WO2012075789A1 - 核电机组数字化控制系统(dcs)及其信息处理方法和装置 - Google Patents

核电机组数字化控制系统(dcs)及其信息处理方法和装置 Download PDF

Info

Publication number
WO2012075789A1
WO2012075789A1 PCT/CN2011/075293 CN2011075293W WO2012075789A1 WO 2012075789 A1 WO2012075789 A1 WO 2012075789A1 CN 2011075293 W CN2011075293 W CN 2011075293W WO 2012075789 A1 WO2012075789 A1 WO 2012075789A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
information
nuclear power
steam turbine
control
Prior art date
Application number
PCT/CN2011/075293
Other languages
English (en)
French (fr)
Inventor
周创彬
黄清武
骆艺雄
冯文彪
柳文斌
崔卫红
黄远征
张锦浙
孙文亮
肖喆
Original Assignee
中国广东核电集团有限公司
大亚湾核电运营管理有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010582866XA external-priority patent/CN102157213B/zh
Priority claimed from CN2010105828551A external-priority patent/CN102156449B/zh
Priority claimed from CN2010105828528A external-priority patent/CN102163051A/zh
Priority claimed from CN201010582816.1A external-priority patent/CN102080579B/zh
Application filed by 中国广东核电集团有限公司, 大亚湾核电运营管理有限责任公司 filed Critical 中国广东核电集团有限公司
Priority to EP11847628.2A priority Critical patent/EP2650884B1/en
Priority to KR1020137014726A priority patent/KR20130137186A/ko
Priority to TR2013/06991T priority patent/TR201306991T1/tr
Publication of WO2012075789A1 publication Critical patent/WO2012075789A1/zh
Priority to ZA2013/05115A priority patent/ZA201305115B/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/008Man-machine interface, e.g. control room layout
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the invention belongs to the field of nuclear power control, and in particular relates to an information processing method, device and DCS system for a digital control system of a nuclear power unit.
  • the pressurized water reactor nuclear power plant is mainly composed of a pressurized water reactor, a primary loop system and a secondary loop system.
  • Nuclear fission is introduced into the reactor core consisting of nuclear fuel in a pressure vessel.
  • the pressurized water reactor uses low enriched uranium as fuel and light water as coolant and moderator.
  • the heat released by nuclear fission is carried out of the reactor by the high-pressure water flowing through the primary loop system in the reactor and transfers heat to the water of the secondary circuit in the steamer generator.
  • the steam generated by the heat of the water drives the steam turbine, which drives the generator to generate electricity.
  • Nuclear power plant systems are complex, and their start-up and shutdown are controlled by the overall nuclear power plant program.
  • the overall nuclear power plant program is the procedure used by the operating personnel to control or change the state of the entire unit while the unit is in operation.
  • the overall procedure of the nuclear power unit itself is very complicated.
  • CPR1000 nuclear power plant adopts distributed control system (Digital When the Control System (DCS) is used to control the operation of a nuclear power unit, part of the overall program of the nuclear power unit is placed inside the computer that controls the power plant.
  • DCS Control System
  • the existing nuclear power plant overall program still uses paper procedures.
  • the operator executes a certain program, it needs to find the corresponding DCS according to the identification on the paper program.
  • the control screen makes it difficult to meet the application scenarios of rapid intervention in nuclear power plants.
  • the primary circuit hydraulic test is a very large, high-risk and difficult test project of the pressurized water reactor nuclear power unit, it is both a test process and an operation.
  • the operation process especially the pressure fluctuations caused by various reasons during the test, needs to quickly identify the cause and intervene.
  • the convenience and security of running the operation depends on the human machine interface.
  • the technical problem to be solved by the information processing method of the nuclear power unit digital control system provided by the embodiment of the present invention is that the existing nuclear power unit overall program has limited vision and low execution efficiency, and fully utilizes the advantages of DCS in information processing.
  • Another object of embodiments of the present invention is to provide an information processing apparatus for a nuclear power unit digital control system.
  • the embodiment of the present invention is implemented by the information processing method of the digital control system of the nuclear power unit, and the method includes the following steps:
  • the link instruction is issued through the digital operation one-way matching interface, and the matching interface that receives the link instruction outputs the monitoring parameters and operation instructions across the system.
  • an information processing apparatus for a nuclear power unit digital control system comprising a program main body, a digitized operation sheet, and a supporting interface.
  • the program body is configured to output task information, and digitized operation order information and supporting interface information corresponding to the task information, and search for a digitized operation order corresponding to the specified task according to the program body;
  • the digitized operation sheet is used for outputting task detailed information, device information corresponding to task detailed information, and task link information, and issuing a link instruction through a digital operation one-way supporting interface;
  • the matching interface is used to output monitoring parameters and operating instructions across the system.
  • a DCS system including an information processing apparatus of the nuclear power unit digital control system.
  • the beneficial effects of the present invention compared with the prior art are: clearly showing the execution sequence and logical relationship of the operating state information of the nuclear power unit during the start-stop process, overcoming the insufficiency of the DCS in terms of intuitiveness, and improving the overall procedure of the nuclear power generating unit. Operational efficiency, give full play to the advantages of DCS in information processing.
  • FIG. 1 is a structural block diagram of a digitizing system of a nuclear power unit overall program according to an embodiment of the present invention
  • FIG. 2 is a diagram showing an example of a program body according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a digitized operation list of a manual lifting control bar according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a primary circuit hydraulic pressure test control unit according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a primary circuit hydraulic pressure test control interface according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a start and stop control unit of a steam turbine according to an embodiment of the present invention.
  • FIG. 7 and 8 are diagrams showing an example of a start and stop control tracking interface of a steam turbine according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing a specific structure of a structure navigation unit according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of an interface effect of a first display device according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of a display interface of a second display device corresponding to the subroutine D10 according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a display interface of a second display device corresponding to the subroutine I5 according to the embodiment of the present invention.
  • FIG. 13 is a flowchart of a digitization method of a nuclear power unit overall program according to an embodiment of the present invention.
  • FIG. 14 is a flowchart showing an implementation of digital control of a primary circuit hydraulic pressure test of a pressurized water reactor nuclear power plant realized by a primary circuit hydraulic pressure test control interface according to an embodiment of the present invention
  • Figure 15 is a flow chart showing the digital control of the primary circuit hydraulic pressure test of the pressurized water reactor nuclear power plant realized by the primary circuit hydraulic pressure test interface provided by another embodiment of the present invention.
  • 16 is a flow chart of implementing start-stop control of a nuclear power plant steam turbine generator set through a start-stop control tracking interface of a steam turbine according to an embodiment of the present invention
  • 17 is a flow chart of implementing start-stop control of a nuclear power plant steam turbine generator set through a start-stop control tracking interface of a steam turbine according to another embodiment of the present invention.
  • FIG. 18 is a flowchart of a digitizing system for entering a nuclear power unit overall program by a structure navigation unit according to an embodiment of the present invention.
  • the digital structuring process is performed on the overall program of the nuclear power generating unit, and the mutual linking relationship between the plurality of modules obtained by digitization is established, thereby overcoming the deficiency of the directness of the DCS, and improving the overall procedure of the nuclear power generating unit.
  • the operational efficiency is such that it meets the rapid requirements of intervention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 shows the structure of an information processing apparatus of a nuclear power unit digital control system according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the device can be used in a DCS system, and can be a software unit, a hardware unit or a combination of hardware and software running in a DCS system, or can be integrated into a DCS system as a stand-alone pendant or in an application system of a DCS system.
  • the DCS system refers to a system used in a nuclear power plant for controlling the operation of all equipment included in the entire nuclear power plant, including an overall program, a system program, a fault operation program, and the like.
  • the information processing device of the nuclear power unit digital control system comprises a program main body 1, a digitized operation sheet 2 and a supporting interface 3, wherein:
  • the program main body 1 is configured to output task information, and digitized operation order information and supporting interface information corresponding to the task information, and according to the task information output by the program main body 1 and the digitized operation sheet corresponding to the task information when the specified task needs to be executed.
  • the information finds the digitized operation sheet corresponding to the specified task.
  • the content in the paper procedure after the relevant operation of the main control room is separated as the main body of the program, and the task information is output through the main body of the program.
  • digital operation order information and supporting interface information corresponding to the task information The relevant operation of the main control room means that the equipment is distributed everywhere in the power plant, the operation control of the equipment, the monitoring is concentrated in the main control room, and the start, stop, monitoring, adjustment and control of such equipment are carried out through the main control room. operating.
  • the related operations of the main control room include, but are not limited to, operations such as remote start, stop, monitoring, and adjustment control of the related equipment by the main control room.
  • the program body since the program body outputs the task information and the digitized operation order information and the matching interface information corresponding to the task information, when the user needs to perform a certain task, the task information output by the program body can be And the digitized operation order information corresponding to the task information finds the digitized operation sheet corresponding to the task.
  • the main body of the program may be presented by a paper medium or by an electronic medium, and may be presented by a human-computer interaction interface when being presented through the electronic medium.
  • the program body is further configured to output program body comment information.
  • the task information refers to the tasks and objectives involved in the startup and outage control process of the nuclear power unit, and the logical relationship between the tasks.
  • the task information may be manually raising the control rod, stabilizing the average temperature of the primary circuit, etc., but not The examples are limited.
  • the digitized operation order information corresponding to the task information refers to information of a digitized operation sheet set to complete the task.
  • the digitized operation order information corresponding to the task information may be a name, an encoding, or the like of the digitized operation sheet.
  • the matching interface information corresponding to the task information refers to an interface that is set to complete the task and is matched with the overall program.
  • the matching interface information corresponding to the task information may be the name, code, and the like of the supporting interface.
  • the supporting interface includes but is not limited to the status display interface and the function tracking interface.
  • the program body can be divided into multiple columns, such as an operation/check column, a logo column, a location bar, and a remark column.
  • the task information is output through the operation/check column, and the execution of the task is recorded by the task completion identifier.
  • the task completion identifier may be in the form of a selection box. When the selection box is selected, the task is completed. When the selection box is not selected, the task is not completed.
  • the digital operation sheet information corresponding to the task information is output through the label column, for example, the code of the digitized operation sheet corresponding to the task information can be output, and the corresponding digitized operation sheet can be quickly and accurately found according to the coding of the digitized operation sheet, or fast, Accurately issue a link instruction to the corresponding digitized operation order to link to the corresponding digitized operation order.
  • the identifier column when a task in the main body of the program is relatively simple, and the digital operation sheet is not required to be set for the task, the identifier column further outputs device information corresponding to the task, and the device information may be Encoding, etc., in order to distinguish between digitized operation order information and device information, an underline can be added to the digitized operation order information.
  • the matching interface information corresponding to the task information is output through the location bar, for example, the coding of the matching interface corresponding to the task information can be output, and the corresponding matching interface can be quickly and accurately found according to the coding of the matching interface, or the fast and accurate direction can be quickly and accurately
  • the corresponding supporting interface issues a link instruction to link to the corresponding supporting interface.
  • the digital operation operation list can be linked to the supporting interface without outputting the task and the task in the main body of the program.
  • the corresponding interface of the information, at this time, the location bar also outputs the room number or location coordinate information of the device corresponding to the task. In this case, in order to distinguish the matching interface information and the room number or location coordinate information of the device, The interface information is underlined.
  • the comment information is output through the remarks column.
  • the remark information is non-command content that needs to be written in the program, such as notes, explanations, explanations, labels, information, data, etc., as remarks to keep the operation instructions clear and clear on the layout.
  • FIG. 2 is a schematic diagram of a program body according to an embodiment of the present invention, but is not limited to the example diagram.
  • task information is output through an operation/check column, and each task information is represented by a number to indicate a logical relationship between them, and a corresponding task completion identifier is set for each task information to identify Whether the task has been completed, such as setting a selection box to identify whether the task has been completed, if it is completed, check the selection box, otherwise it is not checked.
  • the program main body is generated according to the separated paper program, and the task information is outputted through the program main body and corresponding to the task information.
  • Digital operation of single information and supporting interface information so that the operator can more intuitively and quickly know the logical structure of the overall program of the nuclear power unit through the main body of the program, so that it can start and stop the control of the nuclear power unit.
  • the digitized operation sheet 2 outputs the task detailed information, the device information corresponding to the task detailed information, and the task link information.
  • the related operations of the separated main control room are generated according to different targets and tasks, and a digital operation order corresponding to the task is generated and passed.
  • the digitized operation sheet outputs detailed information of the task, device information corresponding to the detailed information of the task, and task link information.
  • the digitized operation ticket also outputs an operation ticket remark information.
  • the digital operation order is not a simple convergence of the operation of the main control room. Instead, it can decompose the related operations of the separated main control room according to different targets and tasks, so that digital operations corresponding to different targets and tasks can be generated. single.
  • the task information of the manual lifting control rod outputted by the main program shown in FIG. 2 the related operations of the main control room corresponding to the task of the manual lifting control rod are separated to generate a digital operation sheet for the manual lifting control rod.
  • the corresponding digital operation order can also be generated according to the same principle.
  • the task information can be directly output through the program body, without generating a corresponding digital operation order for the task information.
  • FIG. 3 An example diagram of the digital operation single-manual lifting control rod shown in Fig. 3, the task of which is to manually raise the control rod, the goal is to put the control rod all the core, and the operation instructions involved are all related to the lifting control rod.
  • Another example is a digital operation sheet that stabilizes the average temperature of the primary circuit. Its task is to stabilize the average temperature of the primary circuit. The goal is to stabilize the average temperature of the primary circuit ( ⁇ 0.5 °C) and between 293.4 °C and 290.4 °C.
  • the operational instructions involved include The average temperature of the primary circuit is read, and the average temperature of the primary circuit is stabilized by controlling various means that affect the temperature.
  • the task detailed information refers to a detailed operation instruction for completing the task corresponding to the digitized operation sheet, a logical relationship between the instructions, and completion information of each instruction, that is, the task detailed information is a detailed completion of the task corresponding to the digitized operation sheet.
  • a step can also be called a subtask of a task.
  • the device information corresponding to the detailed task information is the device information corresponding to each detailed operation instruction corresponding to the task, that is, the device information corresponding to the detailed operation instruction.
  • the task link information refers to interface information that can be linked to complete a detailed task through the digitized operation sheet.
  • the task link information includes, but is not limited to, interface information and a first link key for completing a detailed task.
  • the first link key can be called and linked to the interface corresponding to the interface information, and the interface to which the first link key can be linked includes, but not limited to, a process system control display interface, a function tracking interface, or a status display interface.
  • the interface information used to complete a detailed task is an interface identifier to which the first link key can be linked, and the interface identifier may be an interface name, an interface code, or the like.
  • the interface information to be linked to may be output on the first link key.
  • the digitized operation sheet can be divided into multiple columns, such as an operation/check column, a logo column, a link column, and a remark column.
  • the operation/check column outputs the task details, and the subtask completes the identification to record the execution of the subtask.
  • the task details are the operational instructions for completing the detailed steps of the task.
  • the subtask identifier may be in a selection box or other form. For example, when the selection box is checked, the subtask is completed. When the selection box is not checked, the subtask is not completed.
  • the identifier bar outputs the device information corresponding to the detailed task information, that is, the device information of the subtask, for example, the code of the device corresponding to the task detailed information can be output, and the corresponding device can be quickly and accurately found according to the coding of the device, so as to The device executes the operational instructions in the task details.
  • the remarks column outputs comment information.
  • the remark information refers to the non-command content written in the program, such as: notes, explanations, explanations, labels, information, and so on.
  • the link bar outputs task link information.
  • the operator commands the display interface through the process system to control the display interface.
  • the link information in the digital operation sheet can be entered into the corresponding process system control display interface.
  • the operator can also call other digital system running programs or designed status display interfaces through link definition information.
  • the first link key is indicated by a box with an arrow
  • the code of the picture or program to be linked is indicated in the box with an arrow.
  • the coding of the interface is used to uniquely identify the interface, and the coding mode of the interface may be any one of the methods provided by the prior art, or the following coding mode provided by the embodiment of the present invention:
  • the coding mode of the process system control display interface is as follows: unit number + system number + sequence number + YCD, such as 3RCV001YCD;
  • the status display interface is encoded as follows: unit number + system number + sequence number + YST, such as 3RCV001YST.
  • FIG. 3 is an exemplary diagram of a digitized operation list of a manual lifting control bar according to an embodiment of the present invention, but is not limited to the example diagram.
  • the operation/check column outputs the detailed step information of the task of manually raising the control stick (ie, the task output in the main body of the program shown in FIG. 2 - the manual lifting control rod), and the logical sequence between the detailed steps. And the implementation of each detailed step.
  • the tab bar outputs the device information corresponding to the task details.
  • the link bar outputs link information.
  • the digital operation list of the manual lift control bar can be linked to various control interfaces, such as a control interface such as RPN002YCD, RGL002YCD, RPN002YCD, and RGL004YCD.
  • the program main body and the digitized operation sheet are directly generated by separating the related operations of the main control room in the paper program, the format and content of the existing paper program are not large.
  • the changes have reduced the workload of the digital structure design of the overall nuclear power program, and the programming, conversion and execution of the program are not easy to make mistakes, thus reducing the risk of digitization of the overall nuclear power program.
  • a digitized operation ticket code for uniquely identifying the digitized operation ticket is set for each digitized operation ticket.
  • the digitized operation single coding principle may be any one of the methods provided by the prior art, or may be the following coding mode provided by the embodiment of the present invention: program code + 2-digit chapter code + M + 2 digit sequence code, such as 3D0903M01,
  • the digitized operation order code indicates that the digitized operation list is the first digitized operation sheet of Chapter 3 of the 3D9 program.
  • each digitized operation order is named according to the work content or purpose of the digitized operation sheet in a short Chinese.
  • the supporting interface 3 is used for outputting monitoring parameters and operating tasks across the system.
  • the supporting interface 3 is an interface that is built in accordance with the running task and is matched with the overall program of the nuclear power unit, and the monitoring and operation of the system can be realized through the supporting interface 3.
  • cross-system monitoring and operation are often encountered. If the system interface included in the system program is directly used, the operator must frequently switch the interface, the execution efficiency is low, and it is not conducive to rapid Intervention, therefore, need to be run-oriented, design and interface with cross-system tasks, and the overall program supporting, to facilitate operation, to overcome the lack of intuitiveness of DCS.
  • the supporting interface 3 includes but is not limited to the status display interface 31 and the function tracking interface 32.
  • one or more status display interfaces 31 and one or more function tracking interfaces 32 may be constructed according to different running tasks.
  • the status display interface 31 is used to monitor important parameters, status of important equipment, signs of accidents, and accident conditions.
  • the important parameters of the transformation are monitored by using the trend tracking method, and the constant important parameters are monitored by the numerical display mode.
  • Each status display interface 31 can be called and linked to an interface associated with the monitoring parameters and conforms to the interface design specifications.
  • the constructed state display interface 31 includes, but is not limited to, a complete discharge mode display interface, a refueling cold shutdown display interface, a maintenance cold shutdown display interface, and a normal shutdown by the residual heat discharge system.
  • the mode display interface, the residual heat discharge system isolation state display interface, the power operation mode display interface, the two-loop state monitoring display interface, and the alarm state monitoring display interface important to the safety of the unit during the overhaul shutdown.
  • the function tracking interface 32 is used to track the operating device and the required monitoring parameters of the preset phase or preset integrated operation.
  • the constructed function tracking interface 32 includes but is not limited to the evaporator water level control tracking interface, the primary circuit hydraulic pressure test control interface, the secondary circuit water circuit startup and shutdown tracking interface, and the plant power switching tracking. Interface, turbine start and stop control tracking interface, etc.
  • the task information is outputted by the program body, and the digitized operation order information and the matching interface information corresponding to the task information, so that the program body can quickly and accurately find the task for completing the output of the program body.
  • the required digital operation information and/or supporting interface information can output the task detailed information, the device information corresponding to the task detailed information, and the link information through the found digital operation order, so that the operation of the nuclear power unit can be controlled quickly and accurately. Or control the operation of the nuclear power unit by linking to the matching screen through a digital operation list.
  • the digital control system of the nuclear power unit also includes a structure navigation unit 4.
  • the structure navigation unit 4 is configured to output logical structure information of the nuclear power unit overall program.
  • the structure navigation information is constructed according to the logical structure of the overall program of the nuclear power unit.
  • the structure navigation unit 4 describes the logical structure of the overall program of the nuclear power unit to help the operator to establish a holistic view of the overall process of the nuclear power unit.
  • the structure navigation unit can be in HTML format.
  • the structure navigation unit 4 can be called and linked to the digitized operation sheet 2 and/or the companion interface 3.
  • the system navigation unit 4 can also be linked to the system program 5 and the system interface 6 included in the system program. Since the structure navigation unit 4 can be linked to the digitized operation sheet 2 and/or the companion interface 3, it is even possible to link to the system program 5 and the system interface 6 included in the system program, thereby facilitating the operator in the DCS control room with limited field of view. Operate and control the efficiency of the overall operation of the nuclear power unit, taking advantage of DCS.
  • the system program 5 and the system interface 6 are system programs and system interfaces in the existing nuclear power unit overall program, and therefore, no further description is provided here.
  • the information processing apparatus of the nuclear power unit digital control system further includes a circuit hydraulic pressure test control unit (not shown) and a turbine start/stop control unit (not shown).
  • the primary circuit hydraulic pressure test unit realizes the digital control of the primary circuit hydraulic pressure test of the pressurized water reactor nuclear power plant through the primary circuit hydraulic pressure test control interface.
  • the specific structure is shown in FIG. 4, and details are not described herein again.
  • the start and stop control unit of the steam turbine realizes the start and stop control of the steam turbine generator set of the nuclear power plant through the start and stop control tracking interface of the steam turbine.
  • the specific structure is shown in FIG. 6, and details are not described herein again.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Fig. 4 shows the structure of a primary circuit hydraulic pressure test control unit according to a second embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown. among them:
  • the information output module 321 displays the key parameters related to the primary circuit hydraulic pressure test, the control operation inlet and the important alarms on the same human-computer interaction interface (for convenience of explanation, the human-machine interaction interface is referred to as the primary circuit hydraulic pressure test control. Interface 322).
  • FIG. 5 is an example of a primary circuit hydraulic pressure test control interface according to an embodiment of the present invention.
  • the key parameters related to the primary circuit hydraulic test include but are not limited to:
  • the first loop pressure normally measures the wide range channel (such as RCP037MP and RCP039MP shown in Figure 5);
  • the first-loop pressure wide and narrow-range measuring channels for the hydraulic test (such as EHP014MP and EHP015MP shown in Figure 5);
  • volume control tank water level (RCV011MN and RCV012MN as shown in Figure 5);
  • the first-line pressure change rate (EHP015VE as described in Fig. 5), wherein the pressure change rate is calculated according to the pressure-variation rate of the first-circuit pressure wide-range measurement channel for the hydraulic pressure test;
  • the upper filling flow (such as RCV018MD shown in Figure 5);
  • the main pump shaft seal injection flow rate (RCV021MD, RCV022MD, RCV023MD as shown in Figure 5);
  • the remaining pressure (such as RCV048MP shown in Figure 5) and so on.
  • the first-loop pressure normal measurement wide-range channel is displayed by the trend tracking method on the first-circuit hydrostatic test control interface, so that the operator can not only directly read the pressure number, but also can visually see the pressure change speed. And compare with the pressure change rate, adjust the boost or buck rate in time.
  • the multi-point pressure display makes it easy for the operator to detect a single instrument failure and limit its consequences.
  • the water level of the volume control box is displayed by the parameter and trend tracking method on the first-circuit hydraulic test interface.
  • the trend tracking mode enables the operator to not only directly read the water level of the volume control box, but also visually see the water level change. Abnormal changes enable the operator to detect possible abnormalities and fluid leaks in the first loop in time.
  • the water level of the trend tracking can be compared with the water level displayed by the digital display to facilitate the discovery of a single instrument failure and limit its consequences.
  • the control operation inlet associated with the primary circuit hydraulic pressure test includes a control operation inlet to the device and a pressure remote control operation inlet.
  • the control operation entry for the device includes but is not limited to:
  • the upper charging circuit and its valve (such as RCV046VP, RCV048VP, RCV050VP shown in Figure 5);
  • Leak circuit (such as RCV002VP, RCV003VP, RCV004VP, RCV005VP, RCV006VP, RCV007VP, RCV008VP, RCV009VP, RCV010VP, RCV013VP, RCV310VP, RCV082VP) as shown in Figure 5;
  • the main pump shaft seal injection circuit (such as RCV060VP, RCV061VP, RCV094VP as described in Figure 5);
  • the remaining bleed and main pump shaft seal return circuit (such as RCV250VP, RCV257 VP, RCV258 shown in Figure 5) VP, RCV259VP, RCV131VP, RCV231VP, RCV331VP, RCV088 VP, RCV089 VP);
  • the pressure remote control operation inlet includes, but is not limited to, step-up and step-down operation, stable pressure operation, isolation or commissioning of the vent plate, isolation or commissioning of the charge, use of the remaining vent and the main pump shaft seal injection control pressure, abnormal conditions Keep the pressure stable operation.
  • the primary circuit hydraulic pressure test control interface 322 is a human-computer interaction interface for displaying key parameters related to the primary circuit hydraulic pressure test of the pressurized water reactor nuclear power plant, controlling the operation inlet and important alarms, and detecting the operation instructions input by the user.
  • the control operation response module 323 directly performs a corresponding control operation on the primary circuit hydraulic pressure test process through the control operation inlet displayed on the primary circuit hydraulic pressure test control interface 322 according to the key parameters displayed by the primary circuit hydraulic pressure test control interface 322.
  • the key parameters related to the primary circuit hydraulic pressure test or the specific process of the hydraulic pressure test may be firstly displayed according to the primary circuit hydraulic pressure test control interface. According to the hydraulic test operation procedure, the process of the primary circuit hydraulic pressure test is directly controlled at the control operation inlet displayed on the primary circuit hydraulic pressure test control interface.
  • the primary circuit hydraulic pressure test control unit further includes a layout setting module 324.
  • the layout setting module 324 sets the critical parameters associated with the primary circuit hydraulic pressure test, the control operation inlet, and the layout of the critical alarm in the primary circuit hydraulic pressure test control interface 322.
  • the information output module 321 displays the key parameters related to the primary circuit hydraulic pressure test, the control operation inlet, and the important alarms in the first circuit hydraulic pressure test control interface 322 according to the set layout.
  • the layout setting module 324 pre-sets the key parameters related to the primary circuit hydraulic pressure test, the control operation inlet and the important alarm water pressure in the first circuit. Test the layout in the control interface.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 6 shows the structure of a steam turbine start-stop control unit according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown. among them:
  • the state detection module 325 detects the operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault information that occurs during operation of the steam turbine generator set.
  • the steam turbine generator set when detecting the operating state and operating parameters of the steam turbine generator set, since the steam turbine generator set includes a plurality of operating devices, it is necessary to detect each operating device included in the steam turbine generator set during the detecting.
  • the operating state and operating parameters are referred to as the operating state and operating parameters of the steam turbine generator set for convenience of explanation.
  • the state detecting module 325 uses the sensor to read the operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the occurrence of the operation of the steam turbine generator set. accident details.
  • the sensors used by the respective devices may be used.
  • the redundant detection method is to equip each equipment in the steam turbine generator set and the auxiliary equipment of the steam turbine generator set with multiple sensors. When there is a sensor failure during the operation of the nuclear power plant, it can be timely. It is operated by other redundant sensors to realize the uninterrupted detection of the fault information of the nuclear power plant steam turbine generator set, the auxiliary system of the steam turbine generator set and the turbine generator set.
  • the data read by each sensor can be sent to the control center in a hardwired manner or a network, and the control center performs centralized and unified processing on each of the detected data.
  • the operating status of the steam turbine generator set includes the complete shutdown of the steam turbine generator set (speed is 0), the state of the steam turbine generator set (speed is 8r/m), and the turbine generator set starts (the speed is 8r/m-1500). r/m), steam turbine generator set grid operation, steam turbine generator set with plant power operation, turbine generator set disengaged (speed 1500 r/m-8 r/m), the operating state of the steam turbine generator set can be characterized by parameters such as speed, load switch state, and generator power.
  • the operating parameters of the steam turbine generator set include, but are not limited to, the speed of the steam turbine generator set, the load switch state, the generator power, the generator voltage, the exciter current, the high pressure cylinder regulator valve and the shutoff valve state, and the turbine medium pressure cylinder regulating valve. And the status of the valve and the vibration of the turbine generator set.
  • the operating state of the auxiliary system of the steam turbine generator set refers to the state of the turbine lubricating oil (GGR) pump, the cranking motor, and the generator sealing oil (GHE) pump, including the start or stop state, which are directly displayed from the function tracking screen. .
  • GGR turbine lubricating oil
  • GHE generator sealing oil
  • Operating parameters of the auxiliary system of the steam turbine generator set include, but are not limited to, turbine oil (GGR) oil pressure, generator seal oil (GHE) oil pressure, hydrogen pressure and temperature in the generator, condenser vacuum and turbine shaft seal pressure, etc. .
  • GGR turbine oil
  • GHE generator seal oil
  • the fault information appearing in the operation of the steam turbine generator set is the vibration and expansion abnormality signal during the start and stop of the steam turbine generator set.
  • the state detection module 325 is a nuclear power plant steam.
  • the various operating devices of the wheel generator set and the auxiliary system of the steam turbine generator set are equipped with multiple sensors. When there is a sensor failure during the operation of the nuclear power plant, other redundant sensors can be operated in time to realize the nuclear power plant steam turbine generator set.
  • the auxiliary system of the steam turbine generator set and the fault information appearing in the operation of the steam turbine generator set are continuously tested.
  • the data read by each sensor can be sent to the control center in a hardwired manner or a network, and the control center performs centralized and unified processing on each of the detected data.
  • the status display module 326 collectively displays the detected operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault information occurring in the operation of the steam turbine generator set in the same human-computer interaction.
  • Interface for convenience of explanation, the human-computer interaction interface is referred to as a turbine start-stop control tracking interface 327).
  • a turbine start-stop control tracking interface 327 is provided.
  • the turbine start-stop control tracking interface 327 is configured to collectively display the detected operating state and operating parameters of the steam turbine generator set, and the auxiliary system of the steam turbine generator set. Operating status and operating parameters, fault information that occurs during operation of the turbine generator set.
  • the turbine start/stop control tracking interface 327 includes a turbine generator set status display area, an auxiliary system status display area, and a turbine generator set fault information display area.
  • the steam turbine generator set status display area is used to display the detected operating state and operating parameters of the steam turbine generator set; the auxiliary system status display area is used to display the operating state and operating parameters of the auxiliary system of the steam turbine generator set;
  • the unit fault information display area is used to display the fault information that occurs during the operation of the steam turbine generator set. It can be understood that, in order to facilitate the distinction, the steam turbine generator set state display area, the auxiliary system state display area, and the turbine generator set fault information display area included in the function tracking interface may cross or overlap each other.
  • FIG. 7 is an exemplary diagram of a turbine start-stop control tracking interface 327 according to an embodiment of the present invention.
  • the specific form of the turbine start-stop control tracking interface 327 is not limited to the example diagram.
  • the startup outage control module 328 displays the operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the faults occurring in the operation of the steam turbine generator set according to the turbine start/stop control tracking interface 327.
  • the letter directly controls the start and stop of the steam turbine generator set.
  • the normal shutdown turbine button KCO041/042/043SY is directly set on the turbine start/stop control tracking interface 327, and the turbine shutdown processing can be directly performed through the button; through the turbine start/stop control tracking interface 327.
  • a reset connection key also called a reset entry
  • the turbo generator set is reset controlled by the pair of GSE system interfaces.
  • the startup outage control module 328 includes a turbine start control module 3281, a normal shutdown control module 3282, and an emergency shutdown control module 3283. among them:
  • the specific workflow of the turbine start control module 3281 is as follows:
  • the specific workflow of the normal shutdown control module 3282 is as follows:
  • the start/stop function tracking screen enters the interface of the turbine adjustment system, and the load reduction command is issued, and the turbine starts to reduce the load;
  • the main workflow of the emergency stop control module 3283 is as follows:
  • the turbine automatically protects from tripping or emergency stop through a hard button
  • the final stage sprinkler system is put into operation, and the GPV 221 VL is automatically turned on;
  • the state display module 326 is further configured to detect the running state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the operation of the steam turbine generator set.
  • the fault information appearing in the third link key is displayed in the turbine start/stop control tracking interface 327.
  • the third link key refers to a link entry for linking to a designated system interface within the nuclear power plant to provide more detailed monitoring and control of the turbine generator set at the designated system interface.
  • the third link key includes but is not limited to a synchronous grid-connected system (Grid Synchronization and Connection, GSY) Link Key, Turbine Regulation (Turbine Governing) System, GRE) and Turbine Protection System (GSE) link keys, turbine generator oil and cranking system (Turbine Lubrication Jacking and Turning, GGR) Link Key, Generator Seal Oil System, GHE) Link Key, Turbine Supervisory System (GME) Link Key, Soda Separation Reheater System (Moisture Separeture Reheater System, GSS) Link Key, Main Steam System (Main Steam System, VVP) link key, Condenser Vacuum System (CVI) link key, and turbine generator shaft seal system (Gland Steam Sealing System, CET) link keys, etc.
  • GSY synchronous grid-connected system
  • the turbine start/stop control tracking interface 327 is used to collectively display the detected operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the steam turbine generator set operation occurs.
  • the fault information and the third link key are used to collectively display the detected operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the steam turbine generator set operation occurs.
  • the fault information and the third link key is used to collectively display the detected operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the steam turbine generator set operation occurs.
  • the turbine start/stop control tracking interface 327 includes a turbine generator set status display area, an auxiliary system status display area, a turbine generator set fault information display area, and a link key display area.
  • the link key display area is used to display the third link key. It can be understood that, in order to facilitate the distinction, the steam turbine generator set state output area, the auxiliary system state output area, and the turbine generator set fault information output area included in the function tracking interface may cross each other.
  • FIG. 8 is another example diagram of the turbine start-stop control tracking interface 327 provided by the embodiment of the present invention.
  • the specific form of the turbine start-stop control tracking interface 327 is not limited to the example diagram.
  • the turbine start-stop control tracking interface further includes a link module 329.
  • the link module 329 is based on the operating state and operating parameters of the steam turbine generator set outputted by the turbine start/stop control tracking interface 327, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault letters occurring in the operation of the steam turbine generator set.
  • the third link key displayed by the turbine start/stop control tracking interface 327 is linked to the designated system interface to perform detailed control of the start and stop of the turbine generator set through the designated system interface.
  • the start-stop operation of the steam turbine generator set is generally complicated, when the steam turbine is monitored and controlled according to the function tracking interface, if it is necessary to further acquire or view other parameters or equipment of the steam turbine generator set and its auxiliary system.
  • the running state requires a third link key to link to the specified system interface.
  • the abnormality of the turbine shaft seal pressure CET007/008MY is monitored, which can be linked to the steam turbine generator shaft seal system to adjust the turbine shaft seal pressure to return to the normal range; and during the shutdown process, Monitored turbine vibration alarm (GME ALARM1, GME ALARM2), can be linked to the Turbine Monitoring System (GME) for more detailed monitoring of turbine vibration.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 9 shows a specific structure of the structure navigation unit 4 provided by the embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the structure navigation unit 4 includes a first display device 41 and a second display device 42. among them:
  • the first display device 41 displays the operating state information of the generating unit during the start and stop of the nuclear power unit, the execution sequence and logical relationship between the subroutines of the overall running program, and the switching information between the operating states.
  • the subroutines of the overall operating program include, but are not limited to, sub-programs such as the unit start control program, the unit outage control program, the transient control program, and the ten-year overhaul control program.
  • Table 1 shows an example of the unit start control program provided by the embodiment of the present invention, but the unit start control program is not limited to this example.
  • Table 2 shows an example of the unit outage control program provided by the embodiment of the present invention, but the unit outage control program is not limited to this example.
  • Table 3 shows an example of a transient control procedure provided by an embodiment of the present invention, but the transient control procedure is not limited to this example.
  • Table 4 shows an example of a ten-year overhaul control program provided by an embodiment of the present invention, but the ten-year overhaul control program is not limited to this example.
  • the operating status information of the unit includes but is not limited to six operating modes, two standard states, and important parameters related to the start and stop of the unit.
  • 6 operating modes including full discharge mode (Reactor Completely Discharged, RCD), Refueling Cold Mode (Refueling Cold) Shutdown, RCS), Maintenance Cold Shutdown (MCS), RRA Cooled Normal Heap Mode (Normal Shutdown) With RRA connected, NS/RRA), Normal Shutdown with evaporator cooling SG, NS/SG) and Reactor in Power (RP);
  • two standard states include Cold Shutdown Hot Shutdown (Hot) Shutdown); indicates that the important parameters related to the start and stop of the unit include a loop temperature of 80 ° C, a loop temperature of 170 ° C, a nuclear power of 2%, a nuclear power of 15%, and a nuclear power of 100%.
  • the switching information between the operating states includes, but is not limited to, a start and stop indication and subroutine information for the state switching.
  • the start and stop indication is used to indicate the start or stop of the nuclear power unit.
  • the start-stop indication may be a vertical line with an arrow indicating a switch from one operating state of the nuclear power plant to another, wherein the arrow pointing upwards indicates the start and the arrow pointing downward indicates the stop.
  • Start-up refers to the process in which the nuclear power unit starts from the complete discharge mode, after nuclear fuel loading, temperature rise and boost to thermal shutdown, nuclear criticality until full power operation, and can also refer to a middle process;
  • shutdown refers to the nuclear power unit from full The beginning of power, the process of reducing power to thermal shutdown, cooling down to cold shutdown, until unloading, can also refer to a process in the middle.
  • the subroutine information for state switching refers to information of a subroutine used for switching from one operating state of the nuclear power unit to another operating state, and the subroutine information for the state switching may be the subroutine number or the subroutine. Program name.
  • the subroutine information for state switching is the subroutine number.
  • the start-stop indication can be displayed together with the corresponding subroutine for state switching for the operator to view.
  • the first display device 41 further includes attribute information.
  • the attribute information includes but is not limited to the encoding of the first display device (such as UOP), the first and second loop attributes (such as G), and the title (such as Start-up). & Shutdown), Quality Rating (QSR), etc.
  • the first display device 41 further includes a plurality of fourth link keys 412.
  • Each fourth chain link key 412 is used to call and link to the second display device 42 corresponding thereto.
  • each fourth chain link key 412 has a corresponding subroutine and a second display device 42, and can be called and linked to the second display device 42 corresponding thereto through the fourth chain link key 412.
  • FIG. 10 is a diagram showing an example of an effect of an interface of the first display device 41 according to an embodiment of the present invention, but it is not limited to the effect example.
  • the fourth chain link key ie, D1-PAGE1
  • the second display device 42 displays logical structure information inside the subroutine of the overall running program.
  • each subroutine corresponds to a second display device.
  • Each of the second display devices 42 displays logical structure information inside its corresponding subroutine.
  • the logical structure information inside the subroutine includes but is not limited to title information, periodic monitoring and operation link keys, system interface link keys, body structure navigation information, and overall structure navigation information.
  • the title information refers to the information of the subroutine corresponding to the second display device, including but not limited to the subroutine name, the unit number, the first and second loop attributes, the security quality level, the version status, and the like.
  • the monitoring and operation screens include but are not limited to the power plant status (Status Displays, YST) overall screen, main unit operation screen, main operation screen, pressure-temperature map (Press-Temperature, PT).
  • monitoring and operation screens such as the subroutine numbered D10 (as shown in Table 1, the subroutine numbered D10 is the reactor cover installation and the reactor cooling system is filled with water)
  • the corresponding monitoring and operation screens include, but are not limited to, the YST overall screen, the main unit operation screen (YFU and other screens), the main operation screen (such as equipment parameters that need to be adjusted frequently), the PT map, and the like.
  • the system interface link key is used to call and link to the system interface of the nuclear power plant associated with the subroutine. Different subroutines may have different system interfaces to their associated nuclear power plants.
  • the main structure navigation information refers to the main structure navigation information inside the subroutine, which includes the subroutine execution flow information and the system interface link key.
  • the subroutine execution flow information refers to the operation item information included in the subroutine and the execution order and logical relationship between the operation items.
  • the overall structure navigation information includes a page link key and a first display device link key.
  • the page link key is used to call and link to each navigation page of the subroutine.
  • the first display device link key is used to call and link to the first display device.
  • the second display device 42 The logical structure information inside the subroutine can be displayed through multiple pages.
  • the page link key of the subprogram can be used between the multiple pages of the subprogram. Switch.
  • FIG. 11 is a diagram showing an example of a display interface of a second display device corresponding to the subroutine D10 according to an embodiment of the present invention.
  • the display of the second display device corresponding to the subroutine I5 according to the embodiment of the present invention is shown.
  • An example screen interface, but the second display device is not limited to the above example diagram.
  • the first display device displays the sub-procedures included in the overall running program of the nuclear power unit start-stop process, the unit operating state information, and the operating status of each unit.
  • the switching information between the two display devices displays the logical structure of each subroutine included in the overall running program, because the first display device and the second display device clearly display the operating state of each unit in the overall running program and The sequence and logical relationship between the subroutines of the task, so that the operator can quickly and conveniently enter the overall running program to quickly and accurately intervene the start and stop of the nuclear power unit through the overall control system.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 13 is a flowchart showing an implementation process of an information processing method for a nuclear power unit digital control system according to an embodiment of the present invention, which is described in detail as follows:
  • step S101 the program main body outputs the task information, the digitized operation order information corresponding to the task information, and the matching interface information, and searches for the digitized operation sheet corresponding to the designated task according to the program body.
  • the specified task refers to the task that the user selects to perform currently.
  • the program main body is generated according to the separated paper program, and the task information is outputted through the program main body and corresponding to the task information.
  • Digital operation of single information and supporting interface information so that the operator can more intuitively and quickly know the logical structure of the overall program of the nuclear power unit through the main body of the program, so that it can start and stop the control of the nuclear power unit.
  • step S102 the task detailed information, the device information corresponding to the task detailed information, and the task link information are output through the found digitized operation sheet.
  • the related operations of the separated main control room are generated according to different targets and tasks, and a digital operation order corresponding to the task is generated and passed.
  • the digitized operation sheet outputs detailed information of the task, device information corresponding to the detailed information of the task, and task link information.
  • the digitized operation ticket also outputs an operation ticket remark information.
  • step S103 the link instruction is issued by the digitizing operation one-way matching interface, and the matching interface that receives the link instruction outputs the monitoring parameter and the operation instruction across the system.
  • the supporting interface is an interface that is built in accordance with the running task and is matched with the overall program of the nuclear power unit, and the monitoring and operation of the system can be realized through the supporting interface.
  • the supporting interface includes but is not limited to a status display interface and a function tracking interface.
  • one or more status display interfaces and one or more function tracking interfaces may be constructed according to different running tasks.
  • the steps of the digital operation one-way matching interface to issue a link instruction are specifically:
  • the digitized operation one-way status display interface sends a link instruction, and the status display interface specified by the link instruction monitors important parameters, status of important equipment, signs of accidents, and accident conditions.
  • the important parameters of the transformation are monitored by using the trend tracking method, and the constant important parameters are monitored by the numerical display mode.
  • Each status display interface can be called and linked to the interface associated with the monitoring parameters and conforms to the interface design specifications.
  • the constructed status display interface includes but is not limited to the complete discharge mode display interface, the refueling cold shutdown display interface, the maintenance cold shutdown display interface, and the normal shutdown mode cooled by the waste heat removal system.
  • Display interface residual heat discharge system isolation status display interface, power operation mode display interface, two-loop status monitoring display interface, alarm status monitoring display interface important for unit safety during overhaul shutdown.
  • the step of issuing a link instruction by the digital operation one-way supporting interface may also be:
  • the digital operation one-way function tracking interface sends a link instruction, and the function tracking interface specified by the link instruction tracks the operation device of the preset stage or the preset integrated operation and the required monitoring parameters.
  • the constructed function tracking interface includes but is not limited to the evaporator water level control tracking interface, the primary circuit hydraulic pressure test control interface, the secondary circuit water circuit startup and shutdown tracking interface, and the plant power switching interface. , steam engine start and stop control tracking interface.
  • the method further includes the following steps. :
  • the logical structure information of the overall program of the nuclear power unit is output through the structure navigation unit.
  • the structure navigation information is constructed according to the logical structure of the overall program of the nuclear power unit, and the logical structure of the overall program of the nuclear power unit is described by the structure navigation unit to help the operator to establish a holistic view of the overall process of the nuclear power unit.
  • the structure navigation unit can be in HTML format.
  • the method further comprises the steps of:
  • the program body sends a link instruction to the structure navigation unit, and the structure navigation unit that receives the link instruction outputs the logical structure information of the nuclear power unit overall program.
  • the method further comprises the steps of:
  • the structure navigation unit After linking to the structural navigation unit, the structure navigation unit enters the digitization system of the overall nuclear power unit program.
  • the method further comprises the steps of:
  • the structural navigation unit sends a link instruction to the system interface included in the system program and/or the system program to link to a system interface included in the system program and/or system program specified by the link instruction.
  • the overall procedure is used to operate the entire unit, and the system program is limited to one system operating the power station and is a different type of operation.
  • the method further comprises the steps of:
  • the digital control of the primary circuit hydraulic pressure test of the pressurized water reactor nuclear power plant is realized by the primary circuit hydraulic pressure test control interface.
  • the method further comprises the steps of:
  • the start-stop control of the nuclear power plant turbine generator set is realized by the start and stop control tracking interface of the steam turbine.
  • FIG. 14 is a flowchart showing an implementation process of digital control of a primary circuit hydraulic pressure test of a pressurized water reactor nuclear power plant realized by a primary circuit hydraulic pressure test interface according to an embodiment of the present invention, which is described in detail as follows:
  • step S201 the key parameters related to the primary circuit hydraulic pressure test of the PWR nuclear power plant, the control operation inlet and the important alarm are collectively displayed on the primary circuit hydraulic pressure test control interface.
  • step S202 according to the key parameters displayed by the primary circuit hydraulic pressure test control interface, the corresponding control operation of the primary circuit hydraulic pressure test process is directly performed through the control operation inlet displayed on the primary circuit hydraulic pressure test control interface.
  • the key parameters related to the primary circuit hydraulic pressure test or the specific process of the hydraulic pressure test may be firstly displayed according to the primary circuit hydraulic pressure test control interface. According to the hydraulic test operation procedure, the process of the primary circuit hydraulic pressure test is directly controlled at the control operation inlet displayed on the primary circuit hydraulic pressure test control interface.
  • the control parameters related to the primary circuit hydraulic pressure test, the control operation inlet, and the important alarm are all displayed on the same interface, such as the primary circuit hydraulic pressure test control interface, thus, the water pressure of the primary circuit is required.
  • the key parameters of the primary circuit hydraulic pressure test control interface can be directly used to directly correspond to the primary circuit hydraulic pressure test process through the control operation inlet displayed on the primary circuit hydraulic pressure test control interface.
  • the control operation eliminates the need to jump between multiple interfaces, allowing the nuclear power plant operator to intuitively, quickly and efficiently control the process of the primary circuit hydraulic test.
  • FIG. 15 is a flowchart showing an implementation process of digital control of a primary circuit hydraulic pressure test of a pressurized water reactor nuclear power plant realized by a primary circuit hydraulic pressure test control interface according to another embodiment of the present invention, which is described in detail as follows:
  • step S301 the key parameters related to the primary circuit hydraulic pressure test of the pressurized water reactor nuclear power plant, the control operation inlet, and the layout of the important alarm in the primary circuit hydraulic pressure test control interface are set.
  • step S302 the key parameters related to the primary circuit hydraulic pressure test of the PWR nuclear power plant, the control operation inlet and the important alarms are displayed on the primary circuit hydraulic pressure test control interface according to the set layout.
  • step S303 according to the key parameters displayed on the primary circuit hydraulic pressure test control interface, the corresponding control operation of the primary circuit hydraulic pressure test process is directly performed through the control operation inlet displayed on the primary circuit hydraulic pressure test control interface.
  • the key parameters related to the primary circuit hydraulic pressure test, the control operation inlet, and the important alarm are in the first-circuit hydrostatic test control interface.
  • the layout, so that the key parameters, control operation inlets and important alarms related to the primary circuit hydraulic pressure test displayed on the primary circuit hydraulic pressure test interface are more clear and intuitive, and the user can quickly control the hydraulic pressure test process. And intervention.
  • the primary circuit is qualified from the emptying state to the 25-bar full water exhaust. All operations use the same interface as the normal starting, starting from 25 bar, entering the hydrostatic test state, using the primary circuit hydraulic pressure test interface to the hydraulic test process. Run operations and monitoring.
  • the primary circuit hydraulic pressure test interface shown in Figure 5 taking the boosting operation as an example to illustrate the application of the primary circuit hydraulic test interface.
  • the upper charging regulating valve RCV046VP displayed on the primary circuit hydraulic pressure test interface By operating the upper charging regulating valve RCV046VP displayed on the primary circuit hydraulic pressure test interface, the upper charging flow rate is increased, and the read upper charging flow rate RCV018MD is displayed on the primary circuit hydraulic pressure test control interface.
  • the discharge regulator valve RCV013VP displayed on the primary circuit hydraulic pressure test control interface the discharge flow rate is reduced, and the readout discharge flow rate RCV005MD is displayed on the primary circuit hydraulic pressure test control interface.
  • the pressure of the primary circuit rises, and the pressure rise trend of the primary circuit is monitored by monitoring the primary circuit pressure trend tracking displayed on the primary circuit hydraulic pressure test control interface, and the monitoring is monitored by monitoring
  • the pressure change rate reading is displayed on the control circuit of the primary circuit hydraulic pressure control, and the pressure increase rate is controlled within the allowable range.
  • FIG. 16 is a flowchart showing an implementation process of implementing a start-stop control of a nuclear power plant steam turbine generator set through a start and stop control tracking interface of a steam turbine according to an embodiment of the present invention, which is detailed as follows:
  • step S401 the operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault information occurring in the operation of the steam turbine generator set are detected.
  • step S402 the detected operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault information occurring in the operation of the steam turbine generator set are collectively displayed on the start and stop of the steam turbine. Control the tracking interface.
  • step S403 according to the running state and operating parameters of the steam turbine generator set displayed on the start and stop control tracking interface of the steam turbine, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault signal appearing in the operation of the steam turbine generator set directly Control the outage of the steam turbine generator set.
  • the operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the faults occurring in the operation of the steam turbine generator set are displayed according to the start and stop control tracking interface of the steam turbine.
  • Information, power plant production plans can directly control the turbine generator set including but not limited to turbine start, normal stop and emergency stop.
  • the present invention by displaying the detected operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault information occurring in the operation of the steam turbine generator set are collectively displayed in The same interface, which facilitates the operator to intuitively and quickly find the abnormality of the turbine generator set, and quickly and accurately obtain the key parameters and determine the cause, so that the operator can start, stop the shutdown of the nuclear power plant turbine generator set intuitively, quickly and accurately. Control and intervention to ensure the safety of nuclear power plant turbine generator sets.
  • FIG. 17 is a flowchart showing an implementation process of implementing start-stop control of a nuclear power plant steam turbine generator set through a start/stop control tracking interface of a steam turbine according to another embodiment of the present invention, which is detailed as follows:
  • step S501 the operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault information occurring in the operation of the steam turbine generator set are detected.
  • step S502 the detected operating state and operating parameters of the steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, the fault information appearing in the operation of the steam turbine generator set, and the third link key concentration Displayed on the turbine start and stop control tracking interface.
  • a steam turbine start-stop control tracking interface is provided, and the turbine start-stop control tracking interface is used for centrally displaying the detected operating state and operating parameters of the steam turbine generator set and the operation of the auxiliary system of the steam turbine generator set. Status and operating parameters, fault information that occurs during turbine generator operation, and the third link key.
  • the start and stop control tracking interface of the steam turbine includes a steam turbine generator set state display area, an auxiliary system state display area, a turbine generator set fault information display area, and a link key display area.
  • step S503 according to the operating state and operating parameters of the steam turbine generator set outputted by the turbine start/stop control tracking interface, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, and the fault information occurring in the operation of the steam turbine generator set,
  • the third link key displayed on the start and stop control tracking interface of the steam turbine is linked to the designated system interface, and the start and stop operation of the steam turbine generator set is controlled in detail through the designated system interface.
  • the operating state and operating parameters of the detected steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set, the fault information appearing in the operation of the steam turbine generator set, and the link key are It is displayed in the same interface, that is, the start and stop control tracking interface of the turbine, so that the start and stop control tracking interface of the turbine can be intuitively and quickly linked to the designated system interface in the nuclear power plant.
  • the designated system interface can conveniently and quickly generate steam turbine power.
  • the unit is further controlled and intervened to further improve the safety of the turbine generator set.
  • FIG. 18 is a flowchart showing an implementation process of a digitizing system for entering a nuclear power unit overall program through the structure navigation unit according to an embodiment of the present invention, which is described in detail as follows:
  • step S601 the first display device displays the operating state information of the generating unit during the start and stop of the nuclear power unit, the execution sequence and the logical relationship between the subroutines of the overall running program, and the switching information between the operating states.
  • the subroutines of the overall operating procedure include, but are not limited to, sub-programs such as the unit start control program, the unit outage control program, the transient control program, and the ten-year overhaul control program.
  • the operating status information of the unit includes but is not limited to six operating modes, two standard states, and important parameters related to the start and stop of the unit.
  • the six operating modes include complete unloading mode, refueling shutdown mode, maintenance shutdown mode, normal stack mode for RRA cooling, normal stack mode for evaporator cooling, and power operation mode; two standard states include cold shutdown heat stop Heap; indicates that the important parameters related to the start and stop of the unit include a loop temperature of 80 ° C, a loop temperature of 170 ° C, a nuclear power of 2%, a nuclear power of 15%, and a nuclear power of 100%.
  • the switching information between the operating states includes, but is not limited to, a start and stop indication and subroutine information for the state switching.
  • the start and stop indication is used to indicate the start or stop of the nuclear power unit.
  • the subroutine information for state switching refers to information of a subroutine used to switch one state of the nuclear power unit to another state.
  • the first display device further includes a plurality of fourth link keys.
  • Each fourth link key is used to call and link to a second display device corresponding thereto.
  • each of the fourth link keys has a corresponding subroutine and a second display device, and can call and link to the second display device corresponding thereto through the fourth link key.
  • step S602 the first display device transmits a link instruction to the second display device.
  • the link instruction may be sent to the second display device through the first link key in the first display device.
  • the subroutine (such as D1) for the state switching may be first determined according to the information displayed by the first display device, and then directly called and linked to the corresponding by the first link key corresponding to the subroutine (ie, D1)
  • the second display device displays the logical structure information of the subroutine (ie, D1) through the second display device.
  • step S603 the second display device that receives the link instruction displays the logical structure information inside the corresponding subroutine.
  • the logical structure information inside the subroutine includes but is not limited to title information, periodic monitoring and operation link keys, system interface link keys, body structure navigation information, and overall structure navigation information.
  • the main structure navigation information includes system execution flow information and a screen link key.
  • the overall structure navigation information includes a page link key and a first display device link key.
  • the first display device can display the subroutine included in the overall running program of the nuclear power unit startup and shutdown process, the unit operating state information, and the switching information between the operating states of the units, and the operator passes the first display.
  • the device may send a link instruction to the second display device to enter the second display device corresponding to the link instruction, and the second display device may display the logical structure information of the corresponding sub-program, so that the operator establishes the start-stop operation of the unit.
  • step S603 the method further includes the following steps:
  • the second display device sends a link instruction to the system interface to link to the system interface specified by the link instruction.
  • the link instruction is sent to the system interface through the second display device, so that the operator can quickly and conveniently enter the system interface, and control and intervene the start and stop of the nuclear power unit through the system interface.
  • step S603 the method further includes the following steps:
  • the second display device transmits a link instruction to the monitoring and operation screen to link to the monitoring and operation screen designated by the link instruction.
  • the link instruction is sent to the monitoring and operation screen by the second display device, so that the operator can quickly and conveniently enter the monitoring and operation screen to obtain the monitoring parameters of the nuclear power unit.
  • step S603 the method further includes the following steps:
  • the second display device transmits a link instruction to the operation screen included in the subroutine corresponding thereto to link to the operation screen specified by the link instruction.
  • each seed program is a system for performing a specific function, which includes completing a plurality of operation interfaces for the function, in order to enter a specific subroutine corresponding to the sub-program from the second display device.
  • the operation interface may send a link instruction to the operation screen included in the subroutine corresponding thereto by the second display device.
  • step S603 the method further includes the following steps:
  • the second display device transmits a link instruction to each navigation page included in the subroutine corresponding thereto to link to the navigation page specified by the link instruction.
  • the second display device of the nuclear power can pass through multiple The page displays the logical structure information of the subroutine.
  • the page link key can be used to switch between the multiple pages.
  • step S603 the method further includes the following steps:
  • the second display device transmits a link command to the first display device to link to the first display device, so that the second display device can be returned to the first display device, thereby making the overall running program more flexible and easy to use.
  • the beneficial effects of the present invention compared with the prior art are: overcome the shortcomings of DCS in terms of intuitiveness, improve the operating efficiency of the overall program of the nuclear power unit, and give full play to the advantages of DCS in information processing.
  • the primary circuit hydraulic pressure test of the PWR nuclear power plant is digitally controlled through the primary circuit hydraulic pressure test interface, the key parameters related to the primary circuit hydraulic pressure test, the control operation inlet and the important alarms are displayed in the primary circuit water.
  • the pressure test control interface according to the key parameters displayed by the first-circuit hydraulic pressure test control interface, directly controls the first-circuit hydrostatic test process through the control operation inlet displayed on the first-circuit hydraulic pressure test control interface, thereby Intuitive and fast control of the primary circuit hydraulic test process.
  • the operator can more intuitively and clearly identify the key parameters and control operation inlets related to the primary circuit hydraulic pressure test displayed on the primary circuit hydraulic pressure test control interface. And important alarms, so that users can quickly control and intervene in the hydraulic test process.
  • the start-stop control of the steam turbine generator set of the nuclear power plant is realized through the start-stop control tracking interface of the steam turbine, the running state and operating parameters of the detected steam turbine generator set, the operating state and operating parameters of the auxiliary system of the steam turbine generator set are obtained.
  • the fault information appearing in the operation of the steam turbine generator set is displayed on the same interface, which makes it easy for the operator to find the abnormality of the turbine generator set intuitively and quickly, and obtain the key parameters quickly and accurately and judge the cause, so that the operator can intuitively Quickly and accurately control and intervene the start-stop operation of the nuclear power plant turbine generator set to ensure the safety of the nuclear power plant turbine generator set.
  • the operating state information of the unit during the start and stop of the nuclear power unit and the execution sequence and logical relationship between the subroutines of the overall running program are displayed by the first display device.
  • the logical structure of each subroutine included in the overall running program is displayed by the second display device, because the first display device and the second display device clearly display the overall running program for controlling
  • the operating sequence and logical relationship between the operating status of each unit and the subroutine of the task enable the operator to establish an overall view of the unit starting and stopping, and overcome the lack of intuitiveness of the DCS main control room, so that it can enter quickly and conveniently.

Description

[根据细则37.2由ISA制定的发明名称] 核电机组数字化控制系统(DCS)及其信息处理方法和装置 技术领域
本发明属于核电控制领域,尤其涉及核电机组数字化控制系统的信息处理方法、装置和DCS系统。
背景技术
压水堆核电站主要由压水反应堆、一回路系统和二回路系统等三个部分组成。核裂变是在压力容器内由核燃料组成的反应堆堆芯里进地的。压水堆以低浓缩铀为燃料、轻水为冷却剂和慢化剂。核裂变放出的热量由流经堆内的一回路系统的高压水带出堆外并在蒸器发生器里将热量传递给二回路的水。水受热后产生的蒸汽推动蒸汽轮机,蒸汽轮机则带动发电机发电。
核电厂系统复杂,其启动和停运是通过核电机组总体程序控制的。核电机组总体程序是运行人员在机组运行状态下,控制或改变整个机组状态所使用的程序。该核电机组总体程序本身非常复杂,通过该核电机组总体程序对核电机组进行启停控制时,为增加机组启动停运和各个子程序整体感,体现各个子程序的相互关系和子程序内部的逻辑结构,通过它来帮助操纵员建立机组启动停运的整体观。CPR1000核电厂采用集散控制系统(Digital Control System,缩略词为DCS)来对核电机组的运行进行控制时,该核电机组总体程序的部分内容置于控制电厂的计算机内部。
在DCS控制室中,操纵员的各项工作是在操纵员工作站上完成的,与传统控制室相比,操纵员失去了直接视野。因此,为了简化核电机组总体程序的操作复杂度,一般都要为核电机组总体程序编制对应的操作规程。如现有技术提供的纸质规程,当操纵员执行某程序时,需要根据纸质程序上的标识在DCS中寻找相应的控制画面,步骤比较繁琐,导致难以对核电机组的启动停运进行快速、准确的控制,其后果是执行效率低下,没有充分体现出DCS的优势。
特别是对于核电站中具有干预的快速性要求的应用场景,现有的核电机组总体程序由于仍采用纸质程序,当操纵员执行某程序时,需要根据纸质程序上的标识在DCS中寻找相应的控制画面,从而难以满足核电站中具有快速性干预需求的应用场景。
如对于核电站中的一回路水压试验的应用场景,由于一回路水压试验是压水堆核电机组一项特大型、高风险、高难度的试验项目,它既是一个试验过程,又是一个运行操作过程,尤其是试验期间各种原因引起的压力波动,需快速查明原因并进行干预。运行操作过程的方便性和安全性取决于人机界面。
由于现有的DCS控制室中,操纵员的各项工作是在操纵员工作站上通过画面操作完成的,由于显示设备显示区域的限制,操纵员失去了广阔的视野。在进行水压试验时,如按正常运行时的画面进行控制,其监视参数,报警,操作器等分散在不同的画面上,而且还有外接的试验指示设备,操纵员需要寻找相应不同的控制画面,步骤比较繁琐,执行效率的低下,完全不适应水压试验高风险的需求。
同样对于核电站中的汽轮发电机组的启动和停运过程进行控制时,由于汽轮发电机组是核电站最重要的组成设备之一,且汽轮发电机组的启动和停运过程复杂,涉及的系统,需要监控的参数也较多。因此,现有的核电机组总体程序如按系统界面进行控制,其监视参数,报警,操作器等分散在不同的画面上,操纵员需要寻找相应不同的控制画面,步骤比较繁琐,执行效率低下,完全不适应核电汽轮发电机组启停监控和对故障快速干预的快速性要求,从而影响电厂的运行业绩。
技术问题
本发明实施例提供的核电机组数字化控制系统的信息处理方法所要解决的技术问题是现有的核电机组总体程序存在的视野有限、执行效率低下的问题,充分发挥DCS在信息处理上的优势。
本发明实施例的另一目的在于提供核电机组数字化控制系统的信息处理装置。
本发明实施例的再一目的在于提供DCS系统。
技术解决方案
本发明实施例是这样实现的,核电机组数字化控制系统的信息处理方法,所述方法包括下述步骤:
通过程序主体输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,并根据程序主体查找指定任务对应的数字化操作单;
通过查找到的数字化操作单输出任务详细信息、任务详细信息对应的设备信息、以及任务链接信息;
通过数字化操作单向配套界面发出链接指令,接收到该链接指令的配套界面输出跨系统的监视参数和操作指令。
根据本发明实施例的另一方面提供核电机组数字化控制系统的信息处理装置,所述装置包括程序主体、数字化操作单和配套界面,
所述程序主体用于输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,并根据程序主体查找指定任务对应的数字化操作单;
所述数字化操作单用于输出任务详细信息、任务详细信息对应的设备信息、以及任务链接信息,通过数字化操作单向配套界面发出链接指令;
所述配套界面用于输出跨系统的监视参数和操作指令。
根据本发明的再一方面提供DCS系统,所述DCS系统包括所述核电机组数字化控制系统的信息处理装置。
有益效果
本发明与现有技术对比的有益效果是:清晰的显示出核电机组启停机过程中机组的运行状态信息的执行顺序和逻辑关系,克服了DCS在直观性方面的不足,提高核电机组总体程序的运行效率,充分发挥DCS在信息处理上的优势。
附图说明
图1是本发明实施例提供的核电机组总体程序的数字化系统的结构框图;
图2是本发明实施例提供的程序主体的示例图;
图3是本发明实施例提供的手动提升控制棒的数字化操作单的示例图;
图4是本发明实施例提供的一回路水压试验控制单元的结构框图;
图5是本发明实施例提供的一回路水压试验控制界面的示例图;
图6是本发明实施例提供的汽机启停控制单元的结构框图;
图7、8是本发明实施例提供的汽机启停控制跟踪界面的示例图;
图9是本发明实施例提供的结构导航单元的具体结构框图;
图10是本发明实施例提供的第一显示装置的界面效果示例图;
图11是本发明实施例提供的子程序D10对应的第二显示装置的显示界面示例图;
图12是本发明实施例提供的子程序I5对应的第二显示装置的显示界面示例图;
图13是本发明实施例提供的核电机组总体程序的数字化方法的流程图;
图14是本发明实施例提供的通过一回路水压试验控制界面实现的压水堆核电站一回路水压试验数字化控制的实现流程图;
图15是本发另一明实施例提供的通过一回路水压试验控制界面实现的压水堆核电站一回路水压试验数字化控制的流程图;
图16是本发明实施例提供的 通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制的流程图;
图17是本发明另一实施例提供的通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制的流程图;
图18是本发明实施例提供的通过结构导航单元进入核电机组总体程序的数字化系统的流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中,通过对核电机组总体程序进行数字结构化处理,并建立数字化后得到的多个模块之间的相互链接关系,从而克服DCS在直观性方面的不足,提高核电机组总体程序的运行效率,使其满足干预的快速性要求。
实施例一:
图1示出了本发明实施例提供的核电机组数字化控制系统的信息处理装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分。
该装置可以用于DCS系统,可以是运行于DCS系统内的软件单元、硬件单元或者软硬件相结合的单元,也可以作为独立的挂件集成到DCS系统中或者运行于DCS系统的应用系统中。该DCS系统是指核电站中使用的用于控制整个核电站包括的所有设备的运行的系统,其包括总体程序、系统程序和故障运行程序等。该核电机组数字化控制系统的信息处理装置包括程序主体1、数字化操作单2和配套界面3,其中:
程序主体1用于输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,并在需要执行指定任务时,根据程序主体1输出的任务信息、以及与任务信息对应的数字化操作单信息查找该指定任务对应的数字化操作单。
在本发明实施例中,通过将纸质规程中主控室的相关操作分离出来,将分离了主控室的相关操作后的纸质规程中的内容作为程序主体,通过程序主体输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息。其中主控室的相关操作是指设备分布在电厂就地各处,设备的操作控制,监视集中在主控室,通过主控室对这类设备进行启动、停运、监视、调节控制的有关操作。该主控室的相关操作包括但不限于主控室对相关设备进行遥控启动、停运、监视、调节控制等操作。
在本发明实施例中,由于程序主体输出了任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,从而当用户需要执行某项任务时,即可通过程序主体输出的任务信息、以及与任务信息对应的数字化操作单信息查找该项任务对应的数字化操作单。
其中程序主体可以通过纸质介质呈现,也可以通过电子介质呈现,在通过电子介质呈现时,可以采用人机交互界面的方式呈现。在本发明另一实施例中,该程序主体还用于输出程序主体备注信息。
其中任务信息是指核电机组启动和停运控制过程中涉及的任务和目标,以及各任务之间的逻辑关系,如任务信息可以为手动提升控制棒、稳定一回路平均温度等,但不以该举例说明为限。
与任务信息对应的数字化操作单信息是指用于完成该任务而设置的数字化操作单的信息。在本发明实施例中,与任务信息对应的数字化操作单信息可以为数字化操作单的名称、编码等。
与任务信息对应的配套界面信息是指用于完成该任务而设置的与总体程序配套的界面。在本发明实施例中,与任务信息对应的配套界面信息可以为配套界面的名称、编码等。其中配套界面包括但不限于状态显示界面和功能跟踪界面等。
具体实现时,可以将程序主体划分成多栏,如包括操作/核对栏、标识栏、位置栏和备注栏。
其中通过操作/核对栏输出任务信息,并用任务完成标识记录任务的执行情况。其中任务完成标识可以为选择框等形式,当选中选择框时,表示该任务已完成,当未选中选择框时,表示该任务未完成。
通过标识栏输出与任务信息对应的数字化操作单信息,如可以输出与任务信息对应的数字化操作单的编码,根据数字化操作单的编码可以快速、准确的查找到对应的数字化操作单,或者快速、准确的向对应的数字化操作单发出链接指令,以链接至对应的数字化操作单。在本发明实施例中,当程序主体中的某个任务较为简洁,而不需要为该任务设置数字化操作单时,则该标识栏还输出该任务对应的设备信息,该设备信息可以为设备的编码等,此时为了区分数字化操作单信息和设备信息,可以为数字化操作单信息添加下划线。
通过位置栏输出与任务信息对应的配套界面信息,如可以输出与任务信息对应的配套界面的编码等,根据配套界面的编码可以快速、准确的查找到对应的配套界面,或者快速、准确的向对应的配套界面发出链接指令,以链接至对应的配套界面。在本发明实施例中,当程序主体中的某个任务较为复杂,而为该任务设置了数字化操作单时,则可以通过数字化操作单链接至配套界面,而不需要在程序主体中输出与任务信息对应的配套界面,此时,该位置栏还输出该任务对应的设备所在的房间号或地点坐标信息,此时为了区分配套界面信息和设备所在的房间号或地点坐标信息,可以通过为配套界面信息添加下划线。
通过备注栏输出备注信息。其中备注信息是将需要在程序中写入的非指令性内容,如:注意事项、说明、解释、标注、信息、数据等,均作为备注信息,以保持操作指令在版面上的清晰、明确。
请参阅图2,为本发明实施例提供的程序主体的示例图,但不以该示例图为限。在图2所示的程序主体中,通过操作/核对栏输出任务信息,且各个任务信息之间通过编号表示他们之间的逻辑关系,同时为各个任务信息设置一对应的任务完成标识,以标识该任务是否已完成,如设置一选择框,用于标识该任务是否已完成,如果完成,则勾选该选择框,否则不勾选。
在本发明实施例中,通过从现有的纸质规程中分离出主控室的相关操作,根据分离后的纸质程序生成程序主体,并通过程序主体输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,从而操作员通过程序主体可以更加直观、快速的获知核电机组总体程序的逻辑结构,便于其对核电机组进行启动和停运控制。
数字化操作单2输出任务详细信息、任务详细信息对应的设备信息、以及任务链接信息。
在本发明实施例中,从纸质规程中分离出主控室的相关操作后,根据不同的目标和任务,将分离出的主控室的相关操作生成与任务对应的数字化操作单,并通过该数字化操作单输出该任务的详细信息、该任务的详细信对应的设备信息、以及任务链接信息。在本发明另一实施例中,该数字化操作单还输出操作单备注信息。
数字化操作单并不是主控室有关操作的简单汇合,而是通过根据不同的目标和任务,将分离出的主控室的相关操作进行分解,从而可以生成与不同的目标和任务对应的数字化操作单。如根据图2所示的主体程序输出的手动提升控制棒的任务信息,将分离出与手动提升控制棒的任务对应的主控室的相关操作进行分解,以生成手动提升控制棒的数字化操作单。对于主体程序输出的其他任务信息也可以按照相同的原理生成对应的数字化操作单。当然对于比较简单的任务,可以直接通过程序主体输出该任务信息即可,而不需要为该任务信息生成对应的数字化操作单。
如图3所示的数字化操作单-手动提升控制棒的示例图,其任务是手动提升控制棒,目标是把控制棒全部提出堆芯,所涉及的操作指令全部与提升控制棒有关。又如稳定一回路平均温度的数字化操作单,其任务是稳定一回路平均温度,目标是把一回路平均温度稳定(±0.5℃)并在293.4℃和290.4℃之间,所涉及的操作指令包括读取一回路平均温度,通过对影响温度的各种手段进行控制,从而稳定一回路平均温度。
其中任务详细信息是指完成该数字化操作单对应的任务的详细操作指令、各指令之间的逻辑关系、以及各指令的完成信息,即该任务详细信息是该数字化操作单对应的任务的详细完成步骤,也可称为任务的子任务。
详细任务信息对应的设备信息是完成该任务对应的每个详细操作指令对应的设备信息,即该详细操作指令对应的设备信息。
任务链接信息是指通过该数字化操作单可以链接到的用于完成某项详细任务的界面信息。该任务链接信息包括但不限于用于完成某项详细任务的界面信息和第一链接键。其中第一链接键可以呼叫并链接至界面信息对应的界面,该第一链接键可链接至的界面包括但不限于工艺系统控制显示界面、功能跟踪界面或者状态显示界面等。用于完成某项详细任务的界面信息为该第一链接键可以链接至的界面标识,该界面标识可以为界面名称、界面编码等。在本发明实施例中,可以在第一链接键上输出要链接至的界面信息。
具体实现时,可以将数字化操作单划分成多栏,如包括操作/核对栏、标识栏、链接栏和备注栏。
其中操作/核对栏输出任务详细信息,并用子任务完成标识记录子任务的执行情况。其中任务详细信息即为完成该任务的详细步骤的操作指令。子任务标识可以采用选择框或者其他形式,如当勾选该选择框时,表示该子任务已完成,当未勾选该选择框时,表示该子任务未完成。
标识栏输出详细任务信息对应的设备信息,即执行该子任务的设备信息,如可以输出与任务详细信息对应的设备的编码,根据设备的编码可以快速、准确的查找到对应的设备,以对该设备执行任务详细信息中的操作指令。
备注栏输出备注信息。其中备注信息是指程序中写入的非指令性内容,如:注意事项、说明、解释、标注、信息等。
链接栏输出任务链接信息。
在数字化程序中,操纵员是通过工艺系统控制显示界面来下达指令的,这时可以通过数字化操作单中的链接信息进入相应的工艺系统控制显示界面。另外,操纵员还可以通过链接定义信息调用其他数字化系统运行程序或设计好的状态显示界面。
在纸质系统运行程序中,第一链接键以带箭头的方框表示,并在带箭头的方框中注明要链接到的画面或者程序的编码。其中界面的编码用于唯一标识该界面,该界面的编码方式可以采用现有技术提供的任意一种方式,也可以采用本发明实施例提供的如下编码方式:
工艺系统控制显示界面的编码方式如下:机组号+系统号+顺序号+YCD,如3RCV001YCD;
状态显示界面的编码方式如下:机组号+系统号+顺序号+YST,如3RCV001YST。
请参阅图3,为本发明实施例提供的手动提升控制棒的数字化操作单的示例图,但不以该示例图为限。在图3中,操作/核对栏输出了手动提升控制棒这个任务(即图2所示的程序主体中输出的任务-手动提升控制棒)的详细步骤信息、各详细步骤之间的逻辑先后顺序、以及各详细步骤的执行情况。标识栏输出了任务详细信息对应的设备信息。链接栏输出了链接信息,如通过该手动提升控制棒的数字化操作单可以链接至各种控制界面,如可以链接至界面编号为RPN002YCD、RGL002YCD、RPN002YCD、RGL004YCD等控制界面。
在本发明实施例中,由于是采用将纸质程序中主控室的相关操作分离的方式来直接生成程序主体和数字化操作单的,从而对现有的纸质程序的格式和内容未发生大的变化,减少了核电机组总体程序的数字化结构设计所带来的工作量,而且程序的编写、转换和执行都不容易出错,从而降低了核电机组总体程序的数字化带来的风险。
在本发明实施例中,由于存在多个数字化操作单,为了区分每个数字化操作单,为每个数字化操作单设置用于唯一标识该数字化操作单的数字化操作单编码。其中数字化操作单编码原则可以采用现有技术提供的任意一种方式,也可以采用本发明实施例提供的如下编码方式:程序编码+2位数章节码+M+2位数顺序码,如3D0903M01,该数字化操作单编码表示该数字化操作单为3D9程序第三章第一个数字化操作单。为了更明确的标明每个数字化操作单,在本发明实施例中,用简短的中文根据数字化操作单的工作内容或目的对每个数字化操作单进行命名。
配套界面3用于输出跨系统的监视参数和操作任务。
在本发明实施例中,配套界面3是以运行任务为导向构建的与核电机组总体程序配套的界面,通过配套界面3可以实现跨系统的监视和操作。在机组启动或停运的某一阶段和某一状态,经常遇到跨系统的监视和操作,如果直接使用系统程序包括的系统界面,操纵员必须频繁切换界面、执行效率低,且不利于快速干预,因此需以运行任务为导向,设计与跨系统任务的界面,和总体程序配套,以方便操作,克服DCS在直观性方面的不足。
其中配套界面3包括但不限于状态显示界面31和功能跟踪界面32。在本发明实施例中,根据不同的运行任务,可以构建一个或者多个状态显示界面31和一个或者多个功能跟踪界面32。
其中状态显示界面31用于监视重要参数、重要设备的状态、事故的苗头和事故工况。在本发明实施例中,采用趋势跟踪方式对变换的重要参数进行监视,采用数值显示方式对不变的重要参数进行监视。每个状态显示界面31均可呼叫并链接至与监视参数有关的界面,并符合界面设计规范。
根据正常运行状态分析和运行经验,构建的状态显示界面31包括但不限于完全卸料模式显示界面、换料冷停堆显示界面、维修冷停堆显示界面、由余热排出系统冷却的正常停堆模式显示界面、余热排出系统隔离状态显示界面、功率运行模式显示界面、二回路状态监视显示界面、大修停堆期间对机组安全重要的报警状态监视显示界面等。
功能跟踪界面32用于跟踪预设阶段或预设综合操作的操作设备和所需的监视参数。根据正常运行状态分析和运行经验,构建的功能跟踪界面32包括但不限于蒸发器水位控制跟踪界面、一回路水压试验控制界面、二回路水回路启动和停运跟踪界面、厂用电切换跟踪界面、汽机启停控制跟踪界面等。在本发明实施例中,通过程序主体输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,从而通过程序主体可以快速、准确的查找到用于完成该程序主体输出的任务所需的数字化操作单信息和/或配套界面信息,通过查找到的数字化操作单输出任务详细信息、任务详细信息对应的设备信息、以及链接信息,从而可以快速、准确的对核电机组的运行进行控制,或者通过数字化操作单链接至配套画面,从而实现对核电机组的运行进行控制。
由于分离了数字化操作单后的程序主体缺乏清晰的逻辑关系,因此,为了给操作员提供较为清晰的核电机组总体程序的逻辑关系,在本发明另一实施例中,该核电机组数字化控制系统的信息处理装置还包括结构导航单元4。该结构导航单元4用于输出核电机组总体程序的逻辑结构信息。该结构导航信息是根据核电机组总体程序的逻辑结构构建的,通过该结构导航单元4描述核电机组总体程序的逻辑结构,以帮助操纵员建立核电机组总体程序整体观。其中结构导航单元可以为HTML格式。
在本发明另一实施例中,通过结构导航单元4可以呼叫并链接至数字化操作单2和/或配套界面3。在本发明另一实施例中,通过结构导航单元4还可以链接至系统程序5和系统程序包括的系统界面6。由于通过结构导航单元4可以链接至数字化操作单2和/或配套界面3,甚至还可以链接至系统程序5和系统程序包括的系统界面6,从而可以辅助操纵员在视野有限的DCS控制室中操作和控制核电机组总体程序的执行效率,发挥DCS的优势。
系统程序5和系统界面6即为现有的核电机组总体程序中的系统程序和系统界面,因此,在此不再赘述。
在本发明另一实施例中,该核电机组数字化控制系统的信息处理装置还包括一回路水压试验控制单元(图未示出)和汽机启停控制单元(图未示出)。
其中一回路水压试验控制单元通过一回路水压试验控制界面实现压水堆核电站一回路水压试验数字化控制。其具体结构如图4所示,在此不再赘述。
汽机启停控制单元通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制。其具体结构如图6所示,在此不再赘述。
实施例二:
图4示出了本发明第二实施例提供的一回路水压试验控制单元的结构,为了便于说明,仅示出了与本发明实施例相关的部分。其中:
信息输出模块321将与一回路水压试验相关的关键参数、控制操作入口以及重要报警均显示在同一人机交互界面(为了便于说明,后续将该人机交互界面称为一回路水压试验控制界面322)。
请参阅图5,为本发明实施例提供的一回路水压试验控制界面的其中一个示例。
其中与一回路水压试验相关的关键参数包括但不限于:
一回路压力正常测量宽量程通道(如图5中所示的RCP037MP和RCP039MP);
水压试验专用一回路压力宽、窄量程测量通道(如图5中所示的EHP014MP和EHP015MP);
容积控制箱水位(如图5中所示的RCV011MN和RCV012MN);
一回路加权平均温度(如图5中所示的EHP001VE);
一回路压力变化率(如图5中所述的EHP015VE),其中压力变化率为根据水压试验专用一回路压力宽量程测量通道计算得到压力变化率;
上充流量(如图5中所示的RCV018MD);
下泄流量(如图5中所示的RCV005MD);
下泄压力(如图5中所示的RCV004MP);
主泵轴封注入流量(如图5中所示的RCV021MD、RCV022MD、RCV023MD);
过剩下泄压力(如图5中所示的RCV048MP)等。
在本发明实施例中,一回路压力正常测量宽量程通道采用趋势跟踪的方式在一回路水压试验控制界面显示,使操纵员不仅能直接读到压力数字,还可以直观看到压力变化快慢,并和压力变化率比较,及时调整升压或降压速率。多点的压力显示便于操纵员发现万一出现单一仪表故障并限制其后果。容积控制箱水位同时采用参数和趋势跟踪的方式在一回路水压试验控制界面显示,趋势跟踪的方式使操纵员不仅能直接读到容积控制箱水位数字,还可以直观看到水位变化,水位的异常变化,能使操纵员及时发现一回路可能的异常和流体泄漏,趋势跟踪的水位可和数字显示的水位进行比较,便于发现单一仪表故障并限制其后果。
其中与一回路水压试验相关的控制操作入口包括对设备的控制操作入口以及压力遥控操作入口。
其中对设备的控制操作入口包括但不限于:
一回路主泵(如图5中所示的RCP001PO、RCP002PO、RCP003PO);
上充泵(如图5中所示的RCV001PO、RCV002PO、RCV003PO);
水压试验泵(如图5中所示的8RIS011PO);
上充回路及其阀门(如图5中所示的RCV046VP、RCV048VP、RCV050VP);
下泄回路(如图5中所示的RCV002VP、RCV003VP、RCV004VP、RCV005VP、RCV006VP、RCV007VP、RCV008VP、RCV009VP、RCV010VP、RCV013VP、RCV310VP、RCV082VP);
主泵轴封注入回路(如图5中所述的RCV060VP、RCV061VP、RCV094VP);
过剩下泄和主泵轴封回流回路(如图5中所示的RCV250VP、RCV257 VP、RCV258 VP、RCV259VP、RCV131VP、RCV231VP、RCV331VP、RCV088 VP、RCV089 VP);
压力保护回路(如图5中所示的RIS121VP、RIS124VP)。
其中压力遥控操作入口包括但不限于升压和降压操作、稳定压力操作、隔离或者投运下泄孔板、隔离或者投运上充下泄、用过剩下泄和主泵轴封注入控制压力、异常情况下保持压力稳定的操作。
其中一回路水压试验控制界面322是一种人机交互界面,用于显示与压水堆核电站一回路水压试验相关的关键参数、控制操作入口以及重要报警,并检测用户输入的操作指令。
控制操作响应模块323根据该一回路水压试验控制界面322显示的关键参数,直接通过该一回路水压试验控制界面322上显示的控制操作入口对一回路水压试验过程进行对应的控制操作。
在本发明实施例中,当需要对一回路水压试验的过程进行控制时,可以先根据一回路水压试验控制界面显示的与一回路水压试验有关的关键参数或者水压试验的具体过程,根据水压试验操作程序,直接在该一回路水压试验控制界面显示的控制操作入口对一回路水压试验的过程进行控制。
在本发明另一实施例中,该一回路水压试验控制单元还包括布局设置模块324。该布局设置模块324设置与一回路水压试验相关的关键参数、控制操作入口以及重要报警在一回路水压试验控制界面322中的布局。此时,信息输出模块321将与一回路水压试验相关的关键参数、控制操作入口以及重要报警按照设置的布局显示在一回路水压试验控制界面322。
在本发明实施例中,由于一回路水压试验控制界面的显示区域毕竟有限,为了使显示在该一回路水压试验控制界面上的与一回路水压试验相关的关键参数、控制操作入口以及重要报警更加清楚、直观,便于用户快捷的对水压试验过程进行控制和干预,通过布局设置模块324预先设置与一回路水压试验相关的关键参数、控制操作入口以及重要报警在一回路水压试验控制界面中的布局。
实施例三:
图6示出了本发明实施例提供的汽机启停控制单元的结构,为了便于说明,仅示出了与本发明实施例相关的部分。其中:
状态检测模块325检测汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、以及汽轮发电机组运行中出现的故障信息。
在本发明实施例中,在检测汽轮发电机组的运行状态和运行参数时,由于汽轮发电机组包括多种运行设备,因此,在检测时,需要检测汽轮发电机组包括的每种运行设备的运行状态和运行参数,为了便于说明,后续都直接称为汽轮发电机组的运行状态和运行参数。
在本发明实施例中,该状态检测模块325采用传感器读取汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、以及汽轮发电机组运行中出现的故障信息。
在本发明另一实施例中,为了对核电站汽轮发电机组、汽轮发电机组的辅助系统以及汽轮发电机组运行中出现的故障信息进行不间断的实时跟踪,对各个设备所使用的传感器可以采用冗余检测的方式,即为部分汽轮发电机组中的各个运行设备、汽轮发电机组的辅助系统中的各个设备配备多个传感器,当核电站运行过程中有传感器出现故障时,可以及时的由其它冗余传感器进行工作,从而实现对核电站汽轮发电机组、汽轮发电机组的辅助系统以及汽轮发电机组运行中出现的故障信息进行不间断的检测。
由于核电站中汽轮发电机机组、汽轮发电机组的辅助系统中的各个设备的物理位置可能分散分布,而在对汽轮发电机组进行启停控制时,需要参考上述检测到的每种数据,因此,在本发明实施例中,可以将各个传感器读取到的数据以硬接线或者网络等方式发送到控制中心,由控制中心对上述检测到的每种数据进行集中、统一处理。
其中汽轮发电机组的运行状态包括汽轮发电机组完全停运(转速为0)、汽轮发电机组盘车状态(转速为8r/m)、汽轮发电机组启动(转速为8r/m-1500 r/m)、汽轮发电机组并网运行、汽轮发电机组带厂用电运行、汽轮发电机组解列停运(转速为1500 r/m-8 r/m)、汽轮发电机组的运行状态可通过转速、负荷开关状态、发电机功率等参数表征。
汽轮发电机组的运行参数包括但不限于汽轮发电机组的转速、负荷开关状态、发电机功率、发电机电压、励磁机电流、汽机高压缸调节阀和截至阀状态、汽机中压缸调节阀和截至阀状态以及汽轮发电机组振动等。
汽轮发电机组的辅助系统的运行状态指汽机润滑油(GGR)泵、盘车马达、发电机密封油(GHE)泵的状态,包括启动或停运状态,这些状态直接从功能跟踪画面上显示。
汽轮发电机组的辅助系统的运行参数包括但不限于汽机润滑油(GGR)油压、发电机密封油(GHE)油压、发电机内氢气压力和温度、冷凝器真空和汽机轴封压力等。
汽轮发电机组运行中出现的故障信息为汽轮发电机组启动和停运过程中的振动和膨胀异常信号。
在本发明另一实施例中,为了对核电站汽轮发电机组、汽轮发电机组的辅助系统以及汽轮发电机组运行中出现的故障信息进行不间断的实时跟踪,该状态检测模块325为核电站汽轮发电机组的各个运行设备以及汽轮发电机组的辅助系统配备多个传感器,当核电站运行过程中有传感器出现故障时,可以及时的由其它冗余传感器进行工作,从而实现对核电站汽轮发电机组、汽轮发电机组的辅助系统以及汽轮发电机组运行中出现的故障信息进行不间断的检测。
由于核电站中汽轮发电机机组、汽轮发电机组的辅助系统中的各个设备的物理位置可能分散分布,而在对汽轮发电机组进行启停控制时,需要参考上述检测到的每种数据,因此,在本发明实施例中,可以将各个传感器读取到的数据以硬接线或者网络等方式发送到控制中心,由控制中心对上述检测到的每种数据进行集中、统一处理。
状态显示模块326将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息集中显示在同一人机交互界面(为了便于说明,后续将该人机交互界面称为汽机启停控制跟踪界面327)。
在本发明实施例中,提供了汽机启停控制跟踪界面327,该汽机启停控制跟踪界面327用于集中显示检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息。该汽机启停控制跟踪界面327包括汽轮发电机组状态显示区、辅助系统状态显示区、汽轮发电机组故障信息显示区。
其中汽轮发电机组状态显示区用于显示检测到的汽轮发电机组的运行状态和运行参数;辅助系统状态显示区用于显示汽轮发电机组的辅助系统的运行状态和运行参数;汽轮发电机组故障信息显示区用于显示汽轮发电机组运行中出现的故障信息。可以理解,为了便于区分,功能跟踪界面包括的汽轮发电机组状态显示区、辅助系统状态显示区、汽轮发电机组故障信息显示区之间可以相互交叉或重叠。
请参阅图7,为本发明实施例提供的汽机启停控制跟踪界面327的示例图,但汽机启停控制跟踪界面327的具体形式不以该示例图为限。
启动停运控制模块328根据汽机启停控制跟踪界面327显示的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信直接对汽轮发电机组的启停运进行控制。
在本发明实施例中,通过直接在汽机启停控制跟踪界面327上设置正常停机汽机按钮KCO041/042/043SY,通过该按钮即可直接进行汽机停机处理;通过在汽机启停控制跟踪界面327上提供复位连接键(也称为复位入口),即可通过该复位连接键链接至GSE系统界面,通过该对GSE系统界面对汽轮发电机组进行复位控制。当根据汽机启停控制跟踪界面327上显示的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数以及汽轮发电机组故障信息判定需要对汽轮发电机组进行紧急停机控制时,则可以通过硬接线按钮对汽轮发电机组进行紧急停机控制。
该启动停运控制模块328包括汽机启动控制模块3281、正常停机控制模块3282和紧急停机控制模块3283。其中:
汽机启动控制模块3281的具体工作流程如下:
1)调用启停机功能跟踪画面;
2)启停机功能跟踪画面进入汽机保护系统界面,复位汽机保护装置;
3)进入汽机调节系统界面,发出启动命令;
4)在启停机功能跟踪画面上监视:
检查汽机转速开始从8rpm上升;
在汽机升速期间,执行下列检查:振动(GME)、胀差(GME)、密封油压力GHE002MP、润滑油母管压力GGR001MP。
5)汽机转速升过1350rpm,在启停机功能跟踪画面上执行下列检查:
核对电动盘车电机GGR003MO停运。
6)汽机转速升至约1500rpm,执行下列检查:
检查润滑油温度GGR102MT。
检查主油泵出口压力GGR001MP稳定接近1.5巴表压,停运交流润滑油泵GGR010PO。
手动停运选择的顶轴油泵GGR480PO或GGR580PO。
7)进入同步并网系统(GSY)画面,使自动同步功能投入运行,同步条件满足后,将自动同步并网;
8)并网升到要求的负荷运行。
正常停机控制模块3282的具体工作流程如下:
1)调用启停机功能跟踪画面;
2)启停机功能跟踪画面进入汽机调节系统界面,下达降负荷指令,汽机开始降负荷;
3)在启停机功能跟踪画面上监视:
当负荷为30%时,疏水阀GPV 101 VL GPV 111 VL GPV 121 VL GPV 131 VL自动开启;
当负荷为20%FP时,末级叶片喷淋系统投运,GPV 221 VL自动开启。
4)当负荷为10%,进入汽机调节系统界面发出快速降功率命令,当负荷小于5%时,在启停机功能跟踪画面上,使用KCO041SY、KCO042SY或KCO043SY发出停机命令;
5)在启停机功能跟踪画面上监视:
检查发电机负荷开关GSY001JA断开;
核对所有汽机阀门GSE 001 VV/ GSE 002 VV/ GSE 003 VV/ GSE 004 VV/ GSE 011 VV/ GSE 012 VV/ GSE 013 VV/ GSE 014 VV/ GRE 001 VV/ GRE 002 VV/ GRE 003 VV/ GRE 004 VV/ GRE 011 VV/ GRE 012 VV/ GRE 013 VV/ GRE 014 VV已关闭;
核对汽机已从1500rpm降速;
检查润滑油泵GGR010PO已自动启动,如果没有启动则立即将它启动,如果GGR010PO不能启动,则立即启动直流润滑油泵GGR011PO;
检查顶轴油泵GGR480PO或GGR580PO已启动;
当汽机转速降到1350rpm,核对电动盘车GGR003MO已自动启动;
当汽机转速降到8rpm时,汽机转速由盘车装置保持在8rpm;
停机主要步骤结束。
紧急停机控制模块3283的主要工作流程如下:
汽机自动保护跳闸或通过硬按钮紧急停机;
调用启停机功能跟踪画面,在启停机功能跟踪画面上监视:
检查发电机负荷开关GSY001JA断开;
核对所有汽机阀门GSE 001 VV/ GSE 002 VV/ GSE 003 VV/ GSE 004 VV/ GSE 011 VV/ GSE 012 VV/ GSE 013 VV/ GSE 014 VV/ GRE 001 VV/ GRE 002 VV/ GRE 003 VV/ GRE 004 VV/ GRE 011 VV/ GRE 012 VV/ GRE 013 VV/ GRE 014 VV已关闭;
核对汽机已从1500rpm降速;
疏水阀GPV 101 VL GPV 111 VL GPV 121 VL GPV 131 VL自动开启;
末级叶片喷淋系统投运,GPV 221 VL自动开启;
检查润滑油泵GGR010PO已自动启动,如果没有启动则立即将它启动,如果GGR010PO不能启动,则立即启动直流润滑油泵GGR011PO;
检查顶轴油泵GGR480PO或GGR580PO已启动;
当汽机转速降到1350rpm,核对电动盘车GGR003MO已自动启动;
当汽机转速降到8rpm时,汽机转速由盘车装置保持在8rpm;
停机主要步骤结束。
在本发明另一实施例中,状态显示模块326还用于将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息以及第三链接键集中显示在汽机启停控制跟踪界面327。
其中第三链接键是指用于链接到核电站内的指定系统界面,以在指定系统界面对汽机发电机组进行更详细的监视和控制的链接入口。该第三链接键包括但不限于同步并网系统(Grid Synchronization and Connection,GSY)链接键、汽轮机调节(Turbine Governing System,GRE)及保护系统(Turbine Protection System,GSE)链接键、汽轮发电机组润滑油及盘车系统(Turbine Lubrication Jacking and Turning,GGR)链接键、发电机密封油(Generator Seal Oil System,GHE)链接键、汽机监视系统(Turbine Supervisory System,GME)链接键、汽水分离再热器系统(Moisture Separeture Reheater System,GSS)链接键、主蒸汽系统(Main Steam System,VVP)链接键、冷凝器真空系统(Condenser Vacuum System,CVI)链接键、以及汽轮机发电机组轴封系统(Gland Steam Sealing System,CET)链接键等。
此时,该汽机启停控制跟踪界面327用于集中显示检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息以及第三链接键。
此时,该汽机启停控制跟踪界面327包括汽轮发电机组状态显示区、辅助系统状态显示区、汽轮发电机组故障信息显示区以及链接键显示区。
其中链接键显示区用于显示第三链接键。可以理解,为了便于区分,功能跟踪界面包括的汽轮发电机组状态输出区、辅助系统状态输出区、汽轮发电机组故障信息输出区之间可以相互交叉。
请参阅图8,为本发明实施例提供的汽机启停控制跟踪界面327的另一示例图,但汽机启停控制跟踪界面327的具体形式不以该示例图为限。
此时,该汽机启停控制跟踪界面还包括链接模块329。该链接模块329根据汽机启停控制跟踪界面327输出的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信,通过汽机启停控制跟踪界面327显示的第三链接键链接到指定系统界面,以通过该指定系统界面对汽机发电机组的启停运进行详细控制。
在本发明实施例中,由于汽轮发电机组启动停运操作一般较复杂,当根据功能跟踪界面对汽机进行监视控制后,如果需要进一步获取或者查看汽轮发电机组及其辅助系统其他参数或者设备运行状态,需要第三链接键链接到指定系统界面。例如,在停机过程中,监视到汽机轴封压力CET007/008MY异常,可链接到汽轮机发电机组轴封系统,对汽机轴封压力进行调节,使它回到正常范围;又如在停机过程中,监视到汽机振动报警(GME ALARM1、GME ALARM2),可链接到汽机监视系统(GME),对汽机振动进行更详细的监视。
实施例四:
图9示出了本发明实施例提供的结构导航单元4的具体结构,为了便于说明,仅示出了与本发明实施例相关的部分。
该结构导航单元4包括第一显示装置41和第二显示装置42。其中:
第一显示装置41显示核电机组启停机过程中机组的运行状态信息、总体运行程序的各子程序之间的执行顺序和逻辑关系以及各运行状态之间的切换信息。
其中总体运行程序的子程序包括但不限于机组启动控制程序、机组停运控制程序、瞬态控制程序和十年大修控制程序等子程序。表1示出了本发明实施例提供的机组启动控制程序的示例,但机组启动控制程序不以该示例为限。表2示出了本发明实施例提供的机组停运控制程序的示例,但机组停运控制程序不以该示例为限。表3示出了本发明实施例提供的瞬态控制程序的示例,但瞬态控制程序不以该示例为限。表4示出了本发明实施例提供的十年大修控制程序的示例,但十年大修控制程序不以该示例为限。
表1
序号 程序编码 程序名称
1 D-9 装料前准备-装料-排水至法兰结合面
2 D-10 反应堆大盖安装及反应堆冷却系统的充水
3 D-11 反应堆冷却系统加热到80度
4 D-12 化学平台及加热到177度
5 D-13 RRA隔离及升温升压至热停堆
6 D-14 临界和热备用
7 D-15 提升反应堆功率至100%
8 G-1 从冷停堆过渡到热备用
9 G-2 从热备用过渡到低功率运行
10 GS-2 汽机的正常启动和加负荷
表2
序号 程序编码 程序名称
11 D-1 换料大修准备-并过渡到热停堆
12 D-2 反应堆从热停堆冷却到170℃
13 D-3 反应堆从170℃到冷停堆的冷却及氧化
14 D-4 反应堆冷却剂卸压
15 D-5 卸压后一回路排水及空气吹扫
16 D-6 卸料前准备-卸料-排水至低低水位
17 G-3 最小负荷到热停堆的计划停运
18 G-4 机组处于热停堆
19 G-5 从热停过渡到维修冷停堆
20 GS-3 汽机的正常降功率和停机
21 GS-4 汽机带负荷跳闸
表3
序号 程序编码 程序名称
22 3-I-5 机组带厂用负荷
23 3-I-6 汽机跳闸、反应堆不停堆
表4
序号 程序编码 程序名称
24 D-26 一回路水压试验
其中机组的运行状态信息包括但不限于6个运行模式、两个标准状态以及表示机组启停机有关的重要参数。6个运行模式包括完全卸料模式(Reactor Completely Discharged,RCD)、换料停堆模式(Refueling Cold Shutdown,RCS)、维修停堆模式(Maintenance Cold Shutdown,MCS)、RRA冷却的正常堆模式(Normal Shutdown with RRA connected,NS/RRA)、蒸发器冷却的正常堆模式(Normal Shutdown with SG,NS/SG)和功率运行模式(Reactor in Power,RP);两个标准状态包括冷停堆(Cold shutdown)热停堆(Hot shutdown);表示机组启停机有关的重要参数包括一回路温度80℃、一回路温度170℃、核功率2%、核功率15%、核功率100%。
其中各运行状态之间的切换信息包括但不限于启停指示以及用于状态切换的子程序信息。
其中启停指示用于指示启动或者停运核电机组。该启停指示可以为带箭头的竖线,该带箭头的竖线指示从核电机组的一个运行状态切换到另一个运行状态,其中箭头朝上表示启动,箭头朝下表示停运。其中启动是指核电机组从完全卸料模式开始,经过核燃料装载、升温升压到热停堆、核临界直到满功率运行的过程,也可指中间的一段过程;停运是指核电机组从满功率开始,降功率到热停堆、降温降压到冷停堆、直至卸料的过程,也可指中间的一段过程。
用于状态切换的子程序信息是指从核电机组的一个运行状态切换至另一运行状态所用的子程序的信息,用于状态切换的子程序信息可以为该子程序编号,也可以为该子程序名称。为了使输出的界面简洁,该用于状态切换的子程序信息为该子程序编号。具体实现时,可以将启停指示与对应的用于状态切换的子程序显示在一起,以便操纵员查看。
在本发明另一实施例中,该第一显示装置41还包括属性信息。该属性信息包括但不限于第一显示装置的编码(如UOP),一、二回路属性(如G),标题(如Start-up & Shutdown),质量等级(QSR)等。
在本发明另一实施例中,该第一显示装置41还包括多个第四链接键412。每个第四链链接键412用于呼叫和链接至与其对应的第二显示装置42。在本发明实施例中,每个第四链链接键412都有对应的子程序和第二显示装置42,通过第四链链接键412即可呼叫并链接至与其对应的第二显示装置42。
请参阅图10,为本发明实施例提供的第一显示装置41的界面的效果示例图,但其不以该效果示例为限。在图10所示的效果示例图中,采用带箭头的竖线作为启停指示,在带箭头的竖线旁边输出用于与该带箭头的竖线对应的状态切换的子程序的编号以及对应的第四链链接键。如采用从满功率状态指向热停堆状态的箭头表示从核电机组的满功率状态(即P=100%PN)切换到热停堆状态(即Hot shutdown),并采用子程序D1(如表2中所示,其程序名称为换料大修准备-并过度到热停堆)使核电机组从满功率状态(即P=100%PN)切换到热停堆状态(即Hot shutdown),并通过第四链链接键(即D1-PAGE1)呼叫并链接至与用于显示子程序D1的逻辑结构信息的第二显示装置。对于图10中其余部分,其原理相同,在此不一一进行说明。
第二显示装置42显示该总体运行程序的子程序内部的逻辑结构信息。
在本发明实施例中,每个子程序均对应有第二显示装置。每个第二显示装置42显示其对应的子程序内部的逻辑结构信息。其中子程序内部的逻辑结构信息包括但不限于标题信息、定期监视和操作链接键、系统界面链接键、主体结构导航信息和总体结构导航信息。
其中标题信息是指该第二显示装置对应的子程序的信息,包括但不限于子程序名称、机组号、一、二回路属性、安全质量等级、版本状态等。
定期监视和操作链接键用于呼叫并链接至与该子程序对应的监视和操作画面。其中监视和操作画面包括但不限于电厂状态(Status displays,YST)总体画面、主要的机组操作画面、主要的操作画面、压力-温度图(Press-Temperature,PT)等。对于不同的子程序,可能对应有不同的监视和操作画面,如对于编号为D10的子程序(根据表1所示,编号为D10的子程序为反应堆大盖安装及反应堆冷却系统的充水),其对应的监视和操作画面包括但不限于YST总体画面、主要的机组操作画面(YFU等画面)、主要的操作画面(如须经常调节的设备参数等)、PT图等。
系统界面链接键用于呼叫并链接至与该子程序相关的核电厂各系统界面。不同的子程序,与其相关的核电厂的系统界面可能不同。
主体结构导航信息是指本子程序内部的主体结构导航信息,其包括子程序执行流程信息和系统界面链接键。其中子程序执行流程信息是指本子程序包括的操作项信息以及各操作项之间的执行顺序和逻辑关系。
总体结构导航信息包括页链接键和第一显示装置链接键。其中页链接键用于呼叫并链接至子程序的各导航页面。第一显示装置链接键用于呼叫并链接至第一显示装置。
在本发明实施例中,由于显示装置的显示区域有限,而需要通过核电第二显示装置42显示的子程序内部的逻辑结构信息较多,通过一个页面难以完全显示,因此,第二显示装置42可以通过多个页面来显示子程序内部的逻辑结构信息,当采用多个页面来显示子程序内部的逻辑结构信息时,可以通过该子程序的页链接键在该子程序的多个页面之间进行切换。
请参阅图11,为本发明实施例提供的子程序D10对应的第二显示装置的显示界面示例图,请参阅图12,为本发明实施例提供的子程序I5对应的第二显示装置的显示界面示例图,但第二显示装置不以上述示例图为限。
在本发明实施例中,当需要进行机组启动和停运操作时,通过第一显示装置显示核电机组启停机过程中的总体运行程序包括的各子程序、机组运行状态信息以及各机组运行状态之间的切换信息,通过第二显示装置显示该总体运行程序包括的各子程序的逻辑结构,由于第一显示装置和第二显示装置清晰的显示了总体运行程序中用于控制各机组运行状态和任务的子程序之间的运行顺序和逻辑关系,从而使操纵员可以快速、便捷的进入总体运行程序,以通过总体控制系统对核电机组的启停机进行快速、准确的干预。
实施例五:
图13示出了本发明实施例提供的核电机组数字化控制系统的信息处理方法的实现流程,详述如下:
在步骤S101中,通过程序主体输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,并根据程序主体查找指定任务对应的数字化操作单。其中指定任务是指用户选择的当前需要执行的任务。
在本发明实施例中,通过从现有的纸质规程中分离出主控室的相关操作,根据分离后的纸质程序生成程序主体,并通过程序主体输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,从而操作员通过程序主体可以更加直观、快速的获知核电机组总体程序的逻辑结构,便于其对核电机组进行启动和停运控制。
在步骤S102中,通过查找到的数字化操作单输出任务详细信息、任务详细信息对应的设备信息、以及任务链接信息。
在本发明实施例中,从纸质规程中分离出主控室的相关操作后,根据不同的目标和任务,将分离出的主控室的相关操作生成与任务对应的数字化操作单,并通过该数字化操作单输出该任务的详细信息、该任务的详细信对应的设备信息、以及任务链接信息。在本发明另一实施例中,该数字化操作单还输出操作单备注信息。
在步骤S103中,通过数字化操作单向配套界面发出链接指令,接收到该链接指令的配套界面输出跨系统的监视参数和操作指令。
在本发明实施例中,配套界面是以运行任务为导向构建的与核电机组总体程序配套的界面,通过配套界面可以实现跨系统的监视和操作。其中配套界面包括但不限于状态显示界面和功能跟踪界面。在本发明实施例中,根据不同的运行任务,可以构建一个或者多个状态显示界面和一个或者多个功能跟踪界面。
其中数字化操作单向配套界面发出链接指令的步骤具体为:
数字化操作单向状态显示界面发送链接指令,通过该链接指令指定的状态显示界面监视重要参数、重要设备的状态、事故的苗头和事故工况。在本发明实施例中,采用趋势跟踪方式对变换的重要参数进行监视,采用数值显示方式对不变的重要参数进行监视。每个状态显示界面均可以呼叫并链接至与监视参数有关的界面,并符合界面设计规范。
根据正常运行状态分析和运行经验,构建的状态显示界面包括但不限于完全卸料模式显示界面、换料冷停堆显示界面、维修冷停堆显示界面、由余热排出系统冷却的正常停堆模式显示界面、余热排出系统隔离状态显示界面、功率运行模式显示界面、二回路状态监视显示界面、大修停堆期间对机组安全重要的报警状态监视显示界面等。
其中数字化操作单向配套界面发出链接指令的步骤具体还可以为:
数字化操作单向功能跟踪界面发送链接指令,通过该链接指令指定的功能跟踪界面跟踪预设阶段或预设综合操作的操作设备和所需的监视参数。根据正常运行状态分析和运行经验,构建的功能跟踪界面包括但不限于蒸发器水位控制跟踪界面、一回路水压试验控制界面、二回路水回路启动和停运跟踪界面、厂用电切换跟踪界面、汽机启停控制跟踪界面等。
由于分离了数字化操作单后的程序主体缺乏清晰的逻辑关系,因此,为了给操作员提供较为清晰的核电机组总体程序的逻辑关系,在本发明另一实施例中,该方法还包括下述步骤:
通过结构导航单元输出核电机组总体程序的逻辑结构信息。该结构导航信息是根据核电机组总体程序的逻辑结构构建的,通过该结构导航单元来描述核电机组总体程序的逻辑结构,以帮助操纵员建立核电机组总体程序整体观。其中结构导航单元可以为HTML格式。
在本发明另一实施例中,该方法还包括下述步骤:
程序主体向结构导航单元发送链接指令,接收到链接指令的结构导航单元输出核电机组总体程序的逻辑结构信息。
在本发明另一实施例中,该方法还包括下述步骤:
在链接至结构导航单元后,通过该结构导航单元进入核电机组总体程序的数字化系统。
在本发明另一实施例中,该方法还包括下述步骤:
结构导航单元向系统程序和/或系统程序包括的系统界面发送链接指令,以链接至该链接指令指定的系统程序和/或系统程序包括的系统界面。
其中总体程序用于操作整个机组,而系统程序只局限于操作电站的某个系统,是不同类型的两种操作程序。
在本发明另一实施例中,该方法还包括下述步骤:
通过一回路水压试验控制界面实现压水堆核电站一回路水压试验数字化控制。
在本发明另一实施例中,该方法还包括下述步骤:
通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制。
实施例六:
图14示出了本发明实施例提供的通过一回路水压试验控制界面实现的压水堆核电站一回路水压试验数字化控制的实现流程,详述如下:
在步骤S201中,将与压水堆核电站一回路水压试验相关的关键参数、控制操作入口以及重要报警集中显示在一回路水压试验控制界面。
在步骤S202中,根据该一回路水压试验控制界面显示的关键参数,直接通过该一回路水压试验控制界面上显示的控制操作入口对一回路水压试验过程进行对应的控制操作。
在本发明实施例中,当需要对一回路水压试验的过程进行控制时,可以先根据一回路水压试验控制界面显示的与一回路水压试验有关的关键参数或者水压试验的具体过程,根据水压试验操作程序,直接在该一回路水压试验控制界面显示的控制操作入口对一回路水压试验的过程进行控制。
在本发明实施例中,由于将与一回路水压试验相关的控制参数、控制操作入口以及重要报警都显示在同一个界面,如一回路水压试验控制界面,这样,在需要对一回路水压试验的过程进行控制时,就可以直接根据该一回路水压试验控制界面显示的关键参数,直接通过该一回路水压试验控制界面上显示的控制操作入口对一回路水压试验过程进行对应的控制操作,从而不需要在多个界面之间进行跳转,从而使核电站操作人员可以直观、快速高效的对一回路水压试验的过程进行控制。
实施例七:
图15示出了本发明另一实施例提供的通过一回路水压试验控制界面实现的压水堆核电站一回路水压试验数字化控制的实现流程,详述如下:
在步骤S301中,设置与压水堆核电站一回路水压试验相关的关键参数、控制操作入口以及重要报警在一回路水压试验控制界面中的布局。
在步骤S302中,将与压水堆核电站一回路水压试验相关的关键参数、控制操作入口以及重要报警按照设置的布局显示在一回路水压试验控制界面。
在步骤S303中,根据该一回路水压试验控制界面显示的关键参数,直接通过该一回路水压试验控制界面上显示的控制操作入口对一回路水压试验过程进行对应的控制操作。
在本发明实施例中,由于一回路水压试验控制界面的显示区域毕竟有限,通过预先设置与一回路水压试验相关的关键参数、控制操作入口以及重要报警在一回路水压试验控制界面中的布局,从而使显示在该一回路水压试验控制界面上的与一回路水压试验相关的关键参数、控制操作入口以及重要报警更加清楚、直观,便于用户快捷的对水压试验过程进行控制和干预。
以下以一个具体的实例对本发明实施例提供的通过功能跟踪界面中的一回路水压试验控制界面实现的压水堆核电站一回路水压试验数字化控制方法的实现流程进行进一步说明。
一回路从排空状态到25巴满水排气合格,所有操作使用与平时正常启动一样的界面,从25巴开始,进入水压试验状态,使用一回路水压试验控制界面对水压试验过程进行运行操作和监视。
请参阅图5所示的一回路水压试验控制界面,以升压操作为例,说明该一回路水压试验控制界面的应用。通过操作该一回路水压试验控制界面显示的上充调节阀RCV046VP,增加上充流量,并在该一回路水压试验控制界面上显示读出的上充流量RCV018MD。通过操作该一回路水压试验控制界面显示的下泄调节阀RCV013VP,减少下泄流量,并在该一回路水压试验控制界面上显示读出的下泄流量RCV005MD。当进入一回路的水流量大于流出一回路的水流量时,一回路压力上升,通过监视显示在该一回路水压试验控制界面的一回路压力趋势跟踪来监视一回路的压力上升趋势,通过监视显示在该一回路水压试验控制界面压力变化率读数,把压力上升速率控制在许可范围内。
当出现异常时,例如压力过高,水压试验超压保护动作、停运水压试验泵,开启RIS 124VP减压,这些都能在该一回路水压试验控制界面直观的看到。
实施例八:
图16示出了本发明实施例提供的通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制的实现流程,详述如下:
在步骤S401中,检测汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、以及汽轮发电机组运行中出现的故障信息。
在步骤S402中,将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息集中显示在汽机启停控制跟踪界面。
在步骤S403中,根据汽机启停控制跟踪界面显示的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信直接对汽轮发电机组的停运进行控制。
在本发明实施例中,根据汽机启停控制跟踪界面显示的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息、电厂生产计划可以直接对汽轮发电机组进行的控制包括但不限于汽机启动、正常停机和紧急停机等。
在本发明实施例中,通过将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息集中显示在同一界面,从而方便操纵员直观、快速的发现汽机发电机组的异常,并快速、准确的获得关键参数并判断原因,从而使操纵员可以直观、快速、准确的对核电站汽机发电机组的启动停运进行控制和干预,保证核电站汽机发电机组的安全。
实施例九:
图17示出了本发明另一实施例提供的通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制的实现流程,详述如下:
在步骤S501中,检测汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、以及汽轮发电机组运行中出现的故障信息。
在步骤S502中,将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息以及第三链接键集中显示在汽机启停控制跟踪界面。
在本发明实施例中,提供了汽机启停控制跟踪界面,该汽机启停控制跟踪界面用于集中显示检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息以及第三链接键。
此时,该功汽机启停控制跟踪界面包括汽轮发电机组状态显示区、辅助系统状态显示区、汽轮发电机组故障信息显示区以及链接键显示区。
在步骤S503中,根据汽机启停控制跟踪界面输出的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息,通过汽机启停控制跟踪界面显示的第三链接键链接到指定系统界面,并通过该指定系统界面对汽机发电机组的启停运进行详细控制。
在本发明实施例中,通过将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息以及链接键集中显示在同一界面,即汽机启停控制跟踪界面,从而通过该汽机启停控制跟踪界面可以直观、快速的链接到核电站内的指定系统界面,通过该指定系统界面可以方便、快捷对汽轮发电机组进行更详细的控制和干预,从而进一步提高了汽轮发电机组的安全性。
实施例十:
图18示出了本发明实施例提供的通过该结构导航单元进入核电机组总体程序的数字化系统的实现流程,详述如下:
在步骤S601中,通过第一显示装置显示核电机组启停机过程中机组的运行状态信息、总体运行程序的各子程序之间的执行顺序和逻辑关系以及各运行状态之间的切换信息。
其中总体运行程序的各子程序包括但不限于机组启动控制程序、机组停运控制程序、瞬态控制程序和十年大修控制程序等子程序。机组的运行状态信息包括但不限于6个运行模式、两个标准状态以及表示机组启停机有关的重要参数。6个运行模式包括完全卸料模式、换料停堆模式、维修停堆模式、RRA冷却的正常堆模式、蒸发器冷却的正常堆模式和功率运行模式;两个标准状态包括冷停堆热停堆;表示机组启停机有关的重要参数包括一回路温度80℃、一回路温度170℃、核功率2%、核功率15%、核功率100%。
其中各运行状态之间的切换信息包括但不限于启停指示以及用于状态切换的子程序信息。其中启停指示用于指示启动或者停运核电机组。其中用于状态切换的子程序信息是指将核电机组的一个状态切换至另一状态所用的子程序的信息。
在本发明另一实施例中,该第一显示装置还包括多个第四链接键。每个第四链接键用于呼叫和链接至与其对应的第二显示装置。在本发明实施例中,每个第四链接键都有对应的子程序和第二显示装置,通过第四链接键即可呼叫并链接至与其对应的第二显示装置。
在步骤S602中,第一显示装置向第二显示装置发送链接指令。
在本发明实施例中,可以通过第一显示装置中的第一链接键向第二显示装置发送链接指令。
在本发明实施例中,当需要将核电机组从一个状态(如P=100%PN)切换到另一个状态(如Hot shutdown)时,可以先根据第一显示装置显示的信息确定用于该状态切换的子程序(如D1),再通过该子程序(即D1)对应的第一链接键直接呼叫并链接至对应的第二显示装置,通过第二显示装置显示该子程序(即D1)的逻辑结构信息。
在步骤S603中,接收到链接指令的第二显示装置显示其对应的子程序内部的逻辑结构信息。
其中子程序内部的逻辑结构信息包括但不限于标题信息、定期监视和操作链接键、系统界面链接键、主体结构导航信息和总体结构导航信息。主体结构导航信息包括系统执行流程信息和画面链接键。总体结构导航信息包括页链接键和第一显示装置链接键。
在本发明实施例中,通过第一显示装置可以显示核电机组启停机过程中的总体运行程序包括的子程序、机组运行状态信息以及各机组运行状态之间的切换信息,操作员通过第一显示装置可以向第二显示装置发送链接指令,以进入该链接指令对应的第二显示装置,通过第二显示装置可以显示其对应的子程序的逻辑结构信息,使操纵员建立对机组启动停运的总体观,克服DCS主控室在直观性上的不足,从而可以快速、便捷的进入总体运行程序,以通过数字化总体运行程序对核电机组的启动停运进行快速、准确的控制。
在本发明另一实施例中,在步骤S603之后,该方法还包括下述步骤:
第二显示装置向系统界面发送链接指令,以链接至该链接指令指定的系统界面。
在该实例中,通过第二显示装置向系统界面发送链接指令,从而操纵员可以快速、便捷的进入系统界面,通过系统界面对核电机组的启停运进行控制和干预。
在本发明另一实施例中,在步骤S603之后,该方法还包括下述步骤:
第二显示装置向监视和操作画面发送链接指令,以链接至该链接指令指定的监视和操作画面。
在该实例中,通过第二显示装置向监视和操作画面发送链接指令,从而操纵员可以快速、便捷的进入监视和操作画面,获得核电机组的监视参数。
在本发明另一实施例中,在步骤S603之后,该方法还包括下述步骤:
第二显示装置向与其对应的子程序包括的操作画面发送链接指令,以链接至该链接指令指定的操作画面。
在本发明实施例中,由于每种子程序都是完成某种具体功能的系统,其包括完成用于该功能的多个操作界面,为了可以从第二显示装置进入与其对应的子程序的具体的操作界面,可以通过第二显示装置向与其对应的子程序包括的操作画面发送链接指令。
在本发明另一实施例中,在步骤S603之后,该方法还包括下述步骤:
第二显示装置向与其对应的子程序包括的各导航页面发送链接指令,以链接至该链接指令指定的导航页面。
在该实例中,由于显示装置的显示区域有限,而需要通过核电第二显示装置显示的子程序的逻辑结构信息较多,通过一个页面难以完全显示,因此,核电第二显示装置可以通过多个页面来显示子程序的逻辑结构信息,当采用多个页面来显示子程序的逻辑结构信息时,可以通过页链接键在多个页面之间进行切换。
在本发明另一实施例中,在步骤S603之后,该方法还包括下述步骤:
第二显示装置向第一显示装置发送链接指令,以链接至第一显示装置,这样可以从第二显示装置返回至第一显示装置,从而使总体运行程序更加灵活、易用。
本发明与现有技术对比的有益效果是:克服了DCS在直观性方面的不足,提高核电机组总体程序的运行效率,充分发挥DCS在信息处理上的优势。另外,在通过一回路水压试验控制界面实现压水堆核电站一回路水压试验数字化控制时,通过将与一回路水压试验相关的关键参数、控制操作入口以及重要报警均显示在一回路水压试验控制界面,根据该一回路水压试验控制界面显示的关键参数,直接通过该一回路水压试验控制界面上显示的控制操作入口对一回路水压试验过程进行对应的控制操作,从而可以直观、快速的对一回路水压试验过程进行控制。另外,通过设置一回路水压试验控制界面的布局,从而使操作员更直观、清晰的辨认显示在该一回路水压试验控制界面上的与一回路水压试验相关的关键参数、控制操作入口以及重要报警,便于用户快捷的对水压试验过程进行控制和干预。
另外,在通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制时,通过将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息集中显示在同一界面,从而方便操纵员直观、快速的发现汽机发电机组的异常,并快速、准确的获得关键参数并判断原因,从而使操纵员可以直观、快速、准确的对核电站汽机发电机组的启停运进行控制和干预,保证核电站汽机发电机组的安全。
另外,在通过结构导航单元进入核电机组总体程序的数字化系统时,通过第一显示装置显示核电机组启停机过程中机组的运行状态信息、总体运行程序的各子程序之间的执行顺序和逻辑关系以及各运行状态之间的切换信息,通过第二显示装置显示该总体运行程序包括的各子程序的逻辑结构,由于第一显示装置和第二显示装置清晰的显示了总体运行程序中用于控制各机组运行状态和任务的子程序之间的运行顺序和逻辑关系,使操纵员建立对机组启动停运的总体观,克服DCS主控室在直观性上的不足,从而可以快速、便捷的进入总体运行程序,以通过数字化总体运行程序对核电机组的启动停运进行快速、准确的控制。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以在存储于一计算机可读取存储介质中,所述的存储介质,如ROM/RAM、磁盘、光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (33)

  1. 核电机组数字化控制系统的信息处理方法,其特征在于,所述方法包括下述步骤:
    通过程序主体输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,并根据程序主体查找指定任务对应的数字化操作单;
    通过查找到的数字化操作单输出任务详细信息、任务详细信息对应的设备信息、以及任务链接信息;
    通过数字化操作单向配套界面发出链接指令,接收到该链接指令的配套界面输出跨系统的监视参数和操作指令。
  2. 如权利要求1所述的核电机组数字化控制系统的信息处理方法,其特征在于,在所述通过程序主体输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,并根据程序主体查找指定任务对应的数字化操作单的步骤之前,所述方法还包括下述步骤:
    从纸质规程中分离出主控室的相关操作,并根据分离了主控室的相关操作后的纸质规程中的内容生成程序主体;
    根据不同的目标和任务,将从纸质规程中分离出的主控室的相关操作生成与任务对应的数字化操作单。
  3. 如权利要求1所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述配套界面包括状态显示界面和功能跟踪界面中的至少一种。
  4. 如权利要求3所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述通过数字化操作单向配套界面发出链接指令,接收到该链接指令的配套界面输出跨系统的监视参数和操作指令的步骤具体为:
    数字化操作单向状态显示界面发送链接指令,通过该链接指令指定的状态显示界面监视重要参数、重要设备的状态、事故的苗头和事故工况;和/或,
    数字化操作单向功能跟踪界面发送链接指令,通过该链接指令指定的功能跟踪界面跟踪预设阶段或预设综合操作的操作设备和所需的监视参数。
  5. 如权利要求3所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述状态显示界面包括完全卸料模式显示界面、换料冷停堆显示界面、维修冷停堆显示界面、由余热排出系统冷却的正常停堆模式显示界面、余热排出系统隔离状态显示界面、功率运行模式显示界面、二回路状态监视显示界面、大修停堆期间对机组安全重要的报警状态监视显示界面。
  6. 如权利要求3所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述功能跟踪界面包括蒸发器水位控制跟踪界面、一回路水压试验控制界面、二回路水回路启动和停运跟踪界面、厂用电切换跟踪界面、汽机启停控制跟踪界面。
  7. 如权利要求6所述的核电机组数字化控制系统的信息处理方法,其特征在于,在所述通过数字化操作单向配套界面发出链接指令的步骤之后,所述方法还包括下述步骤:
    通过一回路水压试验控制界面实现压水堆核电站一回路水压试验数字化控制,其包括下述子步骤:
    将与压水堆核电站一回路水压试验相关的关键参数、控制操作入口以及重要报警集中显示在一回路水压试验控制界面;
    根据该一回路水压试验控制界面显示的关键参数,直接通过该一回路水压试验控制界面上显示的控制操作入口对一回路水压试验过程进行对应的控制操作。
  8. 如权利要求7所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述与一回路水压试验相关的关键参数包括一回路压力正常测量宽量程通道、水压试验专用一回路压力宽、窄量程测量通道、容积控制箱水位、一回路加权平均温度、一回路压力变化率、上充流量、下泄流量、下泄压力、主泵轴封注入流量、过剩下泄压力。
  9. 如权利要求7所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述一回路压力正常测量宽量程通道采用趋势跟踪的方式在一回路水压试验控制界面显示,所述容积控制箱水位同时采用参数和趋势跟踪的方式在一回路水压试验控制界面显示。
  10. 如权利要求7所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述与一回路水压试验相关的控制操作入口包括对设备的控制操作入口以及压力遥控操作入口,所述对设备的控制操作入口包括一回路主泵、上充泵、水压试验泵、上充回路及其阀门、下泄回路、主泵轴封注入回路、过剩下泄和主泵轴封回流回路、压力保护回路,所述压力遥控操作入口包括升压和降压操作、稳定压力操作、隔离或者投运下泄孔板、隔离或者投运上充下泄、用过剩下泄和主泵轴封注入控制压力、异常情况下保持压力稳定的操作。
  11. 如权利要求6所述的核电机组数字化控制系统的信息处理方法,其特征在于,在所述通过数字化操作单向配套界面发出链接指令的步骤之后,所述方法还包括下述步骤:
    通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制,其包括下述子步骤:
    检测汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、以及汽轮发电机组运行中出现的故障信息;
    将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息集中显示在汽机启停控制跟踪界面;
    根据汽机启停控制跟踪界面显示的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信直接对汽轮发电机组的启停运进行控制。
  12. 如权利要求11所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息集中显示在汽机启停控制跟踪界面的步骤具体为:
    将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息以及第三链接键集中显示在汽机启停控制跟踪界面;此时,所述方法还包括下述步骤:
    根据汽机启停控制跟踪界面输出的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息,通过汽机启停控制跟踪界面显示的第三链接键链接到指定系统界面,并通过该指定系统界面对汽机发电机组的启停运进行详细控制。
  13. 如权利要求1至12任一权利要求所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述方法还包括下述步骤:
    通过结构导航界面输出核电机组总体程序的逻辑结构信息。
  14. 如权利要求13所述的核电机组数字化控制系统的信息处理方法,其特征在于,在所述通过结构导航界面输出核电机组总体程序的逻辑结构信息的步骤之前,所述方法还包括下述步骤:
    根据程序主体查找结构导航界面,通过查找到的结构导航界面输出核电机组总体程序的逻辑结构信息。
  15. 如权利要求14所述的核电机组数字化控制系统的信息处理方法,其特征在于,在所述根据程序主体查找结构导航界面,通过查找到的结构导航界面输出核电机组总体程序的逻辑结构信息的步骤之后,所述方法还包括下述步骤:
    结构导航界面向数字化操作单和/或配套界面发送链接指令,以链接至该链接指令指定的数字化操作单和/或配套界面;和/或
    结构导航界面向系统程序和/或系统程序包括的系统界面发送链接指令,以链接至该链接指令指定的系统程序和/或系统程序包括的系统界面。
  16. 如权利要求13所述的核电机组数字化控制系统的信息处理方法,其特征在于,在通过结构导航界面输出核电机组总体程序的逻辑结构信息的步骤之后,所述方法还包括下述步骤:
    通过所述结构导航单元进入核电机组总体程序的数字化系统。
  17. 如权利要求16所述的核电机组数字化控制系统的信息处理方法,其特征在于,所述通过所述结构导航单元进入核电机组总体程序的数字化系统的具体步骤为:
    通过第一显示装置显示核电机组启停机过程中机组的运行状态信息、总体运行程序的各子程序之间的执行顺序和逻辑关系以及各运行状态之间的切换信息;
    第一显示装置向第二显示装置发送链接指令;
    接收到链接指令的第二显示装置显示其对应的子程序内部的逻辑结构信息。
  18. 如权利要求17所述的核电机组数字化控制系统的信息处理方法,其特征在于,在所述接收到链接指令的第二显示装置显示其对应的子程序内部的逻辑结构信息的步骤之后,所述方法还包括下述步骤:
    第二显示装置向系统画面发送链接指令,以链接至该链接指令指定的系统画面;和/或
    第二显示装置向监视和操作画面发送链接指令,以链接至该链接指令指定的监视和操作画面。
  19. 如权利要求16所述的核电机组数字化控制系统的信息处理方法,其特征在于,在所述接收到链接指令的第二显示装置显示其对应的子程序的逻辑结构信息的步骤之后,所述方法还包括下述步骤:
    第二显示装置向与其对应的子程序包括的各导航页面发送链接指令,以链接至该链接指令指定的导航页面;和/或
    第二显示装置向第一显示装置发送链接指令,以链接至第一显示装置。
  20. 核电机组数字化控制系统的信息处理装置,其特征在于,所述装置包括程序主体、数字化操作单和配套界面,
    所述程序主体用于输出任务信息、以及与任务信息对应的数字化操作单信息和配套界面信息,并根据程序主体查找指定任务对应的数字化操作单;
    所述数字化操作单用于输出任务详细信息、任务详细信息对应的设备信息、以及任务链接信息,通过数字化操作单向配套界面发出链接指令;
    所述配套界面用于输出跨系统的监视参数和操作指令。
  21. 如权利要求20所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述配套界面包括:
    一个或者多个状态显示界面,用于监视重要参数、重要设备的状态、事故的苗头和事故工况;和/或,
    一个或者多个功能跟踪界面,用于跟踪预设阶段或预设综合操作的操作设备和所需的监视参数。
  22. 如权利要求21所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述状态显示界面包括完全卸料模式显示界面、换料冷停堆显示界面、维修冷停堆显示界面、由余热排出系统冷却的正常停堆模式显示界面、余热排出系统隔离状态显示界面、功率运行模式显示界面、二回路状态监视显示界面、大修停堆期间对机组安全重要的报警状态监视显示界面。
  23. 如权利要求21所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述功能跟踪界面包括蒸发器水位控制跟踪界面、一回路水压试验控制界面、二回路水回路启动和停运跟踪界面、厂用电切换跟踪界面、汽机启停控制跟踪界面。
  24. 权利要求23所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述核电机组数字化控制系统的信息处理装置还包括:
    一回路水压试验控制单元,用于通过一回路水压试验控制界面实现压水堆核电站一回路水压试验数字化控制;所述一回路水压试验控制单元包括信息输出模块、水压试验控制界面和控制操作响应模块,
    所述信息输出模块将与压水堆核电站一回路水压试验相关的关键参数、控制操作入口以及重要报警均显示在一回路水压试验控制界面;
    所述控制操作响应模块根据所述一回路水压试验控制界面显示的关键参数,直接通过所述一回路水压试验控制界面上显示的控制操作入口对一回路水压试验过程进行对应的控制操作。
  25. 如权利要求24所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述一回路水压试验控制单元还包括:
    布局设置模块,用于设置与压水堆核电站一回路水压试验相关的关键参数、控制操作入口以及重要报警在水压试验控制界面中的布局;此时,
    所述信息输出模块将与一回路水压试验相关的关键参数、控制操作入口以及重要报警按照设置的布局显示在所述一回路水压试验控制界面。
  26. 如权利要求23所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述核电机组数字化控制系统的信息处理装置还包括:
    汽机启停控制单元,用于通过汽机启停控制跟踪界面实现核电站汽轮发电机组启停控制,所述汽机启停控制单元包括:
    状态检测模块,用于检测汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、以及汽轮发电机组运行中出现的故障信息;
    状态显示模块,用于将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息集中显示在汽机启停控制跟踪界面;
    启动停运控制模块,用于根据汽机启停控制跟踪界面显示的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信直接对汽轮发电机组的启停运进行控制。
  27. 如权利要求26所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述状态显示模块还用于将检测到的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信息以及第三链接键集中显示在汽机启停控制跟踪界面;此时,所述汽机启停控制单元还包括:
    链接模块,用于根据汽机启停控制单元输出的汽轮发电机组的运行状态和运行参数、汽轮发电机组的辅助系统的运行状态和运行参数、汽轮发电机组运行中出现的故障信,通过汽机启停控制单元显示的第三链接键链接到指定系统界面,并通过该指定系统界面对汽机发电机组的启停运进行详细控制。
  28. 如权利要求20所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述核电机组数字化控制系统的信息处理装置还包括:
    结构导航单元,用于输出核电机组总体程序的逻辑结构信息。
  29. 如权利要求28所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述结构导航单元包括第一显示装置和第二显示装置:
    所述第一显示装置用于显示核电机组启停机过程中机组的运行状态信息、总体运行程序的各子程序之间的执行顺序和逻辑关系以及各运行状态之间的切换信息;
    所述第二显示装置用于显示总体运行程序的各子程序内部的逻辑结构信息。
  30. 如权利要求29所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述第一显示装置还包括:
    第四链接键,用于呼叫和链接至与该第四链接键对应的第二显示装置。
  31. 如权利要求30所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述子程序内部的逻辑结构信息包括标题信息、定期监视和操作链接键、系统画面链接键、主体结构导航信息和总体结构导航信息。
  32. 如权利要求31所述的核电机组数字化控制系统的信息处理装置,其特征在于,所述主体结构导航信息包括子程序执行流程信息和用于呼叫并链接至子程序包括的操作画面的画面链接键,所述总体结构导航信息包括用于呼叫并链接至子程序的各导航页面的页链接键和用于呼叫并链接至第一显示装置的第一显示装置链接键。
  33. 一种DCS系统,其特征在于,所述DCS系统包括权利要求20至32任一项所述的核电机组数字化控制系统的信息处理装置。
PCT/CN2011/075293 2010-12-10 2011-06-03 核电机组数字化控制系统(dcs)及其信息处理方法和装置 WO2012075789A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11847628.2A EP2650884B1 (en) 2010-12-10 2011-06-03 Information processing method of digital control systems of nuclear power units
KR1020137014726A KR20130137186A (ko) 2010-12-10 2011-06-03 원자력 발전설비 디지털화 제어시스템의 정보처리방법, 장치와 dcs시스템
TR2013/06991T TR201306991T1 (tr) 2010-12-10 2011-06-03 Nükleer güç ünitesi bilgi işlem metodu ve DCS için aletin dijitalleştirilmiş kontrol sistemi.(DCS)
ZA2013/05115A ZA201305115B (en) 2010-12-10 2013-07-08 Digitalized control system (dcs) of nuclear power unit, information processing method and device for dcs

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201010582866XA CN102157213B (zh) 2010-12-10 2010-12-10 一种核电机组数字化总体运行程序的进入方法及系统
CN2010105828551A CN102156449B (zh) 2010-12-10 2010-12-10 核电机组总体程序的数字化方法、系统及dcs控制系统
CN201010582852.8 2010-12-10
CN2010105828528A CN102163051A (zh) 2010-12-10 2010-12-10 一种压水堆核电站一回路水压试验数字化控制方法和系统
CN201010582816.1 2010-12-10
CN201010582866.X 2010-12-10
CN201010582855.1 2010-12-10
CN201010582816.1A CN102080579B (zh) 2010-12-10 2010-12-10 核电站汽轮发电机组启停控制方法、装置和dcs控制系统

Publications (1)

Publication Number Publication Date
WO2012075789A1 true WO2012075789A1 (zh) 2012-06-14

Family

ID=46206581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075293 WO2012075789A1 (zh) 2010-12-10 2011-06-03 核电机组数字化控制系统(dcs)及其信息处理方法和装置

Country Status (5)

Country Link
EP (1) EP2650884B1 (zh)
KR (1) KR20130137186A (zh)
TR (1) TR201306991T1 (zh)
WO (1) WO2012075789A1 (zh)
ZA (1) ZA201305115B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934086A (zh) * 2015-04-27 2015-09-23 中广核工程有限公司 核电站设备多路指令控制方法及优选控制指令输出装置
CN107591896A (zh) * 2017-11-08 2018-01-16 河南柴油机重工有限责任公司 一种火力发电厂保安母线供电电源监控系统
CN111768884A (zh) * 2020-06-08 2020-10-13 核动力运行研究所 一种核电厂机组运行状态监测系统及方法
CN112255998A (zh) * 2020-10-27 2021-01-22 呼伦贝尔安泰热电有限责任公司扎兰屯热电厂 一种dcs模拟量的质量判断功能块
CN112922683A (zh) * 2021-02-23 2021-06-08 华电浙江龙游热电有限公司 一种火力发电机组全厂疏水阀组的顺控方法
CN113419494A (zh) * 2021-06-30 2021-09-21 台山核电合营有限公司 核电dcs数字化程序的验证装置及方法
CN113744909A (zh) * 2021-09-03 2021-12-03 中广核工程有限公司 核电厂数字化规程推送方法、装置和计算机设备
CN113778308A (zh) * 2020-06-09 2021-12-10 岭东核电有限公司 核电数据处理系统及其处理方法
CN113936830A (zh) * 2021-09-22 2022-01-14 广东核电合营有限公司 一种核电厂发电机组状态控制方法及电子设备
CN114023476A (zh) * 2021-09-30 2022-02-08 中国核电工程有限公司 一种核电厂数字化控制室运行画面的形成方法
CN114496325A (zh) * 2020-11-11 2022-05-13 中核核电运行管理有限公司 一种核电厂现场设备状态跟踪控制方法
CN115407724A (zh) * 2021-05-28 2022-11-29 福建福清核电有限公司 一种用于核电站一回路水压试验超压保护的方法
CN115599053A (zh) * 2022-09-26 2023-01-13 中核核电运行管理有限公司(Cn) 一种用于核电站汽轮机盘车控制机柜的启停逻辑
CN115755780A (zh) * 2022-08-30 2023-03-07 中国核动力研究设计院 一种核电dcs系统设计中全局搜索方法、系统及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104571016A (zh) * 2014-12-02 2015-04-29 中广核工程有限公司 核电站dcs可视化运维操作方法和系统
CN108536038B (zh) * 2017-03-03 2021-05-18 中核兰州铀浓缩有限公司 离心级联工艺自动控制仿真系统
CN108735321A (zh) * 2018-06-22 2018-11-02 江苏核电有限公司 一种控制回路电源在线报警装置及其验证方法
CN109765860B (zh) * 2018-12-17 2021-05-18 中广核研究院有限公司 核反应堆dcs的验证方法、验证装置及验证系统
CN109741841B (zh) * 2019-01-03 2021-02-09 中核控制系统工程有限公司 一种核电站控制系统自动化系统测试装置及方法
CN110307985B (zh) * 2019-06-17 2021-07-06 中广核核电运营有限公司 核电汽轮机高压汽阀试验超时故障诊断方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169907A (ja) * 1985-01-24 1986-07-31 Nippon Atom Ind Group Co Ltd プラントの運転操作ガイドシステム
WO1998024094A1 (en) * 1996-11-27 1998-06-04 Westinghouse Electric Corporation An information display system
CN101149992A (zh) * 2007-09-14 2008-03-26 大亚湾核电运营管理有限责任公司 一种核电机组的控制系统及其监控方法和子系统
CN101447240A (zh) * 2008-12-22 2009-06-03 中国广东核电集团有限公司 一种核电机组的事故监控系统及其监控方法
CN101458973A (zh) * 2008-12-22 2009-06-17 中国广东核电集团有限公司 一种核电机组安全监控系统
CN101477377A (zh) * 2009-01-05 2009-07-08 中国广东核电集团有限公司 一种核电机组系统及其安全监控方法和装置
CN101483076A (zh) * 2009-01-05 2009-07-15 中国广东核电集团有限公司 一种核电站试验控制系统及核电站监测设备
KR20100048449A (ko) * 2008-10-31 2010-05-11 한국전력공사 원자력발전소 노형별 용량별 특성에 따른 계획예방정비 공정관리 표준화 방법
CN101740153A (zh) * 2009-12-01 2010-06-16 中国广东核电集团有限公司 核电站机组正常运行状态监视显示装置及系统
CN102080579A (zh) * 2010-12-10 2011-06-01 中国广东核电集团有限公司 一种核电站汽轮发电机组启停控制方法、装置和dcs控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813817B2 (en) * 2006-05-19 2010-10-12 Westinghouse Electric Co Llc Computerized procedures system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169907A (ja) * 1985-01-24 1986-07-31 Nippon Atom Ind Group Co Ltd プラントの運転操作ガイドシステム
WO1998024094A1 (en) * 1996-11-27 1998-06-04 Westinghouse Electric Corporation An information display system
CN101149992A (zh) * 2007-09-14 2008-03-26 大亚湾核电运营管理有限责任公司 一种核电机组的控制系统及其监控方法和子系统
KR20100048449A (ko) * 2008-10-31 2010-05-11 한국전력공사 원자력발전소 노형별 용량별 특성에 따른 계획예방정비 공정관리 표준화 방법
CN101447240A (zh) * 2008-12-22 2009-06-03 中国广东核电集团有限公司 一种核电机组的事故监控系统及其监控方法
CN101458973A (zh) * 2008-12-22 2009-06-17 中国广东核电集团有限公司 一种核电机组安全监控系统
CN101477377A (zh) * 2009-01-05 2009-07-08 中国广东核电集团有限公司 一种核电机组系统及其安全监控方法和装置
CN101483076A (zh) * 2009-01-05 2009-07-15 中国广东核电集团有限公司 一种核电站试验控制系统及核电站监测设备
CN101740153A (zh) * 2009-12-01 2010-06-16 中国广东核电集团有限公司 核电站机组正常运行状态监视显示装置及系统
CN102080579A (zh) * 2010-12-10 2011-06-01 中国广东核电集团有限公司 一种核电站汽轮发电机组启停控制方法、装置和dcs控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650884A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934086A (zh) * 2015-04-27 2015-09-23 中广核工程有限公司 核电站设备多路指令控制方法及优选控制指令输出装置
CN107591896A (zh) * 2017-11-08 2018-01-16 河南柴油机重工有限责任公司 一种火力发电厂保安母线供电电源监控系统
CN107591896B (zh) * 2017-11-08 2024-01-30 河南柴油机重工有限责任公司 一种火力发电厂保安母线供电电源监控系统
CN111768884A (zh) * 2020-06-08 2020-10-13 核动力运行研究所 一种核电厂机组运行状态监测系统及方法
CN113778308A (zh) * 2020-06-09 2021-12-10 岭东核电有限公司 核电数据处理系统及其处理方法
CN112255998A (zh) * 2020-10-27 2021-01-22 呼伦贝尔安泰热电有限责任公司扎兰屯热电厂 一种dcs模拟量的质量判断功能块
CN114496325A (zh) * 2020-11-11 2022-05-13 中核核电运行管理有限公司 一种核电厂现场设备状态跟踪控制方法
CN112922683A (zh) * 2021-02-23 2021-06-08 华电浙江龙游热电有限公司 一种火力发电机组全厂疏水阀组的顺控方法
CN112922683B (zh) * 2021-02-23 2023-10-20 华电浙江龙游热电有限公司 一种火力发电机组全厂疏水阀组的顺控方法
CN115407724A (zh) * 2021-05-28 2022-11-29 福建福清核电有限公司 一种用于核电站一回路水压试验超压保护的方法
CN113419494B (zh) * 2021-06-30 2022-07-22 台山核电合营有限公司 核电dcs数字化程序的验证装置及方法
CN113419494A (zh) * 2021-06-30 2021-09-21 台山核电合营有限公司 核电dcs数字化程序的验证装置及方法
CN113744909A (zh) * 2021-09-03 2021-12-03 中广核工程有限公司 核电厂数字化规程推送方法、装置和计算机设备
CN113744909B (zh) * 2021-09-03 2023-12-01 中广核工程有限公司 核电厂数字化规程推送方法、装置和计算机设备
CN113936830A (zh) * 2021-09-22 2022-01-14 广东核电合营有限公司 一种核电厂发电机组状态控制方法及电子设备
CN114023476A (zh) * 2021-09-30 2022-02-08 中国核电工程有限公司 一种核电厂数字化控制室运行画面的形成方法
CN114023476B (zh) * 2021-09-30 2024-01-23 中国核电工程有限公司 一种核电厂数字化控制室运行画面的形成方法
CN115755780A (zh) * 2022-08-30 2023-03-07 中国核动力研究设计院 一种核电dcs系统设计中全局搜索方法、系统及存储介质
CN115599053A (zh) * 2022-09-26 2023-01-13 中核核电运行管理有限公司(Cn) 一种用于核电站汽轮机盘车控制机柜的启停逻辑

Also Published As

Publication number Publication date
EP2650884A1 (en) 2013-10-16
EP2650884A4 (en) 2016-06-15
ZA201305115B (en) 2014-09-25
KR20130137186A (ko) 2013-12-16
TR201306991T1 (tr) 2014-03-21
EP2650884B1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2012075789A1 (zh) 核电机组数字化控制系统(dcs)及其信息处理方法和装置
WO2018117530A1 (ko) Ess용 pcs 및 pcs 운전 방법
Woodley Field experience with Dynamic Voltage Restorer (DVR/sup TM/MV) systems
US7982338B2 (en) Continuous power supply control system and method
WO2021154034A1 (ko) 차온 제어 장치에 의한 태양열 과열 및 동파 방지 시스템
WO2018212522A1 (en) External reactor vessel cooling and electric power generation system
KR101212124B1 (ko) 태양광발전소 모니터링시스템
WO2014073811A1 (en) Electronic apparatus, power supply apparatus, and power supply method
WO2019031686A1 (ko) 에너지 저장 시스템
WO2017043750A1 (ko) 마이크로그리드용 인버터 장치 및 이를 제어하는 방법
WO2012043938A1 (ko) 전력조류 제어 시스템 및 방법
WO2015103790A1 (zh) 核电厂安全壳冷却系统及其喷淋流量控制方法
WO2023063496A1 (en) Energy storage system
Kim et al. The operation experience of KEPCO UPFC
WO2018105990A1 (ko) 마이크로그리드 시스템 및 고장 처리 방법
WO2021157808A1 (ko) 자가발전 무전원 정온식감지 송수신 시스템
WO2020242163A1 (ko) 계통 전압 위상 검출 장치
WO2018201625A1 (zh) 变频空调、停机控制方法及计算机可读存储介质
KR20080098171A (ko) 순간정전 및 역률보상 장치와 그 방법
WO2023229326A1 (ko) 배터리 셀 진단 장치 및 방법
WO2012165779A2 (ko) 대형빌딩 전기설비 무정전시스템
WO2019231047A1 (ko) 태양광 연계 에너지 저장 시스템용 dc-dc 컨버터 및 그 제어방법
WO2019235657A1 (en) Solar energy storage system divided into daytime and night mode, and its operation method and battery replacement method thereof
WO2016122105A1 (ko) 2루프 가압경수로형 증기 발생기의 교체 방법
CN107591896B (zh) 一种火力发电厂保安母线供电电源监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137014726

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013/06991

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 2011847628

Country of ref document: EP