to several tens of mJ / cm 2 from the viewpoints of propagation loss between light and photoacoustic wave, efficiency of photoacoustic conversion, detection sensitivity of current detector, etc. .
  • the repetition of the pulsed light irradiation is preferably 10 Hz or more from the viewpoint of the image construction speed.
  • the measurement light may be a pulse train in which a plurality of the above-described pulse lights are arranged.
  • an Nd: YAG laser (emission wavelength: about 1000 nm), which is a type of solid-state laser, or a He—Ne gas laser (emission, which is a type of gas laser)
  • a laser beam having a pulse width of about 10 nsec is formed using a wavelength of 633 nm.
  • materials such as InGaAlP (emission wavelength: 550 to 650 nm), GaAlAs (emission wavelength: 650 to 900 nm), InGaAs or InGaAs (emission wavelength: 900 to 2300 nm) The element which used can be used.
  • the light combining unit 12 is for overlapping light of different wavelengths generated from the light source unit 11 on the same optical axis. Each light is first converted to collimated light by a collimating lens, and then the light axes are aligned by a right angle prism or dichroic prism. With such a configuration, a relatively compact multiplexing optical system can be realized, but a commercially available multiple wavelength multiplexing / demultiplexing device developed for optical communication may be used.
  • the light source unit 11 uses a generation source such as an OPO laser whose wavelength can be continuously changed, the light combining unit 12 is not necessarily required.
  • the waveguide unit 14 is for guiding the light output from the light combining unit 12 to the light emitting unit 15.
  • optical fibers and thin film optical waveguides are used for efficient light propagation, direct space propagation is also possible.
  • the waveguide unit 14 is composed of a plurality of optical fibers 71.
  • a predetermined optical fiber 71 is selected from the plurality of optical fibers 71, and light irradiation to the subject 7 is performed by the selected optical fiber 71.
  • it can be used together with an optical system such as an optical filter or a lens.
  • the light scanning unit 13 scans the object 7 with light by supplying light while sequentially selecting the plurality of optical fibers 71 arranged in the waveguide unit 14.
  • the light irradiation part 15 is comprised from the several radiation
  • the plurality of emission end portions of the plurality of optical fibers 71 form a plane, a convex surface, or a concave surface together with the plurality of conversion elements 54 that constitute the electroacoustic conversion unit 3.
  • it is a plane.
  • the electroacoustic conversion unit 3 is configured of, for example, a plurality of minute conversion elements 54 arranged in a one-dimensional form or a two-dimensional form.
  • the conversion element 54 is, for example, a piezoelectric element composed of a piezoelectric ceramic or a polymer film such as polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the electroacoustic transducer 3 receives the photoacoustic wave U generated in the subject by the irradiation of the light from the light irradiator 15.
  • the conversion element 54 has a function of converting the photoacoustic wave U into an electric signal at the time of reception.
  • the electroacoustic transducer 3 is configured to be small and lightweight, and is connected to a receiver 22 described later by a multi-channel cable.
  • the electro-acoustic conversion unit 3 is selected according to the diagnosis site from among the sector scan correspondence, linear scan correspondence, and convex scan correspondence.
  • the electroacoustic transducer 3 may include an acoustic matching layer to efficiently transmit the photoacoustic wave U.
  • the acoustic impedance is largely different between the piezoelectric element material and the living body, when the piezoelectric element material and the living body are in direct contact, the reflection at the interface becomes large and the photoacoustic wave can not be transmitted efficiently.
  • a photoacoustic wave can be efficiently transmitted by inserting the acoustic matching layer comprised with the substance which has an intermediate
  • the material which comprises an acoustic matching layer an epoxy resin, quartz glass, etc. are mentioned.
  • the image generation unit 2 of the photoacoustic inspection apparatus 10 selectively drives the plurality of conversion elements 54 constituting the electroacoustic conversion unit 3 and gives a predetermined delay time to the electric signal from the electroacoustic conversion unit 3 to adjust
  • the receiving unit 22 generates a reception signal by performing phase addition, the scanning control unit 24 which controls the selective driving of the conversion element 54 and the delay time of the receiving unit 22, and various kinds of receiving signals obtained from the receiving unit 22.
  • the receiving unit 22 includes an electronic switch 53, a preamplifier 55, a reception delay circuit 56, and an adder 57.
  • the electronic switch 53 selects a predetermined number of conversion elements 54 adjacent to each other at the time of reception of photoacoustic waves in photoacoustic scanning.
  • the electroacoustic conversion unit 3 is configured of 192 array elements of conversion elements CH1 to CH192, such an array type conversion element corresponds to the area 0 (area of conversion elements from CH1 to CH64 by the electronic switch 53). ), Divided into three areas of area 1 (area of conversion element of CH 65 to CH 128) and area 2 (area of conversion element of CH 129 to CH 192).
  • the array type conversion element composed of N conversion elements is treated as a group (area) of n (n ⁇ N) adjacent transducers in this way, and imaging is performed for each area, It is not necessary to connect pre-amplifiers or A / D conversion boards to the conversion elements of all the channels, and the structure of the ultrasonic probe 70 can be simplified and cost increase can be prevented.
  • the structure of the ultrasonic probe 70 can be simplified and cost increase can be prevented.
  • a plurality of optical fibers are arranged so that each area can be individually irradiated with light, the light output per one time does not need to be increased, so an expensive light source with a large output is used. There is also an advantage that it is not necessary.
  • Each electrical signal obtained by the conversion element 54 is supplied to the preamplifier 55.
  • the preamplifier 55 amplifies a minute electrical signal received by the conversion element 54 selected as described above to secure a sufficient S / N.
  • the reception delay circuit 56 matches the phase of the photoacoustic wave U from a predetermined direction with respect to the electric signal of the photoacoustic wave U obtained from the conversion element 54 selected by the electronic switch 53 to form a convergent reception beam. Give delay time to
  • the adder 57 combines the electric signals of the plurality of channels delayed by the reception delay circuit 56 into one reception signal.
  • an acoustic signal from a predetermined depth is phasing-added to set a reception convergence point.
  • the scan control unit 24 includes a beam focusing control circuit 67 and a conversion element selection control circuit 68.
  • the conversion element selection control circuit 68 supplies the electronic switch 53 with positional information of a predetermined number of conversion elements 54 at the time of reception selected by the electronic switch 53.
  • the beam focusing control circuit 67 supplies the reception delay circuit 56 with delay time information for forming a reception convergence point formed by a predetermined number of conversion elements 54.
  • the signal processing unit 25 includes a filter 66, a signal processor 59, an A / D converter 60, and an image data memory 62.
  • the electric signal output from the adder 57 of the receiving unit 22 removes unnecessary noise in the filter 66 of the signal processing unit 25, and then the amplitude of the received signal is logarithmically converted in the signal processing unit 59, and the weak signal is relative Emphasize.
  • the received signal from the subject 7 has an amplitude with a wide dynamic range of 80 dB or more, and it emphasizes a weak signal to be displayed on a normal CRT monitor with a dynamic range of about 23 dB. Amplitude compression is required.
  • the filter 66 has band-pass characteristics, and has a mode for extracting a fundamental wave in the received signal and a mode for extracting a harmonic component. Also, the signal processor 59 performs envelope detection on the logarithmically converted received signal. The A / D converter 60 A / D converts the output signal of the signal processor 59 to form photoacoustic image data for one line. The photoacoustic image data for one line is stored in the image data memory 62 respectively.
  • the image data memory 62 is a storage circuit that stores the photoacoustic image data generated as described above. Under control of the system control unit 4, cross-sectional data is read from the image data memory 62 and spatially interpolated at the time of the reading, thereby generating photoacoustic image data of the cross-section.
  • the display unit 6 includes a display image memory 63, a photoacoustic image data converter 64, and a CRT monitor 65.
  • the display image memory 63 is a buffer memory for temporarily storing the photoacoustic image data to be displayed on the CRT monitor 65.
  • the photoacoustic image data for one line from the image data memory 62 is stored in the display image memory 63. In one frame.
  • the photoacoustic image data converter 64 performs D / A conversion and television format conversion on the composite image data read from the display image memory 63, and the output is displayed on the CRT monitor 65.
  • the operation unit 5 includes a keyboard, a trackball, a mouse, and the like on the operation panel, and is used by the apparatus operator to input necessary information such as patient information, imaging conditions of the apparatus, and a display cross section.
  • the system control unit 4 includes a CPU (not shown) and a storage circuit (not shown), and controls the units such as the light transmission unit 1, the image generation unit 2 and the display unit 6 according to command signals from the operation unit 5 and controls the entire system. Take control. In particular, an input command signal of the operator sent via the operation unit 5 is stored in the internal CPU.
  • FIG. 3 is a schematic view showing the configuration of the ultrasound probe 70.
  • FIG. 4 is a schematic view showing the ultrasound probe 70 and the living tissue at the time of photoacoustic image generation.
  • FIGS. 5A to 5C are schematic diagrams for explaining the positional relationship between the outer peripheral end of the corresponding area and the outer peripheral end of the irradiation range including the conversion area in the one-dimensionally arranged conversion elements.
  • the ultrasound probe 70 has a plurality of conversion elements 54.
  • the conversion elements 54 are, for example, one-dimensionally arrayed along a predetermined direction.
  • the arrangement direction (array direction) of the conversion elements 54 is the X axis
  • the direction (elevation direction) perpendicular to the array direction and parallel to the detection surface of the conversion elements 54 is the Y axis.
  • the direction perpendicular to the vertical direction is shown as the Z-axis.
  • the optical fiber 71 guides the light from the light source unit 11 (FIG. 1) to the light irradiation unit 15 provided in the ultrasonic probe 70.
  • the light irradiation part 15 is arrange
  • the pulse laser beam can be irradiated to the irradiation range in which the minimum outer peripheral edge distance Wmin between the outer peripheral end Ea of the second embodiment and the outer peripheral end Eb of the irradiation range is 5 mm or more.
  • the “minimum outer edge spacing” means the smallest one of the widths W of the annular region sandwiched between the outer edge of the irradiation range and the outer edge of the corresponding region.
  • the width W of the annular area can be defined at any position of the outer peripheral end Ea of the corresponding area or the outer peripheral end Eb of the irradiation range, and the outer peripheral end Ea of the corresponding area (or the outer peripheral end Eb of the irradiation area)
  • the width W at the position is the shortest length from the position to the outer peripheral end Eb of the irradiation range (or the outer peripheral end Ea of the corresponding region).
  • the corresponding region and the irradiation range on the subject are the centers of the electroacoustic transducer, and an axis parallel to the Z axis and an ultrasonic probe in contact with the subject. It is defined on a plane (reference plane) perpendicular to the Z axis passing through the point of intersection with the tangent plane.
  • the center of the electroacoustic transducer is the center of the outer shape of the electroacoustic transducer viewed from the viewpoint on the Z axis.
  • the electroacoustic transducer is composed of transducer elements arranged in a one-dimensional or two-dimensional manner, and has a rectangular shape as a whole.
  • the center means the center of the rectangular shape.
  • the contact surface of the ultrasound probe is the surface of the ultrasound probe that comes into contact with the subject when the ultrasound probe is applied to the subject.
  • the contact surface between the detection surface and the object corresponds to the contact surface
  • the acoustic matching layer provided in the ultrasonic probe When an acoustic element such as an acoustic lens directly contacts the subject, the contact surface between the acoustic element and the subject corresponds to the contact surface.
  • FIGS. 5B and 5C show an example in the case where an acoustic element 80 having a convex surface is provided at the tip of the ultrasonic probe.
  • the contact surface between the convex surface of the acoustic element 80 and the surface of the subject 7 is the contact surface 33.
  • FIG. 5C shows an example in the case where an acoustic element 81 having a concave surface is provided at the tip of the ultrasonic probe.
  • the contact surface between the concave surface of the acoustic element 81 and the surface of the subject 7 is the contact surface 33.
  • a plane perpendicular to the Z axis passes through the intersection 31 of the axis 30 parallel to the Z axis and the contact surface 33 through the center of the electroacoustic transducer 3 and becomes the reference plane 32.
  • a corresponding area and an irradiation range are defined on the reference surface 32. That is, the corresponding area is a projection area of the electroacoustic transducer on the reference plane 32 along the Z axis, and the distance W between the outer peripheral end Ea of the corresponding area and the outer peripheral end Eb of the irradiation area is an annular width W Become.
  • the light irradiation part 15 may be comprised so that the pulsed laser beam from the light source part 11 may be irradiated to the area
  • the light irradiation unit 15 is provided corresponding to each of the area A, the area B, and the area C.
  • region A irradiates at least the area
  • the light irradiation unit 15 corresponding to the region B irradiates at least the region B with pulsed laser light when selecting the region B, and the light irradiation unit 15 corresponding to the region C at least selects the pulse laser light when selecting the region C. Irradiate.
  • the outer peripheral ends Ea of the corresponding regions on the subject 7 corresponding to the conversion elements 54 in the respective regions irradiate the respective regions.
  • the minimum outer peripheral edge distance Wmin between the outer peripheral end Eb of the irradiation range and the irradiation range is set to 5 mm or more.
  • the minimum outer peripheral edge distance is set to be 5 mm or more.
  • the ultrasound probe 70 has a conversion element 54 for 192 channels.
  • the width corresponding to the conversion element 54 is divided into, for example, three partial areas (areas A to C) in relation to photoacoustic image generation, and the width of each partial area corresponds to the width of 64 conversion elements 54 It is assumed that In such a case, if the width of the biological tissue corresponding to the conversion element 54 of 192 ch is 57.6 mm, the width of each partial region is 19.2 mm. That is, at the time of photoacoustic image generation, the photoacoustic inspection apparatus 10 repeatedly performs light irradiation and data collection to a 19.2 mm wide partial area divided as shown in FIG. Get the data of
  • the irradiation axis of the light of the light irradiation part 15 is electroacoustic conversion.
  • the angle ⁇ between the light irradiation axis and the direction perpendicular to the corresponding area is set to 5 to 45 degrees so as to face the corresponding area from the gap between the portion 3 and the corresponding area.
  • the present invention is not limited to the electroacoustic transducer 3 in which the transducer elements 54 are arranged in a one-dimensional manner. That is, the present invention can also be applied to the electroacoustic transducer 3 in which the transducer elements 54 are two-dimensionally arranged.
  • the conversion elements 54 may be arranged at predetermined intervals, for example, when the optical fibers are inserted and arranged. In such a case, the outer peripheral end Ea of the corresponding area is a set of positions along the outer periphery of the conversion elements 54 arranged as shown in FIG.
  • the light irradiator 15 is configured to irradiate the entire conversion element from above the conversion element 54 in the ultrasound probe 70, for example, from the viewpoint of obtaining a uniform light intensity distribution, for example, from FIG.
  • the configuration as shown in 7G is preferable.
  • FIG. 7A shows an optical transmission unit 1 including a combination of a plurality of optical fibers 73 for branching light from the optical fiber 71 as the waveguide unit 14 through the optical fiber coupler 72 and a plurality of circular lenses 74.
  • FIG. 7 is a schematic view showing the configuration of FIG. In this configuration, a plurality of circular lenses 74 are arranged in an array along the length direction of the electroacoustic transducer 3. And the irradiation range which includes the corresponding
  • the plurality of circular lenses 74 form the light irradiation unit 15.
  • FIG. 7B shows the configuration of the optical transmission unit 1 including a combination of a plurality of optical fibers 73 for branching light from the optical fiber 71 as the waveguide unit 14 through the optical fiber coupler 72 and one square lens 75.
  • FIG. 7B shows the configuration of the optical transmission unit 1 including a combination of a plurality of optical fibers 73 for branching light from the optical fiber 71 as the waveguide unit 14 through the optical fiber coupler 72 and one square lens 75.
  • a square lens a cylindrical lens is mentioned, for example.
  • the rectangular lens 75 is the light irradiation unit 15.
  • FIG. 7C shows the configuration of the optical transmission unit 1 provided with a combination of two optical fibers 73 for branching light from the optical fiber 71 as the waveguide unit 14 via the optical fiber coupler 72 and the light diffusion unit 76.
  • the light diffusion portions 76 having a length equal to or greater than the length of the electroacoustic transducer 3 are arranged along the length direction of the electroacoustic transducer 3.
  • Two optical fibers 73 are connected to both ends of the light diffusion portion 76, respectively. The light incident on the light diffusion portion 76 from both ends is diffused by the diffusion particles in the light diffusion portion 76 while propagating through the light diffusion portion 76.
  • region of the electroacoustic converter 3 by the light L diffused in the said light-diffusion part 76 is implement
  • the light diffusion portion 76 becomes the light irradiation portion 15.
  • FIG. 7D is a schematic view showing the configuration of the light transmission unit 1 provided with a combination of the optical fiber 71 as the waveguide unit 14 and the light guide plate 77.
  • FIG. 7E is a schematic view of the ultrasound probe 70 of FIG. 7D as viewed from the elevation direction.
  • two light guide plates 77 having a width equal to or greater than the length of the electroacoustic transducer 3 are disposed laterally to the electroacoustic transducer 3.
  • the two light guide plates 77 are disposed so as to face in a direction orthogonal to the direction in which the plurality of conversion elements 54 are arranged, with the electroacoustic conversion unit 3 formed of the plurality of conversion elements 54 therebetween.
  • the optical fiber 71 and the light guide plate 77 are optically coupled to each other.
  • the portion of the light guide plate 77 on the side coupled with the optical fiber is formed, for example, in a tapered shape as shown in FIG. 7E.
  • the portion of the light guide plate 77 coupled with the optical fiber is preferably formed of a glass material to avoid damage by light energy.
  • the other part is formed of, for example, a resin material such as acrylic.
  • the light diffusion portion 76 is provided at the end of the light guide plate 77 from which the pulse laser light L is emitted, and the acoustic element 82 is provided at the tip end of the ultrasonic probe 70.
  • the contact surface of the ultrasonic probe 70 is the reference surface 32.
  • the light diffusion unit 76 and the acoustic element 82 are not essential.
  • the irradiation range which includes the corresponding region of the electroacoustic transducer 3 is realized by the pulsed laser light L diffused in the light diffusing portion 76.
  • the light guide plate 77 and the light diffusion part 76 become the light irradiation part 15.
  • FIG. 7F is a schematic view showing another configuration of the light transmitting unit 1 provided with a combination of the optical fiber 71 as the waveguide unit 14 and the light guide plate 77.
  • the ultrasonic probe 70 in FIG. 7F mainly includes a point at which the light guide plate 77 is inclined with respect to the Z axis so that the pulse laser light L emitted from the light guide plate 77 is more directed to the corresponding region, and a light diffusion portion 76. It differs from the ultrasound probe of FIGS. 7D and 7E in that there is no By adopting such a configuration, it is possible to further reduce the shadowed portion of the electroacoustic transducer 3 with respect to the light irradiation range.
  • FIG. 7G is a schematic view showing another configuration of the light transmission unit 1 provided with a combination of the optical fiber 71 as the waveguide unit 14 and the light guide plate 77.
  • the ultrasonic probe 70 in FIG. 7G is mainly characterized in that the end of the light guide plate 77 from which the pulse laser light L is emitted is cut off so that the end has an inclination (for example, 20 to 30 degrees). , Different from the ultrasound probe of FIGS. 7D and 7E.
  • the pulsed laser light L is emitted toward the corresponding region even if the light guide plate 77 itself is not inclined due to the inclination.
  • the interval Wmin is set to be 5 mm or more.
  • the light irradiation unit 15 is an irradiation range on the subject 7 including all the corresponding areas on the subject 7 corresponding to the electroacoustic conversion unit 3,
  • the pulse laser beam can be irradiated to the irradiation range in which the minimum outer peripheral edge distance Wmin between the outer peripheral end Ea and the outer peripheral end Eb of the irradiation range is 5 mm or more.
  • the width W of the annular region sandwiched between the outer peripheral end of the irradiation range and the outer peripheral end of the corresponding region is about 20 mm when the light energy density is the same as demonstrated in the examples described later. This is because the intensity of the photoacoustic wave generated from the same tissue also increases with the increase of the light irradiation range.
  • the width W exceeds 20 mm, the intensity of the photoacoustic wave is substantially saturated, and therefore, from the viewpoint of efficient use of light energy, the maximum outer peripheral edge distance Wmax is preferably 20 mm or less.
  • variety is less than 5 mm, it will be 1/10 or less of the value at the time of the saturation state of the photoacoustic wave obtained from the same structure
  • a light irradiation unit that emits the light to the object
  • an electro-acoustic conversion unit for converting a photoacoustic wave into an electrical signal, and in particular, an irradiation range on the subject including the entire corresponding region on the subject corresponding to the electro-acoustic conversion unit, Since the irradiation range in which the minimum outer peripheral edge distance between the outer peripheral end of the corresponding area and the outer peripheral end of the irradiation area is 5 mm or more can be irradiated, the same light energy density is used. Photoacoustic waves with higher intensity can be generated from the tissue of As a result, in the photoacoustic inspection using the photoacoustic effect, it is possible to reliably detect a photoacoustic wave having a high S / N.
  • 8A and 8B are schematic diagrams showing the device configuration in the embodiment of the present invention.
  • the measurement was performed on a urethane tube phantom 153 with an inner diameter of 2.5 mm, which was placed in the deaerated water 152 containing a light scattering material (Intra Lipid 0.03%: equivalent to biological scattering intensity).
  • the urethane tube phantom 153 was placed at a position at which the center was 15 mm from the water surface.
  • an ink matched to the light absorption coefficient of blood in the living body was sealed.
  • a laser beam with a wavelength of 532 nm emitted from a YAG-excited OPO laser is guided by an optical fiber 144, and then collimated by a collimator lens 145, and the collimated laser beam is reflected using a mirror 146 to
  • the urethane tube phantom 153 was irradiated with the laser light L so that the irradiation axis and the water surface were perpendicular.
  • the photoacoustic wave U from the urethane tube phantom 153 is detected by a single piezoelectric element 147 of PVDF disposed in the water near the water surface and at the center of the irradiation range of the laser light L, and the oscilloscope 148 detects the photoacoustic wave U
  • the signal waveform was observed, and the voltage intensity was made the signal intensity of the photoacoustic wave U.
  • the corresponding area in the present invention was treated as an area on the water surface.
  • the irradiation range of the laser light L is such that the light energy density at the time of water surface incidence is fixed at 0.5 mJ / cm 2 and the beam diameter ((mm) of the light at the time of water surface incidence is changed.
  • the change in the intensity of the photoacoustic wave U was evaluated.
  • FIG. 9 is a graph showing the measurement results obtained in the example.
  • the vertical axis is the signal intensity (mV) of the photoacoustic wave U
  • the horizontal axis is the beam radius / 2/2 (mm) of the laser light.
  • the beam radius exceeds approximately 20 mm, that is, when the position of the outer peripheral end of the light irradiation range exceeds the position of 20 mm from the single piezoelectric element 147, the signal intensity of the photoacoustic wave U is substantially saturated. I understood that.
  • the beam radius is less than 5 mm, that is, if the position of the outer peripheral end of the light irradiation range is less than 5 mm from the single piezoelectric element 147, the signal intensity of the photoacoustic wave U is approximately 1 compared to the above saturation value. It turned out that it fell more than a digit. Therefore, when the beam radius is less than 5 mm, the signal of the photoacoustic wave U is buried in noise and detection becomes difficult.
  • the minimum outer peripheral edge distance between the outer peripheral end of the corresponding region and the outer peripheral end of the irradiation range is 5 mm. It can be said that the above should be done. Furthermore, it can be said that the effects of the present invention can be sufficiently obtained even if the maximum outer peripheral edge distance is 20 mm or less.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Acoustics & Sound (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】光音響効果を利用した光音響検査において、よりS/Nの高い光音響波を検出することを可能とする。 【解決手段】光音響検査に用いられる探触子(70)において、上記光(L)を被検体(7)に照射する光照射部(15)と、上記光音響波(U)を電気信号に変換する電気音響変換部(3)とを備え、光照射部(15)が、電気音響変換部(3)に対応する被検体(7)上の対応領域をすべて包含する被検体(7)上の照射範囲であって、対応領域の外周端(Ea)と照射範囲の外周端(Eb)との最小外周端間隔(Wmin)が5mm以上である照射範囲を照射可能となるように構成する。

Description

光音響検査用探触子および光音響検査装置
 本発明は、光が被検体に照射されることにより被検体内で発生した光音響波を検出して光音響画像を生成する光音響検査に用いられる探触子およびそれを備えた光音響検査装置に関するものである。
 従来、被検体の内部の断層画像を取得する方法としては、超音波が被検体内に照射されることにより被検体内で反射した超音波を検出して超音波画像を生成し、被検体内の形態的な断層画像を得る超音波イメージングが知られている。一方、被検体の検査においては形態的な断層画像だけでなく機能的な断層画像を表示する装置の開発も近年進められている。そして、このような装置の一つに光音響分析法を利用した装置がある。この光音響分析法は、所定の波長を有する光(例えば、可視光、近赤外光又は中間赤外光)を被検体に照射し、被検体内の特定物質がこの光のエネルギーを吸収した結果生じる弾性波である光音響波を検出して、その特定物質の濃度を定量的に計測するものである。被検体内の特定物質とは、例えば血液中に含まれるグルコースやヘモグロビンなどである。このように光音響波を検出しその検出信号に基づいて光音響画像を生成する技術は、光音響イメージング(PAI:Photoacoustic Imaging)或いは光音響トモグラフィー(PAT:Photo Acoustic Tomography)と呼ばれる。
 従来、上記のような光音響効果を利用した光音響イメージングにおいて、次のような課題がある。被検体に照射された光の強度は、被検体内を伝播する過程で吸収や散乱によって著しく減衰する。また、照射された光に基づいて被検体内で発生した光音響波の強度も、被検体内を伝播する過程で吸収や散乱によって減衰する。したがって、光音響イメージングでは、被検体の深部の情報を得ることが難しい。この課題を解決するため、例えば被検体内に照射される光の量を増やすことにより、発生する光音響波を大きくすることが考えられる。
 しかし、被検体が生体である場合、照射される光のエネルギーにより生体組織に損傷を与えないために、生体に照射することができる単位面積当たりの最大許容露光量(MPE:maximum permissible exposure)が定められている。そのため、光量を増すとしてもMPEが上限となる。
 そこで、特許文献1では、光量がMPE以下であってもS/Nの高い光音響波を検出できるように、光の強度分布が均一となるように光を照射する装置が開示されている。
特開2010-125260号公報
 しかしながら、特許文献1のような方法では、光の強度分布を均一にするのみであり、光の照射範囲については全く検討されていないため、充分にS/Nの高い光音響波を検出できない場合が生じうるという問題がある。
 本発明は上記問題に鑑みてなされたものであり、光音響効果を利用した光音響検査において、よりS/Nの高い光音響波を検出することを可能とする光音響検査用探触子および光音響検査装置を提供することを目的とするものである。
 上記課題を解決するために、本発明に係る光音響検査用探触子は、
 被検体に光を照射し、光を被検体に導光し、光が被検体に照射されることにより被検体内で発生した光音響波を検出して光音響波を電気信号に変換し、この電気信号に基づいて検査を行う光音響検査に用いられる探触子において、
 上記光を被検体に照射する光照射部と、
 上記光音響波を電気信号に変換する電気音響変換部とを備え
 光照射部が、電気音響変換部に対応する被検体上の対応領域をすべて包含する被検体上の照射範囲であって、対応領域の外周端と照射範囲の外周端との最小外周端間隔が5mm以上である照射範囲を照射可能となるように構成されたものであることを特徴とするものである。
 本明細書において、「対応領域」とは、電気音響変換部および被検体が直接接触する場合には当該接触領域を意味し、電気音響変換部および被検体の間に音響整合層等が存在する場合には音響検出部の検出面が音響整合層等を介して対応する被検体上の領域を意味する。
 「照射範囲の外周端」とは、被検体上の光の強度が対応領域の外周端における光の平均強度の半分になる被検体上の位置の集合を意味する。
 「最小外周端間隔」とは、照射範囲の外周端と対応領域の外周端とで挟まれた環状の領域の幅のうち最小のものを意味する。
 そして、本発明に係る光音響検査用探触子において、対応領域の外周端と照射範囲の外周端との最大外周端間隔は20mm以下であることが好ましい。
 本明細書において、「最大外周端間隔」とは、照射範囲の外周端と対応領域の外周端とで挟まれた環状の領域の幅のうち最大のものを意味する。
 そして、光照射部は、一定の間隔で配列された光を分岐させる複数の導光部を備えたものであることが好ましい。または、光照射部は、光を分岐させる複数の導光部と複数の円形レンズとの組み合わせを備えたものであることが好ましい。または、光照射部は、一定の間隔で配列された光を分岐させる複数の導光部と方形レンズとの組み合わせを備えたものであることが好ましい。
 そして、光照射部は、照射範囲において略均一な強度の光を照射するための光拡散部を備えたものであることが好ましい。
 そして、光照射部は、光の照射軸が上記対応領域に垂直な方向に対して対応領域側に5~45度傾いたものであることが好ましい。
 また、光照射部は、電気音響変換部を挟んで対向するように配置された導光板であることが好ましい。この場合において、導光板は、光が出射する当該導光板の先端に光拡散部を有するものであることが好ましく、導光板の光が出射する端部が傾斜を有するように当該端部は切除されていることが好ましい。
 さらに、本発明に係る光音響検査装置は、
 被検体に照射する光を発生する光源と、光を被検体に照射する光照射部と、光が被検体に照射されることにより被検体内で発生した光音響波を検出して光音響波を電気信号に変換する電気音響変換部と、この電気信号に基づいて光音響画像を生成する画像生成部とを備えた光音響検査装置において、
 光照射部が、電気音響変換部に対応する被検体上の対応領域をすべて包含する被検体上の照射範囲であって、対応領域の外周端と照射範囲の外周端との最小外周端間隔が5mm以上である照射範囲を照射可能となるように構成されたものであることを特徴とするものである。
 そして、本発明に係る光音響検査装置において、対応領域の外周端と照射範囲の外周端との最大外周端間隔は20mm以下であることが好ましい。
 また、光照射部は、電気音響変換部を挟んで対向するように配置された導光板であることが好ましい。
 本発明に係る光音響検査用探触子および光音響検査装置によれば、光音響効果を利用した光音響検査において、上記光を被検体に照射する光照射部と、上記光音響波を電気信号に変換する電気音響変換部とを備え、特に光照射部が、電気音響変換部に対応する被検体上の対応領域をすべて包含する被検体上の照射範囲であって、対応領域の外周端と照射範囲の外周端との最小外周端間隔が5mm以上である照射範囲を照射可能となるように構成されたものであるから、光エネルギー密度が同一である場合において、同一の組織からより強い強度を有する光音響波を発生させることができる。この結果、光音響効果を利用した光音響検査において、よりS/Nの高い光音響波を検出することが可能となる。
本発明の光音響撮像装置の一実施形態の構成を示す概略図である。 図1における画像生成部の構成を示す概略図である。 超音波探触子の構成を示す概略図である。 光音響画像生成の際の超音波探触子と生体組織とを示す概略図である。 1次元状に配列された変換素子に関する対応領域の外周端と、これを包含する照射範囲の外周端との位置関係を説明するための概略図である。 1次元状に配列された変換素子に関する対応領域の外周端と、これを包含する照射範囲の外周端との位置関係を説明するための概略図である。 1次元状に配列された変換素子に関する対応領域の外周端と、これを包含する照射範囲の外周端との位置関係を説明するための概略図である。 光照射部の例を示す概略図である。 2次元状に配列された変換素子に関する対応領域の外周端と、これを包含する照射領域の外周端との位置関係を示す概略図である。 電気音響変換部の上方から照射できるように構成した光照射部の例を示す概略図である。 電気音響変換部の上方から照射できるように構成した光照射部の他の例を示す概略図である。 電気音響変換部の上方から照射できるように構成した光照射部の他の例を示す概略図である。 導光板を利用した光照射部の例を示す概略断面図である。 図7Dの超音波探触子をエレベーション方向から見たときの概略断面図である。 導光板を利用した光照射部の他の例を示す概略断面図である。 導光板を利用した光照射部の他の例を示す概略断面図である。 本発明の実施例における装置構成を示す概略図である。 本発明の実施例における装置構成を示す概略図である。 本発明の実施例において得られた測定結果を示すグラフである。
 以下、本発明の実施形態について図面を用いて説明するが、本発明はこれに限られるものではない。なお、視認しやすくするため、図面中の各構成要素の縮尺等は実際のものとは適宜異ならせてある。
 本発明による光音響検査用探触子を備えた光音響検査装置10の実施形態について説明する。図1は、本実施形態における光音響検査装置10全体の概略構成を示すブロック図である。図2は、図1の画像生成部2の構成を示すブロック図である。
 本実施形態による光音響検査装置10は、特定波長成分を含む光Lを発生させこの光を被検体7に照射する光送信部1と、この光Lが被検体7に照射されることにより被検体内で発生する光音響波Uを検出して任意断面の光音響画像データを生成する画像生成部2と、音響信号と電気信号の変換を行う電気音響変換部3と、この光音響画像データ表示する表示部6と、操作者が患者情報や装置の撮影条件を入力するための操作部5と、これら各ユニットを統括的に制御するシステム制御部4とを備えている。
 光送信部1は、例えば波長の異なる複数の光源を備える光源部11と、複数の波長の光を同一光軸上に合成する光合波部12と、この光を被検体7の体表面まで導く多チャンネルの導波部14と、この導波部14において使用するチャンネルを切り換えて走査を行う光走査部13と、導波部14によって供給される光が被検体7に向けて出射する光照射部15とを備えている。
 光源部11は、所定の波長の光を発生する1以上の光源を有する。光源として、特定の波長成分又はその成分を含む単色光を発生する半導体レーザ(LD)、発光ダイオード(LED)、固体レーザ、ガスレーザ等の発光素子を用いることができる。光源16は、光として1~100nsecのパルス幅を有するパルス光を出射するものであることが好ましい。光の波長は、計測の対象となる被検体内の物質の光吸収特性によって適宜決定される。生体内のヘモグロビンは、その状態(酸素化ヘモグロビン、脱酸素化ヘモグロビン、メトヘモグロビン等)により光学的な吸収特性が異なるが、一般的には360nmから1000nmの光を吸収する。したがって、例えば計測対象が生体内のヘモグロビンである場合(つまり、血管を撮像する場合)には、一般的には600~1000nm程度とすることが好ましい。さらに、被検体7の深部まで届くという観点から、上記光の波長は700~1000nmであることが好ましい。そして、上記光の出力は、光と光音響波の伝搬ロス、光音響変換の効率および現状の検出器の検出感度等の観点から、10μJ/cm~数10mJ/cmであることが好ましい。さらに、パルス光照射の繰り返しは、画像構築速度の観点から、10Hz以上であることが好ましい。また、測定光は上記パルス光が複数並んだパルス列とすることもできる。
 より具体的には例えば、被検体7のヘモグロビン濃度を測定する場合には、固体レーザの一種であるNd:YAGレーザ(発光波長:約1000nm)や、ガスレーザの一種であるHe-Neガスレーザ(発光波長:633nm)を用い、10nsec程度のパルス幅を有したレーザ光を形成する。また、LDやLED等の小型発光素子を用いる場合には、InGaAlP(発光波長:550~650nm)、GaAlAs(発光波長:650~900nm)、InGaAsもしくはInGaAsP(発光波長:900~2300nm)などの材料を用いた素子を使用することができる。また最近では、波長が550nm以下で発光するInGaNを用いた発光素子も使用可能になりつつある。更には、波長可変可能な非線形光学結晶を用いたOPO(Optical Parametrical Oscillators)レーザを用いることもできる。
 光合波部12は、光源部11から発生する波長の異なる光を同一光軸に重ね合わせるためのものである。それぞれの光は、まずコリメートレンズによって平行光線に変換され、次に直角プリズムやダイクロイックプリズムにより、光軸が合わせられる。このような構成により比較的小型の合波光学系とすることができるが、光通信用に開発されている市販の多重波長合波・分波器を用いてもよい。また光源部11に前述の波長が連続的に変更可能なOPOレーザ等の発生源を使用する場合は、この光合波部12は必ずしも必要ではない。
 導波部14は、光合波部12から出力される光を光照射部15まで導くためのものである。効率のよい光伝搬を行うために光ファイバや薄膜光導波路を用いるが、直接空間伝搬することも可能である。ここでは、導波部14は、複数の光ファイバ71から構成される。これらの複数の光ファイバ71の中から所定の光ファイバ71を選択して、当該選択された光ファイバ71によって被検体7に対する光照射を行う。なお、図1では、明確に示してはいないが、光学フィルタやレンズ等の光学系と合わせて使用することもできる。
 光走査部13は、導波部14において配列される複数の光ファイバ71を順次選択しながら光の供給を行うことによって被検体7に対して光による走査を行う。
 光照射部15は、本実施形態では複数の光ファイバ71の複数の出射端部から構成される。そして、光照射部15は、電気音響変換部3とともに、本発明の光音響検査用探触子である超音波探触子70を構成する。光照射部15を構成する複数の光ファイバ71の複数の出射端部は、電気音響変換部3の周囲に沿って配列される。また、電気音響変換部3を構成する複数の変換素子54が透明材料である場合には、光照射部15は変換素子54の上方から変換素子全体を照射できるように配置してもよい。なお、複数の光ファイバ71の複数の出射端部は、電気音響変換部3を構成する複数の変換素子54とともに、平面、凸面あるいは凹面を形成する。ここでは平面とする。
 電気音響変換部3は、例えば1次元状或いは2次元状に配列された微小な複数の変換素子54から構成される。変換素子54は、例えば、圧電セラミクス、またはポリフッ化ビニリデン(PVDF)のような高分子フィルムから構成される圧電素子である。電気音響変換部3は、光照射部15からの光の照射により被検体内に発生する光音響波Uを受信する。この変換素子54は、受信時において光音響波Uを電気信号に変換する機能を有している。電気音響変換部3は、小型、軽量に構成されており、多チャンネルケーブルによって後述する受信部22に接続される。この電気音響変換部3は、セクタ走査対応、リニア走査対応、コンベックス走査対応等の中から診断部位に応じて選択される。電気音響変換部3は、光音響波Uを効率よく伝達するために音響整合層を備えてもよい。一般に圧電素子材料と生体では音響インピーダンスが大きく異なるため、圧電素子材料と生体が直接接した場合は、界面での反射が大きくなり光音響波を効率よく伝達することができない。このため、圧電素子材料と生体の間に中間的な音響インピーダンスを有する物質で構成した音響整合層を挿入することにより、光音響波を効率よく伝達することができる。音響整合層を構成する材料の例としては、エポキシ樹脂や石英ガラスなどが挙げられる。
 光音響検査装置10の画像生成部2は、電気音響変換部3を構成する複数の変換素子54を選択駆動するとともに、また電気音響変換部3からの電気信号に所定の遅延時間を与え、整相加算を行うことにより受信信号を生成する受信部22と、変換素子54の選択駆動や受信部22の遅延時間を制御する走査制御部24と、受信部22から得られる受信信号に対して各種の処理を行う信号処理部25とを備えている。
 受信部22は、図2に示すように、電子スイッチ53と、プリアンプ55と、受信遅延回路56と、加算器57とを備えている。
 電子スイッチ53は、光音響走査における光音響波の受信に際して、連続して隣接する所定数の変換素子54を選択する。例えば、電気音響変換部3がアレイ型の192個の変換素子CH1~CH192から構成される場合、このようなアレイ型変換素子は、電子スイッチ53によってエリア0(CH1~CH64までの変換素子の領域)、エリア1(CH65~CH128までの変換素子の領域)およびエリア2(CH129~CH192までの変換素子の領域)の3つの領域に分割されて取り扱われる。このようにN個の変換素子から構成されるアレイ型変換素子をn(n<N)個の隣接する振動子のまとまり(エリア)として取り扱い、このエリアごとにイメージング作業を実施した場合には、すべてのチャンネルの変換素子にプリアンプやA/D変換ボードを接続する必要がなくなり、超音波探触子70の構造を簡素化できコストの増大を防ぐことができる。また、それぞれのエリアを個別に光照射することができるように、複数の光ファイバを配置した場合には、1回あたりの光出力が大きくならずに済むので、大出力の高価な光源を用いる必要がないといった利点もある。そして、変換素子54によって得られるそれぞれの電気信号はプリアンプ55に供給される。
 プリアンプ55は、上記のように選択された変換素子54によって受信された微小な電気信号を増幅し、十分なS/Nを確保する。
 受信遅延回路56は、電子スイッチ53によって選択された変換素子54から得られる光音響波Uの電気信号に対して、所定の方向からの光音響波Uの位相を一致させて収束受信ビームを形成するための遅延時間を与える。
 加算器57は、受信遅延回路56により遅延された複数チャンネルの電気信号を加算することによって1つの受信信号にまとめる。この加算によって所定の深さからの音響信号は整相加算され、受信収束点が設定される。
 走査制御部24は、ビーム集束制御回路67と変換素子選択制御回路68とを備える。変換素子選択制御回路68は、電子スイッチ53によって選択される受信時の所定数の変換素子54の位置情報を電子スイッチ53に供給する。一方、ビーム集束制御回路67は、所定数個の変換素子54が形成する受信収束点を形成するための遅延時間情報を受信遅延回路56に供給する。
 信号処理部25は、フィルタ66と、信号処理器59と、A/D変換器60と、画像データメモリ62とを備えている。受信部22の加算器57から出力された電気信号は、信号処理部25のフィルタ66において不要なノイズを除去した後、信号処理器59にて受信信号の振幅を対数変換し、弱い信号を相対的に強調する。一般に、被検体7からの受信信号は、80dB以上の広いダイナミックレンジをもった振幅を有しており、これを23dB程度のダイナミックレンジをもつ通常のCRTモニタに表示するためには弱い信号を強調する振幅圧縮が必要となる。なお、フィルタ66は、帯域通過特性を有し、受信信号における基本波を抽出するモードと高調波成分を抽出するモードを有している。また、信号処理器59は、対数変換された受信信号に対して包絡線検波を行う。そして、A/D変換器60は、この信号処理器59の出力信号をA/D変換し、1ライン分の光音響画像データを形成する。この1ライン分の光音響画像データは、画像データメモリ62にそれぞれ保存される。
 画像データメモリ62は、前述のように生成された光音響画像データを保存する記憶回路である。システム制御部4の制御のもとで、画像データメモリ62から断面のデータが読み出され、その読出しに際して空間的に補間されることにより、当該断面の光音響画像データが生成される。
 表示部6は、表示用画像メモリ63と、光音響画像データ変換器64と、CRTモニタ65を備えている。表示用画像メモリ63は、CRTモニタ65に表示する光音響画像データを一時的に保存するバッファメモリであり、画像データメモリ62からの1ライン分の光音響画像データは、この表示用画像メモリ63において1フレームに合成される。光音響画像データ変換器64は、表示用画像メモリ63から読み出された合成画像データに対してD/A変換とテレビフォーマット変換を行い、その出力はCRTモニタ65において表示される。
 操作部5は、操作パネル上にキーボード、トラックボール、マウス等を備え、装置操作者が患者情報、装置の撮影条件、表示断面など必要な情報を入力するために用いられる。
 システム制御部4は、図示しないCPUと図示しない記憶回路を備え、操作部5からのコマンド信号に従って光送信部1、画像生成部2、表示部6などの各ユニットの制御やシステム全体の制御を統括して行う。特に、内部のCPUには、操作部5を介して送られる操作者の入力コマンド信号が保存される。
 次に、光照射部15と電気音響変換部3を一体化した超音波探触子70について図3~図5Cを用いて説明する。図3は、超音波探触子70の構成を示す概略図である。図4は、光音響画像生成の際の超音波探触子70と生体組織とを示す概略図である。図5Aから図5Cは、1次元状に配列された変換素子に関する対応領域の外周端と、これを包含する照射範囲の外周端との位置関係を説明するための概略図である。
 超音波探触子70は、複数の変換素子54を有している。変換素子54は、例えば所定の方向に沿って1次元的に配列されている。図3では、この変換素子54の配列方向(アレイ方向)がX軸、アレイ方向に垂直かつ変換素子54の検出面に平行な方向(エレベーション方向)がY軸、および上記アレイ方向および上記エレベーション方向に垂直な方向がZ軸として示されている。光ファイバ71は、光源部11(図1)からの光を超音波探触子70内に設けられた光照射部15にまで導く。光照射部15は、図3に示すように、例えば1次元的に配列された変換素子54の周囲に沿って配置される。そして、光照射部15は、図3および図5Aに示すように、電気音響変換部3に対応する被検体7上の対応領域をすべて包含する被検体7上の照射範囲であって、対応領域の外周端Eaと照射範囲の外周端Ebとの最小外周端間隔Wminが5mm以上である照射範囲に、パルスレーザ光を照射可能となるように配置される。「最小外周端間隔」とは、照射範囲の外周端と対応領域の外周端とで挟まれた環状の領域の幅Wのうち最小のものを意味する。ここで、上記環状の領域の幅Wは、対応領域の外周端Eaまたは照射範囲の外周端Ebの任意の位置において規定でき、対応領域の外周端Ea(或いは照射範囲の外周端Eb)のある位置における幅Wとは、当該位置から照射範囲の外周端Eb(或いは対応領域の外周端Ea)までの最短の長さである。
 本明細書において、より具体的には被検体上の対応領域および照射範囲は、電気音響変換部の中心を通りZ軸に平行な軸と被検体に当接される超音波探触子の当接面との交点を通りZ軸に垂直な平面(基準面)上で定義される。電気音響変換部の中心とは、Z軸上の視点から見た電気音響変換部の外形についての中心である。通常電気音響変換部は、1次元または2次元状に並べられた変換素子から構成され、全体としては矩形状を有するため、この場合にその中心とは当該矩形状の中心をいう。また、超音波探触子の当接面とは、超音波探触子が被検体に当てられた時に当該被検体と接触することになる超音波探触子の表面である。例えば、電気音響変換部の検出面が被検体と直接接触する場合には、当該検出面と被検体との接触面が当接面に相当し、超音波探触子に設けられた音響整合層や音響レンズ等の音響素子が被検体と直接接触する場合には、当該音響素子と被検体との接触面が当接面に相当する。
 上記当接面が湾曲する場合には、図5Bおよび図5Cのようにして基準面32を規定する。図5Bは超音波探触子の先端に凸形状の面を有する音響素子80が設けられている場合の例を示している。図5Bのような場合、音響素子80の凸形状の面と被検体7の表面との接触面が当接面33となる。一方、図5Cは超音波探触子の先端に凹形状の面を有する音響素子81が設けられている場合の例を示している。図5Cのような場合、音響素子81の凹形状の面と被検体7の表面との接触面が当接面33となる。そして、図5Bおよび図5Cにおいて、電気音響変換部3の中心を通りZ軸に平行な軸30と当接面33との交点31を通りZ軸に垂直な平面が基準面32となる。この基準面32上で対応領域および照射範囲が規定される。つまり、対応領域は、Z軸に沿った電気音響変換部の基準面32への投影領域であり、対応領域の外周端Eaと照射範囲の外周端Ebとの距離が環状の領域の幅Wとなる。
 光照射部15は、少なくとも選択された部分領域を含む領域に光源部11からのパルスレーザ光を照射するように構成されてもよい。例えば光照射部15は、図4に示すように、領域A、領域B、及び領域Cのそれぞれに対応して設けられる。その場合、領域Aに対応する光照射部15は領域Aの選択時にパルスレーザ光を少なくとも領域Aに照射する。また、領域Bに対応する光照射部15は領域Bの選択時にパルスレーザ光を少なくとも領域Bに照射し、領域Cに対応する光照射部15は領域Cの選択時にパルスレーザ光を少なくとも領域Cに照射する。このとき、それぞれの領域に対応して設けられた光照射部15は、それぞれの領域を照射する際に、それぞれの領域内の変換素子54に対応する被検体7上の対応領域の外周端Eaと照射範囲の外周端Ebとの最小外周端間隔Wminが5mm以上となるように設定される。つまり、光照射部15が例えば領域Aを照射する場合には、その際に駆動する領域A内の変換素子54に対応する被検体7上の対応領域の外周端と照射範囲の外周端との最小外周端間隔が5mm以上となるように設定される。
 例えば超音波探触子70は、192ch分の変換素子54を有している。変換素子54に対応する幅は、光音響画像生成に関連して例えば3つの部分領域(領域A~C)に分割されており、各部分領域の幅は64ch分の変換素子54に相当する幅であるとする。このような場合、192chの変換素子54に対応する生体組織の幅が57.6mmであったとすると、各部分領域の幅は19.2mmとなる。つまり、光音響検査装置10は、光音響画像生成の際に、例えば図4に示すように分割された19.2mm幅の部分領域への光照射・データ収集を3回繰り返し行い、全192ch分のデータを取得する。
 なお、光照射部15を電気音響変換部3(配列された変換素子54)の周囲に沿って配置する場合には、図5Dのように、光照射部15の光の照射軸が電気音響変換部3および対応領域の間隙からこの対応領域に向くように、光の照射軸と上記対応領域に垂直な方向とが成す角θが5~45度となるように設定することが好ましい。これにより、光の照射範囲に関して電気音響変換部3の陰となる部分を少なくすることができる。
 また、本発明は、変換素子54が1次元的に配列した電気音響変換部3に限定されない。つまり、変換素子54が2次元的に配列した電気音響変換部3にも適用することができる。変換素子54は、例えば図6に示すように、光ファイバを挿入しながら配列される場合等、所定の間隔を空けて配列される場合もありうる。このような場合、対応領域の外周端Eaは、図6に示すように配列された変換素子54全体としての外周に沿った位置の集合とする。
 そして、超音波探触子70において、変換素子54の上方から変換素子全体を照射できるように光照射部15を構成する場合には、均一な光強度分布を得る観点から、例えば図7Aから図7Gに示すような構成が好ましい。
 ここで、図7Aは、導波部14としての光ファイバ71から光ファイバカプラ72を介して光を分岐させる複数の光ファイバ73と、複数の円形レンズ74との組み合わせを備えた光送信部1の構成を示す概略図である。この構成では、複数の円形レンズ74が電気音響変換部3の長さ方向に沿ってアレイ状に配列されている。そして、それぞれの円形レンズ74から出射された光L全体によって、電気音響変換部3の対応領域を包含するような照射範囲が実現されている。図7Aにおいては、複数の円形レンズ74が光照射部15となる。
 図7Bは、導波部14としての光ファイバ71から光ファイバカプラ72を介して光を分岐させる複数の光ファイバ73と、1つの方形レンズ75との組み合わせを備えた光送信部1の構成を示す概略図である。この構成では、電気音響変換部3の長さ以上の長さを有する方形レンズ75が、電気音響変換部3の長さ方向に沿って配列されている。そして、上記方形レンズ75から出射された光Lによって、電気音響変換部3の対応領域を包含するような照射範囲が実現されている。方形レンズとしては、例えばシリンドリカルレンズが挙げられる。図7Bにおいては、方形レンズ75が光照射部15となる。
 図7Cは、導波部14としての光ファイバ71から光ファイバカプラ72を介して光を分岐させる2つの光ファイバ73と、光拡散部76との組み合わせを備えた光送信部1の構成を示す概略図である。この構成では、電気音響変換部3の長さ以上の長さを有する光拡散部76が、電気音響変換部3の長さ方向に沿って配列されている。2つの光ファイバ73は光拡散部76の両端にそれぞれ接続されている。両端からそれぞれ光拡散部76に入射した光は、光拡散部76を伝搬しながら光拡散部76中の拡散粒子によって拡散される。そして、上記光拡散部76中で拡散された光Lによって、電気音響変換部3の対応領域を包含するような照射範囲が実現されている。図7Cにおいては、光拡散部76が光照射部15となる。
 図7Dは、導波部14としての光ファイバ71と、導光板77との組み合わせを備えた光送信部1の構成を示す概略図である。また、図7Eは、図7Dの超音波探触子70をエレベーション方向から見たときの概略図である。この構成では、電気音響変換部3の長さ以上の幅を有する2つの導光板77が、電気音響変換部3の横に配置されている。2つの導光板77は、複数の変換素子54からなる電気音響変換部3を挟んで、複数の変換素子54が配列された方向とは直交する方向に対向するように、配置されている。光ファイバ71と導光板77とは互いに光学的に結合されている。光ファイバと結合された側の導光板77の部分は、図7Eに示されるように、例えばテーパー形状に形成される。光ファイバと結合される導光板77の部分は、光エネルギーによる破損を回避するために、ガラス材料で形成されることが好ましい。一方、その他の部分は、例えばアクリル等の樹脂材料で形成される。光ファイバ71によって導光されたパルスレーザ光Lは、導光板77に入射した後、反対側の端部から被検体7に照射される。なお、図7Dおよび図7Eでは、導光板77のパルスレーザ光Lが出射する当該端部に光拡散部76が、超音波探触子70の先端部に音響素子82が設けられている。図7Dおよび図7Eでは、超音波探触子70の当接面が基準面32となる。しかしながら、光拡散部76および音響素子82は必須ではない。図7Dおよび図7Eでは、上記光拡散部76中で拡散されたパルスレーザ光Lによって、電気音響変換部3の対応領域を包含するような照射範囲が実現されている。図7Dおよび図7Eにおいては、導光板77および光拡散部76が光照射部15となる。
 図7Fは、導波部14としての光ファイバ71と、導光板77との組み合わせを備えた光送信部1の他の構成を示す概略図である。図7Fの超音波探触子70は、主に、導光板77から出射したパルスレーザ光Lがより対応領域へ向くように導光板77がZ軸に対して傾いている点および光拡散部76がない点で、図7Dおよび図7Eの超音波探触子と異なる。このような構成を採用することにより、光の照射範囲に関して電気音響変換部3の陰となる部分をより少なくすることができる。
 図7Gは、導波部14としての光ファイバ71と、導光板77との組み合わせを備えた光送信部1の他の構成を示す概略図である。図7Gの超音波探触子70は、主に、導光板77のパルスレーザ光Lが出射する端部が傾斜(例えば20~30度)を有するように当該端部が切除されている点で、図7Dおよび図7Eの超音波探触子と異なる。図7Gの導光板77を使用した場合、上記傾斜に起因して、導光板77自体が傾いていなくてもパルスレーザ光Lが対応領域へ寄って出射する。このような構成を採用することにより、光の照射範囲に関して電気音響変換部3の陰となる部分をより少なくするとともに、超音波探触子70を小型化することができる。
 なお、光照射部15を図7に示すような構成とする場合であっても、照射範囲の外周端と対応領域の外周端とで挟まれた環状の領域の幅Wのうち、最小外周端間隔Wminは5mm以上となるように設定する。
 以下本発明の作用を説明する。
 本実施形態では図5Aに示すように、光照射部15が、電気音響変換部3に対応する被検体7上の対応領域をすべて包含する被検体7上の照射範囲であって、対応領域の外周端Eaと照射範囲の外周端Ebとの最小外周端間隔Wminが5mm以上である照射範囲に、パルスレーザ光を照射可能となるように配置される。このように設定することにより、光エネルギー密度が同一である場合において、確実に同一の組織からより強い強度を有する光音響波を発生させることができる。
 これは、後述する実施例で証明される通り、光エネルギー密度が同一である場合において、照射範囲の外周端と対応領域の外周端とで挟まれた環状の領域の幅Wが20mm程度までは、光の照射範囲の増加に伴って同一の組織から発生する光音響波の強度も増加することに由来する。なお、上記幅Wが20mmを超えると光音響波の強度はほぼ飽和状態となるため、光エネルギーを効率的使用する観点から、最大外周端間隔Wmaxは20mm以下であることが好ましい。また、上記幅が5mm未満では、同一の組織から得られる光音響波の飽和状態時における値の1/10以下となってしまう。したがって、S/Nの高い光音響波を検出する観点から、本発明では少なくとも最小外周端間隔Wminは5mmとする。
 以上のように、本発明に係る光音響検査用探触子および光音響検査装置によれば、光音響効果を利用した光音響検査において、上記光を被検体に照射する光照射部と、上記光音響波を電気信号に変換する電気音響変換部とを備え、特に光照射部が、電気音響変換部に対応する被検体上の対応領域をすべて包含する被検体上の照射範囲であって、対応領域の外周端と照射範囲の外周端との最小外周端間隔が5mm以上である照射範囲を照射可能となるように構成されたものであるから、光エネルギー密度が同一である場合において、同一の組織からより強い強度を有する光音響波を発生させることができる。この結果、光音響効果を利用した光音響検査において、確実によりS/Nの高い光音響波を検出することが可能となる。
 本発明に係る光音響検査装置の実施例を以下に示す。
<信号強度の測定方法>
 図8Aおよび図8Bは、本発明の実施例における装置構成を示す概略図である。光散乱体入り(イントラリピッド0.03%:生体散乱強度相当)の脱気水152中に位置設置された、内径2.5mmのウレタンチューブファントム153を対象に測定を行った。ウレタンチューブファントム153は、その中心が水面から15mmとなる位置に設置した。このウレタンチューブファントム153には、生体内の血液の光吸収係数に合わせたインクを封入した。
 YAG励起OPOレーザから出射した波長532nmのレーザ光を光ファイバ144で導光し、その後コリメータレンズ145で平行光化し、ミラー146を用いて平行光化されたレーザ光を反射させて、レーザ光の照射軸と水面とが垂直となるように上記ウレタンチューブファントム153に対してレーザ光Lを照射した。水面近傍の水中かつ上記レーザ光Lの照射範囲の中心に配置されたPVDFの単一圧電素子147によって、上記ウレタンチューブファントム153からの光音響波Uを検出し、オシロスコープ148で光音響波Uの信号波形を観測して、電圧強度を光音響波Uの信号強度とした。この場合、本発明における対応領域は水面上の領域として取り扱った。そして、レーザ光Lの照射範囲は、水面入射時の光エネルギー密度を0.5mJ/cmと一定にし、水面入射時の光のビーム径Φ(mm)を変化させて、それぞれのビーム径Φにおける光音響波Uの強度変化を評価した。
<結果>
 図9は、実施例において得られた測定結果を示すグラフである。縦軸は光音響波Uの信号強度(mV)であり、横軸はレーザ光のビーム半径Φ/2(mm)である。このグラフより、ビーム半径がほぼ20mmを超えた場合、すなわち光の照射範囲の外周端の位置が単一圧電素子147から20mmの位置を超えた場合、光音響波Uの信号強度はほぼ飽和することわかった。一方、ビーム半径が5mm未満の場合、すなわち光の照射範囲の外周端の位置が単一圧電素子147から5mmの位置に満たない場合、光音響波Uの信号強度は上記飽和値に比べおよそ1桁以上落ちることがわかった。したがって、ビーム半径が5mm未満の場合には、光音響波Uの信号がノイズに埋もれてしまい検出が困難となった。
 この結果、光音響効果を利用した光音響検査において、確実によりS/Nの高い光音響波を検出するためには、対応領域の外周端と照射範囲の外周端との最小外周端間隔を5mm以上とすればよいと言える。さらに、最大外周端間隔は20mm以下でも本発明の効果が充分得られると言える。

Claims (20)

  1.  被検体に光を照射し、前記光を前記被検体に導光し、前記光が前記被検体に照射されることにより該被検体内で発生した光音響波を検出して該光音響波を電気信号に変換し、該電気信号に基づいて検査を行う光音響検査に用いられる探触子において、
     前記光を前記被検体に照射する光照射部と、
     前記光音響波を電気信号に変換する電気音響変換部とを備え、
     前記光照射部が、前記電気音響変換部に対応する前記被検体上の対応領域をすべて包含する前記被検体上の照射範囲であって、前記対応領域の外周端と前記照射範囲の外周端との最小外周端間隔が5mm以上である照射範囲を照射可能となるように構成されたものであることを特徴とする光音響検査用探触子。
  2.  前記対応領域の外周端と前記照射範囲の外周端との最大外周端間隔が20mm以下であることを特徴とする請求項1に記載の光音響検査用探触子。
  3.  前記光照射部が、一定の間隔で配列された前記光を分岐させる複数の導光部を備えたものであることを特徴とする請求項1に記載の光音響検査用探触子。
  4.  前記光照射部が、一定の間隔で配列された前記光を分岐させる複数の導光部を備えたものであることを特徴とする請求項2に記載の光音響検査用探触子。
  5.  前記光照射部が、前記光を分岐させる複数の導光部と複数の円形レンズとの組み合わせを備えたものであることを特徴とする請求項1に記載の光音響検査用探触子。
  6.  前記光照射部が、前記光を分岐させる複数の導光部と複数の円形レンズとの組み合わせを備えたものであることを特徴とする請求項2に記載の光音響検査用探触子。
  7.  前記光照射部が、一定の間隔で配列された前記光を分岐させる複数の導光部と方形レンズとの組み合わせを備えたものであることを特徴とする請求項1に記載の光音響検査用探触子。
  8.  前記光照射部が、一定の間隔で配列された前記光を分岐させる複数の導光部と方形レンズとの組み合わせを備えたものであることを特徴とする請求項2に記載の光音響検査用探触子。
  9.  前記光照射部が、前記照射範囲において略均一な強度の光を照射するための光拡散部を備えたものであることを特徴とする請求項1に記載の光音響検査用探触子。
  10.  前記光照射部が、前記光の照射軸が前記対応領域に垂直な方向に対して該対応領域側に5~45度傾いたものであることを特徴とする請求項1に記載の光音響検査用探触子。
  11.  前記光照射部が、前記電気音響変換部を挟んで対向するように配置された導光板であることを特徴とする請求項1に記載の光音響検査用探触子。
  12.  前記光照射部が、前記電気音響変換部を挟んで対向するように配置された導光板であることを特徴とする請求項2に記載の光音響検査用探触子。
  13.  前記導光板が、光が出射する該導光板の先端に光拡散部を有するものであることを特徴とする請求項11に記載の光音響検査用探触子。
  14.  前記導光板が、光が出射する該導光板の先端に光拡散部を有するものであることを特徴とする請求項12に記載の光音響検査用探触子。
  15.  前記導光板の前記光が出射する端部が傾斜を有するように該端部が切除されていることを特徴とする請求項11に記載の光音響検査用探触子。
  16.  前記導光板の前記光が出射する端部が傾斜を有するように該端部が切除されていることを特徴とする請求項12に記載の光音響検査用探触子。
  17.  被検体に照射する光を発生する光源と、前記光を前記被検体に照射する光照射部と、前記光が前記被検体に照射されることにより該被検体内で発生した光音響波を検出して該光音響波を電気信号に変換する電気音響変換部と、前記電気信号に基づいて光音響画像を生成する画像生成部とを備えた光音響検査装置において、
     前記光照射部が、前記電気音響変換部に対応する前記被検体上の対応領域をすべて包含する前記被検体上の照射範囲であって、前記対応領域の外周端と前記照射範囲の外周端との最小外周端間隔が5mm以上である照射範囲を照射可能となるように構成されたものであることを特徴とする光音響検査装置。
  18.  前記対応領域の外周端と前記照射範囲の外周端との最大外周端間隔が20mm以下であることを特徴とする請求項17に記載の光音響検査装置。
  19.  前記光照射部が、前記電気音響変換部を挟んで対向するように配置された導光板であることを特徴とする請求項17に記載の光音響検査装置。
  20.  前記光照射部が、前記電気音響変換部を挟んで対向するように配置された導光板であることを特徴とする請求項18に記載の光音響検査装置。
PCT/JP2011/006931 2010-12-10 2011-12-12 光音響検査用探触子および光音響検査装置 WO2012077356A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/909,525 US20130261426A1 (en) 2010-12-10 2013-06-04 Photoacoustic inspection probe and photoacoustic inspection apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-275389 2010-12-10
JP2010275389 2010-12-10
JP2011-258578 2011-11-28
JP2011258578A JP2012135610A (ja) 2010-12-10 2011-11-28 光音響検査用探触子および光音響検査装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/909,525 Continuation US20130261426A1 (en) 2010-12-10 2013-06-04 Photoacoustic inspection probe and photoacoustic inspection apparatus

Publications (1)

Publication Number Publication Date
WO2012077356A1 true WO2012077356A1 (ja) 2012-06-14

Family

ID=46206866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006931 WO2012077356A1 (ja) 2010-12-10 2011-12-12 光音響検査用探触子および光音響検査装置

Country Status (3)

Country Link
US (1) US20130261426A1 (ja)
JP (1) JP2012135610A (ja)
WO (1) WO2012077356A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027316A3 (en) * 2012-08-14 2014-05-30 Koninklijke Philips N.V. Compact laser and efficient pulse delivery for photoacoustic imaging
WO2017026427A1 (ja) * 2015-08-07 2017-02-16 プレキシオン株式会社 光音響画像化装置
JP2018183614A (ja) * 2013-01-22 2018-11-22 セノ メディカル インストルメンツ,インク. 光音響アイソレータを備えたプローブ
CN111279179A (zh) * 2017-10-27 2020-06-12 柏林洪堡大学 具有改进的干扰信号抑制的光声传感器头和光声测量仪器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061571B2 (ja) * 2012-09-04 2017-01-18 キヤノン株式会社 被検体情報取得装置
JP2014068701A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 光音響画像生成装置および光音響画像生成方法
JP6172912B2 (ja) * 2012-10-23 2017-08-02 キヤノン株式会社 被検体情報取得装置および光音響プローブ
JP2014230631A (ja) * 2013-05-29 2014-12-11 富士フイルム株式会社 光音響計測用プローブ並びにそれを備えたプローブユニットおよび光音響計測装置
JP2015029550A (ja) * 2013-07-31 2015-02-16 船井電機株式会社 光音響画像化装置
KR102270798B1 (ko) * 2013-12-16 2021-06-30 삼성메디슨 주식회사 광음향 프로브 및 광음향 진단 장치
JP6049209B2 (ja) * 2014-01-28 2016-12-21 富士フイルム株式会社 光音響計測用プローブおよびそれを備えた光音響計測装置
CA2940968C (en) * 2014-02-27 2024-02-27 Seno Medical Instruments, Inc. Probe having light delivery through combined optically diffusing and acoustically propagating element
JP6656229B2 (ja) * 2014-09-05 2020-03-04 キヤノン株式会社 光音響装置
JP6463414B2 (ja) * 2017-07-06 2019-01-30 キヤノン株式会社 音響波プローブおよび音響波装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018153A (ja) * 2007-06-11 2009-01-29 Canon Inc 生体情報イメージング装置
JP2010125260A (ja) * 2008-12-01 2010-06-10 Canon Inc 生体検査装置
JP2010167167A (ja) * 2009-01-26 2010-08-05 Fujifilm Corp 光超音波断層画像化装置および光超音波断層画像化方法
JP2010179085A (ja) * 2008-07-11 2010-08-19 Canon Inc 生体情報取得装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964692A (en) * 1982-07-21 1990-10-23 Smith & Nephew Dyonics, Inc. Fiber bundle illumination system
US5033814A (en) * 1989-04-10 1991-07-23 Nilford Laboratories, Inc. Line light source
JP4406226B2 (ja) * 2003-07-02 2010-01-27 株式会社東芝 生体情報映像装置
US7874982B2 (en) * 2005-11-02 2011-01-25 Depuy Spine, Inc. Illuminated surgical access system including a surgical access device and coupled light emitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018153A (ja) * 2007-06-11 2009-01-29 Canon Inc 生体情報イメージング装置
JP2010179085A (ja) * 2008-07-11 2010-08-19 Canon Inc 生体情報取得装置
JP2010125260A (ja) * 2008-12-01 2010-06-10 Canon Inc 生体検査装置
JP2010167167A (ja) * 2009-01-26 2010-08-05 Fujifilm Corp 光超音波断層画像化装置および光超音波断層画像化方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027316A3 (en) * 2012-08-14 2014-05-30 Koninklijke Philips N.V. Compact laser and efficient pulse delivery for photoacoustic imaging
CN105050485A (zh) * 2012-08-14 2015-11-11 皇家飞利浦有限公司 用于光声成像的紧凑激光器和有效脉冲递送
JP2018183614A (ja) * 2013-01-22 2018-11-22 セノ メディカル インストルメンツ,インク. 光音響アイソレータを備えたプローブ
WO2017026427A1 (ja) * 2015-08-07 2017-02-16 プレキシオン株式会社 光音響画像化装置
CN111279179A (zh) * 2017-10-27 2020-06-12 柏林洪堡大学 具有改进的干扰信号抑制的光声传感器头和光声测量仪器
KR20200078514A (ko) * 2017-10-27 2020-07-01 훔볼트-우니베르지테트 추 베를린 개선된 간섭 신호 억제를 갖는 광 음향 센서 헤드 및 광 음향 측정 장치
US11391703B2 (en) * 2017-10-27 2022-07-19 Quantune Technologies Gmbh Photo-acoustic sensor head and photo-acoustic measuring apparatus with improved interference signal suppression
KR102541366B1 (ko) 2017-10-27 2023-06-12 퀀툰 테크놀로지스 게엠베하 개선된 간섭 신호 억제를 갖는 광 음향 센서 헤드 및 광 음향 측정 장치

Also Published As

Publication number Publication date
US20130261426A1 (en) 2013-10-03
JP2012135610A (ja) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012077356A1 (ja) 光音響検査用探触子および光音響検査装置
US10561396B2 (en) Ultrasonic probe, and photoacoustic-ultrasonic system and inspection object imaging apparatus including the ultrasonic probe
JP5647941B2 (ja) 光音響撮像装置およびそれに用いられるプローブユニット並びに内視鏡
JP5469113B2 (ja) 光音響分析用プローブユニットおよび光音響分析装置
JP5647942B2 (ja) 光音響撮像装置およびそれに用いられるプローブユニット並びに内視鏡
JP2010125260A (ja) 生体検査装置
JP5702313B2 (ja) 光音響分析用プローブユニットおよび光音響分析装置
US11986344B2 (en) Portable probe for photoacoustic tomography and real-time photoacoustic tomography device
JP5559080B2 (ja) 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
WO2012114709A1 (ja) 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
JP5559081B2 (ja) 光音響撮像装置およびそれに用いられるプローブユニット
JP5502777B2 (ja) 光音響撮像装置およびそれに用いられるプローブユニット
JP2012090862A (ja) 光音響検査用探触子および光音響検査装置
JPWO2017047053A1 (ja) 光音響計測用プローブ並びにそれを備えたプローブユニットおよび光音響計測装置
US11344204B2 (en) Photoacoustic measurement probe and probe unit and photoacoustic measurement apparatus including the same
JP6188843B2 (ja) 生体検査装置
WO2019044594A1 (ja) 光音響画像生成装置および画像取得方法
JP5564449B2 (ja) 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
JP6444462B2 (ja) 生体検査装置
JP2014138883A (ja) 生体検査装置
JP2015112292A (ja) 被検体の情報取得装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847862

Country of ref document: EP

Kind code of ref document: A1