WO2015103790A1 - 核电厂安全壳冷却系统及其喷淋流量控制方法 - Google Patents

核电厂安全壳冷却系统及其喷淋流量控制方法 Download PDF

Info

Publication number
WO2015103790A1
WO2015103790A1 PCT/CN2014/070539 CN2014070539W WO2015103790A1 WO 2015103790 A1 WO2015103790 A1 WO 2015103790A1 CN 2014070539 W CN2014070539 W CN 2014070539W WO 2015103790 A1 WO2015103790 A1 WO 2015103790A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling system
heat exchange
containment
power plant
liquid
Prior art date
Application number
PCT/CN2014/070539
Other languages
English (en)
French (fr)
Inventor
杨江
王婷
陶俊
崔军
卢向晖
沙正峰
庄程军
林维青
林建树
Original Assignee
中科华核电技术研究院有限公司
中国广核集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科华核电技术研究院有限公司, 中国广核集团有限公司 filed Critical 中科华核电技术研究院有限公司
Priority to GB1612139.4A priority Critical patent/GB2536393B/en
Priority to US15/111,480 priority patent/US10629314B2/en
Priority to PCT/CN2014/070539 priority patent/WO2015103790A1/zh
Publication of WO2015103790A1 publication Critical patent/WO2015103790A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a nuclear power plant containment cooling system, in particular to a passive nuclear power plant containment cooling system and a spray flow control method thereof.
  • nuclear power plants In order to prevent nuclear power plants from leaking to the outside world in the event of an accident, nuclear power plants usually use a closed containment to contain the reactor and some important safety systems.
  • a nuclear power plant adopts a passive cooling system based on passive concept and a flow control system based on automatic control principle, it can not only simplify the special safety facilities, but also reduce personnel intervention, thereby reducing possible malfunctions and improving human-machine relationship. To improve the safety of nuclear power plants.
  • a coolant storage tank is usually arranged on the top of the containment.
  • a water source is provided by the storage tank, and a water film is sprayed onto the outer wall of the containment, and the water shell is evaporated and the air convection is led to the safety shell.
  • the heat inside the body and the shell reduces the internal pressure of the containment by lowering the temperature, ensuring that the containment is not damaged by being subjected to too high pressure.
  • the technical problem of the above design is that, in the case that the water film is not completely evaporated, the water in the cooling system tank continues to flow downward, and flows down to the bottom of the safety shell to be directly discharged, which is easy to cause waste of the coolant;
  • a large capacity (larger weight) coolant storage tank is generally installed at the top of the containment, which is inconvenient to install and maintain, in the event of extreme events such as strong earthquakes, tsunamis and tornadoes. It is very likely that the structure of the coolant storage tank is destroyed and the safety function is lost.
  • either the spray flow in the coolant storage tank is not controlled, or the temperature of the containment is monitored by setting a sensor, and the corresponding control unit is set to issue instructions to control the cooling in the coolant storage tank.
  • the flow rate of the liquid For the former, if the flow rate is too large, a large amount of coolant will not cause the maximum cooling effect, but will be wasted.
  • the operation of monitoring the containment temperature and controlling the coolant flow still requires power supply support, increasing the complexity of the hardware structure design, and in many unexpected cases, the power supply is likely to fail, resulting in the above cooling design not working properly. .
  • the technical problem to be solved by the present invention is that, in view of the above-mentioned defects of low safety, complicated structure and unfavorable promotion of the prior art, a nuclear power plant containment cooling system for passively adjusting the coolant flow rate and a shower thereof are provided. Flow control method.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a nuclear power plant containment cooling system, comprising:
  • cooling system tank for storing a coolant, the cooling system tank being disposed at a top of the containment, the coolant being used to perform the containment by the coolant itself under an accident condition Cooling, the cooling liquid is partially evaporated;
  • the nuclear power plant containment cooling system further includes an adjustment mechanism disposed at a liquid outlet of the cooling system tank, the adjustment mechanism for collecting the liquid of the coolant that is not evaporated according to the collection
  • the buoyancy generated by the bit controls the flow rate of the liquid outlet.
  • the nuclear power plant containment cooling system further includes a heat exchange liquid pool disposed at an outer bottom of the containment for collecting the unvaporized coolant; One end of the mechanism is suspended above the liquid level of the heat exchange liquid pool, and the other end of the adjusting mechanism is connected to the liquid outlet.
  • the nuclear power plant containment cooling system further includes:
  • a shower device in communication with the cooling system tank, the coolant flowing out to the shower device through the liquid outlet, and sprayed by the shower device to the outside of the containment to form a cover Liquid film of the containment;
  • the spraying device comprises a spraying valve associated with the adjusting mechanism, and the adjusting mechanism adjusts the opening degree of the spraying valve according to the buoyancy generated by the heat exchange liquid pool to control the flow rate of the liquid outlet.
  • the adjustment mechanism comprises:
  • the one end of the connecting rod transmission mechanism away from the buoyancy supporting member is connected to the spraying valve
  • the system further includes a shielding shell disposed at a periphery of the safety shell and formed with the heat exchange liquid pool for forming the cooling liquid and forming Circulation space for air circulation.
  • an insulation baffle is disposed in the heat exchange liquid pool in a vertical direction, and the heat insulation baffle is located below the buoyancy support member, and the heat insulation fold a flow plate for separating the heat exchange liquid pool into an inner gallery adjacent to the safety shell and a gallery adjacent to the shield shell, the inner gallery and the outer gallery being at the bottom of the heat insulation baffle Communicating with each other, a thermal circulation space for cold and heat exchange is formed between the inner gallery and the outer gallery.
  • the side wall of the shielding shell is open with an air inlet, the air inlet is located higher than the highest free floating position of the buoyancy support, and the air enters the After the thermal cycle space, the steam mixed with the air in the circulation space and evaporates with the outer wall of the containment vessel flows upward.
  • an air outlet is further disposed at the top of the shielding shell, and the air inlet, the circulation space and the air outlet together form a steam circulation passage.
  • the shower device further includes a spray pipe and a coolant dispersing device communicating with the spray pipe, one end of the spray pipe and the cooling system tank Connected, the other end of the spray pipe communicates with the coolant dispersing device, the spray pipe is installed with the spray valve, and the coolant dispersing device is provided with a spray port, and the coolant solution is
  • the cooling system tank flows into the spray pipe, is controlled by the spray valve to flow into the coolant dispersing device, and is sprayed to the outside of the containment through the sprinkler.
  • the adjusting mechanism includes a plurality of the adjusting mechanisms evenly distributed outside the safety shell, and each of the adjusting mechanisms corresponds to one of the spraying valves.
  • the buoyancy support member is a float ball.
  • the heat insulation baffle is a steel structure interlayer
  • the steel structure interlayer comprises an outer layer and an interlayer
  • the outer layer is a high temperature resistant material
  • the interlayer is insulated
  • the present invention also provides a spray flow control method for a nuclear power plant containment cooling system, the method comprising the following steps:
  • the method before the step S1, the method further comprises the steps of:
  • the initial liquid level of the heat exchange liquid pool is set, and the lower end of the adjusting mechanism is suspended above the initial liquid level of the heat exchange liquid pool.
  • step S1 further includes:
  • the shower valve After the cooling system is started, the shower valve has a maximum opening degree before the liquid level of the heat exchange liquid pool contacts one end of the adjusting mechanism, and the liquid outlet of the cooling system liquid tank has a maximum flow rate. Flowing the cooling liquid to the outside of the containment to form a liquid film covering the containment;
  • the adjusting mechanism controls the flow rate of the liquid outlet according to the buoyancy generated by the liquid level floating of the heat exchange liquid pool.
  • the nuclear power plant containment cooling system includes a spray valve connected to the liquid outlet, and the adjustment mechanism includes a spray valve Link drive mechanism and buoyancy support, the steps S2 further includes the following steps:
  • the nuclear power plant containment cooling system further includes a shield case disposed at a periphery of the containment, wherein the shield case sidewall is provided with an air inlet at a position higher than a highest free floating position of the buoyancy support member, the method It also includes the following steps:
  • S3 Air is introduced into the nuclear power plant containment cooling system from the air inlet to receive heat of the coolant in the heat exchange liquid pool, and to promote upward flow of the evaporated steam.
  • the step S3 The heat transfer liquid pool is vertically disposed in the heat exchange liquid pool to partition the heat exchange liquid pool into an inner corridor adjacent to the safety shell and an outer corridor away from the safety shell.
  • the inner gallery and the outer gallery form a thermal circulation space, and the inner corridor contacting the outer wall surface of the safety shell receives the wall of the safety shell.
  • the heat generated, the air flowing into the upper portion of the heat exchange liquid pool through the air inlet, and the air is heated by the heat exchange of the upper surface of the heat exchange liquid pool, and then the steam evaporated by the heat exchange liquid pool is mixed.
  • the steam evaporated from the outer wall of the containment vessel flows upward along a flow space formed between the shield shell and the containment vessel.
  • the top of the shielding shell is further provided with an air outlet, and the step S3 is performed.
  • the air thereafter flows out of the nuclear power plant containment cooling system via the air outlet along with the heat exchange liquid pool and the vapor evaporated from the outer wall of the containment.
  • the nuclear power plant containment cooling system and the spray flow control method thereof are implemented by the present invention, wherein a coolant liquid pool is disposed outside the safety shell to store the coolant sprayed above the safety shell, and according to the heat exchange liquid pool
  • the liquid level lifting automatically adjusts the opening degree of the spray valve, thereby controlling the spray flow rate, and the evaporated liquid without evaporation flows down to the heat exchange liquid pool, where it can still absorb heat and evaporate, thereby exerting heat dissipation effect, so in the present invention
  • All coolants are utilized to the utmost extent, and the volume of the cooling system tank is also significantly smaller, and the present invention eliminates the need for sensors and corresponding temperature monitoring devices that require power supply support, and does not require electrical support only by buoyancy supports and linkages.
  • the controlled mechanical device automatically controls the size of the spray flow, which is beneficial to simplifying the hardware structure and saving cost, and the safety performance thereof is also improved compared with the prior art.
  • FIG. 1 is a schematic structural view of a nuclear power plant containment cooling system according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of a spray flow control method for a nuclear power plant containment cooling system according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic structural view of a buoyancy support member of a passive containment cooling system for a nuclear power plant according to a preferred embodiment of the present invention
  • FIG. 4 is a side view of a coolant dispersing device of a passive containment cooling system for a nuclear power plant according to a preferred embodiment of the present invention
  • Figure 5 is a top plan view of the coolant dispersion device of Figure 4.
  • the utility model relates to a passive containment cooling system and method for automatically adjusting the spray flow size by using buoyancy, and the system of the invention is designed for the prior art safety shell cooling system with low safety performance, complicated structure and unfavorable promotion.
  • the spray flow control method realizes the maximum utilization of the coolant. In the absence of external power (such as electric power, etc.), the containment cooling system of the present application and the spray flow control thereof due to the automatic adjustment of buoyancy
  • the method can timely adjust the spray flow of the coolant to eliminate the waste heat of the reactor in the safety shell, effectively prevent the damage caused by the high pressure inside the safety shell, and effectively improve the safety of the safety shell cooling system.
  • FIG. 1 is a schematic structural view of a nuclear power plant containment cooling system according to an embodiment of the present invention.
  • the safety shell 1 Used to coat reactor systems.
  • the reactor system in the containment 1 comprises a steam generator 20, a voltage regulator 21, a core water supply tank 22, a containment water tank 23 in the containment, a core 24, an injection tank 25, etc., the various parts of the reactor system
  • the structural and functional relationships are prior art and will not be described here.
  • a cooling system tank 2 is installed on the outside of the containment 1, and a coolant such as water is stored in the cooling system tank 2.
  • the bottom of the cooling system tank 2 has a liquid outlet, and the coolant flows out through the liquid outlet under the action of gravity, and reaches the safety shell 1 to form a liquid film covering the outer side of the safety shell 1 on the surface of the safety shell 1 in the safety shell 1
  • the heat of the reactor is cooled by the liquid film evaporated by the heat to further reduce the temperature of the containment vessel 1.
  • the heat exchanger liquid pool 3 is disposed outside the bottom of the containment vessel 1, and the heat exchange liquid pool 3 and the cooling system tank 2 are installed between Adjusting mechanism for adjusting the flow rate of the liquid outlet of the cooling system tank 2 by buoyancy, the adjusting mechanism is suspended at one end of the liquid level of the heat exchange liquid pool 3, and the other end of the adjusting mechanism is opposite to the above The liquid port is connected.
  • one end of the adjusting mechanism adjacent to the heat exchange liquid pool 3 is a lower end
  • one end of the adjusting mechanism connected to the liquid discharge port is an upper end.
  • the liquid film formed by the cooling liquid covering the containment vessel 1 continues to fall with gravity without being evaporated in time to reach the heat exchange liquid pool 3, and is stored by the heat exchange liquid pool 3.
  • the liquid film on the outer side of the containment vessel 1 and the coolant in the heat exchange liquid pool 3 are slowly evaporated, and the liquid level of the heat exchange liquid pool 3 continues to fall with the coolant.
  • the lowering of the liquid level of the heat exchange liquid pool 3 causes the lower end of the adjusting mechanism which is in contact with the coolant of the heat exchange liquid pool 3 to fall with the liquid surface, thereby driving the upper end of the adjusting mechanism close to the liquid outlet
  • the flow rate of the liquid port is controlled to increase the flow rate of the liquid outlet.
  • the shower device 4 is disposed at the top of the containment vessel 1.
  • the cooling system tank 2 is annular, and the liquid outlet of the bottom of the cooling system tank 2 is in communication with the shower device 4.
  • a shower valve 5 is installed between the shower device 4 and the liquid outlet.
  • the spray valve 5 is interlocked with the adjusting mechanism, and when the adjusting mechanism rises as the liquid level of the heat exchange liquid pool 3 rises, the opening degree of the spray valve 5 decreases, and the flow rate of the liquid outlet is reduced; When the adjustment mechanism falls as the liquid level of the heat exchange liquid pool 3 falls, the opening degree of the spray valve 5 increases, and the flow rate of the liquid discharge port increases.
  • the nuclear power plant containment cooling system of the present invention can be used as part of the passive safety system of the pressurized water reactor nuclear power plant.
  • the safety shell 1 is preferably a steel safety shell.
  • a heat exchange liquid pool 3 is disposed around the outer side of the safety shell 1 on the outer side of the safety shell 1 , and is sprayed from the top of the safety shell 1 by the shower device 4 .
  • the coolant forms a liquid film on the outer wall of the containment vessel 1 and flows downward, and evaporates due to the higher temperature of the outer wall of the containment vessel 1, while the coolant that is not evaporated falls by gravity and enters the heat exchanger. Liquid pool 3.
  • the adjustment mechanism of the present invention includes a link transmission mechanism 12 coupled to the shower device 4 and buoyancy coupled to the end of the link transmission mechanism 12 adjacent to the heat exchange liquid pool 3.
  • the link drive mechanism 12 includes a drive link 17.
  • the buoyancy support member 7 is connected to one end of the transmission link 17 near the heat exchange liquid pool 3, and the other end of the transmission link 17 is connected to the spray valve 5. In the state shown in Fig. 1, the buoyancy support 7 is in contact with the liquid surface of the heat exchange liquid pool 3.
  • the outer side of the safety shell 1 is provided with a fixing member 15, and the transmission link 17 passes through the fixing member 15 so that when the liquid level of the heat exchange liquid pool 3 rises and falls, the transmission link 17 only has a vertical displacement, and the horizontal direction maintains a certain degree. Fixed.
  • the shower device 4 of the present embodiment includes a shower pipe 6 that draws the coolant from the cooling system tank 2, and a coolant dispersing device 13 that communicates with the shower pipe 6, on which the shower pipe 6 is mounted.
  • the spray valve 5 and the trigger valve 50 are connected to the transmission link 17, and when the transmission link 17 is displaced with the buoyancy support member 7, the spray valve 5 is biased, thereby affecting the spray valve 5 Opening and closing size.
  • the trigger valve 50 is automatically triggered to open when the cooling system of the present invention is opened, and the trigger valve 50 is used to control the communication between the shower pipe 6 and the coolant dispersing device 13. Referring to Fig. 1, a coolant dispersing device 13 communicating with the shower pipe 6 is disposed above the dome of the containment vessel.
  • the top outer wall realizes uniform dispersion of the coolant in the radial direction and the circumferential direction of the outer wall of the safety shell 1 to form a cooling liquid film covering the safety shell 1, thereby achieving uniform cooling of the safety shell 1 as a whole.
  • the spray valve 5 in this embodiment adopts a self-regulating valve, and a valve stem (not shown) of the self-regulating valve is connected to the transmission link 17 described above, and the transmission link 17 drives the The valve stem of the self-regulating valve rotates to control the flow rate of the coolant in the shower pipe 6.
  • the invention can realize the opening of the spraying valve 5 according to the liquid surface of the heat exchange liquid pool 3 and controlling the opening degree; and the cooling liquid sprayed by the cooling liquid dispersing device 13 falls into the heat exchange liquid pool 3 to realize the swapping
  • the hydration of the hydrothermal pool 3 maintains the liquid level of the heat exchange liquid pool 3 stable.
  • the invention provides a feedback type safety shell cooling system, which controls the spray size by the liquid level change of the heat exchange liquid pool 3, and the sprayed coolant will weaken the change range of the liquid level of the heat exchange liquid pool 3.
  • the structure in which the buoyancy support member 7 and the transmission link 17 are combined is used to control the spray size, the passive cooling effect is truly realized, and the cooling control effect is timely, once buoyancy The support member 7 falls due to the falling of the liquid level of the heat exchange liquid pool 3.
  • the drive rod 17 then controls the self-regulating valve to increase the amount of spray to accelerate the cooling of the containment vessel 1.
  • the cooling system of the invention has the characteristics of simple structure, timely feedback and high cooling efficiency.
  • a shield case 8 is also disposed around the containment vessel 1 and the heat exchange liquid pool 3, and a concrete shield shell is preferred in the present invention.
  • the shield case 8 is used to support the cooling system tank 2 in addition to further shielding radioactivity.
  • the coolant evaporates to form steam after forming a liquid film on the outer side of the containment vessel 1 due to the heat of the reactor in the containment vessel 1 .
  • an air outlet 11 is opened at the top of the shield shell 8 . The evaporated vapor rises above the air outlet 11 and flows out through the air outlet 11 into the outside atmosphere.
  • the air inlet 10 is also formed in the side wall of the shielding shell 8 of the embodiment. As shown in FIG. 1 , the bottom mark of the air outlet 10 is higher than the buoyancy support 7 and the highest free floating. At the elevation, a flow space 14 for air circulation is formed between the shield case 8 and the containment 1. The air enters the circulation space 14 through the air inlet 10, where it is mixed with the vapor evaporated in the heat exchange liquid pool 3, and then flows upward together along the circulation space 14, and then flows in the flow and then mixes with the vapor evaporated from the outer wall of the containment 1, and finally passes through the air outlet. 11 is discharged outward.
  • the heat insulating liquid pool 3 is vertically disposed with the heat insulating baffle 9.
  • the heat insulating baffle 9 divides the heat exchange liquid pool 3 into an inner gallery and a gallery in the heat exchange liquid pool 3.
  • the inner gallery is adjacent to an outer wall of the containment 1, and the outer gallery is adjacent to an inner wall of the shield case 8.
  • the coolant in the heat exchange liquid pool 3 is heated by the heat derived from the steel containment vessel, so that the coolant density is lower than the outer gallery density, so that the density difference drives the upward flow, and the heat exchange
  • the upper surface of the liquid pool 3 is in contact with air, where the high-temperature water evaporates and exchanges heat, transferring heat to the atmosphere, and the cooled fluid re-enters the outer gallery and flows downward to form between the inner and outer corridors.
  • Natural circulation, insulation baffle 9 is used to ensure that the inner and outer corridors have a certain temperature to enhance the natural circulation effect. It should be understood that the height of the insulating baffle 9, the position of the two ends, and the size between the corresponding inner and outer corridors may be modified according to actual requirements.
  • the highest liquid level in the heat exchange liquid pool 3 is lower than the bottom of the air inlet 10.
  • the initial liquid level of the heat exchange liquid pool 3 of the present invention should not be too high, because the liquid level of the heat exchange liquid pool 3 is too high, which causes a high pressure load on the steel containment shell, and the preferred liquid level of the heat exchange liquid pool 3 is 5-20 meters, therefore, in the present embodiment, the initial liquid level of the water storage in the heat exchange liquid pool 3 is initially designed to be 10 meters.
  • the heat insulating baffle 9 is used to insulate the heat of the fluid between the inner and outer corridors of the heat exchange liquid pool to enhance the natural circulation effect.
  • the air enters from the air inlet 10, receives the heat transferred by the high temperature water of the heat exchange liquid pool 3, the steam of the mixed heat exchange liquid pool 3 and the outer wall of the containment vessel 1, and then flows upward, and finally is discharged through the top air outlet 11 of the containment vessel 1.
  • the buoyancy support member 7 controls the spray valve 5 to be sprayed in the form of the maximum opening degree of full opening. . That is to say, after the accident occurred in the nuclear power plant and the initial period of time after the safety of the containment cooling system, the liquid level of the heat exchange liquid pool 3 is not in contact with the buoyancy support member 7, so the spray valve 5 provides the full flow of the spray. . Since the temperature and pressure inside the containment often reach a peak in the initial period of time after the accident, the full-flow spray can be relieved at this initial short period of time after the accident. As the liquid level gradually rises, it finally comes into contact with the buoyancy support member 7, and then the opening degree of the spray valve 5 is adjusted by the up and down floating of the buoyancy support member 7.
  • the buoyant support of Figure 1 is preferably a float. It should be understood that the buoyant support in the present invention is not limited to a spherical shape, and may be any other shape.
  • a buoyancy support member 7 is disposed in the heat exchange liquid pool 3, and the buoyancy support member 7 floats with the liquid level of the heat exchange liquid pool 3, and the buoyancy support member 7 passes through the link transmission mechanism 12 and the self-regulating valve 5
  • the valve stems (not shown) are connected, and the floating of the buoyancy support 7 will drive the valve stem to control the opening of the self-regulating valve 5.
  • the buoyancy support member 7 When the liquid level of the heat exchange liquid pool 3 rises, the buoyancy support member 7 floats upward, and under the transmission of the link transmission mechanism 12, the opening degree of the self-operated regulating valve 5 is reduced, and the spray flow rate of the spray pipe 6 is reduced.
  • the buoyancy support member 7 falls and drives the link transmission mechanism 12 to move downward, and then the opening degree of the self-regulating valve 5 is increased, and the spray flow rate of the spray pipe 6 is increased, thereby controlling the heat exchange.
  • the liquid level of the liquid pool 3 remains substantially stable.
  • the temperature inside the containment vessel 1 is high, that is, the function of discharging heat is increased, the liquid evaporation rate in the heat exchange liquid pool 3 is faster, and the liquid level of the heat exchange liquid pool 3 is more decreased, and the self-regulating valve 5 is increased.
  • valve opening degree is increased, and the spray flow rate is increased until the evaporation amount of the coolant in the heat exchange liquid pool 3 is equal to the flow rate of the liquid outlet of the cooling system tank 2, and the liquid level of the heat exchange liquid pool 3 reaches the equilibrium value;
  • the self-operated regulating valve 5 will reduce the valve opening degree and reduce the spray.
  • the leaching flow rate and the liquid level of the heat exchange liquid pool 3 reach the equilibrium value.
  • a single buoyancy support 7 corresponds to a single spray valve 5.
  • the two buoyancy supports 7 are symmetrically arranged on the respective sides of the containment 1 and are connected to the respective corresponding spray valves 5 via the symmetrical arrangement of the link transmissions 12. It should be understood that the buoyancy support member 7 of the present application may also be one or more, a plurality of the buoyancy support members 7 are evenly distributed outside the safety shell 1, and each of the buoyancy support members 7 corresponds to one of the sprays. Valve 5.
  • the buoyancy support member 7 in this embodiment is fixed to the end of the link transmission mechanism 12, and a fixing member 15 is extended on the side of the safety housing 1.
  • the fixing member 15 in this embodiment is substantially annular, and the connection is
  • the rod transmission mechanism 12 relatively fixes the buoyancy support member 7 through the annular fixing member 15, and in order to ensure that the buoyancy support member 7 can float up and down with the liquid level of the heat exchange liquid pool 3, the annular fixing member 15
  • the inner diameter is larger than the diameter of the link transmission mechanism 12.
  • the latching member 16 is disposed on the outer side wall of the link transmission mechanism 12.
  • the latching member 16 in the embodiment is annularly wrapped around the link transmission mechanism 12. At the periphery, when the buoyant support 7 is in the initial position, it does not move further downward as the liquid level of the heat exchange liquid pool 3 descends.
  • the temperature and pressure peaks inside the containment 1 are the periods when the coolant is most needed.
  • a full-flow spray is performed in a short period of time in the initial stage of the nuclear power plant accident for maximum effect cooling, and the length of the section can be pre-controlled by setting the initial liquid level of the heat exchange liquid pool 3, and then the flow rate is automatically transferred. Controlled post-cooling phase.
  • the heat exchange liquid pool 3 has a certain amount of water, the liquid level has a certain height, but is not high enough to contact with the buoyancy support member 7, the above self-regulating regulating valve is fully open; once an accident occurs in the nuclear power plant, the spray The trigger valve 50 is opened on the pipe 6, and the spray pipe 6 is sprayed at full flow until the liquid level of the heat exchange liquid pool 3 rises to contact with the buoyancy support member 7, and then the buoyancy support member 7 gradually rises to cause the spray The dripping flow is reduced.
  • the distance from the initial position of the liquid surface of the heat exchange liquid pool 3 to the buoyancy support can determine the length of the full flow spray, which can be set according to the specific power plant condition (the time when the reactor power and the peak temperature of the containment temperature are present).
  • the steel containment shell is a steel plate of about 4.5 cm thick, which satisfies the functional requirements of the passive nuclear power plant containment to suppress pressure and contain radioactive materials.
  • the shower device 4 at the top of the containment vessel 1 delivers the coolant to the coolant dispersing device 13, and then sprays it to the top of the containment 1 through the coolant dispersing device 13.
  • a cooling liquid dispersing device 13 is fixedly mounted above the safety casing 1, and the cooling liquid is dispersed by the cooling liquid dispersing device 13 and uniformly sprayed to the top of the safety casing 1.
  • the coolant dispersing device 13 in this embodiment is in communication with the sprinkling device 4, and the shower dispersing device 13 is uniformly provided with a sprinkling port 19, and the coolant is sprayed down to the sprinkler 19 to the containment vessel 1 The top of the arc, then the coolant flows down to fully cool the containment 1 to cool down.
  • FIG. 5 further depicts the specific structure of the coolant dispersing device 13.
  • the coolant dispersing device 13 in this embodiment is an annular shunt 18, comprising a plurality of annular tube grooves having decreasing diameters and communicating with each other, and each of the annular tubes
  • the spray port 19 is evenly opened in the direction of the safety shell 1, and the coolant flows into the annular splitter 18 through the spray device 4, is evenly distributed to each of the annular tube grooves, and then uniformly passes through the spray port 19 to the top of the safety shell 1
  • the spray is sprayed to form a coolant film covering the containment vessel 1.
  • the passive nuclear power plant containment cooling system designed by the invention has high safety and reliability, because the volume of the cooling system tank 2 at the top of the containment in the present invention can be greatly reduced compared with the prior art, thereby reducing Small extreme natural disasters pose a safety threat to the cooling system tank.
  • the invention adds a new effective heat exchange path on the basis of liquid film convection and air convection - heat exchange liquid pool heat exchange, thereby improving heat exchange efficiency, and helping to suppress the pressure of the containment pressure after the accident of the nuclear power plant;
  • the system mainly relies on the pool heat exchange of the heat exchange liquid pool 3.
  • the liquid film convection heat transfer is only an auxiliary means, which is equivalent to transferring a large part of the heat trap from the top of the containment to the ground, thereby greatly reducing the spray flow rate, thereby Greatly reduce the cooling system tank 2
  • the spray device 4 self-adjusts the spray flow rate, and the non-evaporated spray coolant enters the heat exchange liquid pool 3, where the heat exchange evaporation occurs. Maximizes the use of coolant – all of which is ultimately evaporated.
  • the passive nuclear power plant containment cooling system is not used under the normal operating conditions of the nuclear power plant, and is automatically put into use only when necessary after the nuclear power plant accident.
  • the heat transfer liquid pool 3 stores water, has a certain initial liquid level, and is regularly inspected.
  • the natural convection heat transfer between the inner and outer corridors of the heat exchange liquid pool 3, the inner gallery coolant and the outer wall of the steel containment is triggered by the natural driving force, that is, the inner and outer corridors.
  • the difference in density caused by the temperature difference of the medium fluid drives the natural circulation, and the temperature difference between the coolant and the steel containment wall drives convective heat transfer.
  • the main principle based on the invention has been widely used in the passive design of nuclear power plants, and its reliability and safety have been verified.
  • the self-operated regulating valve used in the present invention is also obtained in the industrial field. Widely used, with full experience.
  • the water storage in the heat exchange liquid pool 3 does not cause unacceptable pressure load on the steel containment shell.
  • Table 1 the existing AP1000 nuclear power plant containment system as an example (Table 1), the failure probability within 24 hours under the 81 psig pressure load.
  • the water storage level of the heat exchange liquid pool 3 is designed to be 10 meters high, and the hydraulic pressure head of the steel containment at the bottom of the pool is 14.22 psig, which is much smaller than the failure load bearing pressure of the steel containment.
  • the present invention intends to adopt a plurality of measures to enhance the load carrying capacity of a part of the steel containment shell in which the pool is located, such as the use of reinforcing ribs and wall thickening.
  • Self-operated valves are widely used in the industry. They are a kind of control device that can automatically adjust without the need of external power and only the measured value and set value of pressure (or temperature). It also has the functions of control and execution. Its types can be divided into self-operated (pressure) flow regulating valves, self-operated (pressure differential) flow regulating valves, and self-operated (temperature) flow regulating valves. The form and arrangement of a self-operated (pressure) flow regulating valve is devised in the present invention, but other viable self-regulating regulating valves may be employed.
  • the present invention also provides a spray flow control method for the above-mentioned nuclear power plant containment cooling system of the present invention. To avoid repetition, the nuclear power plant containment cooling system will not be described herein.
  • the method includes the following steps:
  • the initial liquid level of the heat exchange liquid pool 3 is set, and the lower end of the adjusting mechanism is suspended above the initial liquid level of the heat exchange liquid pool 3.
  • the adjusting mechanism is controlled by gravity, and the flow rate of the liquid outlet of the cooling system tank 2 is kept at a maximum, so that the adjusting mechanism is close to the lower end of the initial liquid level and the initial liquid level.
  • the distance defines the duration of the maximum flow of the cooling system tank 2.
  • the operator manually starts up once or the system sends a signal at a set condition to trigger the cooling system to start, and the cooling liquid passes through the cooling system tank 2 under the action of gravity.
  • the safety vessel 1 is cooled and cooled by flowing out the coolant at a maximum flow rate, and the coolant contacts the outer wall of the containment vessel 1 to be partially evaporated by heat.
  • the coolant flowing out from the liquid outlet of the cooling system tank 2 forms a liquid film covering the safety shell 1 outside the containment 1, and the unvaporized coolant flows into the heat exchange liquid pool 3 along the outer wall of the safety 1
  • the adjusting mechanism is controlled by gravity to control the cooling liquid to flow out to the safety shell through the liquid outlet of the cooling system tank 2 at a maximum flow rate.
  • the flow rate of the liquid outlet is controlled according to the buoyancy generated by the liquid level fluctuation of the heat exchange liquid pool 3.
  • the step S2 includes: continuously discharging the cooling liquid to the containment 1 at the maximum flow rate in step S1, and the cooling liquid that has not evaporated in time falls into the heat exchange liquid pool 3 to raise the liquid level of the heat exchange liquid pool 3. Referring to the cooling system shown in Fig. 1, the opening degree of the shower valve 5 of the liquid outlet of the cooling system tank 2 is adjusted by the adjusting mechanism in accordance with the buoyancy generated by the heat exchange liquid pool 3.
  • the heat exchange amount of the containment vessel 1 is high, the coolant in the heat exchange liquid pool 3 is evaporated by heat, and the liquid level of the heat exchange liquid pool 3 is caused when the evaporation amount of the coolant is larger than the flow rate of the liquid outlet.
  • the link transmission mechanism 7 is driven downward, the opening degree of the spray valve 5 is increased, and the flow rate of the liquid outlet is increased.
  • the evaporation amount of the cooling liquid is smaller than the flow rate of the liquid outlet, the heat exchange amount of the safety shell 1 is low, the liquid level of the heat exchange liquid pool 3 rises, and the buoyancy support member 7 moves up and drives the link transmission mechanism. 7 Upward, the opening degree of the shower valve 5 is reduced, and the flow rate of the liquid outlet is reduced.
  • the spray flow control method of the nuclear power plant containment cooling system of the present application further includes the following steps: S3, the air inlet 10 from the shield casing 8 sleeved around the containment 1 to the nuclear power plant containment cooling system Air is introduced into the heat to receive the heat of the coolant in the heat exchange liquid pool 3, and promotes upward flow of the vaporized steam.
  • the heat exchange liquid pool 3 is accommodated between the shielding shell 8 and the safety shell 1.
  • the heat exchange liquid pool 3 is vertically disposed with an insulating baffle 9, and the heat insulating baffle partitions the heat exchange liquid pool 3 into a safety shell.
  • the inner gallery of 1 and the outer gallery adjacent to the shield case 8, the inner gallery and the outer gallery form a thermal cycle space, and the inner gallery contacting the outer wall surface of the containment 1 is for receiving the outer wall of the containment 1 Heat, the air flows into the upper portion of the heat exchange liquid pool 3 through the air inlet 10, and the air receives the heat exchange of the hot fluid on the upper surface of the heat exchange liquid pool 3, and then mixes the vapor evaporated by the heat exchange liquid pool 3 and The vapor evaporated from the outer wall of the containment vessel 1 flows upward along the flow space 14 formed between the shield shell 8 and the containment vessel 1.
  • step S3 the mixed air finally flows into the outside atmosphere through the air outlet 11 at the top of the shielding shell, and the heat of the containment 1 is taken out of the cooling system to achieve the cooling of the containment 1.
  • the cooling system of the present invention and its spray flow control method have at least the following advantages over the existing cooling system and its control method:
  • the coolant that has not evaporated after spraying enters the heat exchange liquid pool, thereby realizing the maximum utilization of the spray water; compared with the cooling method of only spraying, the heat exchange liquid pool heat exchange mode is increased, and the steel can be improved.
  • the heat exchange area of the outer wall of the containment greatly improves the heat exchange efficiency; the increase of the utilization rate of the coolant and the improvement of the heat exchange efficiency can greatly prolong the passive running time of the passive containment cooling system.
  • the whole process of passive technology is realized, no external power (such as AC power source or pump) is needed, and no manual operation is required in the process of changing the spray flow; in addition, the buoyancy support member 7, the link transmission mechanism 12 and the spray valve 5
  • the method of mutually controlling the size of the spray uses only the mechanical structure without any electrical control, and the method of controlling the spray intensity by the sensor or the like is greatly simplified in structure, so the application is applied. More extensive.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种核电厂安全壳冷却系统及其喷淋流量控制方法,所述系统包括:用于存储冷却液的冷却系统液箱(2),所述冷却系统液箱(2)设置在安全壳(1)的顶部,冷却液用于在事故工况下通过所述冷却液自身重力对所述安全壳(1)进行冷却,所述冷却液被部分地蒸发;所述核电厂安全壳冷却系统还包括调节机构,所述调节机构设置在所述冷却系统液箱(2)的出液口处,所述调节机构用于根据所收集的未蒸发的冷却液的液位产生的浮力控制出液口的流量。使用所述冷却系统及其控制方法可以实现及时准确的反馈调节,且具有较高的安全性。

Description

核电厂安全壳冷却系统及其喷淋流量控制方法 技术领域
本发明涉及一种核电厂安全壳冷却系统,具体涉及一种非能动的核电厂安全壳冷却系统及其喷淋流量控制方法。
背景技术
为了防止核电厂万一发生事故后,释放的放射性物质泄露到外界,核电厂通常采用密闭的安全壳来包容反应堆及一些重要的安全系统。
核电厂如果采用了基于非能动理念的安全冷却系统和基于自动控制原理的流量控制系统,不仅可以简化专设安全设施,而且可以减少人员干预,从而减少可能产生的误动作,改善了人机关系,提高核电厂的安全性。
现有的核电系统中通常在安全壳顶部设置冷却液存储箱,核电厂发生事故情况下由存储箱提供水源,喷淋到安全壳外壁形成水膜,由水膜蒸发和空气对流导出安全壳壳体和壳内的热量,通过降温来降低安全壳内部压力,保证安全壳不因承受太高压力而损坏。
然而上述设计存在的技术问题在于,在水膜没有完全蒸发的情况下,冷却系统液箱内的水会持续下流,下流到安全壳外底部直接排放掉,这样容易造成冷却液的浪费;同时为了保证对安全壳的充分冷却,一般在安全壳的顶部设置了较大容量(较大重量)的冷却液存储箱,安装及维护都较为不便,在遇到强地震、海啸、龙卷风等极端事件时很可能遭致冷却液存储箱的结构破坏并丧失安全功能。
同时,现有设计中,要么没有对冷却液存储箱内的喷淋流量进行控制,要么通过设置传感器对安全壳温度进行监控,并设置相应的控制单元发出指令进而控制冷却液存储箱内的冷却液的流量。对于前者,如果流量过大,会造成大量冷却液没有发挥出最大冷却作用,而被浪费掉。对于后者,但是监控安全壳温度和控制冷却液流量的操作仍然需要电源的支持,增加硬件结构设计的复杂程度,同时在很多意外情况下,电源极可能会失效,导致上述冷却设计不能正常工作。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述安全性低、结构复杂、不利于推广的缺陷,提供一种非能动式自动调节冷却液流量的核电厂安全壳冷却系统及其喷淋流量控制方法。
本发明解决其技术问题所采用的技术方案是:提供一种核电厂安全壳冷却系统,包括:
用于存储冷却液的冷却系统液箱,所述冷却系统液箱设置在所述安全壳的顶部,所述冷却液用于在事故工况下通过所述冷却液自身重力对所述安全壳进行冷却,所述冷却液被部分地蒸发;
所述核电厂安全壳冷却系统还包括调节机构,所述调节机构设置在所述冷却系统液箱的出液口处,所述调节机构用于根据所收集的未蒸发的所述冷却液的液位产生的浮力控制所述出液口的流量。
本发明所述的核电厂安全壳冷却系统中,所述核电厂安全壳冷却系统还包括设置在所述安全壳外侧底部、用于收集所述未蒸发冷却液的换热液池;所述调节机构的一端悬置在所述换热液池的液面上方,所述调节机构的另一端连接所述出液口。
本发明所述的核电厂安全壳冷却系统中,所述核电厂安全壳冷却系统还包括:
与所述冷却系统液箱相连通的喷淋装置,所述冷却液经所述出液口流出至所述喷淋装置,由所述喷淋装置喷淋至所述安全壳外侧形成覆盖所述安全壳的液膜;
所述喷淋装置包括与所述调节机构联动的喷淋阀门,所述调节机构根据所述换热液池产生的浮力调节所述喷淋阀门的开合度进而控制所述出液口的流量。
本发明所述的核电厂安全壳冷却系统中,所述调节机构包括:
连杆传动机构以及连接在所述连杆传动机构靠近所述换热液池一端的浮力支撑件;
所述连杆传动机构远离所述浮力支撑件的一端连接所述喷淋阀门;
当所述换热液池内所述冷却液的蒸发量大于所述出液口的流量时,所述换热液池的液面下降,所述浮力支撑件带动所述传动机构随所述换热液池的液面下落,所述喷淋阀门的开合度加大,所述出液口的流量增加;
当所述换热液池内所述冷却液的蒸发量小于所述出液口的流量时,所述换热液池的液面上升,所述浮力支撑件带动所述传动机构随所述换热液池的液面上升,所述喷淋阀门的开合度减小,所述出液口的流量减小。
本发明所述的核电厂安全壳冷却系统中,所述系统还包括屏蔽壳,所述屏蔽壳设置在所述安全壳外围并形成有用于收容所述冷却液的所述换热液池和形成用于空气流通的流通空间。
本发明所述的核电厂安全壳冷却系统中,所述换热液池内沿垂直方向设置有隔热折流板,所述隔热折流板位于所述浮力支撑件下方,所述隔热折流板用于将所述换热液池分隔成靠近所述安全壳的内廊及靠近所述屏蔽壳的外廊,所述内廊与所述外廊在所述隔热折流板的底部互相连通,所述内廊与所述外廊之间形成用于冷热交换的热循环空间。
本发明所述的核电厂安全壳冷却系统中,所述屏蔽壳)侧壁开设有空气入口,所述空气入口的位置高于所述浮力支撑件的最高自由浮动位置,所述空气进入所述热循环空间后与所述流通空间内的空气混合并随所述安全壳外壁蒸发的蒸汽向上流动。
本发明所述的核电厂安全壳冷却系统中,所述屏蔽壳顶部还开设有空气出口,所述空气入口、所述流通空间以及所述空气出口共同形成蒸汽流通通道。
本发明所述的核电厂安全壳冷却系统中,所述喷淋装置还包括喷淋管道以及与所述喷淋管道连通的冷却液分散装置,所述喷淋管道一端与所述冷却系统液箱连通,所述喷淋管道另一端连通所述冷却液分散装置,所述喷淋管道上安装有所述喷淋阀门,所述冷却液分散装置上开设有喷淋口,所述冷却液经所述冷却系统液箱流入所述喷淋管道,由所述喷淋阀门控制流入所述冷却液分散装置,并经所述喷淋口喷淋至所述安全壳外侧。
本发明所述的核电厂安全壳冷却系统中,所述调节机构包括多个,多个所述调节机构均匀分布在所述安全壳外侧,每一所述调节机构对应一所述喷淋阀门。
本发明所述的核电厂安全壳冷却系统中,所述浮力支撑件为浮球。
本发明所述的核电厂安全壳冷却系统中,所述隔热折流板为钢结构夹层,所述钢结构夹层包括外层和夹层,所述外层为耐高温材料,所述夹层为保温材料,所述钢结构夹层用于隔绝换热液池内所述内廊与所述外廊之间的流体热量。
此外,本发明还提供一种核电厂安全壳冷却系统的喷淋流量控制方法,所述方法包括以下步骤:
S1 、在事故工况下 , 所述冷却系统启动 , 冷却液在重力作用下以最大流量经出液口流至安全壳,对所述安全壳进行冷却,在冷却过程中,所述冷却液被部分地蒸发;
S2 、根据所收集的未蒸发的所述冷却液的液位产生的浮力调节所述出液口的流量。
本发明所述的核电厂安全壳冷却系统的喷淋流量控制方法中,在步骤 S1 之前,所述方法还包括步骤:
S0 、在所述冷却系统启动前,设置换热液池的初始液位,使调节机构的下端悬置在所述换热液池的初始液位上方。
本发明所述的核电厂安全壳冷却系统的喷淋流量控制方法中,步骤 S1 进一步包括:
当所述冷却系统启动后,在所述换热液池液面与所述调节机构的一端接触之前,所述喷淋阀门具有最大开合度,冷却系统液箱的所述出液口以最大流量将所述冷却液流至安全壳外侧形成覆盖所述安全壳的液膜;
所述换热液池液面上升到与所述调节机构的一端接触后,所述调节机构根据所述换热液池的液位浮动产生的浮力控制所述出液口的流量。
本发明所述的核电厂安全壳冷却系统的喷淋流量控制方法中,所述核电厂安全壳冷却系统包括连接在所述出液口上的喷淋阀门,所述调节机构包括与喷淋阀门相连的连杆传动机构和浮力支撑件,所述步骤 S2 进一步包括如下步骤:
S2-1 、当所述冷却液的蒸发量大于所述出液口的流量时,所述浮力支撑件下移带动连杆传动机构下行,所述喷淋阀门的开合度增大,所述出液口的流量增大;
S2-2 、当所述冷却液蒸发量小于所述出液口的流量时,所述浮力支撑件上移带动连杆传动机构上行,所述喷淋阀门的开合度减小,所述出液口的流量减小。
本发明所述的核电厂安全壳冷却系统的喷淋流量控制方法中,
所述核电厂安全壳冷却系统还包括设置在所述安全壳外围的屏蔽壳,所述屏蔽壳侧壁高于所述浮力支撑件的最高自由浮动位置的位置处开设有空气入口,所述方法还包括以下步骤:
S3 、从所述空气入口向所述核电厂安全壳冷却系统中通入空气以接受所述换热液池内所述冷却液的热量,并促进蒸发的蒸汽向上流动。
本发明所述的核电厂安全壳冷却系统的喷淋流量控制方法中,
所述步骤 S3 中,所述换热液池内垂直方向设置隔热折流板将所述换热液池分隔成靠近所述安全壳的内廊及远离所述安全壳的外廊。
本发明所述的核电厂安全壳冷却系统的喷淋流量控制方法中,所述内廊与所述外廊共同形成热循环空间,与安全壳外壁面相接触的所述内廊接受安全壳壁面传出的热量,所述空气经所述空气入口流入所述换热液池上部,所述空气接受所述换热液池上表面热流体的换热之后,再混合所述换热液池蒸发的蒸汽和所述安全壳外壁蒸发的蒸汽并沿所述屏蔽壳与所述安全壳之间形成的流通空间向上流动。
本发明所述的核电厂安全壳冷却系统的喷淋流量控制方法中,所述屏蔽壳顶部还开设有空气出口,经所述步骤 S3 后所述空气连同所述换热液池及所述安全壳外壁蒸发的蒸汽经所述空气出口流出所述核电厂安全壳冷却系统。
实施本发明的核电厂安全壳冷却系统及其喷淋流量控制方法,通过在所述安全壳外侧设置换热液池,对安全壳上方喷淋的冷却液进行存储,并根据换热液池中液面升降自动调节喷淋阀门的开度,进而控制喷淋流量的大小,并且没有蒸发的冷却液下流至换热液池中,在这里仍然可以吸热蒸发,发挥散热作用,因此本发明中所有冷却液得到了最大限度的利用,冷却系统液箱的体积也明显较小,并且本发明无需设置需要电源支持的传感器及相应的温度监控装置,仅靠浮力支撑件和连杆装置等无需电气控制的机械装置自动控制喷淋流量大小,有利于简化硬件结构、节约成本,其安全性能较现有技术也获得了提升。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图 1 是本发明较佳实施例提供的核电厂安全壳冷却系统的结构示意图;
图 2 是本发明较佳实施例提供的核电厂安全壳冷却系统的喷淋流量控制方法示意图;
图 3 是本发明较佳实施例提供的核电厂非能动安全壳冷却系统的浮力支撑件结构示意图;
图 4 是本发明较佳实施例提供的核电厂非能动安全壳冷却系统的冷却液分散装置的侧视示意图;
图 5 是图 4 所示冷却液分散装置的俯视示意图。
附图标号
1.安全壳
2.冷却系统液箱
3.换热液池
4.喷淋装置
5.喷淋阀门
6.喷淋管道
7.浮力支撑件
8.屏蔽壳
9.隔热折流板
10.空气入口
11.空气出口
12.连杆传动机构
13.冷却液分散装置
14.流通空间
15.固定件
16.卡位件
17.传动连杆
18.环形分流堰
19.喷淋口
20.蒸汽发生器
21.稳压器
22.堆芯补水箱
23.安全壳内置换料水箱
24.堆芯
25.安注箱
50.触发阀门
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
针对现有技术的安全壳冷却系统安全性能低、结构复杂且不利于推广的缺陷,本申请利设计一种利用浮力自动调节喷淋流量大小的非能动安全壳冷却系统及方法,本发明的系统及其喷淋流量控制方法实现了对冷却液利用率的最大化,在没有外部动力(例如电力等)的情况下,由于浮力的自动调节,本申请的安全壳冷却系统及其喷淋流量控制方法能及时调节冷却液的喷淋流量以排除安全壳内反应堆的余热,有效防止安全壳内高压造成的危害,有效提高安全壳冷却系统的安全性。
如图1所示为本发明一个实施例的核电厂安全壳冷却系统的结构示意图,本实施的核电厂安全壳冷却系统中,安全壳1 , 用于包覆反应堆系统。安全壳1内的所述反应堆系统包括蒸汽发生器20、稳压器21、堆芯补水箱22、安全壳内置换料水箱23、堆芯24及安注箱25等,所述反应堆系统各部分的结构及功能关系属于现有技术,在此不做赘述。为了方便调节机构的布置,安全壳1外部上方安装了冷却系统液箱2,冷却系统液箱2内存储了冷却液,例如水。冷却系统液箱2底部具有出液口,所述冷却液在重力作用下经所述出液口流出,到达安全壳1在安全壳1表面形成覆盖安全壳1外侧的液膜,安全壳1内反应堆的热量由所述液膜受热蒸发后导出进而实现对安全壳1的降温。
为了实现对冷却系统液箱2的出液口的流量的非能动自动调节,安全壳1的底部外侧设置有换热液池3,而换热液池3与冷却系统液箱2之间安装有利用浮力调节冷却系统液箱2的所述出液口的流量大小的调节机构,所述调节机构一端悬置于换热液池3的液面之上,所述调节机构的另一端与上述出液口连接,本实施例中所述调节机构靠近所述换热液池3的一端为下端,而所述调节机构连接到所述出液口的一端为上端。上述由冷却液覆盖安全壳1形成的液膜在未及时蒸发的情况下随重力继续下落到达所述换热液池3,由换热液池3进行存储。当安全壳1的换热需求量较小时,所述安全壳1外侧的液膜以及换热液池3内的冷却液的蒸发慢,换热液池3的液面随着冷却液的持续下落而上升,一旦换热液池3的液面上升至与悬置在液面上的调节机构一端接触后,继续上升的液面将对调节机构产生浮力,与换热液池3液面相接触的调节机构下端受浮力发生向上运动,带动靠近所述出液口的所述调节机构的上端对所述出液口的流量进行控制,减小所述出液口的流量实现对所述冷却液的节约利用。而当安全壳1内的反应堆产生的热量高,安全壳1所需的换热量较大时,所述安全壳1外侧的液膜以及换热液池3内的冷却液的蒸发快,由此换热液池3的液面下降导致与换热液池3的冷却液接触的所述调节机构下端随液面下降而下落,进而带动靠近所述出液口的所述调节机构上端对所述出液口的流量进行控制,增加所述出液口的流量。
为了保证在冷却过程中形成均匀覆盖安全壳1的液膜,安全壳1顶部设置了喷淋装置4。其中,所述冷却系统液箱2为环形,冷却系统液箱2底部的所述出液口与喷淋装置4相连通。喷淋装置4与所述出液口之间安装了喷淋阀门5。通过调节喷淋阀门5的开合度可以调节喷淋装置4对安全壳1外侧喷淋所述冷却液的喷淋流量大小。喷淋阀门5与所述调节机构联动,所述调节机构随换热液池3的液面上升而上升时,喷淋阀门5开合度减小,所述出液口的流量减小;所述调节机构随换热液池3的液面下降而下落时,喷淋阀门5开合度加大,所述出液口的流量增加。
本发明给出的核电厂安全壳冷却系统,它可作为压水堆核电厂非能动安全系统的一部分。其中安全壳1优选为钢制安全壳,如图1所示,安全壳1底部外侧围绕安全壳1设置了换热液池3,从安全壳1顶部由所述喷淋装置4喷淋的所述冷却液在所述安全壳1的外壁形成液膜并向下流动,并由于安全壳1外壁的较高温度而蒸发,而未蒸发的所述冷却液则受重力作用落下,进入到换热液池3。
如图1和图2所示,本发明的所述调节机构包括与喷淋装置4连接的连杆传动机构12以及连接在所述连杆传动机构12靠近所述换热液池3一端的浮力支撑件7。连杆传动机构12包括传动连杆17。浮力支撑件7连接在传动连杆17靠近换热液池3的一端,传动连杆17另一端连接到喷淋阀门5。图1所示的状态中,浮力支撑件7与换热液池3的液面相接触。安全壳1外侧设置有固定件15,传动连杆17穿过固定件15以便在换热液池3的液面发生升降时,传动连杆17仅发生垂直方向的位移,而水平方向保持一定程度的固定。
本实施例的喷淋装置4包括从冷却系统液箱2中引出所述冷却液的喷淋管道6以及与喷淋管道6连通的冷却液分散装置13,在所述喷淋管道6上安装有喷淋阀门5和触发阀50,喷淋阀门5与传动连杆17相连接,传动连杆17在随浮力支撑件7发生位移时,对喷淋阀门5施力,进而影响喷淋阀门5的开合度大小。触发阀50则在本发明的冷却系统开启时自动触发开启,触发阀50用于控制喷淋管道6与冷却液分散装置13之间的连通。参考图1,安全壳1穹顶上方设置有与喷淋管道6相连通的冷却液分散装置13,所述冷却液经喷淋管道6流入冷却液分散装置13后,均匀喷淋到安全壳1弧顶外壁,实现冷却液在安全壳1弧顶外壁径向和周向的均匀分散,形成覆盖安全壳1的冷却液膜,进而实现对安全壳1的整体均匀降温。
参考图2,本实施例中的喷淋阀门5采用自力式调节阀门,所述自力式调节阀门的阀杆(未示出)与上述的传动连杆17相连接,传动连杆17带动所述自力式调节阀门的阀杆发生转动,进而控制所述喷淋管道6内的冷却液流量大小。由于传动连杆17的运动受控于浮力支撑件7的位置变化,而浮力支撑件7一旦与换热液池3的液面相接触,将随液面升降而发生垂直方向的位置变化,因此本发明可以实现根据换热液池3的液面来开启喷淋阀门5并控制开度;而经冷却液分散装置13喷淋出的所述冷却液落入换热液池3,实现对换热液池3的补水、维持换热液池3的液面稳定。本发明提供了一种反馈式安全壳冷却系统,通过换热液池3的液面高度变化控制喷淋大小,而喷淋出的冷却液又将会减弱换热液池3液面的变化幅度,并且在本发明的反馈式调节方式中采用了浮力支撑件7与传动连杆17相结合的结构来控制喷淋大小,真正实现了非能动的冷却效果,并且其冷却控制效果及时,一旦浮力支撑件7由于换热液池3的液面下降而下落,传动拉杆17随即控制自力式调节阀门加大喷淋量进而加速对安全壳1的冷却。显然,本发明的冷却系统,具有结构简单、反馈及时、冷却效率高的特点。
在安全壳1及换热液池3外围还套设了屏蔽壳8,本发明中优选混凝土屏蔽壳。屏蔽壳8除进一步屏蔽放射性之外,还用于支撑冷却系统液箱2。所述冷却液在安全壳1外侧形成液膜后由于安全壳1内反应堆的热量而蒸发形成蒸汽,为了缓解不断累积的蒸汽对安全壳1造成的压力,屏蔽壳8顶部开设了空气出口11,上述蒸发的蒸汽上升至空气出口11后经空气出口11流出进入外界大气。为了增强本实施例的安全壳冷却系统的换热效率,本实施例的屏蔽壳8侧壁还开设了空气入口10,如图1所示空气出口10的底部标高于浮力支撑件7最高自由浮动标高,屏蔽壳8与安全壳1之间形成用于空气流通的流通空间14。空气经空气入口10进入流通空间14,在此与换热液池3内蒸发的蒸汽混合,然后一起沿流通空间14向上流动,流动中再与安全壳1外壁蒸发的蒸汽混合,最终经空气出口11向外排出。在屏蔽壳8侧壁开孔以形成空气入口10,其作用其一在于作为空气进入屏蔽壳8和安全壳1之间所述流通空间14的入口;同时也作为蓄水溢流孔以防止换热液池3蓄水位过高对安全壳1形成高压。
为了增加换热液池的换热能力,本实施例的非能动的核电厂安全壳冷却系统中,所述换热液池3内垂直设置了隔热折流板9。隔热折流板9在换热液池3内将所述换热液池3分隔成内廊和外廊。其中所述内廊靠近所述安全壳1的外壁,所述外廊靠近所述屏蔽壳8的内壁。在所述内廊内,所述换热液池3内冷却液接受钢制安全壳导出的热量而升温,导致其冷却液密度低于外廊密度,这样由密度差驱动向上流动,在换热液池3上表面与空气接触,高温水在这里蒸发、换热,将热量传递给大气,冷却后的流体会重新进入外廊,并向下流动,从而在所述内、外廊之间形成自然循环,隔热折流板9用于保证内外廊具有一定温度,以增强自然循环效应。应当理解,隔热折流板9的高度、两端的位置以及相应的内廊与外廊之间的大小可以根据实际要求进行设计修改。
在本发明的非能动的核电厂安全壳冷却系统中,换热液池3内最高液面高度低于空气入口10底部。本发明的换热液池3的初始液面不宜过高,因为换热液池3液面过高会对钢制安全壳壳体造成高压力负荷,优选的换热液池3液面高度为5-20米,因此,本实施例中,换热液池3内蓄水初始液面高度初步设计为10米。隔热折流板9用以隔绝换热液池内廊与外廊之间的流体热量,增强自然循环效应。空气从空气入口10进入,接受换热液池3高温水所传递的热量、混合换热液池3和安全壳1外壁蒸发的蒸汽,然后向上流动,最终通过安全壳1顶部空气出口11排放。
应当理解,本发明中的换热液池3的液面在未与所述浮力支撑件7相接触时,浮力支撑件7控制所述喷淋阀门5以全开的最大开合度形式进行喷淋。也就是说,在核电厂发生事故后、且安全壳冷却系统启动后初始一段时间内,换热液池3液面都未与浮力支撑件7接触,因此喷淋阀门5提供全流量的喷淋。由于安全壳内温度压力往往在事故后初始一小段时间内达到峰值,因此事故后初始这一小段短时间内进行全流量喷淋可以缓解温度压力峰值。随着液面逐渐上升,最终与浮力支撑件7相接触,之后通过浮力支撑件7的上下浮动来调节喷淋阀门5的开度。
在本发明优选的实施方式中,图1中的浮力支撑件优选浮球。应当理解,本发明中的浮力支撑件并不受限于球形,也可以是其他任意形状。参考图2,换热液池3内设置了浮力支撑件7,浮力支撑件7随换热液池3的液面升降而浮动,浮力支撑件7通过连杆传动机构12与自力式调节阀门5的阀杆(未示出)相连接,浮力支撑件7的浮动将带动阀杆控制自力式调节阀门5的开度。当换热液池3的液面上升时,浮力支撑件7上浮,在连杆传动机构12的传动下,自力式调节阀门5开合度减小,所述喷淋管道6的喷淋流量减小;当换热液池3 的液面下降时,浮力支撑件7下落,并带动连杆传动机构12往下运动,随即自力式调节阀门5的开合度加大,喷淋管道6的喷淋流量增加,由此控制换热液池3的液面保持大致的稳定。如果安全壳1内温度高,即排出热量的功能需求增大,则换热液池3内液体蒸发速率较快、换热液池3液面会下降较多,则自力式调节阀门5会增大阀门开度、增大喷淋流量,直到换热液池3内冷却液蒸发量与冷却系统液箱2的所述出液口的流量相当,换热液池3的液位到达平衡值;相反,如果换热需求减小,则换热液池3内液体蒸发速率较慢、换热液池3液面会下降较少,则自力式调节阀门5会减小阀门开度、减小喷淋流量,换热液池3的液位到达平衡值。本实施例中,单个浮力支撑件7对应于单个的喷淋阀门5。如1所示的实施例中两个浮力支撑件7对称设置在安全壳1两侧各自经对称设置的连杆传动机构12连接到各自对应的喷淋阀门5。应当理解,本申请的浮力支撑件7也可以为一个或多个,多个所述浮力支撑件7均匀分布在所述安全壳1外侧,每一所述浮力支撑件7对应一所述喷淋阀门5。
如图3所示,本实施例中的浮力支撑件7固定在连杆传动机构12末端,安全壳1侧面延伸出一固定件15,本实施例中的固定件15大致呈环形,所述连杆传动机构12穿过所述环形的固定件15对浮力支撑件7进行相对固定,为了保证浮力支撑件7能随换热液池3的液面升降而上下浮动,所述环形固定件15的内径大于所述连杆传动机构12的直径。同时为了限定所述浮力支撑件7的初始位置,连杆传动机构12外侧壁上设置了卡位件16,本实施例中的卡位件16呈环状包覆在所述连杆传动机构12外围,使所述浮力支撑件7在初始位置时,不随换热液池3的液面下降而进一步往下运动。
在核电厂事故工况初期,安全壳1内部出现温度和压力峰值,是最需要冷却液的时段。本实施例在核电厂事故初期一小段时长内实施全流量喷淋,以进行最大效果的冷却,且该段时长可以通过设置换热液池3初始液面而进行预先控制,随后转入流量自动控制的后期冷却阶段。正常情况下,换热液池3具有一定水量,其液面具有一定高度,但未高至与浮力支撑件7接触,上述的自力式调节阀门为全开状态;一旦核电厂发生事故,喷淋管道6上触发阀50打开,喷淋管道6进行全流量喷淋,一直持续到换热液池3液面上升到与浮力支撑件7相接触,然后浮力支撑件7才会逐渐上浮会使喷淋流量减小。因此换热液池3液面初始位置距离浮力支撑件的距离可决定全流量喷淋的时长,可根据具体电厂情况(反应堆功率、安全壳温度压力峰值出现的时间)设置该时长。
本实施例中,所述钢制安全壳壳体为约4.5cm厚的钢板,满足非能动核电厂安全壳抑制压力、包容放射性物质等功能需求。
安全壳1顶部的喷淋装置4将冷却液输送到冷却液分散装置13,再通过冷却液分散装置13喷淋到安全壳1弧顶。
参考图4,安全壳1上方固定安装有冷却液分散装置13,冷却液经冷却液分散装置13分散后均匀喷淋到安全壳1弧顶。参考图4,本实施例中的冷却液分散装置13与喷淋装置4连通,冷却液分散装置13上均匀开设有喷淋口19,冷却液在喷淋口19向下喷淋到安全壳1弧顶,然后冷却液向下流动对安全壳1进行全面均匀冷却降温。
图5进一步描述了冷却液分散装置13的具体结构,本实施例中的冷却液分散装置13为环形分流堰18,包括直径依次减小且互相连通的多根环形管槽,且各环形管道上面向安全壳1的方向均匀开设了喷淋口19,冷却液经喷淋装置4流入环形分流堰18,均匀分布到各所述环形管槽,再经喷淋口19均匀向安全壳1弧顶喷淋以形成覆盖安全壳1的冷却液膜。
本发明设计的非能动的核电厂安全壳冷却系统具有较高的安全性和可靠性,因为本发明中安全壳顶部的冷却系统液箱2的体积相对于现有技术可大大减小,从而减小极端自然灾害对冷却系统液箱的安全威胁。本发明在液膜对流和空气对流的基础上增加了一个新的有效换热途径——换热液池换热,从而提高换热效率,有助于抑制核电厂事故后安全壳压力峰值;整个系统主要依靠换热液池3的池式换热,液膜对流换热只是辅助手段,这相当于把很大一部分热阱从安全壳顶部转移到了地面,因此可大大减小喷淋流量,从而大大减小冷却系统液箱2 的容积;借助浮力支撑件7和连杆传动机构12等,喷淋装置4对喷淋流量进行自调节,未蒸发的喷淋冷却液进入换热液池3,在这里进行换热蒸发,这样实现了冷却液利用的最大化——最终全部进行蒸发。
非能动的核电厂安全壳冷却系统在核电厂正常运行工况下不使用,只在核电厂事故后必要时自动投入使用。
核电厂正常运行工况下换热液池3蓄水,具有一定的初始液面,并进行定期检修。核电厂发生事故情况下,换热液池3的所述内外廊之间循环流动、内廊冷却液和所述钢制安全壳外壁之间自然对流换热都由自然驱动力触发,即内外廊中流体温差所引起的密度差驱动自然循环,所述冷却液和钢制安全壳壁之间温度差驱动对流换热。
本发明所基于的主要原理——自然循环原理,在核电厂非能动设计中得到广泛应用,其可靠性和安全性已得到一定验证;本发明所采用的自力式调节阀门,在工业界也得到广泛应用,具有充分的使用经验。
换热液池3中蓄水不会给钢制安全壳壳体造成不可接受的压力负荷,以现有的AP1000核电厂安全壳系统为例(表1),81psig压力负荷下24小时内失效概率小于0.01%,本发明中设计换热液池3的蓄水位高10米,则水池底部处钢制安全壳承受的水力压头为14.22psig,远小于钢制安全壳的失效承载压力负荷。另外,本发明拟采取多项措施,增强水池所在部分钢制安全壳壳体的负荷承载能力,如采用加强筋、 壁面加厚等措施。
工况 24 小时压力 (MPa 表压/psig) 24 小时失效概率 72 小时压力 (MPa 表压/psig) 72 小时失效概率
名义工况 0.558/81 < 0.01%(1 ) 0.724/105 2.2%(1)
保守工况 0.689/100 2%(2) 1.117/162 90.5%(2)
表1. 24 小时和 72 小时名义和保守工况下AP1000的安全壳失效概率
自力式阀门在工业上广泛应用,是一种无需外来动力、只需压力(或温度)的测量值和设定值就能自动调节的一种控制装置,它同时兼有控制、执行的功能。它的种类可分为自力式(压力)流量调节阀、自力式(压差)流量调节阀、自力式(温度)流量调节阀。本发明中设计了一种自力式(压力)流量调节阀的形式和布置,但也可采用其它可行的自力式调节阀。
本发明还提供了一种本发明的上述核电厂安全壳冷却系统的喷淋流量控制方法,为避免重复,所述核电厂安全壳冷却系统在此不做赘述,该方法包括以下步骤:
S0、上述的冷却系统启动前,设置换热液池3的初始液位,调节机构的下端悬置在换热液池3的初始液位上方。调节机构与换热液池3的液面未接触时,调节机构受重力控制,冷却系统液箱2的出液口的流量保持最大,因此调节机构靠近初始液位的下端与初始液位之间的距离限定了冷却系统液箱2最大流量的持续时长。
S1、事故工况下,需要启动所述冷却系统时,操作员一次性手动启动或系统按设定条件一次性发出信号触发所述冷却系统启动,冷却液在重力作用下经冷却系统液箱2以最大流量向外流出冷却液对安全壳1进行降温冷却,所述冷却液与安全壳1外壁接触受热发生部分蒸发。具体地,所述冷却系统液箱2出液口处流出的冷却液在安全壳1外侧形成覆盖安全壳1的液膜,未蒸发的冷却液沿安全可1外壁流入换热液池3,换热液池3的液面未与所述调节机构的下端接触时,所述调节机构受重力作用控制所述冷却液以最大流量经所述冷却系统液箱2的出液口流出至安全壳1外壁;一旦所述换热液池3的液面上升至与所述调节机构接触,所述换热液池3内的冷却液将对所述调节机构产生浮力,此时所述调节机构将在所述换热液池3的液位产生的浮力控制所述冷却系统液箱2的所示出液口的流量。
S2、所述换热液池3液面上升到与所述调节机构的下端接触后,根据换热液池3的液位浮动产生的浮力控制所述出液口的流量。进一步地,步骤S2包括:在步骤S1持续以最大流量向安全壳1流出冷却液,未及时蒸发的所述冷却液下落到换热液池3中使换热液池3的液面上升。参考图1所示的冷却系统,冷却系统液箱2的出液口的喷淋阀门5的开合度由所述调节机构根据换热液池3产生的浮力进行调节。因此,当所述安全壳1换热量高,换热液池3内的冷却液受热蒸发,造成所述冷却液蒸发量大于所述出液口的流量时,换热液池3的液面下降,浮力支撑件7下移带动连杆传动机构7下行,所述喷淋阀门5的开合度增大,所述出液口的流量增大。当所述冷却液蒸发量小于所述出液口的流量时,所述安全壳1换热量低,换热液池3的液面上升,所述浮力支撑件7上移带动连杆传动机构7上行,所述喷淋阀门5的开合度减小,所述出液口的流量减小。
此外,本申请的核电厂安全壳冷却系统的喷淋流量控制方法,还包括以下步骤:S3、从安全壳1外围套设的屏蔽壳8上的空气入口10向所述核电厂安全壳冷却系统中通入空气以接受所述换热液池3内所述冷却液的热量,并促进蒸发蒸汽的向上流动。
屏蔽壳8与安全壳1之间收容所述换热液池3,换热液池3内垂直设置有隔热折流板9,隔热折流板将换热液池3分隔成靠近安全壳1的内廊与靠近屏蔽壳8的外廊,所述内廊与所述外廊共同形成热循环空间,与安全壳1外壁面相接触的所述内廊用于接受安全壳1外壁传出的热量,所述空气经所述空气入口10流入换热液池3上部,所述空气接受所述换热液池3上表面热流体的换热之后,再混合换热液池3蒸发的蒸汽和所述安全壳1外壁蒸发的蒸汽,一起沿着所述屏蔽壳8与所述安全壳1之间形成的流通空间14向上流动。
经上述步骤S3后,上述混合后的空气最终经屏蔽壳顶部的空气出口11流入外界大气,同时将安全壳1的热量带出所述冷却系统,实现对安全壳1的降温。
综上,本发明的冷却系统及其喷淋流量控制方法相比现有的冷却系统及其控制方法而言至少具有以下优点:
1.基于现有压水堆核电厂非能动安全壳系统设计方案,无需对其非能动安全系统进行太大改动;大大减少非能动安全壳液箱的容积,大幅提高核电厂安全壳的安全性;所述系统不用动力驱动,依靠浮力及重力及热循环将热量传递至外接大气中,不存在因为驱动机构失效而影响系统功能的问题,减小了系统的失效率。
2.喷淋后未蒸发的冷却液进入换热液池,从而实现了喷淋水的最大化利用;相对于只喷淋的冷却方式,增加了换热液池换热的方式,可提高钢制安全壳外壁换热面积,大大提高换热效率;冷却液利用率的提高和换热效率的提升,可大大延长非能动安全壳冷却系统的非能动运行时间。
3.本发明中真正实现全程非能动技术,无需外部动力(如交流电源或泵),喷淋流量变化过程中无需人工操作;此外,浮力支撑件7、连杆传动机构12及喷淋阀门5相互配合控制喷淋大小的方法只使用机械结构而无需任何电气控制,相比于现有的通过传感器等进行监控进而控制喷淋强度的方法,在结构上也进行了极大的简化,因此应用更广泛。
上面结合附图对本发明的实施例进行了描述,但本发明并不限于上述实施方式,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下做出的变化或替换均属于本发明的保护范围之内。

Claims (20)

  1. 一种核电厂安全壳冷却系统,其特征在于,包括:
    用于存储冷却液的冷却系统液箱(2),所述冷却系统液箱(2)设置在所述安全壳(1)的顶部,所述冷却液用于在事故工况下通过所述冷却液自身重力对所述安全壳(1)进行冷却,所述冷却液被部分地蒸发;
    所述核电厂安全壳冷却系统还包括调节机构,所述调节机构设置在所述冷却系统液箱(2)的出液口处,所述调节机构用于根据所收集的未蒸发的所述冷却液的液位产生的浮力控制所述出液口的流量。
  2. 根据权利要求1所述的核电厂安全壳冷却系统,其特征在于, 还包括设置在所述安全壳(1)外侧底部、用于收集所述未蒸发冷却液的换热液池(3);所述调节机构的一端悬置在所述换热液池(3)的液面上方,所述调节机构的另一端连接所述出液口。
  3. 根据权利要求2所述的核电厂安全壳冷却系统,其特征在于, 还包括:
    与所述冷却系统液箱(2)相连通的喷淋装置(4),所述冷却液经所述出液口流出至所述喷淋装置(4),由所述喷淋装置(4)喷淋至所述安全壳(1)外侧形成覆盖所述安全壳(1)的液膜;
    所述喷淋装置(4)包括与所述调节机构联动的喷淋阀门(5),所述调节机构根据所述换热液池(3)产生的浮力调节所述喷淋阀门(5)的开合度进而控制所述出液口的流量。
  4. 根据权利要求3所述的核电厂安全壳冷却系统,其特征在于,所述调节机构包括:
    连杆传动机构(12)以及连接在所述连杆传动机构(12)靠近所述换热液池(3)一端的浮力支撑件(7);
    所述连杆传动机构(12)远离所述浮力支撑件(7)的一端连接所述喷淋阀门(5);
    当所述换热液池(3)内所述冷却液的蒸发量大于所述出液口的流量时,所述换热液池(3)的液面下降,所述浮力支撑件(7)带动所述传动机构(12)随所述换热液池(3)的液面下落,所述喷淋阀门(5)的开合度加大,所述出液口的流量增加;
    当所述换热液池(3)内所述冷却液的蒸发量小于所述出液口的流量时,所述换热液池(3)的液面上升,所述浮力支撑件(7)带动所述传动机构(12)随所述换热液池(3)的液面上升,所述喷淋阀门(5)的开合度减小,所述出液口的流量减小。
  5. 根据权利要求4所述的核电厂安全壳冷却系统,其特征在于,还包括屏蔽壳(8),所述屏蔽壳(8)设置在所述安全壳(1)外围并形成有用于收容所述冷却液的所述换热液池(3)和形成用于空气流通的流通空间(14)。
  6. 根据权利要求5所述的核电厂安全壳冷却系统,其特征在于,所述换热液池(3)内沿垂直方向设置有隔热折流板(9),所述隔热折流板(9)位于所述浮力支撑件(7)下方,所述隔热折流板(9)用于将所述换热液池(3)分隔成靠近所述安全壳(1)的内廊及靠近所述屏蔽壳(8)的外廊,所述内廊与所述外廊在所述隔热折流板(9)的底部互相连通,所述内廊与所述外廊之间形成用于冷热交换的热循环空间。
  7. 根据权利要求6所述的核电厂安全壳冷却系统,其特征在于,所述屏蔽壳(8)侧壁开设有空气入口(10),所述空气入口(10)的位置高于所述浮力支撑件(7)的最高自由浮动位置,所述空气进入所述热循环空间后与所述流通空间(14)内的空气混合并随所述安全壳(1)外壁蒸发的蒸汽向上流动。
  8. 根据权利要求7所述的核电厂安全壳冷却系统,其特征在于,所述屏蔽壳(8)顶部还开设有空气出口(11),所述空气入口(10)、所述流通空间(14)以及所述空气出口(11)共同形成蒸汽流通通道。
  9. 根据权利要求8所述的核电厂安全壳冷却系统,其特征在于,所述喷淋装置(4)还包括喷淋管道(6)以及与所述喷淋管道(6)连通的冷却液分散装置(13),所述喷淋管道(6)一端与所述冷却系统液箱(2)连通,所述喷淋管道(6)另一端连通所述冷却液分散装置(13),所述喷淋管道(6)上安装有所述喷淋阀门(5),所述冷却液分散装置(13)上开设有喷淋口(19),所述冷却液经所述冷却系统液箱(2)流入所述喷淋管道(6),由所述喷淋阀门(5)控制流入所述冷却液分散装置(13),并经所述喷淋口(19)喷淋至所述安全壳(1)外侧。
  10. 根据权利要求9所述的核电厂安全壳冷却系统,其特征在于,所述调节机构包括多个,多个所述调节机构均匀分布在所述安全壳(1)外侧,每一所述调节机构对应一所述喷淋阀门(5)。
  11. 根据权利要求10所述的核电厂安全壳冷却系统,其特征在于,所述浮力支撑件(7)为浮球。
  12. 根据权利要求6所述的核电厂安全壳冷却系统,其特征在于,所述隔热折流板(9)为钢结构夹层,所述钢结构夹层包括外层和夹层,所述外层为耐高温材料,所述夹层为保温材料,所述钢结构夹层用于隔绝换热液池(3)内所述内廊与所述外廊之间的流体热量。
  13. 一种核电厂安全壳冷却系统的喷淋流量控制方法,其特征在于,所述方法包括以下步骤:
    S1、在事故工况下, 所述冷却系统启动, 冷却液在重力作用下以最大流量经出液口流至安全壳(1),对所述安全壳(1)进行冷却,在冷却过程中,所述冷却液被部分地蒸发;
    S2、根据所收集的未蒸发的所述冷却液的液位产生的浮力调节所述出液口的流量。
  14. 根据权利要求13所述的核电厂安全壳冷却系统的喷淋流量控制方法,其特征在于,
    在步骤S1之前,所述方法还包括步骤:
    S0、在所述冷却系统启动前,设置换热液池(3)的初始液位,使调节机构的下端悬置在所述换热液池(3)的初始液位上方。
  15. 根据权利要求14所述的核电厂安全壳冷却系统的喷淋流量控制方法,其特征在于,步骤S1进一步包括:
    当所述冷却系统启动后,在所述换热液池(3)液面与所述调节机构的一端接触之前,所述喷淋阀门(5)具有最大开合度,冷却系统液箱(2)的所述出液口以最大流量将所述冷却液流至安全壳(1)外侧形成覆盖所述安全壳(1)的液膜;
    所述换热液池(3)液面上升到与所述调节机构的一端接触后,所述调节机构根据所述换热液池(3)的液位浮动产生的浮力控制所述出液口的流量。
  16. 根据权利要求15所述的核电厂安全壳冷却系统的喷淋流量控制方法,其特征在于,所述核电厂安全壳冷却系统包括连接在所述出液口上的喷淋阀门(5),所述调节机构包括与喷淋阀门(5)相连的连杆传动机构(12)和浮力支撑件(7),所述步骤S2进一步包括如下步骤:
    S2-1、当所述冷却液的蒸发量大于所述出液口的流量时,所述浮力支撑件(7)下移带动连杆传动机构(12)下行,所述喷淋阀门(5)的开合度增大,所述出液口的流量增大;
    S2-2、当所述冷却液蒸发量小于所述出液口的流量时,所述浮力支撑件(7)上移带动连杆传动机构(12)上行,所述喷淋阀门(5)的开合度减小,所述出液口的流量减小。
  17. 根据权利要求16所述的核电厂安全壳冷却系统的喷淋流量控制方法,其特征在于,所述核电厂安全壳冷却系统还包括设置在所述安全壳(1)外围的屏蔽壳(8),所述屏蔽壳(8)侧壁高于所述浮力支撑件(7)的最高自由浮动位置的位置处开设有空气入口(10),所述方法还包括以下步骤:
    S3、从所述空气入口(10)向所述核电厂安全壳冷却系统中通入空气以接受所述换热液池(3)内所述冷却液的热量,并促进蒸发的蒸汽向上流动。
  18. 根据权利要求17所述的核电厂安全壳冷却系统的喷淋流量控制方法,其特征在于,所述步骤S3中,所述换热液池(3)内垂直方向设置隔热折流板(9)将所述换热液池(3)分隔成靠近所述安全壳的内廊及远离所述安全壳的外廊。
  19. 根据权利要求18所述的核电厂安全壳冷却系统的喷淋流量控制方法,其特征在于,所述内廊与所述外廊共同形成热循环空间,与安全壳(1)外壁面相接触的所述内廊接受安全壳(1)壁面传出的热量,所述空气经所述空气入口(10)流入所述换热液池(3)上部,所述空气接受所述换热液池(3)上表面热流体的换热之后,再混合所述换热液池(3)蒸发的蒸汽和所述安全壳(1)外壁蒸发的蒸汽并沿所述屏蔽壳(8)与所述安全壳(1)之间形成的流通空间(14)向上流动。
  20. 根据权利要求19所述的核电厂安全壳冷却系统的喷淋流量控制方法,其特征在于,所述屏蔽壳(8)顶部还开设有空气出口(11),经所述步骤S3后所述空气连同所述换热液池(3)及所述安全壳(1)外壁蒸发的蒸汽经所述空气出口(11)流出所述核电厂安全壳冷却系统。
PCT/CN2014/070539 2014-01-13 2014-01-13 核电厂安全壳冷却系统及其喷淋流量控制方法 WO2015103790A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1612139.4A GB2536393B (en) 2014-01-13 2014-01-13 Nuclear power plant containment cooling system and spray flow control method therefor
US15/111,480 US10629314B2 (en) 2014-01-13 2014-01-13 Nuclear power plant containment cooling system and spray flow control method therefor
PCT/CN2014/070539 WO2015103790A1 (zh) 2014-01-13 2014-01-13 核电厂安全壳冷却系统及其喷淋流量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/070539 WO2015103790A1 (zh) 2014-01-13 2014-01-13 核电厂安全壳冷却系统及其喷淋流量控制方法

Publications (1)

Publication Number Publication Date
WO2015103790A1 true WO2015103790A1 (zh) 2015-07-16

Family

ID=53523480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070539 WO2015103790A1 (zh) 2014-01-13 2014-01-13 核电厂安全壳冷却系统及其喷淋流量控制方法

Country Status (3)

Country Link
US (1) US10629314B2 (zh)
GB (1) GB2536393B (zh)
WO (1) WO2015103790A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469845A (zh) * 2015-11-25 2016-04-06 中广核工程有限公司 一种核电站安全壳喷淋系统启动装置及方法
CN107908204A (zh) * 2017-11-17 2018-04-13 广东核电合营有限公司 核电站一回路稳压器喷淋阀极化开度的标定方法及系统
CN112466484A (zh) * 2020-10-14 2021-03-09 中国核电工程有限公司 一种非能动安全壳冷却系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146645B (zh) * 2017-06-23 2023-04-11 西安交通大学 一种核电厂安全壳喷淋系统喷淋性能试验装置
KR102071595B1 (ko) * 2018-03-09 2020-01-30 한국원자력연구원 피동 원자로 공동 냉각장치
CN112071451B (zh) * 2020-09-15 2022-11-01 哈尔滨工程大学 一种压水堆多功能双层混凝土安全壳系统
CN113113164A (zh) * 2021-04-08 2021-07-13 上海核工程研究设计院有限公司 一种小型反应堆的增强型非能动安全壳空冷系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511091A (ja) * 1991-07-05 1993-01-19 Hitachi Ltd 原子炉格納容器冷却設備
CN2248327Y (zh) * 1995-08-28 1997-02-26 王宏丁 溴化锂制冷机自动节流装置
CN201553601U (zh) * 2009-06-05 2010-08-18 厉善君 无菌液体平衡罐
JP2010236885A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 原子炉格納容器の冷却構造
CN102081976B (zh) * 2009-11-27 2012-10-10 上海核工程研究设计院 大容量完全非能动安全壳冷却系统
CN202752004U (zh) * 2012-07-23 2013-02-27 湖南雅城新材料发展有限公司 一种溶液自动平衡槽
CN103106934A (zh) * 2013-01-28 2013-05-15 清华大学 一种非能动安全壳外部冷却系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049353A (en) * 1989-04-21 1991-09-17 Westinghouse Electric Corp. Passive containment cooling system
US5339340A (en) * 1993-07-16 1994-08-16 General Electric Company Liquid metal reactor air cooling baffle
KR101229953B1 (ko) * 2011-09-08 2013-02-06 한전원자력연료 주식회사 사용후핵연료 저장조 피동형 냉각장치
JP5876320B2 (ja) * 2012-02-23 2016-03-02 日立Geニュークリア・エナジー株式会社 原子力プラント

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511091A (ja) * 1991-07-05 1993-01-19 Hitachi Ltd 原子炉格納容器冷却設備
CN2248327Y (zh) * 1995-08-28 1997-02-26 王宏丁 溴化锂制冷机自动节流装置
JP2010236885A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 原子炉格納容器の冷却構造
CN201553601U (zh) * 2009-06-05 2010-08-18 厉善君 无菌液体平衡罐
CN102081976B (zh) * 2009-11-27 2012-10-10 上海核工程研究设计院 大容量完全非能动安全壳冷却系统
CN202752004U (zh) * 2012-07-23 2013-02-27 湖南雅城新材料发展有限公司 一种溶液自动平衡槽
CN103106934A (zh) * 2013-01-28 2013-05-15 清华大学 一种非能动安全壳外部冷却系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469845A (zh) * 2015-11-25 2016-04-06 中广核工程有限公司 一种核电站安全壳喷淋系统启动装置及方法
CN107908204A (zh) * 2017-11-17 2018-04-13 广东核电合营有限公司 核电站一回路稳压器喷淋阀极化开度的标定方法及系统
CN107908204B (zh) * 2017-11-17 2021-07-23 广东核电合营有限公司 核电站一回路稳压器喷淋阀极化开度的标定方法及系统
CN112466484A (zh) * 2020-10-14 2021-03-09 中国核电工程有限公司 一种非能动安全壳冷却系统
CN112466484B (zh) * 2020-10-14 2024-01-23 中国核电工程有限公司 一种非能动安全壳冷却系统

Also Published As

Publication number Publication date
US20160372218A1 (en) 2016-12-22
US10629314B2 (en) 2020-04-21
GB2536393A (en) 2016-09-14
GB201612139D0 (en) 2016-08-24
GB2536393B (en) 2020-10-07

Similar Documents

Publication Publication Date Title
WO2015103790A1 (zh) 核电厂安全壳冷却系统及其喷淋流量控制方法
WO2018236098A1 (en) REACTOR COOLING SYSTEM AND ELECTRIC POWER GENERATION
KR102130288B1 (ko) 핵 기지 정전 동안에 수동 전력 생산
CN102332313A (zh) 高温气冷堆非能动余热排出系统
WO2016015475A1 (zh) 混凝土安全壳非动能冷却系统
KR101700800B1 (ko) 인클로저와 파이프 간의 접합 배관의 개구부용의 밀봉 스토퍼 및 이 스토퍼를 구현하는 방법
WO2018212522A1 (en) External reactor vessel cooling and electric power generation system
WO2018230897A1 (en) Cooling facility in a reactor and electric power generation system
JP6084389B2 (ja) 注水設備および原子炉システム
TWI585780B (zh) 用於輕水式反應器之替代型遠距廢燃料池冷卻系統之方法及裝置
CN104483346A (zh) 一种两相流体回路真空热性能试验方法
JPH05340207A (ja) 蒸気タービンの温度均一維持装置およびカバーとベースとの温度差最小方法
JP2020008541A (ja) 事故時の原子炉の冷却装置
JP6903440B2 (ja) 排熱回収ボイラにおける熱損失を最小限に抑えるためのシステム、方法及び装置
JP2017133824A5 (zh)
KR20200027851A (ko) 사용후 핵연료 냉각 장치 및 이를 이용한 사용후 핵연료 냉각 방법
WO2019146279A1 (ja) 原子炉圧力容器の冷却装置
JP2012017551A (ja) 水タンクの止水装置
CN203516962U (zh) 核电站手动隔膜阀检修装置
KR100385838B1 (ko) 저수위 운전신뢰성을 갖는 원자로 증기발생기의 노즐구조
JP2000019285A (ja) 原子炉除熱系
RU2797256C2 (ru) Устройство первого контура двухконтурной ядерной энергетической установки
RU2788028C1 (ru) Способ монтажа и эксплуатации конденсатора турбоагрегата
CN218408562U (zh) 一种双偏心蝶阀
Yang et al. Jlab Chl1 2K Cold Box Replacement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201612139

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140113

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1612139.4

Country of ref document: GB

Ref document number: 15111480

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14878144

Country of ref document: EP

Kind code of ref document: A1