WO2021157808A1 - 자가발전 무전원 정온식감지 송수신 시스템 - Google Patents

자가발전 무전원 정온식감지 송수신 시스템 Download PDF

Info

Publication number
WO2021157808A1
WO2021157808A1 PCT/KR2020/012843 KR2020012843W WO2021157808A1 WO 2021157808 A1 WO2021157808 A1 WO 2021157808A1 KR 2020012843 W KR2020012843 W KR 2020012843W WO 2021157808 A1 WO2021157808 A1 WO 2021157808A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
fire
powered
constant temperature
dustproof
Prior art date
Application number
PCT/KR2020/012843
Other languages
English (en)
French (fr)
Inventor
유장열
Original Assignee
엠피아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠피아 주식회사 filed Critical 엠피아 주식회사
Priority to JP2022573134A priority Critical patent/JP7384497B2/ja
Priority to US17/797,365 priority patent/US11854362B2/en
Publication of WO2021157808A1 publication Critical patent/WO2021157808A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • H02K7/1876Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/323Thermally-sensitive members making use of shape memory materials

Definitions

  • the present invention relates to a self-powered non-powered constant temperature sensor and a wireless transmission/reception system, and more particularly, a self-powered non-powered constant temperature type sensor capable of maximizing dust-proof and waterproofing efficiency by providing a self-powered wireless fire detector for detecting fire. It relates to a detector and a wireless transmit/receive system.
  • a fire detector includes a method for detecting heat accompanying a fire, a method for detecting smoke, and a method for detecting infrared rays.
  • fire detectors operate electronically, so electrical energy, that is, power must be supplied.
  • power supply uses a power line introduced into a building or the like, or a power source independently supplied from a separate place in preparation for a disaster, such as a monitoring station.
  • the primary battery is mounted on the fire detector itself and used as a power source.
  • a rectifier is installed and used because the detector has to convert 110V or 220V alternating current into direct current.
  • a charging circuit using a secondary battery is built in to drive the detector.
  • This method has an advantage in that it is relatively easy to obtain power by using an external lead-in power line, but separate electrical work is required when installing the fire detector, and there is a problem in that it is impossible to install it in a place where the power line does not reach.
  • the power is supplied by installing an independent power line at the monitoring station, it is mainly used in areas where large-scale residential facilities such as apartments and buildings are dense. There is a problem that cannot be done, and when the power line is damaged by a factor applied from the outside, the power supply is disrupted, considering the length of the power line usually ranges from several tens to several hundreds of meters.
  • the present invention has been devised to solve the above problems, and its purpose is to detect a fire by applying a shape memory alloy that responds to temperature changes and to enable self-generation, so wiring work is not required, so the installation location is limited. It is to provide a self-powered non-power constant temperature sensor and wireless transmission/reception system that can be installed easily without receiving a battery, can be used semi-permanently by operating by self-generation without a battery, and maximize productivity by increasing dust and waterproof efficiency.
  • a self-powered non-power constant temperature sensor and wireless transmission/reception system for achieving the above object includes a self-powered constant temperature fire detector that is operated by heat generated when a fire occurs and is capable of self-generation, and the self-powered constant temperature type fire detector. It may include a receiver for receiving and monitoring a fire occurrence signal through wireless communication according to the operation of the fire detector, and an application unit for notifying the received signal through the receiver in real time.
  • the self-generated constant temperature fire detector includes a sensing unit that detects and responds when the temperature generated by the fire exceeds a set temperature, and a dustproof/waterproof self-actuating unit that is linked to the sensing unit and operates according to the operation of the sensing unit to send a signal to the receiving unit It may include a power generation operation unit.
  • the sensing unit includes a top cover connected to a dustproof/waterproof self-generation operation unit, a spring cover connected to the top cover, and a dustproof/waterproof self-generation operation unit charged inside the spring cover and in contact with the dustproof/waterproof self-generation operation unit.
  • the shape memory alloy spring may include a return spring that allows the pusher to return to its original state.
  • the top cover has a charging groove formed in the center so that the spring cover and the pressing protrusion can be charged, and a plurality of connecting pieces to which bolts are fastened to fix the sensing unit to the dustproof/waterproof self-generation operation unit at the bottom may be provided. .
  • the end of the pressing protrusion is in contact with the dustproof/waterproof self-generation operation unit, and a support piece may be formed on the outside of the middle to independently support the shape memory alloy spring and the return spring, respectively.
  • the spring cover is provided with a locking jaw so that the spring cover inserted into the top cover at the bottom does not get caught on the inner surface of the top cover, and a plurality of high-temperature heat according to the occurrence of a fire on the outer surface can be quickly transferred to the shape memory alloy spring. Dog holes may be formed.
  • the shape memory alloy spring is a tension spring in which the shape memory alloy spring stretches and presses the pressing projection depending on the installation position to press the pressing projection. As the shape memory alloy spring shrinks, the return spring is pushed to press the presser, and when the temperature drops, the shape memory alloy spring returns to its original size and the presser returns to its original position. It is used when moving with a small displacement. It can be formed in a wire method that gives a wave-shaped displacement to a circular ring and returns when the temperature is lowered by giving a wave-shaped displacement to the set temperature, causing displacement and pressing the pressing protrusion.
  • the dustproof/waterproof self-generation operation unit includes a base provided with a partition wall to form an accommodating part therein, a self-generation module provided in the accommodating part to enable self-generation, and the self-generation module electrically connected to the upper portion of the self-generation module to generate self-generation
  • a transmitting module that receives the output generated from the module and sends a wireless signal to the receiving unit
  • a dustproof/waterproof unit provided on the bulkhead of the base to seal the receiving unit, surrounds the outer periphery of the base and is connected to the sensing unit with a bolt It may include a fixed middle cover.
  • the dustproof/waterproof part may be provided with a seating part so as to be fitted to the upper part of the partition wall around the lower periphery, and a contact part may be provided so that the self-power generation module can be developed as the pressing protrusion is pressed in contact with the central part.
  • the contact portion is pressed so that only the contact portion, not the entire dustproof/waterproof portion, is pressed as the pressing protrusion is pressed, thereby minimizing the change in air pressure to smoothly operate the self-generation module and forming a wrinkled shape so that the contact portion can be quickly restored to its original state.
  • the receiver may receive the operation signal of the self-generated constant temperature fire detector, display the location number of the fire on the monitor, and send the fire signal to the application unit using the communication module.
  • the application unit may receive a signal from the receiver to inform and manage the fire situation through a speaker, a warning light, and a server.
  • the method of registering the self-powered constant temperature fire detector in the receiver is that the spring cover has fluidity and when the spring cover is pressed, the pressing projection is pressed, and the pressing projection is the entire spring cover pressing method or The spring cover remains as it is, and a pressing projection pressing method that registers by pressing only the pressing projection can be applied.
  • the detection unit detects the occurrence of a fire and operates the dustproof/waterproof self-generation operation unit to immediately receive unit and application unit. Minimizes damage to human life and property as it can notify quickly through It has the effect of maximizing the performance of the product by completely blocking the inflow.
  • FIG. 1 is a block diagram illustrating a self-powered non-powered constant temperature sensor and a wireless transmission/reception system according to the present invention.
  • FIG. 2 is a perspective view showing a self-powered constant temperature fire detector of a self-powered non-powered constant temperature detector and a wireless transmission/reception system according to the present invention.
  • FIG. 3 is an exploded perspective view illustrating a self-powered constant temperature fire detector of a self-powered non-powered constant temperature detector and a wireless transmission/reception system according to the present invention.
  • FIG. 4 is a cross-sectional view illustrating a self-powered constant temperature fire detector of a self-powered non-powered constant temperature detector and a wireless transmission/reception system according to the present invention.
  • FIG. 5 is a bottom perspective view showing the sensing unit of the self-powered constant temperature fire detector according to the present invention.
  • FIG. 6 is an exploded perspective view showing the sensing unit of the self-powered constant temperature fire detector according to the present invention.
  • FIG. 7 is a cross-sectional view showing the sensing unit of the self-powered constant temperature fire detector according to the present invention.
  • FIG. 8 is a perspective view illustrating a dustproof/waterproof self-generation operation unit of the self-powered constant temperature fire detector according to the present invention.
  • FIG. 9 is an exploded perspective view illustrating a dustproof/waterproof self-generation operation unit of the self-powered constant temperature fire detector according to the present invention.
  • FIG. 10 is a cross-sectional view illustrating a dustproof/waterproof self-generation operation unit of the self-powered constant temperature fire detector according to the present invention.
  • FIG. 11 is a cross-sectional view illustrating a method for registering a self-generated static temperature detector and a self-powered constant temperature fire detector of a wireless transmission/reception system as a receiver according to the present invention.
  • FIG. 12 is a cross-sectional view showing an example of application of the shape memory alloy spring of the self-powered constant temperature fire detector according to the present invention.
  • FIG. 13 is a cross-sectional view illustrating an example of a self-powered constant temperature fire detector according to the present invention.
  • connection piece 120 spring cover
  • support piece 140 shape memory alloy spring
  • return spring 200 dustproof / waterproof self-generation operation part
  • base 211 storage unit
  • the expression 'and/or' is used to mean including at least one of the elements listed before and after.
  • the expression 'connected/coupled' is used in a sense including being directly connected to another element or indirectly connected through another element.
  • the singular also includes the plural, unless the phrase specifically states otherwise.
  • a component, step, operation, and element referred to as 'comprises' or 'comprising' refers to the presence or addition of one or more other components, steps, operations and elements.
  • each layer (film), region, pattern or structure is “on” or “under” the substrate, each side (film), region, pad or patterns.
  • the description of "formed on” includes all those formed directly or through another layer.
  • FIG. 1 is a block diagram illustrating a self-powered non-powered constant temperature sensor and a wireless transmission/reception system according to the present invention
  • FIG. 2 shows a self-powered constant temperature fire detector of a self-powered non-powered static temperature sensor and a wireless transmission/reception system according to the present invention
  • a perspective view Figure 3 is an exploded perspective view showing a self-powered constant temperature fire detector of a self-powered non-powered constant temperature sensor and a wireless transmission/reception system according to the present invention
  • Figure 4 is a self-powered non-powered constant temperature sensor and wireless according to the present invention It is a cross-sectional view showing a self-generated constant temperature fire detector of the transmission/reception system
  • FIG. 1 is a block diagram illustrating a self-powered non-powered constant temperature sensor and a wireless transmission/reception system according to the present invention
  • FIG. 2 shows a self-powered constant temperature fire detector of a self-powered non-powered static temperature sensor and a wireless transmission/reception system according to the present invention.
  • FIG. 5 is a bottom perspective view showing the sensing unit of the self-powered constant temperature fire detector according to the present invention
  • FIG. 6 is a self-powered constant temperature fire according to the present invention. It is an exploded perspective view showing the sensing unit of the detector
  • FIG. 7 is a cross-sectional view showing the sensing unit of the self-powered constant temperature fire detector according to the present invention
  • FIG. 8 is a dustproof/waterproof type of the self-powered constant temperature fire detector according to the present invention
  • FIG. 9 is an exploded perspective view showing a dust-proof/waterproof type self-generation operation unit of the self-generation constant temperature fire detector according to the present invention
  • FIG. 9 is an exploded perspective view showing a dust-proof/waterproof type self-generation operation unit of the self-generation constant temperature fire detector according to the present invention
  • FIG. 10 is a self-generation constant temperature fire detector according to the present invention. is a cross-sectional view showing the dust-proof / waterproof self-generation operation unit of the, and FIG. 11 is a cut-away view showing a method for registering the self-powered constant temperature fire detector of the self-powered non-powered constant temperature sensor and the wireless transmission/reception system according to the present invention as a receiver 12 is a cross-sectional view showing an application example of a shape memory alloy spring of a self-powered constant temperature fire detector according to the present invention, and FIG. 13 is a self-powered constant temperature fire detector according to the present invention. is a cut-away view.
  • the self-powered non-powered static temperature detector and wireless transmission/reception system includes a self-powered static temperature fire detector 10 , a receiver 20 and an application unit 30 . will do
  • the self-generated constant temperature fire detector 10 is installed inside and outside the building, so that the high temperature caused by the occurrence of a fire and an increase in temperature is operated by heat to detect the occurrence of a fire.
  • the self-powered constant temperature fire detector 10 is self-generated and does not require wiring, so it can be conveniently installed in a desired place, and its installation location can be arbitrarily changed because it is easy to attach and detach.
  • the self-powered constant temperature fire detector 10 may up-convert a radio frequency (RF) signal to communicate with the receiver 20 wirelessly.
  • RF radio frequency
  • the self-powered constant temperature fire detector 10 includes a detection unit 100 and a dustproof/waterproof self-generation operation unit 200 .
  • the sensing unit 100 detects and operates when a fire occurs and the ambient temperature rises above a set temperature.
  • the sensing unit 100 operates the dustproof/waterproof self-generation operation unit 200 in response to the temperature change to inform the receiver 20 of the fire occurrence.
  • the sensing unit 100 may apply an actuator method using a shape memory alloy (SMA).
  • SMA shape memory alloy
  • the sensing unit 100 includes a top cover 110 , a spring cover 120 , a pressing protrusion 130 , a shape memory alloy spring 140 , and a return spring 150 . ) will be included.
  • the top cover 110 may be connected to the dustproof/waterproof self-generation operation unit 200 .
  • a charging groove 111 may be formed through the upper and lower portions so that the spring cover 120 and the pressing protrusion 130 can be charged.
  • the lower portion of the top cover 111 is a connection piece 112 to which the bolt (B) is fastened so that the sensing unit 100 can be fixed to the dustproof/waterproof self-generation operation unit 200 with the bolt (B). can be provided.
  • connection piece 112 may be provided in plurality so that the sensing unit 100 and the dustproof/waterproof self-generation operation unit 200 can be stably connected without shaking.
  • the spring cover 120 is charged and connected to the charging groove 111 of the top cover 110 .
  • the spring cover 120 may be provided with a stopping protrusion 121 so as not to be caught on the inner surface of the top cover 110 when it is charged into the charging groove 111 of the top cover 110 at the lower portion.
  • a plurality of through-holes 122 may be formed in the outer surface of the spring cover 120 so that high-temperature heat caused by a fire can be quickly transferred to the shape memory alloy spring 140 .
  • the through hole 122 is preferably formed around the entire outer surface of the spring cover (120).
  • the spring cover 120 may be formed of a metal material.
  • the spring cover 120 moves the spring cover 120 when the self-powered constant temperature fire detector 10 is registered with the receiver 20 on the top cover 110 .
  • a method of pressing the entire cover 120 or a method of pressing only the pressing protrusion 130 while the spring cover 120 is fixed as in (b) of FIG. 11 may be applied.
  • the pressing protrusion 130 is charged into the inside of the spring cover 120 and is in contact with the dustproof/waterproof self-generation operation unit 200 and is pressed according to the tension or compression of the shape memory alloy spring 140, so that the dustproof/waterproof self The power generation operation unit 200 is operated.
  • the pressing protrusion 130 may be formed so that the tip is in contact with the dustproof/waterproof self-generation operation unit 200 and is tapered inwardly (T).
  • a support piece 131 may be formed on the outer middle of the pressing protrusion 130 to independently support the shape memory alloy spring 140 and the return spring 150 , respectively.
  • the shape memory alloy spring 140 and the return spring 150 are separated and supported by the support piece 131, so that the pressing protrusion 130 is moved according to the tension and compression of the shape memory alloy spring 150. After being moved, the pressing protrusion 130 may be returned to its original state by the expansion force of the return spring 150 .
  • the length of the spring cover 120 and the pressing protrusion 130 may be changed according to the installation environment and conditions.
  • the shape memory alloy spring 140 is provided inside the spring cover 120 and is stretched and compressed by the high temperature heat caused by the occurrence of a fire and an increase in ambient temperature, and presses the pusher 130 to prevent dust/waterproof self-generation. It is possible to operate the operation unit 200 .
  • the shape memory alloy spring 140 may be formed in the form of a tension spring, a compression spring, or a wire so that it can be tensioned and compressed according to a position installed inside the spring cover 120 to press the pressing protrusion 130 . there is.
  • the shape memory alloy spring 140 when the shape memory alloy spring 140 is applied as a tension spring as shown in (a) of FIG. 12, when the temperature is higher than the set temperature due to the occurrence of a fire and an increase in the ambient temperature, the shape memory alloy spring 140 is stretched and a pressing protrusion When (130) is pressed and the temperature is lowered to below the set temperature, the shape memory alloy spring 140 returns and simultaneously pushes the return spring 150 so that the pressing protrusion 130 returns to its original position.
  • the shape memory alloy spring 140 when the shape memory alloy spring 140 is applied as a compression spring as in Fig. 12 (b), when the temperature is higher than the set temperature due to the occurrence of a fire and an increase in the ambient temperature, the shape memory alloy spring 140 is reduced and the return spring (150) is pushed to press the pressing protrusion 130, and when the temperature drops below the set temperature, the shape memory alloy spring 140 returns to its original size and the pressing protrusion 130 returns to its original position.
  • the shape memory alloy spring 140 moves with a small displacement as shown in FIG. 12 ( c )
  • a wire shape is applied and a wave-shaped displacement is given to a circular ring to a set temperature, the wire is waved and the displacement is It can be applied to a method of raising and pressing the pressing protrusion 130 and returning when the temperature is lowered by being supported by the return spring 150 .
  • the return spring 150 is provided inside the spring cover 120, and when the elevated temperature goes down after extinguishing the fire, the shape memory alloy spring 140 automatically returns and expands to return the pressing protrusion 130 to its original state. will make it
  • the sensing unit 100 can be reused by applying the shape memory alloy spring 140 to detect the occurrence of a fire, thereby reducing costs.
  • the dustproof/waterproof self-generation operation unit 200 is interlocked with the detection unit 100 and operates according to the operation of the detection unit 100 when a fire occurs to transmit a signal to the reception unit 20 .
  • the dustproof/waterproof self-generation operation unit 200 is capable of self-generation according to the operation of the sensing unit 100 .
  • the prevention/waterproof self-generation operation unit 200 includes a base 210 , a self-generation module 220 , a transmission module 230 , and a dustproof/waterproof unit 240 , and a middle cover 250 .
  • the base 210 is provided with a partition wall 212 such that the receiving part 211 is formed so that the self-generation module 220 and the transmission module 230 are installed therein.
  • a concave surface 212a may be formed around the upper end of the partition wall 212 .
  • the receiving part 211 of the base 210 is provided with a plurality of fixing hooks 213 to protrude upward, and the self-power generation module 220 and the transmitting module 230 are provided on the upper part of the receiving part 211 .
  • a rubber guide 214 for fixing it may be fixed to the fixing hook 213 .
  • the rubber guide 214 is provided above the self-power generation module 220 and the transmission module 230 installed in the receiving unit 211 to support the self-power generation module 220 and the transmission module 230 . .
  • the self-power generation module 220 is provided in the receiving unit 211 to convert mechanical displacement into electric power according to the pressing operation of the pressing protrusion 130 of the sensing unit 100 and self-generation is possible.
  • the self-generation module 220 is made of a method of generating electricity by using magnetic force, and since this method has already been widely used and used, the technical configuration and operating principle thereof will be omitted.
  • the transmission module 230 is electrically connected to the self-generation module 220 on the upper portion of the self-generation module 220 , receives the output generated from the self-generation module 220 and transmits a wireless signal to the reception unit 20 . .
  • the dustproof/waterproof part 240 is seated on the upper part of the partition wall 212 of the base 210 to seal the receiving part 211 .
  • the dust/waterproof part 240 may be made of a rubber material.
  • the dustproof/waterproof part 240 seals the entire housing part 211 , dust or water does not flow into the housing part 211 , and the self-power generation module 220 installed in the housing part 211 . ) and the transmission module 230 can be prevented from being corroded.
  • a seating part 241 is formed on the periphery of the lower periphery of the dustproof/waterproof part 240 so that the dustproof/waterproof part 240 can be seated on the partition wall 212 .
  • the concave surface of the upper part of the partition wall 212 can be maximized to maximize the sealing efficiency of the accommodation part 211 .
  • a convex surface 241a may be provided in close contact with the 212a.
  • the dustproof/waterproof part 240 is firmly secured in the receiving part 211 by the concave surface 212a and the convex surface 241a.
  • the sealing efficiency of the accommodating part 211 can be maximized.
  • a contact portion 242 for generating the self-power generation module 220 according to the pressing operation of the pressing protrusion 130 by contacting the pressing protrusion 130 at the central portion of the dustproof/waterproofing unit 240 may be provided.
  • the contact part 242 minimizes the change in air pressure by allowing only the contact part 242 to be pressed without the entire dustproof/waterproof part 240 being deformed as the pressing protrusion 130 is pressed. It may be formed in a wrinkled shape so that it operates smoothly and the contact portion 242 can be quickly restored to its original state.
  • the contact part 242 is provided so that the upper and lower parts protrude outward, and the thickness of the bottom surface is thicker than that of other parts, so that the contact part 242 that has been lowered due to the pressing of the pressing protrusion 130 is smoothly restored to its original state. It is possible to minimize the wear and tear of the dustproof/waterproof part 240 even during a long operation of the pressing operation.
  • the middle cover 250 may surround the outer circumference of the base 210 and may be connected to the top cover 110 of the sensing unit 200 and fixed with a bolt (B).
  • a fitting groove 251 may be formed in the center of the middle cover 250 so that the pressing protrusion 130 can be fitted thereinto.
  • the receiver 20 receives and monitors the fire occurrence signal from the transmission module 230 through wireless communication according to the operation of the self-generation constant temperature fire detector 10 .
  • the receiver 20 receives the detection signal of the self-powered constant temperature fire detector 10 as a radio frequency (RF) signal and transmits the received signal to the application unit 30 .
  • RF radio frequency
  • the receiver 20 displays the location number of the area where the fire occurred on the monitor when the self-generation constant temperature fire detector 10 operates, and utilizes a communication module (eg, 485 communication or RF communication relay module) to A signal is sent to the application unit 30 .
  • a communication module eg, 485 communication or RF communication relay module
  • the application unit 30 informs the fire occurrence reception signal through the reception unit 20 in real time.
  • the application unit 30 receives the signal from the receiver 20 to notify the occurrence of a fire by using a speaker and a warning light, and is connected to the server to check the registered signal to quickly replace the fire situation.
  • the operating state according to the self-generated non-powered constant temperature sensor and wireless transmission/reception system of the present invention composed of the system as described above is as follows.
  • the detection unit 100 By interlocking the dustproof/waterproof self-generation operation unit 200 with the detection unit 100, the detection unit 100 operates according to the occurrence of a fire and a rise in temperature to activate the dustproof/waterproof self-generation operation unit 200.
  • a signal is sent to the receiver 20 through wireless communication to immediately inform the fire occurrence situation through the receiver 20 and the application unit 30 .
  • the shape memory displacement is caused to increase or decrease while pressing the pressing protrusion 130 downwards.
  • 130 operates the self-generation module 220 to generate self-generation, and informs the receiver 20 through the generated electric furnace transmission module 230 that a fire has occurred and the temperature has risen sharply.
  • the shape memory alloy spring 140 returns to the state before displacement, and the return spring 150 supporting the pressing protrusion 130 pushes the pressing protrusion 130 to fire a fire. It sends a secondary signal that the fire has been extinguished and can maintain the fire detection state again.
  • the dustproof/waterproof self-generation operation unit 200 operates by receiving the sensing unit 100's detection and mechanical change, but the self-generation module 220 has a pressing protrusion 130 ) to generate electricity instantaneously to supply power to the transmitting module 230 and to transmit an RF signal to the receiving unit 20 in a short time.
  • the detection unit 100 of the self-generated constant temperature fire detector 10 can detect the occurrence of a fire and an elevated temperature change through the shape memory alloy spring 140 , so there is no limitation in use.
  • the self-generation module 220 of the dust-proof/waterproof self-generation operation unit 200 operated according to the operation of the sensing unit 100 enables self-generation to charge the self-generation module 220 or use the battery. It can be used semi-permanently without the need to replace it.
  • the rubber guide 214 is fixed to the upper portion of the self-power generation module 220 and the transmission module 230 .
  • the self-power generation module 220 and the transmission module 230 in the accommodating part 211 are firmly fixed so that they do not move, and the dustproof/waterproof part 240 that seals the accommodating part 211 of the By supporting the circumference of the contact part 242 , flow and deformation can be minimized, and the generation of air pressure inside the dustproof/waterproof part 240 can be prevented.
  • the dustproof/waterproof part 240 is seated on the upper part of the bulkhead 212 in which the self-generation module 220 and the transmission module 230 are built in, thereby firmly sealing the receiving part 211 from the outside.
  • By blocking dust or water from flowing into the receiving unit 211 it is possible to prevent malfunctions of the self-generation module 220 and the transmission module 230 .
  • the contact part 242 of the dustproof/waterproof part 240 is formed in the form of a bellows type wrinkle, the dustproof/ The entire waterproof part 240 is not deformed, but only around the contact part 242 is deformed so that even when the air inside the receiving part 211 expands, it is possible to secure a space for the air to expand by the wrinkle shape, so that the pressing protrusion It is not limited by the pressing operation of 130, so it operates smoothly even in several operations, so it has durability and wear resistance,
  • the receiving unit 211 in which the self-power generation module 220 and the transmitting module 230 are accommodated is tightly sealed with a rubber dustproof/waterproof unit 240 to prevent dust or water from entering the receiving unit 211 . It does not flow in to maximize the performance of the product, and by forming a wrinkle shape around the contact part 242 of the dustproof/waterproof part 240, the whole of the dustproof/waterproof part 240 is Only around the non-contact part 242 is deformed to minimize the change in air pressure, so that the pressing operation of the pressing protrusion 130 is smoothly performed, so that the self-generation module 220 can be operated smoothly without errors.
  • the inside of the dustproof/waterproof self-generation operation unit 200 can be maximally dustproofed and waterproofed, so that the self-powered constant temperature fire detector 10 can be mounted and used without distinction between indoors and outdoors, thereby maximizing product efficiency. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Emergency Alarm Devices (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

본 발명은 화재를 감지하는 형상기억합금(SMA)을 이용한 화재 감지기를 자가발전이 가능한 자가발전모듈 및 송신모듈을 무선으로 구비하고 방진 및 방수 효율을 최대화할 수 있는 자가발전 무전원 정온식감지기 및 무선 송수신 시스템에 관한 것으로, 화재 발생시 발생되는 열에 의해 작동되고 자가발전이 가능한 자가발전 정온식 화재 감지기와, 상기 자가발전 정온식 화재 감지기의 동작에 따라 화재발생 신호를 무선 통신으로 전달받아 모니터링하는 수신부와, 상기 수신부를 통한 수신 신호를 실시간으로 알려줄 수 있도록 하는 어플리케이션부를 포함하는 것을 특징으로 한다. 이와 같이, 본 발명은 화재 발생 및 기온이 상승으로 지정된 온도로 설정된 형상기억합금스프링이 형상기억 변위를 일으켜 늘어나면서 누름돌기를 밀어주고 누름돌기가 방진/방수부의 접촉부를 눌러주어 자가발전모듈을 동작시켜 자가발전모듈에서 순간적으로 전기가 발생되며 발전된 전기로 송신모듈에 전원을 공급하고 짧은 시간에 수신부로 RF 신호를 보내 수신부의 제어에 따라 어플리케이션부를 통해 실시간으로 화재 발생 상황은 물론 화재 발생 장소를 즉시 알려줄 수 있다.

Description

자가발전 무전원 정온식감지 송수신 시스템
본 발명은 자가발전 무전원 정온식감지기 및 무선 송수신 시스템에 관한 것으로서, 보다 상세하게는 화재를 감지하는 화재 감지기를 자가발전이 가능한 무선으로 구비하고 방진 및 방수 효율을 최대화할 수 있는 자가발전 무전원 정온식감지기 및 무선 송수신 시스템에 관한 것이다.
일반적으로 화재감지기는 감지방식에 따라 화재 발생시에 수반되는 열을 감지하는 방식, 연기를 감지하는 방식, 그리고 적외선을 감지하는 방식 등이 있다.
이러한 화재감지기는 모두 전자적으로 동작하므로, 전기에너지 즉 전력을 공급해야 한다. 이러한 전원공급은 건물 등에 인입되는 전력선을 이용하거나, 감시소 등과 같이 별도로 위난에 대비한 장소에서 독립적으로 공급하는 전원을 이용하게 된다.
또한 화재감지기 자체에 1차 전지를 탑재하여 전원으로서 사용하기도 한다.
그런데 건물에 인입되는 전력선을 사용할 경우 감지기에는 110V 또는 220V의 교류를 직류로 변환해야 하기 때문에, 정류기가 탑재되어 사용된다. 만약 화재의 발생이 상기 전력선에 기인할 경우를 대비하여 감지기의 구동을 위해 2차 전지를 이용한 충전회로가 함께 내장된다.
이러한 방식은 외부 인입 전력선의 사용으로 전원획득에 있어서 비교적 용이한 장점이 있으나, 화재감지기의 설치시 별도의 전기공사가 수반되며, 상기 전력선이 미치지 못하는 장소에는 설치가 불가능한 문제점이 있다.
또한 정류기 및 정류회로와 더불어 2차 전지를 위한 충전회로의 설치가 필수적이기 때문에, 감지기의 가격이 상대적으로 고가인 단점이 있다.
아울러 감시소 등에서 독립적인 전력선을 설치하여 전원이 공급되는 방식인 경우는 아파트나 빌딩처럼 대단위 주거시설이 밀집된 지역에서 주로 사용되는데, 독립적인 전원의 공급으로 신뢰성은 높지만, 감시소가 원거리에 있는 경우에는 적용할 수 없는 문제점이 있으며, 보통 수십 내지 수백 미터에 이르는 전력선의 길이를 감안할 때 외부에서 가해지는 요인에 의해 상기 전력선의 파손이 발생할 경우 전력공급의 차질이 발생된다.
또한 1차 전지를 전원으로 사용하는 방식의 경우에는 주변 전기공급시설과는 관계없이 화재감지기의 설치가 비교적 자유로우나, 통상적인 1차 전지의 구조상 전해질 용액과 금속전극이 항시 접촉하고 있어 1년 내지 2년 정도 기간의 방치시 자가방전이 이루어지기 때문에, 주기적인 1차 전지의 교체가 필요한 문제점이 있다.
따라서, 본 발명은 상기한 문제점을 해결하기 위하여 안출한 것으로, 그 목적은 온도변화에 반응하는 형상기억합금을 적용하여 화재를 감지하고 자가발전이 가능하게 되어 배선 작업이 필요하지 않아 설치 위치에 구애받지 않고 간편하게 설치할 수 있으며 배터리가 없이 자가발전으로 동작하여 반영구적으로 사용이 가능하고 방진 및 방수 효율을 높여 제품성을 최대화할 수 있는 자가발전 무전원 정온식감지기 및 무선 송수신 시스템을 제공함에 있다.
상기한 목적을 달성하기 위한 본 발명의 실시 예에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템은 화재 발생시 발생되는 열에 의해 작동되고 자가발전이 가능한 자가발전 정온식 화재 감지기와, 상기 자가발전 정온식 화재 감지기의 동작에 따라 화재발생 신호를 무선 통신으로 전달받아 모니터링하는 수신부와, 상기 수신부를 통한 수신 신호를 실시간으로 알려줄 수 있도록 하는 어플리케이션부를 포함할 수 있다.
상기 자가발전 정온식 화재 감지기는 화재 발생으로 발생된 온도가 설정온도 이상 시 감지하여 반응하는 감지부와, 상기 감지부에 연동되어 감지부의 동작에 따라 작동되어 수신부로 신호를 보내는 방진/방수형 자가발전 동작부를 포함할 수 있다.
상기 감지부는 방진/방수형 자가발전 동작부에 연결되는 탑커버와, 상기 탑커버에 연결되는 스프링커버와, 상기 스프링커버의 내부에 장입되고 방진/방수형 자가발전 동작부와 접촉되어 방진/방수형 자가발전 동작부를 작동시킬 수 있도록 하는 누름돌기와, 상기 스프링커버의 내부에 구비되어 화재발생시 고온의 열에 의해 인장 및 압축되어 누름돌기를 눌러주는 형상기억합금스프링과, 상기 스프링커버의 내부에 구비되어 화재진압 후 온도가 정상으로 돌아오면 형상기억합금스프링이 자동 복귀됨에 따라 누름돌기를 원상태로 복귀시킬 수 있도록 하는 복귀스프링을 포함할 수 있다.
상기 탑커버는 중앙부에 스프링커버와 누름돌기가 장입될 수 있도록 장입홈이 형성되며, 하부에 감지부를 방진/방수형 자가발전 동작부에 고정할 수 있도록 볼트가 체결되는 복수개의 연결편이 구비될 수 있다.
상기 누름돌기는 끝단이 방진/방수형 자가발전 동작부에 접촉되며, 중간 외측에 형상기억합금스프링과 복귀스프링을 각각 독립적으로 지지할 수 있도록 지지편이 형성될 수 있다.
상기 스프링커버는 하부에 탑커버 내부로 삽입된 스프링커버가 탑커버 내부면에 걸려 빠지지 않도록 걸림턱이 구비되며, 외면에 화재 발생에 따른 고온의 열이 형상기억합금스프링으로 신속히 전달될 수 있도록 복수개의 통공이 형성될 수 있다.
상기 형상기억합금스프링은 누름돌기를 눌러주기 위해 설치 위치에 따라 형상기억합금스프링이 늘어나면서 누름돌기를 눌러주고 온도가 내려가면 형상기억합급스프링이 복귀하면서 복귀스프링을 밀어주어 누름돌기가 제자리로 돌아오는 인장스프링 방식, 형상기억합금스프링이 줄어들면서 복귀스프링을 밀어주어 누름돌기를 눌러주고 온도가 내려가면 형상기억합금스프링이 원래의 크기로 돌아가면서 누름돌기가 제자리로 복귀하는 압축스프링 방식, 적은 변위로 움직일 경우 사용되며 원형의 링에 웨이브 모양의 변위를 주어 설정된 온도가 되면 웨이브 되면서 변위를 일으켜 누름돌기를 눌러주고 복귀스프링이 받쳐주어 온도가 내려가면 복귀하는 와이어 방식으로 형성될 수 있다.
상기 방진/방수형 자가발전 동작부는 내부에 수납부가 형성되게 격벽이 구비된 베이스와, 상기 수납부 내에 구비되어 자가 발전이 가능한 자가발전모듈과, 상기 자가발전모듈의 상부에 전기적으로 연결되어 자가발전모듈에서 발생된 출력을 전달받아 수신부로 무선신호를 보내는 송신모듈과, 상기 베이스의 격벽 상부에 구비되어 수납부를 밀폐시키는 방진/방수부와, 상기 베이스의 외측 둘레를 감싸고 감지부와 연결되어 볼트로 고정되는 미들커버를 포함할 수 있다.
상기 방진/방수부는 하부 외곽 둘레에 격벽 상부로 끼워질 수 있도록 안착부가 형성되며, 중앙부에 누름돌기가 접촉되어 눌려짐에 따라 자가발전모듈을 발전시킬 수 있도록 접촉부가 구비될 수 있다.
상기 접촉부는 누름돌기의 눌려짐에 따라 방진/방수부 전체가 아닌 접촉부만 눌려지도록 하여 공기압력 변화를 최소로 해주어 자가발전모듈을 원활하게 작동시키고 접촉부가 빠르게 원상태로 복원될 수 있도록 주름 형태로 형성될 수 있다.
상기 수신부는 자가발전 정온식 화재 감지기의 동작 신호를 전달받아 화재발생 위치 번호를 모니터에 표시하고 통신 모듈을 사용하여 어플리케이션부로 화재발생 신호를 보낼 수 있다.
상기 어플리케이션부는 수신부의 신호를 전달받아 스피커 및 경광등, 서버를 통해 화재 상황을 알려주고 관리할 수 있다.
상기 자가발전 정온식 화재 감지기를 수신부에 등록하는 방식은 스프링커버가 유동성을 가지며 스프링커버를 누르게 되면 누름돌기가 눌러지게 되고 누름돌기는 방진/방수형 자가발전 동작부를 눌러 주어 등록하는 스프링커버 전체 누름 방식 또는 스프링커버는 그대로 있고 누름돌기만 눌러서 등록하는 누름돌기 누름 방식이 적용될 수 있다.
이상에서 설명한 바와 같이 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템에 의하면, 화재 발생이나 주위 온도가 상승되면 감지부에서 감지하여 방진/방수형 자가발전 동작부를 작동시켜 즉시 수신부 및 어플리케이션부를 통해 신속하게 알려 줄 수 있어 인명 및 재산피해를 최소화하며, 감지부의 감지에 따라 작동되는 방진/방수형 자가발전 동작부가 자가발전이 가능하고 방진 및 방진 효율을 높일 수 있어 설치가 간편하고 먼지 및 물의 유입을 완전히 차단하여 제품의 성능을 극대화할 수 있는 효과가 있다.
도 1은 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템을 도시한 구성도이다.
도 2는 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템의 자가발전 정온식 화재 감지기를 도시한 사시도이다.
도 3은 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템의 자가발전 정온식 화재 감지기를 도시한 분해사시도이다.
도 4는 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템의 자가발전 정온식 화재 감지기를 도시한 절단면도이다.
도 5는 본 발명에 따른 자가발전 정온식 화재 감지기의 감지부를 도시한 저면사시도이다.
도 6은 본 발명에 따른 자가발전 정온식 화재 감지기의 감지부를 도시한 분해사시도이다.
도 7은 본 발명에 따른 자가발전 정온식 화재 감지기의 감지부를 도시한 절단면도이다.
도 8은 본 발명에 따른 자가발전 정온식 화재 감지기의 방진/방수형 자가발전 동작부를 도시한 사시도이다.
도 9는 본 발명에 따른 자가발전 정온식 화재 감지기의 방진/방수형 자가발전 동작부를 도시한 분해사시도이다.
도 10은 본 발명에 따른 자가발전 정온식 화재 감지기의 방진/방수형 자가발전 동작부를 도시한 절단면도이다.
도 11은 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템의 자가발전 정온식 화재 감지기를 수신부로 등록하기 위한 방식을 도시한 절단면도이다.
도 12는 본 발명에 따른 자가발전 정온식 화재 감지기의 형상기억합금스프링의 적용 예를 도시한 절단면도이다.
도 13은 본 발명에 따른 자가발전 정온식 화재 감지기의 일 예를 도시한 절단면도이다.
<도면의 주요부분에 대한 부호의 설명>
10 : 자가발전 정온식 화재 감지기 20 : 수신부
30 : 어플리케이션부 100 : 감지부
110 : 탑커버 111 : 장입홀
112 : 연결편 120 : 스프링커버
121 : 걸림턱 122 : 통공
123 : 홀 130 : 누름돌기
131 : 지지편 140 : 형상기억합금스프링
150 : 복귀스프링 200 : 방진/방수형 자가발전 동작부
210 : 베이스 211 : 수납부
212 : 격벽 212a : 오목면
213 : 고정후크 214 : 러버가이드
220 : 자가발전모듈 230 : 송신모듈
240 : 방진/방수부 241 : 안착부
241a : 볼록면 242 : 접촉부
250 : 미들커버 251 : 끼움홈
B : 볼트 T : 테이퍼
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도면들에 있어서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니며 명확성을 기하기 위하여 과장된 것이다. 본 명세서에서 특정한 용어들이 사용되었으나, 이는 본 발명을 설명하기 위한 목적에서 사용된 것이며, 의미 한정이나 특허청구범위에 기재된 본 발명의 권리 범위를 제한하기 위하여 사용된 것은 아니다.
본 명세서에서 '및/또는'이란 표현은 전후에 나열된 구성요소들 중 적어도 하나를 포함하는 의미로 사용된다. 또한, '연결되는/결합되는'이란 표현은 다른 구성요소와 직접적으로 연결되거나 다른 구성요소를 통해 간접적으로 연결되는 것을 포함하는 의미로 사용된다. 본 명세서에서 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 또한, 명세서에서 사용되는 '포함한다' 또는 '포함하는'으로 언급된 구성요소, 단계, 동작 및 소자는 하나 이상의 다른 구성요소, 단계, 동작 및 소자의 존재 또는 추가를 의미한다.
실시 예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 측(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하면 다음과 같다.
도 1은 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템을 도시한 구성도이며, 도 2는 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템의 자가발전 정온식 화재 감지기를 도시한 사시도이고, 도 3은 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템의 자가발전 정온식 화재 감지기를 도시한 분해사시도이며, 도 4는 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템의 자가발전 정온식 화재 감지기를 도시한 절단면도이고, 도 5는 본 발명에 따른 자가발전 정온식 화재 감지기의 감지부를 도시한 저면사시도이며, 도 6은 본 발명에 따른 자가발전 정온식 화재 감지기의 감지부를 도시한 분해사시도이고, 도 7은 본 발명에 따른 자가발전 정온식 화재 감지기의 감지부를 도시한 절단면도이며, 도 8은 본 발명에 따른 자가발전 정온식 화재 감지기의 방진/방수형 자가발전 동작부를 도시한 사시도이고, 도 9는 본 발명에 따른 자가발전 정온식 화재 감지기의 방진/방수형 자가발전 동작부를 도시한 분해사시도이며, 도 10은 본 발명에 따른 자가발전 정온식 화재 감지기의 방진/방수형 자가발전 동작부를 도시한 절단면도이고, 도 11은 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템의 자가발전 정온식 화재 감지기를 수신부로 등록하기 위한 방식을 도시한 절단면도이며, 도 12는 본 발명에 따른 자가발전 정온식 화재 감지기의 형상기억합금스프링의 적용 예를 도시한 절단면도이고, 도 13은 본 발명에 따른 자가발전 정온식 화재 감지기의 일 예를 도시한 절단면도이다.
도 1 내지 도 13에 도시된 바와 같이, 본 발명에 따른 자가발전 무전원 정온식감지기 및 무선 송수신 시스템은 자가발전 정온식 화재 감지기(10)와, 수신부(20)와, 어플리케이션부(30)를 포함하게 된다.
상기 자가발전 정온식 화재 감지기(10)는 건물 내,외부에 설치되어 화재 발생 및 기온의 상승으로 인한 고온이 열에 의해 작동되어 화재 발생을 감지할 수 있게 된다.
또한, 상기 자가발전 정온식 화재 감지기(10)는 자가 발전이 가능하여 배선이 필요하지 않아 원하는 장소에 간편하게 설치할 수 있으며, 탈부착이 용이하여 설치 위치를 임의적으로 바꿀 수 있다.
그리고, 상기 자가발전 정온식 화재 감지기(10)는 무선 주파수(Radio Frequency, RF) 신호로 상향 변환하여 수신부(20)와 무선 통신할 수 있다.
도 2 내지 도 4에서와 같이, 상기 자가발전 정온식 화재 감지기(10)는 감지부(100)와, 방진/방수형 자가발전 동작부(200)를 포함하게 된다.
상기 감지부(100)는 화재 발생 및 주위 온도가 상승하여 설정온도 이상이 되면 감지하여 동작하게 된다.
즉, 상기 감지부(100)가 온도 변화에 반응하여 방진/방수형 자가발전 동작부(200)를 동작시켜 수신부(20)로 화재 발생 상황을 알려주게 된다.
그리고, 상기 감지부(100)는 형상기억합금(Shape memory alloy, SMA)을 이용한 액추에이터 방식을 적용할 수 있다.
도 4 내지 도 7에서와 같이, 상기 감지부(100)는 탑커버(110)와, 스프링커버(120)와, 누름돌기(130)와, 형상기억합금스프링(140)과, 복귀스프링(150)을 포함하게 된다.
상기 탑커버(110)는 방진/방수형 자가발전 동작부(200)와 연결될 수 있다.
상기 탑커버(110)의 중앙부에는 스프링커버(120)와 누름돌기(130)가 장입될 수 있도록 상,하를 관통하여 장입홈(111)이 형성될 수 있다.
또한, 상기 탑커버(111)의 하부에는 감지부(100)를 방진/방수형 자가발전 동작부(200)에 볼트(B)로 고정할 수 있도록 볼트(B)가 체결되는 연결편(112)이 구비될 수 있다.
그리고, 상기 연결편(112)은 감지부(100)와 방진/방수형 자가발전 동작부(200)가 흔들림없이 안정적으로 연결될 수 있도록 복수개로 구비될 수 있다.
상기 스프링커버(120)는 탑커버(110)의 장입홈(111)으로 장입되어 연결되게 된다.
또한, 상기 스프링커버(120)는 하부에 탑커버(110)의 장입홈(111)으로 장입될 때 탑커버(110) 내부면에 걸려 빠지지 않도록 걸림턱(121)이 구비될 수 있다.
그리고, 상기 스프링커버(120)의 외면에는 화재 발생에 따른 고온의 열이 형상기억합금스프링(140)으로 신속히 전달될 수 있도록 복수개의 통공(122)이 형성될 수 있다.
이때, 상기 통공(122)은 스프링커버(120)의 외면 전체 둘레에 형성됨이 바람직하다.
상기 스프링커버(120)는 금속 재질로 형성될 수 있다.
또한, 도 11의 (a)에서와 같이 상기 스프링커버(120)는 탑커버(110)에 자가발전 정온식 화재 감지기(10)를 수신부(20)에 등록 시 스프링커버(120)가 유동되어 스프링커버(120) 전체를 눌러주는 방식 또는 도 11의 (b)에서와 같이 스프링커버(120)는 고정되어 그대로 있고 누름돌기(130)만 눌러주는 방식이 적용될 수 있다.
한편, 도 11의 (b)에서와 같이 상기 자가발전 정온식 화재 감지기(10)를 수신부(20)에 등록 시 스프링커버(120)가 고정형일 때에는 스프링커버(120)의 상부에 홀(123)을 형성하고 이 홀(123)을 이용하여 지그(도시하지 않음)를 통해 누름돌기(130)를 눌러서 등록할 수 있다.
상기 누름돌기(130)는 스프링커버(120)의 내부에 장입되고 방진/방수형 자가발전 동작부(200)와 접촉되어 형상기억합금스프링(140)의 인장이나 압축에 따라 눌려져 방진/방수형 자가발전 동작부(200)를 작동시키게 된다.
상기 누름돌기(130)는 끝단이 방진/방수형 자가발전 동작부(200)에 접촉되되 안쪽으로 테이퍼(T)지게 형성될 수 있다.
또한, 상기 누름돌기(130)의 중간 외측에는 형상기억합금스프링(140)과 복귀스프링(150)을 각각 독립적으로 지지할 수 있도록 지지편(131)이 형성될 수 있다.
즉, 상기 지지편(131)에 의해 형상기억합금스프링(140)과 복귀스프링(150)이 서로 분리되어 지지됨으로써 형상기억합금스프링(150)의 인장 및 압축에 따라 이동되는 누름돌기(130)가 이동된 후 복귀스프링(150)의 팽창력으로 누름돌기(130)가 원상태로 복귀될 수 있다.
이와 함께, 도 13에서와 같이 상기 스프링커버(120)와 누름돌기(130)는 설치 환경 및 조건에 따라 길이를 변경할 수 있다.
상기 형상기억합금스프링(140)은 스프링커버(120)의 내부에 구비되어 화재 발생 및 주위 온도의 상승으로 인한 고온의 열에 의해 인장 및 압축되어 누름돌기(130)를 눌러주어 방진/방수형 자가발전 동작부(200)를 작동시킬 수 있게 된다.
또한, 상기 형상기억합금스프링(140)은 누름돌기(130)를 눌러주기 위해 스프링커버(120) 내부에 설치되는 위치에 따라 인장 및 압축될 수 있도록 인장스프링이나 압축스프링, 와이어 형태로 형성될 수 있다.
즉, 도 12의 (a)에서와 같이 상기 형상기억합금스프링(140)을 인장스프링으로 적용하면 화재 발생 및 주위 온도의 상승으로 설정된 온도 이상이 되면 형상기억합금스프링(140)이 늘어나면서 누름돌기(130)를 눌러주고 온도가 내려가 설정된 온도 이하가 되면 형상기억합금스프링(140)이 복귀함과 동시에 복귀스프링(150)을 밀어주어 누름돌기(130)가 제자리로 돌아오는 방식에 적용될 수 있다.
그리고, 도 12의 (b)에서와 같이 상기 형상기억합금스프링(140)을 압축스프링으로 적용하면 화재 발생 및 주위 온도의 상승으로 설정된 온도 이상이 되면 형상기억합금스프링(140)이 줄어들면서 복귀스프링(150)을 밀어주어 누름돌기(130)를 눌러주고 온도가 내려가 설정된 온도 이하가 되면 형상기억합금스프링(140)이 원래 크기로 돌아가면서 누름돌기(130)가 제자리로 복귀하는 방식에 적용될 수 있다.
또한, 도 12의 (c)에서와 같이 상기 형상기억합금스프링(140)이 적은 변위로 움직일 경우 와이어 형태를 적용하며 원형의 링에 웨이브 모양의 변위를 주어 설정된 온도가 되면 와이어가 웨이브 되면서 변위를 일으켜 누름돌기(130)를 눌러주고 복귀스프링(150)이 받쳐주어 온도가 내려가면 복귀하는 방식에 적용될 수 있다.
상기 복귀스프링(150)은 스프링커버(120)의 내부에 구비되며, 화재 진압 후 상승된 온도가 내려가면 형상기억합금스프링(140)이 자동 복귀됨에 따라 팽창되어 누름돌기(130)를 원상태로 복귀시키게 된다.
한편, 상기 감지부(100)는 형상기억합금스프링(140)을 적용하여 화재 발생을 감지함으로써 재사용이 가능하게 되어 비용을 절감할 수 있다.
상기 방진/방수형 자가발전 동작부(200)는 감지부(100)에 연동되어 화재 발생시 감지부(100)의 동작에 따라 작동되어 수신부(20)로 신호를 보내게 된다.
또한, 상기 방진/방수형 자가발전 동작부(200)는 감지부(100)의 동작에 따라 자체적으로 자가발전이 가능하게 된다.
도 4 및 도 8 내지 도 10에서와 같이, 상기 방지/방수형 자가발전 동작부(200)는 베이스(210)와, 자가발전모듈(220)과, 송신모듈(230)과, 방진/방수부(240)와, 미들커버(250)를 포함하게 된다.
상기 베이스(210)는 내부에 자가발전모듈(220)과 송신모듈(230)이 설치되도록 수납부(211)가 형성되게 격벽(212)이 구비되게 된다.
상기 격벽(212)의 상단 둘레에는 오목면(212a)이 형성될 수 있다.
또한, 상기 베이스(210)의 수납부(211)에는 상부로 돌출되게 복수개의 고정후크(213)가 구비되며, 상기 수납부(211)의 상부에 자가발전모듈(220)과 송신모듈(230)을 고정시키기 위한 러버가이드(214)가 고정후크(213)에 고정될 수 있다.
그리고, 상기 러버가이드(214)는 수납부(211)에 설치되는 자가발전모듈(220)과 송신모듈(230)의 상부에 구비되어 자가발전모듈(220)과 송신모듈(230)을 지지하게 된다.
상기 자가발전모듈(220)은 수납부(211) 내에 구비되어 감지부(100)의 누름돌기(130)의 누름 동작에 따라 기계적 변위를 전력으로 변환하며 자가 발전이 가능하게 된다.
한편, 상기 자가발전모듈(220)은 자기력을 이용하여 전기를 생산하는 방식으로 이루어지는 것으로 이러한 방식은 이미 널리 통용화되어 사용되고 있으므로 이에 대한 기술적 구성 및 작동원리는 생략하기로 한다.
상기 송신모듈(230)은 자가발전모듈(220)의 상부에 자가발전모듈(220)과 전기적으로 연결되어 자가발전모듈(220)에서 생긴 출력을 전달받아 수신부(20)로 무선신호를 보내게 된다.
상기 방진/방수부(240)는 베이스(210)의 격벽(212) 상부에 안착되어 수납부(211)를 밀폐시키게 된다.
또한, 상기 방진/방수부(240)는 고무 재질로 이루어질 수 있다.
즉, 상기 방진/방수부(240)가 수납부(211) 전체를 밀폐시키게 됨으로써 상기 수납부(211) 내로 먼지나 물이 유입되지 않게 되어 상기 수납부(211)에 설치되는 자가발전모듈(220)과 송신모듈(230)이 부식되는 등의 고장을 방지할 수 있게 된다.
상기 방진/방수부(240)의 하부 외곽 둘레에는 격벽(212) 상에 방진/방수부(240)가 안착될 수 있도록 안착부(241)가 형성되게 된다.
또한, 상기 안착부(241)의 하부에는 방진/방수부(240)가 격벽(212)에 끼워질 때 상기 수납부(211)의 실링 효율을 최대화할 수 있도록 상기 격벽(212) 상단의 오목면(212a)에 밀착되게 볼록면(241a)이 구비될 수 있다.
즉, 상기 안착부(241)가 격벽(212)의 상부에 안착될 때 상기 오목면(212a)과 볼록면(241a)에 의해 상기 방진/방수부(240)가 수납부(211) 내를 견고하게 밀폐시킬 수 있어 상기 수납부(211)의 실링 효율을 최대화할 수 있다.
그리고, 상기 방진/방수부(240)의 중앙부에는 누름돌기(130)가 접촉되어 누름돌기(130)의 누름 동작에 따라 자가발전모듈(220)을 발전시키기 위한 접촉부(242)가 구비될 수 있다.
상기 접촉부(242)는 누름돌기(130)의 눌려짐에 따라 방진/방수부(240) 전체가 변형되지 않고 접촉부(242)만 눌려지도록 하여 공기압력 변화를 최소로 해주어 자가발전모듈(220)을 원활하게 작동시키고 접촉부(242)가 빠르게 원상태로 복원될 수 있도록 주름 형태로 형성될 수 있다.
또한, 상기 접촉부(242)는 상,하부가 바깥쪽으로 돌출되게 구비되되 바닥면의 두께를 다른 부위보다 두껍게 하여 누름돌기(130)의 눌려짐으로 인해 밑으로 내려간 접촉부(242)를 다시 원상태로 원활하게 복원시켜주고 누름 동작의 오랜 동작에도 방진/방수부(240)의 마모를 최소화할 수 있다.
상기 미들커버(250)는 베이스(210)의 외측 둘레를 감싸고 감지부(200)의 탑커버(110)와 연결되어 볼트(B)로 고정될 수 있다.
또한, 상기 미들커버(250)의 중앙에는 누름돌기(130)가 끼워질 수 있도록 끼움홈(251)이 형성될 수 있다.
상기 수신부(20)는 자가발전 정온식 화재 감지기(10)의 동작에 따라 송신모듈(230)로부터 화재 발생 신호를 무선 통신으로 전달받아 모니터링하게 된다.
즉, 상기 수신부(20)는 자가발전 정온식 화재 감지기(10)의 감지신호를 무선 주파수(Radio Frequency, RF) 신호로 전달받아 어플리케이션부(30)로 수신된 신호를 전달하게 된다.
또한, 상기 수신부(20)는 자가발전 정온식 화재 감지기(10)가 동작하면 모니터에 화재가 발생된 지역의 위치번호를 표시하고 통신모듈(일 예로, 485통신 또는 RF통신 중계모듈)을 활용하여 어플리케이션부(30)로 신호를 보내게 된다.
상기 어플리케이션부(30)는 수신부(20)를 통한 화재 발생 수신 신호를 실시간으로 알려주게 된다.
또한, 상기 어플리케이션부(30)는 수신부(20)의 신호를 전달받아 스피커 및 경광등을 활용하여 화재 발생을 알려주며 서버와 연결되어 등록된 신호를 확인하여 화재 상황을 신속하게 대체할 수 있다.
상기와 같은 시스템으로 이루어진 본 발명의 자가발전 무전원 정온식감지기 및 무선 송수신 시스템에 따른 작용상태를 살펴보면 아래와 같다.
상기 감지부(100)에 방진/방수형 자가발전 동작부(200)를 연동함으로써 화재 발생 및 기온의 상승에 따라 상기 감지부(100)가 동작하여 방진/방수형 자가발전 동작부(200)를 작동시키고 상기 방진/방수형 자가발전 동작부(200)가 작동되면 무선 통신으로 수신부(20)로 신호를 보내 수신부(20)와 어플리케이션부(30)를 통해 화재 발생 상황을 즉시 알려주게 된다.
이와 같이, 화재 발생 및 기온의 상승으로 지정된 온도로 설정된 형상기억합금스프링(140)이 설정온도 이상이 되면 형상기억 변위를 일으켜 늘어나거나 줄어들면서 상기 누름돌기(130)를 아래로 눌러주어 상기 누름돌기(130)가 자가발전모듈(220)을 동작시켜 자가발전을 일으키고, 발전된 전기로 송신모듈(230)을 통해 수신부(20)로 화재 발생 및 온도가 급상승된 사실을 알려주게 된다.
그리고, 화재가 진압되어 주위 온도가 내려가면 상기 형상기억합금스프링(140)이 변위 전 상태로 복귀하고 상기 누름돌기(130)를 받치고 있는 복귀스프링(150)이 누름돌기(130)를 밀어주어 화재가 진압되었다는 2차 신호를 보내며 다시 화재 감지 상태를 유지할 수 있게 된다.
또한, 상기 감지부(100)의 동작에 따라 방진/방수형 자가발전 동작부(200)는 감지부(100)의 감지 및 기구변화를 받아서 동작하되 상기 자가발전모듈(220)이 누름돌기(130)로 눌러지면 순간적으로 전기를 발생시켜 송신모듈(230)에 전원을 공급하고 짧은 시간에 수신부(20)로 RF신호를 보내게 된다.
따라서, 상기 자가발전 정온식 화재 감지기(10)의 감지부(100)를 형상기억합금스프링(140)을 통해 화재 발생 및 상승된 온도 변화를 감지할 수 있어 사용에 제한이 없다.
그리고, 상기 감지부(100)의 동작에 따라 작동되는 방진/방수형 자가발전 동작부(200)의 자가발전모듈(220)이 자가 발전이 가능하게 되어 상기 자가발전모듈(220)을 충전하거나 배터리를 교체할 필요 없이 반영구적으로 사용할 수 있다.
또한, 상기 수납부(211)에 자가발전모듈(220)과 송신모듈(230)이 내장된 상태에서 상기 자가발전모듈(220)과 송신모듈(230)의 상부에 러버가이드(214)가 고정후크(213)로 고정됨으로써 상기 수납부(211) 내의 자가발전모듈(220)과 송신모듈(230)이 움직이지 않도록 견고하게 고정시키고 상기 수납부(211)를 밀폐시키는 방진/방수부(240)의 접촉부(242) 주위를 받쳐주어 유동 및 변형을 최소화할 수 있으며 상기 방진/방수부(240) 내부에 공기압의 발생을 방지할 수 있다.
그리고, 상기 자가발전모듈(220)과 송신모듈(230)이 내장되어 있는 격벽(212)의 상부에 방진/방수부(240)를 안착시켜 상기 수납부(211)를 견고하게 밀폐시키게 되어 외부로부터 먼지나 물이 수납부(211)로 유입되지 않도록 차단하여 상기 자가발전모듈(220) 및 송신모듈(230)의 고장을 방지할 수 있다.
이와 함께, 상기 격벽(212)의 상부에 방진/방수부(240)가 안착될 때 상기 안착부(241)의 볼록면(241a)이 격벽(212)의 오목면(212a)에 밀착되어 상기 수납부(211)의 실링 효율을 최대화할 수 있다.
또한, 상기 방진/방수부(240)의 접촉부(242)가 자바라 형식의 주름 형태로 형성됨으로써 상기 누름돌기(130)의 누름 동작으로 누름돌기(130)가 접촉부(242)를 누를 때 상기 방진/방수부(240)의 전체가 변형되지 않고 상기 접촉부(242) 주위만 변형되어 상기 수납부(211) 내부의 공기가 팽창하여도 주름 형태에 의해 팽창하는 공기의 공간을 확보해줄 수 있어 상기 누름돌기(130)의 누름 동작에 제한을 받지 않아 여러 번의 동작에도 원활하게 작동되어 내구성 및 내마모성을 갖게 된다,
따라서, 상기 자가발전모듈(220)과 송신모듈(230)이 수납되는 수납부(211)를 고무 재질의 방진/방수부(240)로 견고하게 밀폐시켜 상기 수납부(211) 내로 먼지나 물이 유입되지 않아 제품의 성능을 최대화하고 상기 방진/방수부(240)의 접촉부(242) 주위를 주름 형태로 형성하여 상기 누름돌기(130)의 누름 동작에 따라 방진/방수부(240)의 전체가 아닌 접촉부(242) 주위만 변형되어 공기압력 변화를 최소로 해주어 상기 누름돌기(130)의 누름 동작이 원활하게 이루어져 상기 자가발전모듈(220)이 오류 없이 원활하게 작동될 수 있다.
그리고, 상기 방진/방수형 자가발전 동작부(200)의 내부를 최대한 방진 및 방수시킬 수 있어 상기 자가발전 정온식 화재 감지기(10)를 실내 및 실외의 구분없이 장착하여 사용할 수 있어 제품 효율을 최대화할 수 있다.
이상에서 설명한 바와 같이 본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.

Claims (7)

  1. 화재 발생시 발생되는 열에 의해 작동되고 자가발전이 가능한 자가발전 정온식 화재 감지기(10);
    상기 자가발전 정온식 화재 감지기(10)의 동작에 따라 화재발생 신호를 무선 통신으로 전달받아 모니터링하는 수신부(20); 및
    상기 수신부(20)를 통한 수신 신호를 실시간으로 알려줄 수 있도록 하는 어플리케이션부(30);를 포함하며,
    상기 자가발전 정온식 화재 감지기(10)는,
    화재 발생으로 발생된 온도가 설정온도 이상 시 감지하여 반응하는 감지부(100); 및
    상기 감지부(100)에 연동되어 감지부(100)의 동작에 따라 작동되어 수신부(20)로 신호를 보내는 방진/방수형 자가발전 동작부(200);를 포함하고,
    상기 감지부(100)는,
    상기 방진/방수형 자가발전 동작부(200)에 연결되는 탑커버(110);
    상기 탑커버(110)에 연결되는 스프링커버(120);
    상기 스프링커버(120)의 내부에 장입되고 방진/방수형 자가발전 동작부(200)와 접촉되어 방진/방수형 자가발전 동작부(200)를 작동시킬 수 있도록 하는 누름돌기(130);
    상기 스프링커버(120)의 내부에 구비되어 화재발생시 고온의 열에 의해 형상기억 변위를 일으켜 인장 및 압축되어 스위치 역할을 하는 누름돌기(130)를 눌러주어 방진/방수형 자가발전 동작부(200)를 작동시킬 수 있도록 하는 형상기억합금스프링(140); 및
    상기 스프링커버(120)의 내부에 구비되어 화재진압 후 온도가 정상으로 돌아오면 형상기억합금스프링(140)이 자동 복귀됨에 따라 누름돌기(130)를 원상태로 복귀시킬 수 있도록 하는 복귀스프링(150);을 포함하며,
    상기 방진/방수형 자가발전 동작부(200)는,
    내부에 수납부(211)가 형성되게 격벽(212)이 구비된 베이스(210);
    상기 수납부(211) 내에 구비되어 자가 발전이 가능한 자가발전모듈(220);
    상기 자가발전모듈(220)의 상부에 전기적으로 연결되어 자가발전모듈(220)에서 발생된 출력을 전달받아 수신부(20)로 무선신호를 보내는 송신모듈(230);
    상기 베이스(210)의 격벽(212) 상부에 구비되어 수납부(211)를 밀폐시키는 방진/방수부(240); 및
    상기 베이스(210)의 외측 둘레를 감싸고 감지부(100)와 연결되어 볼트(B)로 고정되는 미들커버(250);를 포함하고,
    상기 방진/방수부(240)는 하부 외곽 둘레에 격벽(212) 상부로 끼워질 수 있도록 안착부(241)가 형성되며, 중앙부에 누름돌기(130)가 접촉되어 눌려짐에 따라 자가발전모듈(220)을 발전시킬 수 있도록 접촉부(242)가 구비되며,
    상기 접촉부(242)는 누름돌기(130)의 눌려짐에 따라 방진/방수부(240) 전체가 아닌 접촉부(242)만 눌려지도록 하여 공기압력 변화를 최소로 해주어 자가발전모듈(220)을 원활하게 작동시키고 접촉부(242)가 빠르게 원상태로 복원될 수 있도록 주름 형태로 형성되고,
    상기 자가발전 정온식 화재 감지기(10)를 수신부(20)에 등록하는 방식은 스프링커버(120)가 유동성을 가지며 스프링커버(120)를 누르게 되면 누름돌기(130)가 눌러지게 되고 누름돌기(130)는 방진/방수형 자가발전 동작부(200)를 눌러 주어 등록하는 스프링커버(120) 전체 누름 방식 또는 스프링커버(120)는 그대로 있고 누름돌기(130)만 눌러서 등록하는 누름돌기(130) 누름 방식이 적용되는 것을 특징으로 하는 자가발전 무전원 정온식감지 송수신 시스템.
  2. 제 1 항에 있어서,
    상기 탑커버(110)는 중앙부에 스프링커버(120)와 누름돌기(130)가 장입될 수 있도록 장입홈(111)이 형성되며, 하부에 감지부(100)를 방진/방수형 자가발전 동작부(200)에 고정할 수 있도록 볼트(B)가 체결되는 복수개의 연결편(112)이 구비되는 것을 특징으로 하는 자가발전 무전원 정온식감지 송수신 시스템.
  3. 제 1 항에 있어서,
    상기 누름돌기(130)는 끝단이 방진/방수형 자가발전 동작부(200)에 접촉되며, 중간 외측에 형상기억합금스프링(140)과 복귀스프링(150)을 각각 독립적으로 지지할 수 있도록 지지편(131)이 형성되는 것을 특징으로 하는 자가발전 무전원 정온식감지 송수신 시스템.
  4. 제 1 항에 있어서,
    상기 스프링커버(120)는 하부에 탑커버(110) 내부로 삽입된 스프링커버(120)가 탑커버(110) 내부면에 걸려 빠지지 않도록 걸림턱(121)이 구비되며, 외면에 화재 발생에 따른 고온의 열이 형상기억합금스프링(140)으로 신속히 전달될 수 있도록 복수개의 통공(122)이 형성되는 것을 특징으로 하는 자가발전 무전원 정온식감지 송수신 시스템.
  5. 제 1 항에 있어서,
    상기 형상기억합금스프링(140)은 누름돌기(130)를 눌러주기 위해 설치 위치에 따라 형상기억합금스프링(140)이 늘어나면서 누름돌기(130)를 눌러주고 온도가 내려가면 형상기억합급스프링(140)이 복귀하면서 복귀스프링(150)을 밀어주어 누름돌기(130)가 제자리로 돌아오는 인장스프링 방식, 형상기억합금스프링(140)이 줄어들면서 복귀스프링(150)을 밀어주어 누름돌기(130)를 눌러주고 온도가 내려가면 형상기억합금스프링(140)이 원래의 크기로 돌아가면서 누름돌기(130)가 제자리로 복귀하는 압축스프링 방식, 적은 변위로 움직일 경우 사용되며 원형의 링에 웨이브 모양의 변위를 주어 설정된 온도가 되면 웨이브 되면서 변위를 일으켜 누름돌기(130)를 눌러주고 복귀스프링(150)이 받쳐주어 온도가 내려가면 복귀하는 와이어 방식으로 형성되는 것을 특징으로 하는 자가발전 무전원 정온식감지 송수신 시스템.
  6. 제 1 항에 있어서,
    상기 수신부(20)는 자가발전 정온식 화재 감지기(10)의 동작 신호를 전달받아 화재발생 위치 번호를 모니터에 표시하고 통신 모듈을 사용하여 어플리케이션부(30)로 화재발생 신호를 보내는 것을 특징으로 하는 자가발전 무전원 정온식감지 송수신 시스템.
  7. 제 1 항에 있어서,
    상기 어플리케이션부(30)는 수신부(20)의 신호를 전달받아 스피커 및 경광등, 서버를 통해 화재 상황을 알려주고 관리하는 것을 특징으로 하는 자가발전 무전원 정온식감지 송수신 시스템.
PCT/KR2020/012843 2020-02-03 2020-09-23 자가발전 무전원 정온식감지 송수신 시스템 WO2021157808A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022573134A JP7384497B2 (ja) 2020-02-03 2020-09-23 自己発電無電源定温式感知送受信システム
US17/797,365 US11854362B2 (en) 2020-02-03 2020-09-23 System for transmitting and receiving self-powered power-free fixed temperature type fire detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200012337A KR102152447B1 (ko) 2020-02-03 2020-02-03 자가발전 무전원 정온식감지 송수신 시스템
KR10-2020-0012337 2020-02-03

Publications (1)

Publication Number Publication Date
WO2021157808A1 true WO2021157808A1 (ko) 2021-08-12

Family

ID=72470916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012843 WO2021157808A1 (ko) 2020-02-03 2020-09-23 자가발전 무전원 정온식감지 송수신 시스템

Country Status (4)

Country Link
US (1) US11854362B2 (ko)
JP (1) JP7384497B2 (ko)
KR (1) KR102152447B1 (ko)
WO (1) WO2021157808A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152447B1 (ko) * 2020-02-03 2020-09-04 엠피아주식회사 자가발전 무전원 정온식감지 송수신 시스템
KR102428999B1 (ko) * 2021-08-10 2022-08-04 주식회사 건일이엔지 소방 배관 설치구조

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010076054A (ko) * 2000-01-24 2001-08-11 우영석 정온식 화재감지기
JP2005275844A (ja) * 2004-03-25 2005-10-06 Hochiki Corp 火災警報機
KR101223680B1 (ko) * 2012-06-18 2013-01-22 주식회사 다스 코리아 스마트형 화재 감시 감지 시스템
KR20160061662A (ko) * 2014-11-24 2016-06-01 김진한 자가발전기능을 갖는 화재 감지기
KR102022644B1 (ko) * 2019-01-11 2019-09-18 엠피아주식회사 무선 자가발전벨
KR102152447B1 (ko) * 2020-02-03 2020-09-04 엠피아주식회사 자가발전 무전원 정온식감지 송수신 시스템

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300871B1 (en) * 1997-11-12 2001-10-09 Headwaters Research & Development, Inc. Multi-station RF thermometer and alarm system
KR200285883Y1 (ko) 2002-05-15 2002-08-16 이호준 비축전지가 내장되는 화재감지장치
US7275864B1 (en) * 2006-03-10 2007-10-02 Thompson Gregory E Wireless, solar-powered, pavement temperature sensor
JP6846088B2 (ja) 2017-06-15 2021-03-24 ホーチキ株式会社 熱感知器
JP6896524B2 (ja) 2017-06-28 2021-06-30 ホーチキ株式会社 熱感知器
KR101984624B1 (ko) 2018-11-20 2019-05-31 윈텍정보(주) 유선식 화재감지기의 보조 화재경보 시스템
WO2021257297A1 (en) * 2020-06-19 2021-12-23 Ecolab Usa Inc. Embedded temperature sensors for monitoring temperature of articles and status of drying or cleaning cycles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010076054A (ko) * 2000-01-24 2001-08-11 우영석 정온식 화재감지기
JP2005275844A (ja) * 2004-03-25 2005-10-06 Hochiki Corp 火災警報機
KR101223680B1 (ko) * 2012-06-18 2013-01-22 주식회사 다스 코리아 스마트형 화재 감시 감지 시스템
KR20160061662A (ko) * 2014-11-24 2016-06-01 김진한 자가발전기능을 갖는 화재 감지기
KR102022644B1 (ko) * 2019-01-11 2019-09-18 엠피아주식회사 무선 자가발전벨
KR102152447B1 (ko) * 2020-02-03 2020-09-04 엠피아주식회사 자가발전 무전원 정온식감지 송수신 시스템

Also Published As

Publication number Publication date
JP2023512353A (ja) 2023-03-24
JP7384497B2 (ja) 2023-11-21
KR102152447B1 (ko) 2020-09-04
US11854362B2 (en) 2023-12-26
US20230068271A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
WO2021157808A1 (ko) 자가발전 무전원 정온식감지 송수신 시스템
WO2018230818A1 (ko) 고압선 점검용 무인비행체 및 그 제어방법
WO2021045576A1 (ko) 가스 센서를 이용한 배터리 보호 장치 및 방법
WO2021157771A1 (ko) IoT 기반의 소화 장치를 이용한 통합 소방방재 장치 및 방법
WO2014107094A1 (ko) 이차전지모듈용 센싱어셈블리 및 상기 센싱어셈블리를 구비한 이차전지모듈
WO2019168341A1 (ko) 통합 iot 모듈 및 이를 이용한 iot 기반의 설비 환경 통합 관리 시스템
WO2013036065A2 (ko) 비접촉식 온도 감시 장치
WO2021201369A1 (ko) 화재발생 예측 시스템 및 그 방법
WO2021118062A1 (ko) 태양전지 모듈 모니터링 장치 및 방법
WO2021045357A1 (ko) 전력선로용 기기의 함체 및 그 설치기구와, 이를 구비한 전력선로용 기기
WO2019124804A1 (ko) 안전장치가 구비된 iot 지능형 중앙제어식 전력절감 및 차단 시스템
WO2011159108A2 (ko) 태양광 조명출력 제어장치 및 그 방법
WO2017074026A1 (ko) 캡슐형 소화 장치
WO2015008916A2 (en) Flow path switching valve
WO2020138573A1 (ko) Iot 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치
WO2020071669A1 (ko) 청소로봇이 지면의 단차에 적응적으로 동작하는 방법 및 청소로봇
WO2021033877A1 (ko) 휴대용 가스용기 워머
WO2020171328A1 (ko) 진공차단기용 접점 감시 장치 및 이를 포함하는 진공차단기
WO2020116835A1 (ko) 자기이동경로 제어장치
WO2021261661A1 (ko) 자가발전 가스밸브 무선원격 개폐 모니터링 시스템
WO2022080884A1 (ko) 스마트 볼트
WO2021060772A1 (ko) 머신러닝기반 태양광발전운영 관리시스템 및 관리방법
WO2021157770A1 (ko) IoT 기능을 탑재한 소화 장치
WO2011162425A1 (ko) 영구자석 잠금장치
WO2011118933A2 (ko) 퓨즈 단선신호 발생장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/12/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20918023

Country of ref document: EP

Kind code of ref document: A1