WO2020138573A1 - Iot 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치 - Google Patents

Iot 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치 Download PDF

Info

Publication number
WO2020138573A1
WO2020138573A1 PCT/KR2018/016948 KR2018016948W WO2020138573A1 WO 2020138573 A1 WO2020138573 A1 WO 2020138573A1 KR 2018016948 W KR2018016948 W KR 2018016948W WO 2020138573 A1 WO2020138573 A1 WO 2020138573A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
circuit breaker
iot
leakage current
branch
Prior art date
Application number
PCT/KR2018/016948
Other languages
English (en)
French (fr)
Inventor
이기연
임승택
김동우
임용배
최동환
Original Assignee
한국 전기안전공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국 전기안전공사 filed Critical 한국 전기안전공사
Publication of WO2020138573A1 publication Critical patent/WO2020138573A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/02Measuring effective values, i.e. root-mean-square values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to a method and apparatus for estimating a fault condition of a converter and a load using an IoT-based load device and a smart distribution panel, detecting state information and event information of an electric safety element in an IoT-based load device and a smart distribution panel, and generating The IoT-based load device that estimates the fault condition and the fault location of the converter and load by performing analysis based on the detected state information and event information on the platform and the method and device for estimating the fault state of the converter and load using the smart distribution panel It is about.
  • an overcurrent circuit breaker and an earth leakage circuit breaker are used as protection devices for general electric equipment such as unit households of apartment houses.
  • the overcurrent circuit breaker detects the magnitude of the current
  • the earth leakage circuit breaker detects the magnitude of the synthetic leakage current to block the converter, and detects the magnitude by classifying some resistive leakage current and capacitive leakage current, and then blocks the converter.
  • the over-current circuit breaker operates to cut off the converter, and in some cases, an arc-breaker or arc alarm is installed to protect the converter when an arc occurs in the converter.
  • an arc-breaker or arc alarm is installed to protect the converter when an arc occurs in the converter.
  • the presence or absence of an event and the size of a detection element for each event can be checked even in the normal operation state of the protection device and the introduction of a data-based service such as a communication-based distribution panel, but the load state and the location of the failure cannot be confirmed.
  • a data-based service such as a communication-based distribution panel
  • the current general electrical equipment's protection device can only alarm or protect against short circuit, overcurrent, leakage current, and arc failure, so check the load status by analyzing the power factor or rating of the product used as the load. It is impossible.
  • IoT-based load devices provide services using communication, most of them remain at the level of operation status check and energy consumption check through remote control, and in the case of smart products, quick problem solving function for user convenience in case of product failure Most of the smart diagnosis information has.
  • home appliances or lighting products used as loads in general electrical facilities are subject to product safety certification to prevent accidents due to products, but they may cause defects in illegal products or products due to long-term use. Need a detection method.
  • Patent Literature 1 Korea Registered Patent No. 10-1592466 (announced on February 05, 2016)
  • the technical problem to be achieved by the present invention is to solve the disadvantages of the prior art, the purpose of which is to check the electrical safety state for the converter and the load and to estimate the location of the failure.
  • the purpose of which is to check the electrical safety state for the converter and the load and to estimate the location of the failure.
  • a load failure due to illegal use or long-term use is detected, and a user can report an electrical accident through a change in load status. Its purpose is to be able to recognize in advance.
  • the apparatus for estimating the failure state of a converter and a load using an IoT-based load device and a smart distribution panel is a generation platform, a smart distribution panel, an IoT-based load device, a smart outlet, and And non-IoT load devices.
  • the smart distribution panel is connected to the main circuit breaker or the branch circuit breaker to at least one of the voltage, load current, video current, composite leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF) of the converter It detects the converter status information, and transmits the converter status information to the generation platform.
  • PF power factor
  • the IoT-based load device includes load state information including at least one of voltage, load current, image current, synthetic leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF) for the load. It detects, and transmits the load status information to the generation platform based on the IoT.
  • load state information including at least one of voltage, load current, image current, synthetic leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF) for the load. It detects, and transmits the load status information to the generation platform based on the IoT.
  • the Smart Outlet is connected to a non-IoT load device that is not capable of IoT-based communication, enabling IoT-based communication to the non-IoT load device, and voltage, load current, and video for the non-IoT load device.
  • the generation platform uses the status information received from the smart distribution panel, the IoT-based load device, and the smart outlet to estimate the failure location of the converter and the load.
  • a method for estimating a fault condition of a converter and a load using an IoT-based load device and a smart distribution board includes a voltage, load current, video current, and synthetic leakage of the converter through a main circuit breaker or a branch circuit breaker in the smart distribution panel Detecting converter state information including at least one of current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF), and transmitting the converter state information to a generation platform (S10); Load status information including at least one of voltage, load current, image current, composite leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF) for load in IoT-based load devices Detecting and transmitting the load state information to the generation platform based on the IoT (S20).
  • the Smart Outlet is connected to a non-IoT load device that is not capable of IoT-based communication, and the voltage, load current, image current, composite leakage current, resistive leakage current, overcurrent, arc information for the non-IoT load device, Detecting non-IoT load state information including at least one of overvoltage, power failure, and power factor (PF), and transmitting the non-IoT load state information to a generation platform based on IoT (S30) and the generation platform It may include the step of estimating the location of the failure of the converter and load by determining based on the correlation between the leakage current value of the branch circuit breaker and the sum of the leakage current of the smart outlet (S40).
  • the step of estimating the failure state and the location of the main circuit breaker and the smart outlet by determining based on the overvoltage and power failure information of the main circuit breaker and the smart outlet in the generation platform (S50) and the branch circuit breaker and smart in the generation platform It may include a step (S60) of estimating the failure state and the location of the failure of the load, load wiring, branch wiring and branch circuit breaker by determining based on the arc failure signal of the outlet.
  • the method and apparatus for estimating the fault condition of a converter and a load using an IoT-based load device and a smart distribution board according to the present invention prevents electrical disasters by checking the electrical safety status of the converter and the load and estimating the fault location. And, there is an effect that can secure convenience through the elimination of a rapid failure factor.
  • FIG. 1 is a conceptual diagram showing a fault condition estimation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an apparatus for estimating a fault condition according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method for estimating a fault condition according to an embodiment of the present invention.
  • FIG. 4 is a view showing the overvoltage detection of the smart distribution panel according to an embodiment of the present invention.
  • FIG. 5 is a view showing a blackout detection of a smart distribution panel according to an embodiment of the present invention.
  • FIG. 6 is a view showing leakage current detection of a smart distribution panel according to an embodiment of the present invention.
  • FIG. 7 is a view showing the overcurrent detection of the smart distribution panel according to an embodiment of the present invention.
  • FIG. 8 is a view showing power factor detection of a smart distribution panel according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating overvoltage detection of an IoT-based load device according to an embodiment of the present invention.
  • FIG. 10 is a view showing a blackout detection of an IoT-based load device according to an embodiment of the present invention.
  • FIG. 11 is a view showing leakage current detection of an IoT-based load device according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating overcurrent detection of an IoT-based load device according to an embodiment of the present invention.
  • FIG. 13 is a view showing power factor detection of an IoT-based load device according to an embodiment of the present invention.
  • FIG. 14 is a view showing a method for estimating a fault location using a leakage current according to an embodiment of the present invention.
  • 15 is a view showing a method for estimating a fault location using overvoltage and power failure according to an embodiment of the present invention.
  • 16 and 17 are views showing a method for estimating a fault location using an arc failure according to an embodiment of the present invention.
  • FIG. 18 is a view showing a method for estimating a fault location using a power factor change rate according to an embodiment of the present invention.
  • 19 is a view showing a method for estimating a fault location using an overcurrent change rate according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram showing a fault state estimation apparatus 10 according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram showing a fault state estimation apparatus 10 according to an embodiment of the present invention.
  • the autonomous electrical safety system 1 may include a fault state estimation apparatus 10 and a manager server 20.
  • an apparatus 10 for estimating a fault condition of a converter and a load using an IoT-based load device and a smart distribution panel includes electrical safety state data and events in the IoT-based load device 300 and the smart distribution panel 200. Detecting information and performing analysis based on the detected state data and event information in the generation platform 100, it is possible to extract a fault condition and a fault location of a converter and a load.
  • the fault condition estimation apparatus 10 according to an embodiment of the present invention can be applied to general electric facilities such as unit households of multi-family houses and power houses that require remote monitoring.
  • the manager server 20 may receive the fault state information and the fault location information of the converter and load extracted from the fault state estimation apparatus 10.
  • the apparatus 10 for estimating the failure state of a converter and a load using an IoT-based load device and a smart distribution panel includes a generation platform 100, a smart distribution panel 200, an IoT-based load device 300, and a smart device.
  • a smart outlet 400 and a non-IoT load device 500 may be included.
  • the smart distribution panel 200 may include a voltage sensor, a current sensor, an image current sensor, and an arc signal detection sensor.
  • the smart distribution panel 200 detects the state information of the main circuit breaker 210 and the branch circuit breaker 220 and transmits it to the generation platform 100.
  • the status information detected by the smart distribution panel 200 includes voltage, load current, image current, synthetic leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, power factor (PF), etc. of the branch circuit breaker 220.
  • On/off status checking information may be included. Through this, the smart distribution panel 200 can grasp the state information of the converter.
  • the smart distribution panel 200 detects the status data for each monitoring element for the composite leakage current, resistive leakage current, overcurrent, arc failure, overvoltage, power failure, and power factor (PF), and as caution, warning, and danger It is possible to determine preset event information.
  • the smart distribution panel 200 may monitor the safety status of each quarter of the converter and load, and provide a status notification to the user and the safety manager to enable administrator action when an event occurs.
  • the IoT-based load device 300 includes at least one of voltage, load current, image current, composite leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF) for the load. It detects the load status information, and may transmit the load status information to the generation platform 100 based on the IoT.
  • PF power factor
  • the Smart Outlet 400 is connected to the non-IoT load device 500 that is not capable of IoT-based communication to enable IoT-based communication to the non-IoT load device 500, and the non-IoT load device 500 ), non-IoT load status information including at least one of voltage, load current, image current, composite leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF) can be detected. have.
  • the detected non-IoT load state information is transmitted to the generation platform 100.
  • the generation platform 100 may estimate the failure location of the converter and the load by using the status information received from the smart distribution panel 200, the IoT-based load device 300, and the smart outlet 400.
  • the method for estimating the failure state of a converter and a load using an IoT-based load device and a smart distribution panel is the voltage and load of the converter through the main circuit breaker 210 or the branch circuit breaker 220 in the smart distribution panel 200 Detects converter status information including at least one of current, video current, synthetic leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF), and converts the converter status information to a generation platform
  • step of transmitting (S10) and the IoT-based load device 300 voltage, load current, image current, synthetic leakage current, resistive leakage current, overcurrent, arc information, overvoltage, power failure, and power factor (PF) for the load
  • the smart outlet 400 is connected to a non-IoT load device 500 in which IoT-based communication is not possible, and the voltage, load current, image current, composite leakage current, and resistance to the non-IoT load device 500 are resistive.
  • Step S40 may be included.
  • the step of estimating the fault condition and the fault location of the main circuit breaker 210 and the smart outlet 400 by determining based on the overvoltage and power failure information of the main circuit breaker 210 and the smart outlet 400 in the generation platform 100 (S50) and generation platform 100 to determine the failure condition and the location of the failure of the load, load wiring, branch wiring and branch circuit breaker 220 by judging based on the arc failure signal of the branch circuit breaker 220 and the smart outlet 400 It may include a step (S60).
  • estimating the fault location of the converter and the load is the leakage current value of the branch circuit breaker 220 ( )
  • the leakage current value of the branch circuit breaker 220 ( ) And the sum of the leakage currents of the smart outlet 400 ( ) Difference ) Is a predetermined third reference value (ref3) or more (S44) and based on the determination result, load, load wiring, branch wiring, branch circuit breaker 220 and estimating the fault location for the converter (S45) It may include.
  • the step (S50) of estimating the fault condition and the fault location of the main circuit breaker 210 and the smart outlet 400 is the L (Live) phase and the N (Neutral) for the main circuit breaker 210 and the smart outlet 400.
  • Detecting the voltage RMS between phases (S51 ), determining overvoltage or power failure information for the main breaker 210 (S52 ), and determining overvoltage or power failure information for the smart outlet 400 (S53) And estimating the fault location for the input power source, the smart outlet 400 and the load of the main circuit breaker 210 based on the determination result (S54 ).
  • step (S60) of estimating the failure state and the location of the failure of the branch circuit breaker 220 is whether the arc failure detection function is only in the branch circuit breaker 220 or both of the branch circuit breaker 220 and the smart outlet 400. Determining step (S61), if the arc failure detection function is in both the branch circuit breaker 220 and the smart outlet 400, the branch circuit breaker 220 detecting an arc failure signal (S611), the smart outlet 400 It may include the step (S612) of detecting the arc failure signal in step and estimating the location of the failure for the load, load wiring, branch wiring and branch breaker 220 based on the detection result (S613).
  • the step of detecting an arc failure signal in the branch breaker 220 (S621) and estimating the location of the failure for the branch wiring or load based on the detection result (S622) may be further included.
  • FIG. 4 to 5 show detection algorithms for each monitoring element for the smart distribution panel 200.
  • 4 is a diagram illustrating overvoltage detection of the smart distribution panel 200 according to an embodiment of the present invention
  • FIG. 5 is a diagram showing detection of a power failure of the smart distribution panel 200 according to an embodiment of the present invention.
  • the smart distribution panel 200 may determine the event information for the overvoltage and power failure of the converter by determining based on the preset overvoltage judgment criteria and the power failure judgment criteria for the voltage value detected in the converter. . For example, as shown in FIG. 4, when the overvoltage judgment criterion is set to 242V, the smart distribution panel 200 determines whether the detected voltage value is 242V or more, and if it is 242V or more, determines the overvoltage state and generates warning event information. It can provide alarms to administrators and users.
  • the smart distribution panel 200 determines whether the detected voltage value is 190 V or less, and if it is 190 V or less, determines the power failure state and generates warning event information. Alarms can be provided to administrators and users.
  • FIG. 6 is a view showing leakage current detection of the smart distribution panel 200 according to an embodiment of the present invention. That is, FIG. 6 is a diagram showing a detection algorithm for the composite leakage current and the resistance leakage current of the smart distribution panel 200 according to an embodiment of the present invention. Smart power distribution as shown in FIG 200 is determined based on the preset leakage current criteria with respect to the composite leakage current (Igo) and the resistive leakage current (Igr) values detected in a converter by combining the leakage current of the converter (Igo) And event information for the resistive leakage current ( Igr ).
  • the risk judgment criterion for the synthetic leakage current ( Igo ) is set to 30.0mA
  • the warning judgment criterion is set to 20.0mA
  • the caution judgment criterion is set to 16.0mA
  • the resistance leakage current ( Igr ) is
  • the smart distribution panel 200 determines whether the detected synthetic leakage current ( Igo ) value is 30.0mA or more, and generates a risk event information if it is 30.0mA or more. In addition, it can provide a danger alarm to administrators and users.
  • the smart distribution panel 200 determines whether the detected resistance leakage current ( Igr ) value is 8.0 mA or more or the detected synthetic leakage current ( Igo ) value is 20.0 mA or more, and generates warning event information according to the determination result In addition, it can provide warning alarms to administrators and users. In addition, the smart distribution panel 200 determines whether the detected resistance leakage current ( Igr ) value is 4.0 mA or more or the detected synthetic leakage current ( Igo ) value is 16.0 mA or more, and generates attention event information according to the determination result In addition, a caution alarm can be provided to the administrator and the user.
  • the smart distribution panel 200 may determine the event information for the overcurrent of the converter by determining the current value detected in the converter based on a preset overcurrent determination criterion.
  • the risk judgment criterion for overcurrent is 120% of the rated current for 2 minutes or more
  • the warning judgment criterion is 100% of the rated current for 2 minutes or more
  • the caution judgment criterion is 90% of the rated current.
  • the smart distribution panel 200 judges based on the detected current value, generates dangerous event, warning event or caution event information according to the determination result, and can provide an alarm to the administrator and the user .
  • the smart distribution panel 200 calculates the power factor using the current and voltage values detected in the converter, and determines the calculated power factor based on a preset power factor determination criterion to determine event information for the converter reverse flow. Can decide.
  • the smart distribution panel 200 determines whether the calculated power factor value is 0.5 or less, and the power factor value is 0.5.
  • warning event information is generated, and a warning alarm can be provided to an administrator and a user.
  • the smart distribution panel 200 determines whether it is 0.7 or less, and if the power factor value is less than 0.7, generates attention event information, and may provide a user with an attention alarm.
  • the IoT-based load device 300 may include a home appliance 310 capable of IoT communication.
  • the IoT-based load device 300 may include a voltage sensor, a current sensor, an image current sensor, and an arc signal detection sensor.
  • the IoT-based load device 300 detects load state information (data) such as voltage, load current, image current, resistive leakage current, power factor, and arc information for the load and transmits it to the generation platform 100 based on IoT. .
  • the IoT-based load device 300 detects the state data for each monitoring element for the composite leakage current, resistive leakage current, overcurrent, arc failure, overvoltage, power failure, and power factor of the load, and is preset as caution, warning, and danger. Event information can be determined. In addition, the IoT-based load device 300 monitors the safety state of the individual loads and provides a status notification to the user to enable the AS action of the load device when an event occurs.
  • FIG. 9 to 13 show detection algorithms for each monitoring element for the IoT-based load device 300.
  • 9 is a diagram illustrating an overvoltage detection of an IoT-based load device 300 according to an embodiment of the present invention
  • FIG. 10 is a diagram showing a blackout detection of an IoT-based load device 300 according to an embodiment of the present invention.
  • the IoT-based load device 300 determines event information for overvoltage and power outage of the converter by determining based on preset overvoltage judgment criteria and power failure judgment criteria for the voltage value detected in the converter. Can. For example, as shown in FIG. 9, when the overvoltage judgment criterion is set to 242V, the IoT-based load device 300 determines whether the detected voltage value is 242V or more, and if it is 242V or more, determines the overvoltage state to alert event information And provide a warning alarm to the user, and cut off the power supply.
  • the IoT-based load device 300 determines whether the detected voltage value is 190 V or less, and if it is 190 V or less, determines the power failure state and generates warning event information. It can provide a warning alarm to the user and cut off the power connection.
  • FIG. 11 is a view showing leakage current detection of the IoT-based load device 300 according to an embodiment of the present invention. That is, FIG. 11 is a diagram showing a detection algorithm for the composite leakage current and the resistance leakage current of the IoT-based load device 300 according to an embodiment of the present invention. As illustrated in FIG. 10, the IoT-based load device 300 determines the composite leakage current ( Igo ) and the resistance leakage current ( Igr ) values detected in the converter based on a preset leakage current determination criterion. Igo ) and resistive leakage current ( Igr ) can be determined.
  • the risk judgment criterion for the synthetic leakage current Igo is 30.0mA
  • the warning judgment criterion is 20.0mA
  • the attention judgment criterion is set to 16.0mA
  • the resistance leakage current Igr is
  • the IoT-based load device 300 determines whether the detected synthetic leakage current ( Igo ) value is 30.0mA or more, and if it is 30.0mA or more, risk event information And provide a danger alarm to the user and cut off the power supply.
  • the IoT-based load device 300 determines whether the detected resistive leakage current ( Igr ) value is 8.0 mA or more or the detected synthetic leakage current ( Igo ) value is 20.0 mA or more, and alert event information according to the determination result. It can generate a warning alarm to the user. In addition, the IoT-based load device 300 determines whether the detected resistive leakage current ( Igr ) value is greater than 4.0mA or the detected synthetic leakage current ( Igo ) value is greater than or equal to 16.0mA, and caution event information according to the determination result It can generate a warning alarm to the user.
  • the IoT-based load device 300 may determine the event information for the overcurrent of the converter by determining the current value detected in the converter based on a preset overcurrent determination criterion.
  • the warning judgment criterion for overcurrent is 90% of the rated current for 2 minutes or more
  • the warning judgment criterion is 100% of the rated current for 2 minutes or more
  • the risk judgment criterion is 120% of the rated current.
  • the IoT-based load device 300 calculates a power factor using the current and voltage values detected in the converter, and judges the calculated power factor based on a preset power factor determination criterion for the reverse flow of the converter. Event information can be determined.
  • the IoT-based load device 300 determines whether the calculated power factor value is 0.5 or less, and the power factor value If it is 0.5 or less, warning event information is generated, and a warning alarm can be provided to the user.
  • the IoT-based load device 300 determines whether the calculated power factor value is 0.8 or less if it is not 0.5 or less, and generates a caution event information when the power factor value is 0.8 or less, and can provide a user with a caution alarm .
  • the detection algorithm for each monitoring element for the IoT-based load device 300 and the smart distribution panel 200 can be confirmed to be the same except for the power factor.
  • the event detection criteria of the power factor is different because the IoT-based load device 300 is connected to a single load, and various loads are simultaneously connected to the smart distribution panel 200. Therefore, it is desirable to set the detection criteria in consideration of this.
  • an apparatus for estimating a fault condition of a converter and a load using an IoT-based load device and a smart distribution panel 10 is accurate for the converter and the load through analysis based on the state information provided by the generation platform 100. Fault location can be estimated.
  • the detection results and state information using the detection algorithms of FIGS. 4 to 13 may be transmitted to the generation platform 100, and the generation platform 100 may use this to estimate the failure location of the converter and the load.
  • the Smart Outlet 400 enables IoT communication for the non-IoT load device 500. That is, it is possible to IoT the non-IoT load device 500 and transmit the detected state information to the generation platform 100 based on the IoT.
  • the non-IoT load device 500 may include a non-IoT home appliance 510 in which IoT communication is not possible.
  • the smart outlet 400 may include a voltage sensor, a current sensor, an image current sensor, and an arc signal detection sensor.
  • the generation platform 100 may collect status information of the IoT-based load device 300 and status information of the smart distribution panel 200, and set a load type and an installation location for the smart outlet 400. In addition, the generation platform 100 manages the information of the electric safety management system for each household and provides status information to the household user when an abnormal condition is detected. That is, the generation platform 100 receives and stores and manages the measurement data of the IoT-based load device 300 and the smart distribution panel 200, and can provide an alarm of status information to an administrator or a user when an event occurs.
  • the generation platform 100 analyzes the failure status information and the location of the failure of the branch circuit and the load by using the single monitoring element information of the IoT-based load device 300 and the smart distribution panel 200, and displays the failure information in the household. Can provide. That is, the generation platform 100 may provide fault location and fault status information of the converter and the load to the household user based on the load or converter status information of the IoT-based load device 300 and the smart distribution panel 200.
  • 14 to 19 show an algorithm for estimating a fault location of a converter and a load in the generation platform 100 using the state information of the smart outlet 400 and the smart distribution panel 200.
  • 14 is a view showing a method for estimating a fault location using a leakage current according to an embodiment of the present invention.
  • the generation platform 100 may analyze the data for each event item between the main circuit breaker 210 or the branch circuit breaker 220 and the smart outlet 400 to estimate the location of the failure and provide status information to the user.
  • the leakage current generated in the branch converter is based on the correlation between the leakage current value of the branch circuit breaker 220 and the sum of the leakage currents of the smart outlet 400 connected to the branch, using Equation 1 below. Can be calculated.
  • the leakage current detection value of the individual smart outlet 400 may be determined to be more than the load of the smart outlet 400 corresponding to the event reference value.
  • the leakage current value generated in the branch converter is equal to or greater than the event reference value, it is determined that the load of the converter and the smart outlet 400 is abnormal, and status information is provided to the manager.
  • the individual status determination of the smart outlet 400 it is possible to provide measures to solve the failure factor by providing the failure branch and load error information.
  • the leakage current detection value of the individual smart outlet 400 is less than the event reference value and the leakage current detection value of the branch circuit breaker 220 exceeds the event under the condition that the leakage current value generated in the branch converter is below a preset reference value. Since the leakage current does not occur in the converter of the branch circuit breaker 220 in the state, it is preferable to reset the event of the branch circuit breaker 220 to prevent the user or administrator from being confused.
  • [Table 1] below shows a method for estimating a fault location according to a leakage current detection result of the branch circuit breaker 220 and the smart outlet 400. As shown in [Table 1] below, through the state analysis according to whether leakage current is detected, the fault conditions of the branch circuit breaker 220 and the smart outlet 400 can be confirmed and a fault location can be estimated.
  • Branch breaker Smart Outlet Fault location estimation One Earth leakage detection Earth leakage detection Load and load wiring error, need to check the load 2 Earth leakage detection normal Branch wiring error, manager confirmation required 3 normal Earth leakage detection Need to check the status of the corresponding branch breaker
  • FIG. 15 is a view showing a method for estimating a fault location using overvoltage and power failure according to an embodiment of the present invention.
  • [Table 2] below shows a method for estimating a fault location according to the overvoltage and correction detection results of the main circuit breaker 210 and the smart outlet 400.
  • the voltage RMS between the L (Live) and N (Neutral) phases of the main circuit breaker 210 and the smart outlet 400 can be detected to determine overvoltage and power failure information. .
  • the state information of the main circuit breaker 210 and the smart outlet 400 based on the determination result, it is possible to check the failure state of the main circuit breaker 210 and the smart outlet 400 and estimate the location of the failure.
  • FIG. 16 and 17 are views showing a method for estimating a fault location using an arc failure according to an embodiment of the present invention. That is, FIG. 16 shows a fault location extraction algorithm using arc failure when only the branch breaker 220 has an arc failure detection function, and FIG. 17 shows an arc failure detection function in both the branch breaker 220 and the smart outlet 400. The fault location extraction algorithm using arc failure in this case is shown.
  • [Table 3] and [Table 4] below show a method for estimating a fault location according to an arc fault detection result of the branch circuit breaker 220 and the smart outlet 400.
  • the arc fault detection function is an optional function for both the branch circuit breaker 220 and the smart outlet 400. In the case where only the branch circuit breaker 220 has an arc detection function, both the branch circuit breaker 220 and the smart outlet 400 arc detection function. It can be divided into cases and analyzed.
  • [Table 3] shows a method for estimating a fault location according to an arc fault detection result when the arc fault detection function is only for the branch breaker 220.
  • the arc breaker function is detected only in the branch breaker 220, if an arc failure signal is detected in the branch breaker 220, it may be determined as a branch wiring or load abnormality, and a fault location may be confirmed.
  • Breaker Smart Outlet Fault location estimation One Arc failure detection - Branch wiring or load error, check required
  • an arc failure signal of the branch circuit breaker 220 when an arc failure signal of the branch circuit breaker 220 is detected after removing the load for checking the location of the failure, it may be determined that the branch wiring is abnormal, or if the arc failure signal is not detected, the load is abnormal. Since the branch circuit of the branch circuit breaker 220 may be many when an arc failure occurs in the branch wiring, it is possible to check the location of an accurate arc failure converter through an arc detection test (UL1699 or IEC62606, etc.) for each branch circuit.
  • [Table 4] below shows a method for estimating a fault location according to an arc fault detection result when the arc fault detection function is present in both the branch breaker 220 and the smart outlet 400.
  • Breaker Smart Outlet Fault location estimation One Arc failure detection Arc failure detection Load and load wiring error, need to check the load 2 Arc failure detection Arc failure detection Branch wiring error, manager confirmation required 3 normal normal Need to check the status of branch breaker
  • FIG. 18 is a diagram showing a method for estimating a fault location using a power factor change rate according to an embodiment of the present invention
  • FIG. 19 is a view showing a method for estimating a fault position using an overcurrent change rate according to an embodiment of the present invention.
  • the load overcurrent rate event may detect an event by analyzing an increase rate compared to a maximum used current size of a single load connected to the smart outlet 400 based on the state information of the smart outlet 400. Determining the maximum use current of a single load may be determined by setting the connection information (load type) when connecting the load to the smart outlet 400 and then setting the maximum value of the current used for a predetermined time. For example, it can be determined by the maximum value of the current used for 3 days. At this time, when the load overcurrent rate is increased by 50% compared to the maximum used current, it is necessary to check the abnormality of the load, thereby providing a warning alarm for checking the current usage.
  • the load power factor change rate event may detect an event by analyzing the power factor change state of a single load connected to the smart outlet 400 based on the state information of the smart outlet 400.
  • the conventional power factor of a single load may be determined as the lowest value of the power factor for a predetermined time after setting connection information (load type) when connecting the load to the smart outlet 400. For example, it can be determined as the lowest value of the 3-day power factor.
  • the rate of change in the load power factor may provide an alarm for checking the abnormal state of the load when the rate of change of the power factor decreases at a predetermined rate. For example, it is possible to provide a warning alarm when a decrease of 20% or more relative to a conventional power factor and a warning alarm when a drop of 40% or more.
  • the user can solve the failure factor by receiving the AS from the manufacturer based on the load status information, and the administrator can prevent the electric disaster by solving the failure factor of the converter and secure the convenience due to the rapid resolution of the failure factor It has the effect.
  • manager server 100 generation platform
  • branch breaker 300 IoT-based load device
  • IoT appliances 400 Smart Outlet
  • Non-IoT load device 510 Non-IoT home appliance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Distribution Board (AREA)

Abstract

본 발명은 IoT 기반의 부하장치와 스마트분전반에서 전기안전요소의 상태 정보 및 이벤트 정보를 검출하고, 세대플랫폼에서 상기 검출된 상태 정보 및 이벤트 정보를 기반으로 분석을 수행하여 전로와 부하의 고장상태 및 고장 위치를 추정하는 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치에 관한 것이다. 본 발명에 따른 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법은 스마트분전반에서 메인차단기 또는 분기차단기를 통해 전로의 상태 정보를 검출하여 세대플랫폼으로 전송하는 단계, IoT 기반 부하장치에서 부하에 대한 상태 정보를 검출하여 세대플랫폼으로 전송하는 단계 및 스마트아웃렛에서 비IoT 부하장치에 대한 상태 정보를 검출하여 세대플랫폼으로 전송하는 단계를 포함할 수 있다. 또한, 상기 세대플랫폼에서 분기차단기와 스마트아웃렛에 대한 누설전류 값을 토대로 판단하여 전로와 부하의 고장 위치를 추정하는 단계, 상기 세대플랫폼에서 메인차단기와 스마타아웃렛에 대한 과전압 및 정전 정보를 토대로 판단하여 메인차단기와 스마트아웃렛의 고장 상태 및 고장 위치를 추정하는 단계 및 세대플랫폼에서 분기차단기와 스마트아웃렛의 아크 고장 신호를 토대로 판단하여 고장 상태 및 고장 위치를 추정하는 단계를 포함할 수 있다.

Description

IOT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치
본 발명은 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치에 관한 것으로서, IoT 기반의 부하장치와 스마트분전반에서 전기안전요소의 상태 정보 및 이벤트 정보를 검출하고, 세대플랫폼에서 상기 검출된 상태 정보 및 이벤트 정보를 기반으로 분석을 수행하여 전로와 부하의 고장상태 및 고장 위치를 추정하는 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치에 관한 것이다.
일반적으로 공동주택의 단위세대 등과 같은 일반용 전기설비의 보호장치는 과전류차단기와 누전차단기를 사용한다. 상기 과전류차단기는 전류의 크기를 검출하고, 누전차단기는 합성 누설전류의 크기를 검출하여 전로를 차단하며, 일부 저항성 누설전류와 용량성 누설전류를 구분하여 크기를 검출한 후 전로를 차단할 수 있다.
또한, 단락사고 발생시 큰 단락전류가 흐르기 때문에 과전류차단기가 동작하여 전로를 차단하고, 일부에서는 아크차단기 또는 아크경보기를 설치하여 전로에서 아크 발생시 전로를 보호한다. 그러나 현재의 과전류차단기와 누전차단기 및 아크차단기가 설치된 상태에서도 다수의 전기화재 및 감전사고가 발생하고 있다.
또한, 보호장치의 정상적인 동작상태와 통신기반의 분전반 등과 같이 데이터 기반의 서비스를 도입한 상태에서도 이벤트 발생 유무 및 이벤트별 검출 요소의 크기는 확인할 수 있지만, 부하상태와 고장 위치는 확인할 수 없다. 또한, 보호장치의 동작 특성상 과전류, 누설전류 및 아크 고장의 발생시 발생 위치가 부하에서 발생한 것인지 전로에서 발생한 것인지 확인할 수 없기 때문에 사용자 또는 관리자가 직접 확인하고 조치해야 하며, 신속한 고장 요인 해소가 불가능하다.
또한, 현재의 일반용 전기설비의 보호장치는 단락, 과전류, 누설전류, 아크 고장에 대한 경보 또는 보호만 가능하기 때문에 부하로 사용하는 제품의 역률이나 정격 사항에 대한 분석을 통하여 부하의 상태를 확인하는 것이 불가능하다. 일부 IoT 기반의 부하장치에서 통신을 이용한 서비스를 제공하고 있지만 대부분 원격 제어를 통한 동작 상태 확인과 에너지 사용량의 확인 정도에 머물러 있으며, 스마트 제품의 경우 제품의 고장 발생시 사용자의 편의를 위하여 신속한 문제 해결 기능을 갖는 스마트진단 정보가 대부분이다.
또한, 일반용 전기설비에서 부하로 사용하는 가전제품이나 조명제품 등은 제품으로 인한 사고를 예방하기 위하여 제품안전인증을 받도록 하고 있지만, 불법 제품이나 오랜 기간 사용으로 인한 제품의 결함이 발생할 수 있기 때문에 이를 위한 검출 방법이 필요하다.
[선행기술문헌]
[특허문헌]
특허문헌 1. 대한민국 등록특허 제10-1592466호(2016년 02월 05일 공고)
따라서, 본 발명이 이루고자 하는 기술적 과제는 종래의 단점을 해결한 것으로서, 전로와 부하에 대한 전기 안전상태의 확인과 고장 위치를 추정하고자 하는데 그 목적이 있다. 또한, 부하 역률과 부하 역률 변화율 및 부하 과전류율 등의 데이터를 기반으로 하는 분석을 통하여 불법 제품의 사용이나 오랜 기간 사용으로 인한 부하의 고장을 검출하고, 부하의 상태 변화를 통하여 사용자가 전기 사고를 사전에 인지할 수 있도록 하는데 그 목적이 있다.
이러한 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 장치는 세대플랫폼, 스마트분전반, IoT 기반 부하장치, 스마트아웃렛(Smart Outlet) 및 비IoT 부하장치를 포함할 수 있다.
상기 스마트분전반은 메인차단기 또는 분기차단기에 연결되어 전로의 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 전로 상태 정보를 검출하고, 상기 전로 상태 정보를 세대플랫폼으로 전송한다.
상기 IoT 기반 부하장치는 부하에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 부하 상태 정보를 검출하고, IoT를 기반으로 상기 부하 상태 정보를 세대플랫폼에 전송한다.
상기 스마트아웃렛(Smart Outlet)은 IoT 기반의 통신이 불가능한 비IoT 부하장치에 연결되어 상기 비IoT 부하장치에 대한 IoT 기반의 통신이 가능하게 하고, 상기 비IoT 부하장치에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 비IoT 부하 상태 정보를 검출하며, IoT를 기반으로 상기 비IoT 부하 상태 정보를 세대플랫폼에 전송한다. 상기 세대플랫폼은 상기 스마트분전반, IoT 기반 부하장치 및 스마트아웃렛으로부터 전송받은 상태 정보를 이용하여 전로와 부하의 고장 위치를 추정한다.
또한, 본 발명의 다른 측면에 따른 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법은 스마트분전반에서 메인차단기 또는 분기차단기를 통해 전로의 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 전로 상태 정보를 검출하고, 상기 전로 상태 정보를 세대플랫폼으로 전송하는 단계(S10) 및 IoT 기반 부하장치에서 부하에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 부하 상태 정보를 검출하고, IoT를 기반으로 상기 부하 상태 정보를 세대플랫폼에 전송하는 단계(S20)를 포함할 수 있다.
또한, 스마트아웃렛(Smart Outlet)에서 IoT 기반의 통신이 불가능한 비IoT 부하장치에 연결되어 상기 비IoT 부하장치에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 비IoT 부하 상태 정보를 검출하고, IoT를 기반으로 상기 비IoT 부하 상태 정보를 세대플랫폼에 전송하는 단계(S30) 및 상기 세대플랫폼에서 상기 분기차단기의 누설전류 값과 스마트아웃렛의 누설전류 총합에 대한 상관관계를 토대로 판단하여 전로와 부하의 고장 위치를 추정하는 단계(S40)를 포함할 수 있다.
또한, 상기 세대플랫폼에서 상기 메인차단기와 스마트아웃렛에 대한 과전압 및 정전 정보를 토대로 판단하여 상기 메인차단기와 스마트아웃렛의 고장 상태 및 고장 위치를 추정하는 단계(S50) 및 상기 세대플랫폼에서 분기차단기와 스마트아웃렛의 아크 고장 신호를 토대로 판단하여 부하, 부하배선, 분기 배선 및 분기차단기의 고장 상태 및 고장 위치를 추정하는 단계(S60)를 포함할 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치는 전로와 부하에 대한 전기안전 상태확인과 고장 위치의 추정으로 전기재해를 예방하고, 신속한 고장요인의 해소를 통한 편리성을 확보할 수 있는 효과가 있다.
또한, 부하 역률과 부하 역률 변화율 및 부하 과전류율 등의 데이터를 기반으로 하는 분석을 통하여 불법 제품의 사용이나 오랜 기간 사용으로 인한 부하의 고장을 검출할 수 있고, 부하의 상태 변화를 통하여 사용자가 전기 사고를 사전 인지함으로써 전기 제품의 안전한 사용과 전기 사고를 예방할 수 있는 효과가 있다.
도 1은 본 발명의 실시 예에 따른 고장 상태 추정 장치를 나타내는 개념도이다.
도 2는 본 발명의 실시 예에 따른 고장 상태 추정 장치를 나타내는 구성도이다.
도 3은 본 발명의 실시 예에 따른 고장 상태 추정 방법을 나타내는 순서도이다.
도 4는 본 발명의 실시 예에 따른 스마트분전반의 과전압 검출을 나타내는 도면이다.
도 5는 본 발명의 실시 예에 따른 스마트분전반의 정전 검출을 나타내는 도면이다.
도 6은 본 발명의 실시 예에 따른 스마트분전반의 누설전류 검출을 나타내는 도면이다.
도 7은 본 발명의 실시 예에 따른 스마트분전반의 과전류 검출을 나타내는 도면이다.
도 8은 본 발명의 실시 예에 따른 스마트분전반의 역률 검출을 나타내는 도면이다.
도 9는 본 발명의 실시 예에 따른 IoT 기반 부하장치의 과전압 검출을 나타내는 도면이다.
도 10은 본 발명의 실시 예에 따른 IoT 기반 부하장치의 정전 검출을 나타내는 도면이다.
도 11은 본 발명의 실시 예에 따른 IoT 기반 부하장치의 누설전류 검출을 나타내는 도면이다.
도 12는 본 발명의 실시 예에 따른 IoT 기반 부하장치의 과전류 검출을 나타내는 도면이다.
도 13은 본 발명의 실시 예에 따른 Iot 기반 부하장치의 역률 검출을 나타내는 도면이다.
도 14는 본 발명의 실시 예에 따른 누설전류를 이용한 고장위치 추정 방법을 나타내는 도면이다.
도 15는 본 발명의 실시 예에 따른 과전압 및 정전을 이용한 고장위치 추정 방법을 나타내는 도면이다.
도 16 및 도 17은 본 발명의 실시 예에 따른 아크고장을 이용한 고장위치 추정 방법을 나타내는 도면이다.
도 18은 본 발명의 실시 예에 따른 역률변화율을 이용한 고장위치 추정 방법을 나타내는 도면이다.
도 19는 본 발명의 실시 예에 따른 과전류 변화율을 이용한 고장위치 추정 방법을 나타내는 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 또는 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다.
각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 실시 예에 따른 고장 상태 추정 장치(10)를 나타내는 개념도이고, 도 2는 본 발명의 실시 예에 따른 고장 상태 추정 장치(10)를 나타내는 구성도이다. 도 1에서 도시된 바와 같이 본 발명의 실시 예에 따른 자율전기안전시스템(1)은 고장 상태 추정 장치(10)와 관리자 서버(20)를 포함할 수 있다.
본 발명의 실시 예에 따른 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 장치(10)는 IoT 기반의 부하장치(300)와 스마트분전반(200)에서 전기안전 상태 데이터와 이벤트 정보를 검출하고, 세대플랫폼(100)에서 상기 검출된 상태 데이터와 이벤트 정보를 기반으로 분석을 수행하여 전로와 부하의 고장상태 및 고장 위치를 추출할 수 있다. 또한, 본 발명의 실시 예에 따른 고장 상태 추정 장치(10)는 공동주택의 단위세대, 원격감시가 필요한 전원주택 등의 일반용 전기설비에 대한 적용이 가능하다. 관리자 서버(20)는 고장 상태 추정 장치(10)에서 추출된 전로와 부하의 고장 상태 정보 및 고장 위치 정보를 전송받을 수 있다.
본 발명의 실시 예에 따른 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 장치(10)는 세대플랫폼(100), 스마트분전반(200), IoT 기반 부하장치(300), 스마트아웃렛(Smart Outlet)(400) 및 비IoT 부하장치(500)를 포함할 수 있다.
스마트분전반(200)은 전압센서, 전류센서, 영상전류센서 및 아크신호 검출센서를 포함할 수 있다. 스마트분전반(200)은 메인차단기(210)와 분기차단기(220)의 상태 정보를 검출하여 세대플랫폼(100)으로 전송한다. 스마트분전반(200)에서 검출되는 상태 정보는 전압, 부하전류, 영상전류, 합성누설전류, 저항성 누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 등과 분기차단기(220)의 온오프(On/off) 상태 확인 정보 중 적어도 하나를 포함할 수 있다. 이를 통해 스마트분전반(200)은 전로의 상태 정보를 파악할 수 있다.
즉, 스마트분전반(200)은 합성누설전류, 저항성누설전류, 과전류, 아크 고장, 과전압, 정전 및 역률(Power Factor, PF)에 대한 각 감시요소별 상태 데이터를 검출하고, 주의, 경고 및 위험으로 미리 설정된 이벤트 정보를 결정할 수 있다. 또한, 스마트분전반(200)은 각 분기별 전로 및 부하의 안전상태를 모니터링하고, 이벤트 발생시 관리자 조치가 가능하도록 사용자와 안전관리자에게 상태 알림을 제공할 수 있다.
또한, IoT 기반 부하장치(300)는 부하에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 부하 상태 정보를 검출하고, IoT를 기반으로 상기 부하 상태 정보를 세대플랫폼(100)에 전송할 수 있다.
스마트아웃렛(Smart Outlet)(400)은 IoT 기반의 통신이 불가능한 비IoT 부하장치(500)에 연결되어 비IoT 부하장치(500)에 대한 IoT 기반의 통신이 가능하게 하고, 비IoT 부하장치(500)에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 비IoT 부하 상태 정보를 검출할 수 있다. 또한, 검출된 상기 비IoT 부하 상태 정보를 세대플랫폼(100)에 전송한다.
세대플랫폼(100)은 스마트분전반(200), IoT 기반 부하장치(300) 및 스마트아웃렛(400)으로부터 전송받은 상태 정보를 이용하여 전로와 부하의 고장 위치를 추정할 수 있다.
도 3은 본 발명의 실시 예에 따른 고장 상태 추정 방법을 나타내는 순서도이다. 본 발명의 실시 예에 따른 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법은 스마트분전반(200)에서 메인차단기(210) 또는 분기차단기(220)를 통해 전로의 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 전로 상태 정보를 검출하고, 상기 전로 상태 정보를 세대플랫폼으로 전송하는 단계(S10) 및 IoT 기반 부하장치(300)에서 부하에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 부하 상태 정보를 검출하고, IoT를 기반으로 상기 부하 상태 정보를 세대플랫폼(100)에 전송하는 단계(S20)를 포함할 수 있다.
또한, 스마트아웃렛(Smart Outlet)(400)에서 IoT 기반의 통신이 불가능한 비IoT 부하장치(500)에 연결되어 비IoT 부하장치(500)에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 비IoT 부하 상태 정보를 검출하고, IoT를 기반으로 상기 비IoT 부하 상태 정보를 세대플랫폼(100)에 전송하는 단계(S30) 및 세대플랫폼(100)에서 분기차단기(220)의 누설전류 값과 스마트아웃렛(400)의 누설전류 총합에 대한 상관관계를 토대로 판단하여 전로와 부하의 고장 위치를 추정하는 단계(S40)를 포함할 수 있다.
또한, 세대플랫폼(100)에서 메인차단기(210)와 스마트아웃렛(400)에 대한 과전압 및 정전 정보를 토대로 판단하여 메인차단기(210)와 스마트아웃렛(400)의 고장 상태 및 고장 위치를 추정하는 단계(S50) 및 세대플랫폼(100)에서 분기차단기(220)와 스마트아웃렛(400)의 아크 고장 신호를 토대로 판단하여 부하, 부하배선, 분기 배선 및 분기차단기(220)의 고장 상태 및 고장 위치를 추정하는 단계(S60)를 포함할 수 있다.
또한, 상기 전로와 부하의 고장 위치를 추정하는 단계(S40)는 분기차단기(220)의 누설전류 값(
Figure PCTKR2018016948-appb-I000001
)과 스마트아웃렛(400)의 누설전류 총합 값(
Figure PCTKR2018016948-appb-I000002
)을 취득하는 단계(S41), 분기차단기(220)의 누설전류 값(
Figure PCTKR2018016948-appb-I000003
)이 미리 설정된 제1기준치(ref1) 이상인지를 판단하는 단계(S42) 및 스마트아웃렛(400)의 누설전류 총합 값 (
Figure PCTKR2018016948-appb-I000004
)이 미리 설정된 제2기준치(ref2) 이상인지를 판단하는 단계(S43)를 포함할 수 있다.
또한, 분기차단기(220)의 누설전류 값(
Figure PCTKR2018016948-appb-I000005
)과 스마트아웃렛(400)의 누설전류 총합 값(
Figure PCTKR2018016948-appb-I000006
)의 차이(
Figure PCTKR2018016948-appb-I000007
)가 미리 설정된 제3기준치(ref3) 이상인지를 판단하는 단계(S44) 및 판단 결과를 토대로 부하, 부하배선, 분기 배선, 분기차단기(220) 및 전로에 대한 고장 위치를 추정하는 단계(S45)를 포함할 수 있다.
또한, 상기 메인차단기(210)와 스마트아웃렛(400)의 고장 상태 및 고장 위치를 추정하는 단계(S50)는 메인차단기(210)와 스마트아웃렛(400)에 대한 L(Live)상과 N(Neutral)상 사이의 전압 RMS를 검출하는 단계(S51), 메인차단기(210)에 대한 과전압 또는 정전 정보를 판단하는 단계(S52), 스마트아웃렛(400)에 대한 과전압 또는 정전 정보를 판단하는 단계(S53) 및 판단 결과를 토대로 메인차단기(210)의 입력전원, 스마트아웃렛(400) 및 부하에 대한 고장 위치를 추정하는 단계(S54)를 포함할 수 있다.
또한, 상기 분기차단기(220)의 고장 상태 및 고장 위치를 추정하는 단계(S60)는 아크 고장 검출 기능이 분기차단기(220)에만 있는지, 분기차단기(220)와 스마트아웃렛(400) 모두에 있는지를 판단하는 단계(S61), 상기 아크 고장 검출 기능이 분기차단기(220)와 스마트아웃렛(400) 모두에 있는 경우, 분기차단기(220)에서 아크 고장 신호를 검출하는 단계(S611), 스마트아웃렛(400)에서 아크 고장 신호를 검출하는 단계(S612) 및 검출 결과를 토대로 부하, 부하배선, 분기 배선 및 분기차단기(220)에 대한 고장 위치를 추정하는 단계(S613)를 포함할 수 있다.
또한, 상기 아크 고장 검출 기능이 분기차단기(220)에만 있는 경우, 분기차단기(220)에서 아크 고장 신호를 검출하는 단계(S621) 및 검출 결과를 토대로 분기 배선 또는 부하에 대한 고장 위치를 추정하는 단계(S622)를 더 포함할 수 있다.
도 4 내지 도 5는 스마트분전반(200)에 대한 감시요소별 검출 알고리즘을 나타낸다. 도 4는 본 발명의 실시 예에 따른 스마트분전반(200)의 과전압 검출을 나타내는 도면이고, 도 5는 본 발명의 실시 예에 따른 스마트분전반(200)의 정전 검출을 나타내는 도면이다.
도 4 및 도 5에서 도시된 바와 같이 스마트분전반(200)은 전로에서 검출된 전압 값에 대하여 미리 설정된 과전압 판단기준 및 정전 판단기준을 토대로 판단하여 전로의 과전압 및 정전에 대한 이벤트 정보를 결정할 수 있다. 예를 들어, 도 4에서 나타낸 바와 같이 과전압 판단기준이 242V로 설정되는 경우 스마트분전반(200)은 검출된 전압 값이 242V 이상인지를 판단하고, 242V 이상이면 과전압 상태로 판단하여 경고 이벤트 정보를 발생하며, 관리자 및 사용자에게 알람을 제공할 수 있다.
또한, 도 5에서 나타낸 바와 같이 정전 판단기준이 190V로 설정되는 경우 스마트분전반(200)은 검출된 전압 값이 190V 이하인지를 판단하고, 190V 이하이면 정전 상태로 판단하여 경고 이벤트 정보를 발생하며, 관리자 및 사용자에게 알람을 제공할 수 있다.
도 6은 본 발명의 실시 예에 따른 스마트분전반(200)의 누설전류 검출을 나타내는 도면이다. 즉, 도 6은 본 발명의 실시 예에 따른 스마트분전반(200)의 합성누설전류 및 저항성누설전류에 대한 검출 알고리즘을 나타내는 도면이다. 도 6에서 나타낸 바와 같이 스마트분전반(200)은 전로에서 검출된 합성누설전류(Igo) 및 저항성누설전류(Igr) 값에 대하여 미리 설정된 누설전류 판단기준을 토대로 판단하여 전로의 합성누설전류(Igo) 및 저항성누설전류(Igr)에 대한 이벤트 정보를 결정할 수 있다.
예를 들어, 도 6에서 나타낸 바와 같이 합성누설전류(Igo)에 대한 위험 판단기준이 30.0mA, 경고 판단기준이 20.0mA, 주의 판단기준이 16.0mA로 설정되고, 저항성누설전류(Igr)에 대한 경고 판단기준이 8.0mA, 주의 판단기준이 4.0mA로 설정되는 경우 스마트분전반(200)은 검출된 합성누설전류(Igo) 값이 30.0mA 이상인지를 판단하고, 30.0mA 이상이면 위험 이벤트 정보를 발생하며, 관리자 및 사용자에게 위험 알람을 제공할 수 있다.
또한, 스마트분전반(200)은 검출된 저항성누설전류(Igr) 값이 8.0mA 이상이거나 또는 검출된 합성누설전류(Igo) 값이 20.0mA 이상인지를 판단하고, 판단 결과에 따라 경고 이벤트 정보를 발생하며, 관리자 및 사용자에게 경고 알람을 제공할 수 있다. 또한, 스마트분전반(200)은 검출된 저항성누설전류(Igr) 값이 4.0mA 이상이거나 또는 검출된 합성누설전류(Igo) 값이 16.0mA 이상인지를 판단하고, 판단 결과에 따라 주의 이벤트 정보를 발생하며, 관리자 및 사용자에게 주의 알람을 제공할 수 있다.
도 7은 본 발명의 실시 예에 따른 스마트분전반(200)의 과전류 검출을 나타내는 도면이다. 도 7에서 도시된 바와 같이 스마트분전반(200)은 전로에서 검출된 전류 값에 대하여 미리 설정된 과전류 판단기준을 토대로 판단하여 전로의 과전류에 대한 이벤트 정보를 결정할 수 있다.
예를 들어, 도 7에서 나타낸 바와 같이 과전류에 대한 위험 판단기준이 정격전류의 120%에서 2분 이상, 경고 판단기준이 정격전류의 100%에서 2분 이상, 주의 판단기준이 정격전류의 90%에서 2분 이상으로 설정되는 경우 스마트분전반(200)은 검출된 전류 값을 토대로 판단하고, 판단 결과에 따라 위험 이벤트, 경고 이벤트 또는 주의 이벤트 정보를 발생하며, 관리자 및 사용자에게 알람을 제공할 수 있다.
도 8은 본 발명의 실시 예에 따른 스마트분전반(200)의 역률 검출을 나타내는 도면이다. 도 8에서 도시된 바와 같이 스마트분전반(200)은 전로에서 검출된 전류 및 전압 값을 이용하여 역률을 연산하고, 연산된 역률에 대하여 미리 설정된 역률 판단기준을 토대로 판단하여 전로의 역류에 대한 이벤트 정보를 결정할 수 있다.
예를 들어, 도 8에서 나타낸 바와 같이 역률에 대한 경고 판단기준이 0.5, 주의 판단기준이 0.7로 설정되는 경우 스마트분전반(200)은 연산된 역률 값이 0.5 이하인지를 판단하고, 역률 값이 0.5 이하이면 경고 이벤트 정보를 발생하며, 관리자 및 사용자에게 경고 알람을 제공할 수 있다.
또한, 스마트분전반(200)은 연산된 역률 값이 0.5 이하가 아닌 경우에는 0.7 이하인지를 판단하고, 역률 값이 0.7 이하이면 주의 이벤트 정보를 발생하며, 사용자에게 주의 알람을 제공할 수 있다.
IoT 기반 부하장치(300)는 IoT 통신이 가능한 가전제품(310)을 포함할 수 있다. 또한, IoT 기반 부하장치(300)는 전압센서, 전류센서, 영상전류센서 및 아크신호 검출센서를 포함할 수 있다. IoT 기반 부하장치(300)는 부하에 대한 전압, 부하전류, 영상전류, 저항성누설전류, 역률 및 아크 정보 등의 부하 상태 정보(데이터)를 검출하여 IoT를 기반으로 세대플랫폼(100)에 전송한다.
즉, IoT 기반 부하장치(300)는 부하의 합성누설전류, 저항성누설전류, 과전류, 아크고장, 과전압, 정전 및 역률에 대한 각 감시요소별 상태 데이터를 검출하고, 주의, 경고 및 위험으로 미리 설정된 이벤트 정보를 결정할 수 있다. 또한, IoT 기반 부하장치(300)는 개별 부하의 안전상태를 모니터링하고, 이벤트 발생시 부하장치의 AS 조치가 가능하도록 사용자에게 상태 알림을 제공한다.
도 9 내지 도 13은 IoT 기반 부하장치(300)에 대한 감시요소별 검출 알고리즘을 나타낸다. 도 9는 본 발명의 실시 예에 따른 IoT 기반 부하장치(300)의 과전압 검출을 나타내는 도면이고, 도 10은 본 발명의 실시 예에 따른 IoT 기반 부하장치(300)의 정전 검출을 나타내는 도면이다.
도 9 및 도 10에서 도시된 바와 같이 IoT 기반 부하장치(300)는 전로에서 검출된 전압 값에 대하여 미리 설정된 과전압 판단기준 및 정전 판단기준을 토대로 판단하여 전로의 과전압 및 정전에 대한 이벤트 정보를 결정할 수 있다. 예를 들어, 도 9에서 나타낸 바와 같이 과전압 판단기준이 242V로 설정되는 경우 IoT 기반 부하장치(300)는 검출된 전압 값이 242V 이상인지를 판단하고, 242V 이상이면 과전압 상태로 판단하여 경고 이벤트 정보를 발생하며, 사용자에게 경고 알람을 제공하고, 전원 공급을 차단할 수 있다.
또한, 도 10에서 나타낸 바와 같이 정전 판단기준이 190V로 설정되는 경우 IoT 기반 부하장치(300)는 검출된 전압 값이 190V 이하인지를 판단하고, 190V 이하이면 정전 상태로 판단하여 경고 이벤트 정보를 발생하며, 사용자에게 경고 알람을 제공하고 전원 연결을 차단할 수 있다.
도 11은 본 발명의 실시 예에 따른 IoT 기반 부하장치(300)의 누설전류 검출을 나타내는 도면이다. 즉, 도 11은 본 발명의 실시 예에 따른 IoT 기반 부하장치(300)의 합성누설전류 및 저항성누설전류에 대한 검출 알고리즘을 나타내는 도면이다. 도 10에서 나타낸 바와 같이 IoT 기반 부하장치(300)는 전로에서 검출된 합성누설전류(Igo) 및 저항성누설전류(Igr) 값에 대하여 미리 설정된 누설전류 판단기준을 토대로 판단하여 전로의 합성누설전류(Igo) 및 저항성누설전류(Igr)에 대한 이벤트 정보를 결정할 수 있다.
예를 들어, 도 11에서 나타낸 바와 같이 합성누설전류(Igo)에 대한 위험 판단기준이 30.0mA, 경고 판단기준이 20.0mA, 주의 판단기준이 16.0mA로 설정되고, 저항성누설전류(Igr)에 대한 경고 판단기준이 8.0mA, 주의 판단기준이 4.0mA로 설정되는 경우 IoT 기반 부하장치(300)는 검출된 합성누설전류(Igo) 값이 30.0mA 이상인지를 판단하고, 30.0mA 이상이면 위험 이벤트 정보를 발생하며, 사용자에게 위험 알람을 제공하고, 전원 공급을 차단할 수 있다.
또한, IoT 기반 부하장치(300)는 검출된 저항성누설전류(Igr) 값이 8.0mA 이상이거나 또는 검출된 합성누설전류(Igo) 값이 20.0mA 이상인지를 판단하고, 판단 결과에 따라 경고 이벤트 정보를 발생하며, 사용자에게 경고 알람을 제공할 수 있다. 또한, IoT 기반 부하장치(300)는 검출된 저항성누설전류(Igr) 값이 4.0mA 이상이거나 또는 검출된 합성누설전류(Igo) 값이 16.0mA 이상인지를 판단하고, 판단 결과에 따라 주의 이벤트 정보를 발생하며, 사용자에게 주의 알람을 제공할 수 있다.
도 12는 본 발명의 실시 예에 따른 IoT 기반 부하장치(300)의 과전류 검출을 나타내는 도면이다. 도 12에서 도시된 바와 같이 IoT 기반 부하장치(300)는 전로에서 검출된 전류 값에 대하여 미리 설정된 과전류 판단기준을 토대로 판단하여 전로의 과전류에 대한 이벤트 정보를 결정할 수 있다.
예를 들어, 도 12에서 나타낸 바와 같이 과전류에 대한 주의 판단기준이 정격전류의 90%에서 2분 이상, 경고 판단기준이 정격전류의 100%에서 2분 이상, 위험 판단기준이 정격전류의 120%에서 2분 이상으로 설정되는 경우 IoT 기반 부하장치(300)는 검출된 전류 값을 토대로 판단하고, 판단 결과에 따라 주의 이벤트, 경고 이벤트 또는 위험 이벤트 정보를 발생하며, 사용자에게 알람을 제공하고, 전원 공급을 차단할 수 있다.
도 13은 본 발명의 실시 예에 따른 IoT 기반 부하장치(300)의 역률 검출을 나타내는 도면이다. 도 13에서 도시된 바와 같이 IoT 기반 부하장치(300)는 전로에서 검출된 전류 및 전압 값을 이용하여 역률을 연산하고, 연산된 역률에 대하여 미리 설정된 역률 판단기준을 토대로 판단하여 전로의 역류에 대한 이벤트 정보를 결정할 수 있다.
예를 들어, 도 13에서 나타낸 바와 같이 역률에 대한 경고 판단기준이 0.5, 주의 판단기준이 0.8로 설정되는 경우 IoT 기반 부하장치(300)는 연산된 역률 값이 0.5 이하인지를 판단하고, 역률 값이 0.5 이하이면 경고 이벤트 정보를 발생하며, 사용자에게 경고 알람을 제공할 수 있다.
또한, IoT 기반 부하장치(300)는 연산된 역률 값이 0.5 이하가 아닌 경우에는 0.8 이하인지를 판단하고, 역률 값이 0.8 이하이면 주의 이벤트 정보를 발생하며, 사용자에게 주의 알람을 제공할 수 있다.
여기에서, IoT 기반 부하장치(300)와 스마트분전반(200)에 대한 감시요소별 검출 알고리즘은 역률을 제외하고는 동일한 것을 확인할 수 있다. 상기 역률의 이벤트 검출 기준이 다른 것은 IoT 기반 부하장치(300)는 단일 부하가 연결되고, 스마트분전반(200)에는 다양한 부하가 동시에 연결되기 때문이다. 따라서, 이를 고려하여 검출 기준을 설정하는 것이 바람직하다.
이와 같이 IoT 기반 부하장치(300)와 스마트분전반(200)의 상태 정보와 이벤트 정보에는 분기 회로와 분기 회로에 연결된 부하의 상태 정보가 혼재되어 있기 때문에 상태 알람은 가능하지만 고장 위치 분석이 불가능하다. 본 발명의 실시 예에 따른 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 장치(10)는 세대플랫폼(100)에서 제공하는 상태 정보 기반의 분석을 통해 전로와 부하에 대한 정확한 고장 위치를 추정할 수 있다.
즉, 도 4 내지 도 13의 검출 알고리즘을 이용한 검출 결과와 상태 정보를 세대플랫폼(100)으로 전송하고, 세대플랫폼(100)에서 이를 이용하여 전로와 부하의 고장 위치를 추정할 수 있다.
스마트아웃렛(Smart Outlet)(400)은 비IoT 부하장치(500)에 대한 IoT 통신이 가능하게 한다. 즉, 비IoT 부하장치(500)를 IoT화하여 검출된 상태 정보를 IoT를 기반으로 세대플랫폼(100)에 전송할 수 있다. 또한, 비IoT 부하장치(500)는 IoT 통신이 불가능한 비IoT 가전제품(510)을 포함할 수 있다. 또한, 스마트아웃렛(Smart Outlet)(400)은 전압센서, 전류센서, 영상전류센서 및 아크신호 검출센서를 포함할 수 있다.
세대플랫폼(100)은 IoT 기반 부하장치(300)의 상태 정보와 스마트분전반(200)의 상태 정보를 수집하고, 스마트아웃렛(Smart Outlet)(400)에 대한 부하 종류 및 설치 위치를 설정할 수 있다. 또한, 세대플랫폼(100)은 세대별 전기안전관리시스템의 정보를 관리하여 이상상태 검출시 세대 사용자에게 상태 정보를 제공한다. 즉, 세대플랫폼(100)은 IoT 기반 부하장치(300)와 스마트분전반(200)의 측정 데이터를 입력받아 저장하고 관리하며, 이벤트 발생시 관리자 또는 사용자에게 상태 정보의 알람을 제공할 수 있다.
또한, 세대플랫폼(100)은 IoT 기반 부하장치(300)와 스마트분전반(200)의 단일 감시요소 정보를 이용하여 분기 회로와 부하의 고장 상태 정보 및 고장 위치 정보를 분석하고, 세대 내 고장 정보를 제공할 수 있다. 즉, 세대플랫폼(100)은 IoT 기반 부하장치(300)와 스마트분전반(200)의 부하 또는 전로의 상태 정보를 기반으로 세대 사용자에게 전로와 부하의 고장 위치 및 고장 상태 정보를 제공할 수 있다.
도 14 내지 도 19는 스마트아웃렛(400)과 스마트분전반(200)의 상태 정보를 이용하여 세대플랫폼(100)에서 전로와 부하의 고장위치를 추정하는 알고리즘을 나타낸다. 도 14는 본 발명의 실시 예에 따른 누설전류를 이용한 고장위치 추정 방법을 나타내는 도면이다.
세대플랫폼(100)은 메인차단기(210) 또는 분기차단기(220)와 스마트아웃렛(400)과의 이벤트 항목별 데이터를 분석하여 고장 위치를 추정하고, 사용자에게 상태정보를 제공할 수 있다. 누설전류의 경우 분기차단기(220)의 누설전류값과 해당 분기와 연결된 스마트아웃렛(400)의 누설전류 총합에 대한 상관관계를 토대로 분기 전로에서 발생하는 누설전류는 아래의 [수학식 1]을 이용하여 계산할 수 있다.
[수학식 1]
분기 전로에서 발생하는 누설전류 =
Figure PCTKR2018016948-appb-I000008
여기에서,
Figure PCTKR2018016948-appb-I000009
는 분기차단기(220)의 누설전류값이고,
Figure PCTKR2018016948-appb-I000010
는 해당 분기와 연결된 스마트아웃렛(400)의 누설전류 총합이다.
상기 분기 전로에서 발생하는 누설전류 값이 미리 설정된 기준값 이하인 경우에는 개별 스마트아웃렛(400)의 누설전류 검출값이 이벤트 기준값에 해당하는 스마트아웃렛(400)의 부하이상으로 판단할 수 있다. 또한, 상기 분기 전로에서 발생하는 누설전류 값이 이벤트 기준값 이상에 해당하는 경우에는 전로 및 스마트아웃렛(400)의 부하 이상으로 판단하고, 관리자에게 상태 정보를 제공한다. 또한, 스마트아웃렛(400)의 개별상태 판단에 따라 고장 분기 및 부하이상 정보를 제공하여 고장요인을 해소할 수 있도록 조치할 수 있다.
또한, 상기 분기 전로에서 발생하는 누설전류 값이 미리 설정된 기준값 이하인 조건에서 개별 스마트아웃렛(400)의 누설전류 검출값이 이벤트 기준값 이하이며, 분기차단기(220)의 누설전류 검출값이 이벤트를 초과한 상태일 때 분기차단기(220)의 전로에서는 누설전류가 발생한 것이 아니기 때문에 분기차단기(220)의 이벤트는 리셋(reset) 시켜 사용자나 관리자의 혼란을 방지하는 것이 바람직하다.
아래의 [표 1]은 분기차단기(220)와 스마트아웃렛(400)의 누설전류 검출 결과에 따른 고장 위치 추정 방법을 나타낸다. 아래의 [표 1]에 나타낸 바와 같이 누설전류 검출 여부에 따른 상태 분석을 통하여 분기차단기(220)와 스마트아웃렛(400)의 고장 상태를 확인하고, 고장 위치를 추정할 수 있다.
분기차단기 스마트아웃렛 고장위치 추정
1 누전검출 누전검출 부하 및 부하배선 이상, 부하 확인필요
2 누전검출 정상 분기 배선 이상, 관리자 확인필요
3 정상 누전검출 해당 분기차단기 상태 확인필요
도 15는 본 발명의 실시 예에 따른 과전압 및 정전을 이용한 고장위치 추정 방법을 나타내는 도면이다. 또한, 아래의 [표 2]는 메인차단기(210)와 스마트아웃렛(400)의 과전압 및 정정 검출 결과에 따른 고장 위치 추정 방법을 나타낸다.
아래의 [표 2]에 나타낸 바와 같이 메인차단기(210)와 스마트아웃렛(400)에 대한 L(Live)상과 N(Neutral)상 사이의 전압 RMS를 검출하여 과전압 및 정전 정보를 판단할 수 있다. 또한, 판단 결과를 토대로 메인차단기(210)와 스마트아웃렛(400)의 상태 정보를 분석하여 메인차단기(210)와 스마트아웃렛(400)의 고장 상태를 확인하고 고장위치를 추정할 수 있다.
메인차단기 스마트아웃렛 고장위치 추정
1 정상 과전압/정전 스마트 아웃렛/부하 이상 확인
2 과전압/정전 과전압/정전 입력 전원 이상, 관리자 확인필요
3 과전압/정전 정상 입력 전원 이상/스마트아웃렛 고장
도 16 및 도 17은 본 발명의 실시 예에 따른 아크고장을 이용한 고장위치 추정 방법을 나타내는 도면이다. 즉, 도 16은 분기차단기(220)에만 아크 고장 검출 기능이 있는 경우의 아크 고장을 이용한 고장위치 추출 알고리즘을 나타내고, 도 17은 분기차단기(220)와 스마트아웃렛(400) 모두에 아크 고장 검출 기능이 있는 경우의 아크 고장을 이용한 고장위치 추출 알고리즘을 나타낸다.
또한, 아래의 [표 3] 및 [표 4]는 분기차단기(220)와 스마트아웃렛(400)의 아크 고장 검출 결과에 따른 고장 위치 추정 방법을 나타낸다. 아크 고장 검출 기능은 분기차단기(220)와 스마트아웃렛(400) 모두 선택사항 기능으로 분기차단기(220)에만 아크 검출 기능이 있는 경우와, 분기차단기(220) 및 스마트아웃렛(400) 모두 아크 검출 기능이 있는 경우로 구분하여 분석할 수 있다.
[표 3]은 아크 고장 검출 기능이 분기차단기(220)에만 경우의 아크 고장 검출 결과에 따른 고장 위치 추정 방법을 나타낸다. [표 3]에서 나타낸 바와 같이 분기차단기(220)에서만 아크 검출 기능이 있는 경우 분기차단기(220)에서 아크 고장 신호가 검출되면 분기 배선 또는 부하 이상으로 판단하고, 고장 위치를 확인할 수 있다.
분단차단기 스마트아웃렛 고장위치 추정
1 아크 고장검출 - 분기 배선 또는 부하 이상, 확인필요
또한, 고장 위치의 확인을 위해 부하를 제거한 후 분기차단기(220)의 아크 고장 신호가 검출되면 분기 배선 이상, 아크 고장 신호가 검출되지 않으면 부하 이상으로 판단할 수 있다. 분기 배선의 아크 고장 발생시 분기차단기(220)의 분기 회로가 많을 수 있기 때문에 각 분기 회로별로 아크 검출 시험(UL1699 또는 IEC62606 등)을 통하여 정확한 아크 고장 전로의 위치를 확인할 수 있다.
아래의 [표 4]는 아크 고장 검출 기능이 분기차단기(220)와 스마트아웃렛(400) 모두에 있는 경우의 아크 고장 검출 결과에 따른 고장 위치 추정 방법을 나타낸다.
분단차단기 스마트아웃렛 고장위치 추정
1 아크 고장검출 아크 고장검출 부하 및 부하배선 이상, 부하 확인필요
2 아크 고장검출 아크 고장검출 분기 배선 이상, 관리자 확인필요
3 정상 정상 분기차단기 상태 확인필요
[표 4]에서 나타낸 바와 같이 분기차단기(220)와 스마트아웃렛(400) 모두 아크 검출 기능이 있는 경우 아크 고장 신호 발생 위치에 따라 고장 위치를 확인할 수 있다. 분기 배선의 이상이 발생한 경우 각 분기 회로별 아크 검출 시험을 통하여 정확한 아크 고장 전로의 위치를 확인할 수 있다.
도 18은 본 발명의 실시 예에 따른 역률변화율을 이용한 고장위치 추정 방법을 나타내는 도면이고, 도 19는 본 발명의 실시 예에 따른 과전류 변화율을 이용한 고장위치 추정 방법을 나타내는 도면이다.
부하 과전류율 이벤트는 스마트아웃렛(400)의 상태 정보를 기반으로 스마트아웃렛(400)에 연결된 단일 부하의 최대 사용전류 크기 대비 증가율을 분석하여 이벤트를 검출할 수 있다. 단일 부하의 최대 사용전류 결정은 스마트아웃렛(400)에 부하 연결시 접속 정보(부하 종류)를 설정 후 미리 설정된 시간동안 사용된 전류의 최대값으로 결정할 수 있다. 예를 들어, 3일 동안 사용된 전류의 최대값으로 결정할 수 있다. 이때, 부하 과전류율은 최대사용전류 대비 50% 증가시 부하의 이상상태에 대한 확인이 필요하기 때문에 전류 사용량 확인을 위한 경고 알람을 제공할 수 있다.
또한, 부하 역률 변화율 이벤트는 스마트아웃렛(400)의 상태 정보를 기반으로 스마트아웃렛(400)에 연결된 단일 부하의 역률 변화 상태를 분석하여 이벤트를검출할 수 있다. 단일 부하의 종래 역률은 스마트아웃렛(400)에 부하 연결시 접속 정보(부하 종류) 설정 후 미리 설정된 시간동안 역률의 최저값으로 결정할 수 있다. 예를 들어, 3일 역률의 최저값으로 결정할 수 있다.
이때 부하 역률 변화율은 종래 역률보다 일정 비율로 저하시 부하의 이상상태에 대한 확인을 위해 알람을 제공할 수 있다. 예를 들어, 종래 역률보다 상대적으로 20% 이상 저하시 주의 알람, 40% 이상 저하시 경고 알람을 제공할 수 있다.
이로 인해, 사용자는 부하의 상태 정보를 기반으로 제조사로부터 AS를 제공받아 고장요인을 해소할 수 있고, 관리자는 전로의 고장요인을 해소하여 전기재해를 예방하며 신속한 고장요인 해소로 인해 편리성을 확보할 수 있는 효과가 있다.
이상으로 본 발명에 관한 바람직한 실시 예를 설명하였으나, 본 발명은 상기 실시 예에 한정되지 아니하며, 본 발명의 실시 예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.
[부호의 설명]
1 : 자율전기안전시스템 10 : 고장 상태 추정 장치
20 : 관리자 서버 100 : 세대플랫폼
200 : 스마트분전반 210 : 메인차단기
220 : 분기차단기 300 : IoT 기반 부하장치
310 : IoT 가전제품 400 : 스마트아웃렛
500 : 비IoT 부하장치 510 : 비IoT 가전제품

Claims (13)

  1. 전로 또는 부하에 연결되어 해당 전로 또는 부하에서 측정된 상태 정보를 토대로 전로와 부하의 고장 상태 및 고장 위치를 추정하는 고장 상태 추정 장치에 있어서,
    메인차단기 또는 분기차단기에 연결되어 전로의 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 전로 상태 정보를 검출하고, 상기 전로 상태 정보를 세대플랫폼으로 전송하는 스마트분전반;
    부하에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 부하 상태 정보를 검출하고, IoT를 기반으로 상기 부하 상태 정보를 세대플랫폼에 전송하는 IoT 기반 부하장치;
    IoT 기반의 통신이 불가능한 비IoT 부하장치에 연결되어 상기 비IoT 부하장치에 대한 IoT 기반의 통신이 가능하게 하고, 상기 비IoT 부하장치에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 비IoT 부하 상태 정보를 검출하며, IoT를 기반으로 상기 비IoT 부하 상태 정보를 세대플랫폼에 전송하는 스마트아웃렛(Smart Outlet);
    상기 스마트분전반, IoT 기반 부하장치 및 스마트아웃렛으로부터 전송받은 상태 정보를 이용하여 전로와 부하의 고장 위치를 추정하는 세대플랫폼을 포함하는 것을 특징으로 하는 고장 상태 추정 장치.
  2. 제1항에 있어서,
    상기 세대플랫폼은 분기차단기의 누설전류 값과 해당 분기와 연결된 스마트아웃렛의 누설전류 총합에 대한 상관관계를 토대로 상기 분기차단기의 누설전류 값과 해당 분기와 연결된 스마트아웃렛의 누설전류 총합과의 차이를 이용하여 분기 전로에서 발생하는 누설전류 값을 계산하고, 계산 결과를 토대로 전로와 부하의 고장 위치를 추정하는 것을 특징으로 하는 고장 상태 추정 장치.
  3. 제2항에 있어서,
    상기 세대플랫폼은 상기 분기차단기의 누설전류 값과 해당 분기와 연결된 스마트아웃렛의 누설전류 총합이 미리 설정된 이벤트 기준값 이상이고, 상기 분기 전로에서 발생하는 누설전류 값이 미리 설정된 기준값 이하인 경우에는 스마트아웃렛의 개별상태 판단을 통해 부하이상으로 판단하는 것을 특징으로 하는 고장 상태 추정 장치.
  4. 제2항에 있어서,
    상기 세대플랫폼은 상기 분기차단기의 누설전류 값과 해당 분기와 연결된 스마트아웃렛의 누설전류 총합이 미리 설정된 이벤트 기준값 이상이고, 상기 분기 전로에서 발생하는 누설전류 값이 미리 설정된 기준값 이상인 경우에는 전로 및 스마트아웃렛의 부하 이상으로 판단하며, 상기 스마트아웃렛의 개별상태 판단에 따라 전로 및 부하의 고장 상태 및 고장 위치를 추정하는 것을 특징으로 하는 고장 상태 추정 장치.
  5. 제1항에 있어서,
    상기 세대플랫폼은 메인차단기와 스마트아웃렛에 대한 L(Live)상과 N(Neutral)상 사이의 전압에 대한 RMS를 검출하여 과전압 및 정전 정보를 판단하고, 판단 결과를 토대로 상기 메인차단기와 스마트아웃렛의 상태 정보를 분석하여 메인차단기와 스마트아웃렛의 고장 상태 및 고장 위치를 추정하는 것을 특징으로 하는 고장 상태 추정 장치.
  6. 제1항에 있어서,
    상기 세대플랫폼은 분기차단기에만 아크 검출 기능이 있는 경우 분기차단기에서 아크 고장 신호가 검출되면 분기 배선 또는 부하 이상으로 판단하는 것을 특징으로 하는 고장 상태 추정 장치.
  7. 제6항에 있어서,
    상기 세대플랫폼은 상기 분기 배선 또는 부하에 대한 고장 위치의 확인을 위해 부하를 제거한 후 분기차단기에서 아크 고장 신호가 검출되면 분기 배선 이상, 상기 분기차단기에서 아크 고장 신호가 검출되지 않으면 부하 이상으로 판단하는 것을 특징으로 하는 고장 상태 추정 장치.
  8. 제1항에 있어서,
    상기 세대플랫폼은 분기차단기와 스마트아웃렛 모두 아크 검출 기능이 있는 경우 아크 고장 신호 발생 위치에 따라 고장 위치를 추정하되,
    상기 분기차단기와 스마트아웃렛 모두에서 아크 고장 신호가 검출되면 부하 및 부하배선 이상, 상기 분기차단기에서만 아크 고장 신호가 검출되면 분기 배선 이상, 상기 스마트아웃렛에서만 아크 고장 신호가 검출되면 분기차단기의 상태 이상으로 판단하는 것을 특징으로 하는 고장 상태 추정 장치.
  9. 전로 또는 부하에 연결되어 해당 전로 또는 부하에서 측정된 상태 정보를 토대로 전로와 부하의 고장 상태 및 고장 위치를 추정하는 고장 상태 추정 방법에 있어서,
    스마트분전반에서 메인차단기 또는 분기차단기를 통해 전로의 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 전로 상태 정보를 검출하고, 상기 전로 상태 정보를 세대플랫폼으로 전송하는 단계(S10);
    IoT 기반 부하장치에서 부하에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 부하 상태 정보를 검출하고, IoT를 기반으로 상기 부하 상태 정보를 세대플랫폼에 전송하는 단계(S20);
    스마트아웃렛(Smart Outlet)에서 IoT 기반의 통신이 불가능한 비IoT 부하장치에 연결되어 상기 비IoT 부하장치에 대한 전압, 부하전류, 영상전류, 합성누설전류, 저항성누설전류, 과전류, 아크 정보, 과전압, 정전 및 역률(Power Factor, PF) 중 적어도 하나를 포함하는 비IoT 부하 상태 정보를 검출하고, IoT를 기반으로 상기 비IoT 부하 상태 정보를 세대플랫폼에 전송하는 단계(S30);
    상기 세대플랫폼에서 상기 분기차단기의 누설전류 값과 스마트아웃렛의 누설전류 총합에 대한 상관관계를 토대로 판단하여 전로와 부하의 고장 위치를 추정하는 단계(S40);
    상기 세대플랫폼에서 상기 메인차단기와 스마트아웃렛에 대한 과전압 및 정전 정보를 토대로 판단하여 상기 메인차단기와 스마트아웃렛의 고장 상태 및 고장 위치를 추정하는 단계(S50);
    상기 세대플랫폼에서 분기차단기와 스마트아웃렛의 아크 고장 신호를 토대로 판단하여 부하, 부하배선, 분기 배선 및 분기차단기의 고장 상태 및 고장 위치를 추정하는 단계(S60)를 포함하는 것을 특징으로 하는 고장 상태 추정 방법.
  10. 제9항에 있어서,
    상기 전로와 부하의 고장 위치를 추정하는 단계(S40)는
    상기 분기차단기의 누설전류 값(
    Figure PCTKR2018016948-appb-I000011
    )과 스마트아웃렛의 누설전류 총합 값(
    Figure PCTKR2018016948-appb-I000012
    )을 취득하는 단계(S41);
    상기 분기차단기의 누설전류 값(
    Figure PCTKR2018016948-appb-I000013
    )이 미리 설정된 제1기준치(ref1) 이상인지를 판단하는 단계(S42);
    상기 스마트아웃렛의 누설전류 총합 값(
    Figure PCTKR2018016948-appb-I000014
    )이 미리 설정된 제2기준치(ref2) 이상인지를 판단하는 단계(S43);
    상기 분기차단기의 누설전류 값(
    Figure PCTKR2018016948-appb-I000015
    )과 스마트아웃렛의 누설전류 총합 값(
    Figure PCTKR2018016948-appb-I000016
    )과의 차이(
    Figure PCTKR2018016948-appb-I000017
    )가 미리 설정된 제3기준치(ref3) 이상인지를 판단하는 단계(S44); 및
    판단 결과를 토대로 부하, 부하배선, 분기 배선, 분기차단기 및 전로에 대한 고장 위치를 추정하는 단계(S45)를 포함하는 것을 특징으로 하는 고장 상태 추정 방법.
  11. 제9항에 있어서,
    상기 메인차단기와 스마트아웃렛의 고장 상태 및 고장 위치를 추정하는 단계(S50)는
    상기 메인차단기와 스마트아웃렛에 대한 L(Live)상과 N(Neutral)상 사이의 전압 RMS를 검출하는 단계(S51);
    상기 메인차단기에 대한 과전압 또는 정전 정보를 판단하는 단계(S52);
    상기 스마트아웃렛에 대한 과전압 또는 정전 정보를 판단하는 단계(S53); 및
    판단 결과를 토대로 상기 메인차단기의 입력전원, 스마트아웃렛 및 부하에 대한 고장 위치를 추정하는 단계(S54)를 포함하는 것을 특징으로 하는 고장 상태 추정 방법.
  12. 제9항에 있어서,
    상기 분기차단기의 고장 상태 및 고장 위치를 추정하는 단계(S60)는
    아크 고장 검출 기능이 상기 분기차단기에만 있는지, 분기차단기와 스마트아웃렛 모두에 있는지를 판단하는 단계(S61);
    상기 아크 고장 검출 기능이 분기차단기와 스마트아웃렛 모두에 있는 경우, 상기 분기차단기에서 아크 고장 신호를 검출하는 단계(S611);
    상기 스마트아웃렛에서 아크 고장 신호를 검출하는 단계(S612); 및
    검출 결과를 토대로 부하, 부하배선, 분기 배선 및 분기차단기에 대한 고장 위치를 추정하는 단계(S613)를 포함하는 것을 특징으로 하는 고장 상태 추정 방법.
  13. 제12항에 있어서,
    상기 아크 고장 검출 기능이 상기 분기차단기에만 있는 경우, 분기차단기에서 아크 고장 신호를 검출하는 단계(S621); 및
    검출 결과를 토대로 분기 배선 또는 부하에 대한 고장 위치를 추정하는 단계(S622)를 더 포함하는 것을 특징으로 하는 고장 상태 추정 방법.
PCT/KR2018/016948 2018-12-27 2018-12-31 Iot 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치 WO2020138573A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0170414 2018-12-27
KR1020180170414A KR102090586B1 (ko) 2018-12-27 2018-12-27 IoT 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2020138573A1 true WO2020138573A1 (ko) 2020-07-02

Family

ID=69999405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016948 WO2020138573A1 (ko) 2018-12-27 2018-12-31 Iot 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치

Country Status (2)

Country Link
KR (1) KR102090586B1 (ko)
WO (1) WO2020138573A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505511A (zh) * 2020-12-14 2021-03-16 天津求实智源科技有限公司 一种非侵入式低压故障电弧检测与定位方法及系统
CN113329089A (zh) * 2021-06-03 2021-08-31 鹤壁职业技术学院 一种基于物联网的远程断电警报系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112488418B (zh) * 2020-12-14 2023-09-26 中国南方电网有限责任公司 一种全拓扑负荷预测方法、装置及计算机设备
CN113447854B (zh) * 2021-06-24 2022-04-05 山东大学 基于预测控制的变流器系统开路故障诊断方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090020220A (ko) * 2007-08-23 2009-02-26 한국전기안전공사 분전반의 지능형 제어장치 및 제어방법
KR101377190B1 (ko) * 2013-08-23 2014-03-24 (주)스템코 수배전반의 누설전류와 아크가 발생한 전압의 상 판단 장치 및 방법.
KR101592466B1 (ko) * 2015-11-18 2016-02-05 한양전공주식회사 IoT 기반의 스마트 제어 시스템이 적용된 수배전반
KR101790779B1 (ko) * 2017-06-01 2017-11-20 주식회사 두남 사물인터넷 기반의 스마트 콘센트
KR101802159B1 (ko) * 2016-08-04 2017-11-30 한국전기안전공사 Ict 기반 원격 저압 옥내외 배선상태 점검시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090020220A (ko) * 2007-08-23 2009-02-26 한국전기안전공사 분전반의 지능형 제어장치 및 제어방법
KR101377190B1 (ko) * 2013-08-23 2014-03-24 (주)스템코 수배전반의 누설전류와 아크가 발생한 전압의 상 판단 장치 및 방법.
KR101592466B1 (ko) * 2015-11-18 2016-02-05 한양전공주식회사 IoT 기반의 스마트 제어 시스템이 적용된 수배전반
KR101802159B1 (ko) * 2016-08-04 2017-11-30 한국전기안전공사 Ict 기반 원격 저압 옥내외 배선상태 점검시스템
KR101790779B1 (ko) * 2017-06-01 2017-11-20 주식회사 두남 사물인터넷 기반의 스마트 콘센트

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505511A (zh) * 2020-12-14 2021-03-16 天津求实智源科技有限公司 一种非侵入式低压故障电弧检测与定位方法及系统
CN112505511B (zh) * 2020-12-14 2022-06-07 天津求实智源科技有限公司 一种非侵入式低压故障电弧检测与定位方法及系统
CN113329089A (zh) * 2021-06-03 2021-08-31 鹤壁职业技术学院 一种基于物联网的远程断电警报系统

Also Published As

Publication number Publication date
KR102090586B1 (ko) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2020138573A1 (ko) Iot 기반의 부하장치와 스마트분전반을 이용한 전로와 부하의 고장 상태 추정 방법 및 장치
WO2019216626A1 (ko) 전기고장 만능탐지 및 복구 배전시스템 및 그 공사방법
KR101336317B1 (ko) 유시티(U-city) 등 대규모 도시의 전기설비를 실시간으로 관리 및 운영을 하는 웹감시 기반 유시티 전기안전 통합관리시스템
WO2018105989A1 (ko) 마이크로그리드 시스템 및 고장 처리 방법
KR101021628B1 (ko) 지역별로 설비된 분전반과 수배전반의 상태를 관리하는 전기안전감시시스템
WO2018131797A1 (ko) 배전계통 전원선로 고장시 실시간 탐지/복구시스템 및 그 공사방법
WO2016018008A1 (ko) 전력시스템 네트워크의 안정도 산출 및 고장예지 장치와 방법
KR20140122771A (ko) 다중복합(cmd) 센서를 이용한 화재감지 기능을 갖는 고압반, 저압반, 분전반, 모터제어반
KR20190051225A (ko) 통합 센싱모듈을 이용한 지능형 배전반 관리시스템
KR101708005B1 (ko) 직류 과부하 겸용 아크 차단장치
KR102472880B1 (ko) 전력설비의 전력손실 및 화재 진단 시스템
KR101904813B1 (ko) 스마트 분전반을 이용한 전기 설비 병렬아크 진단 장치 및 방법
WO2008146040A1 (en) System for identifying fire risk
WO2019156343A1 (ko) 배전반의 모니터링 및 부하 제어 시스템
WO2017043754A1 (ko) 실시간 정전정보 전송용 전자식 전력량계 및 실시간 정전정보 전송 방법
KR20070005278A (ko) 아크 검출을 이용한 전기 화재 예방 시스템
WO2014200207A1 (ko) 태양전지모듈용 정션박스 및 그의 구동방법
KR101064508B1 (ko) 배전자동화용 단말장치의 고장구간 자동 분리 방법
WO2019221362A1 (ko) 셀프 파워 계전기 및 이의 오동작 방지 방법
KR20210042598A (ko) 전력선 모니터링 시스템 및 방법
KR101300523B1 (ko) 배전반 화재감시제어기
KR20110095983A (ko) 에스피디 단로장치
WO2012039526A1 (ko) 과전류 보호 방법 및 그 장치
KR101020038B1 (ko) 전기적 이상상태 감지기능을 구비한 모터 제어반
WO2019190254A1 (ko) 직류 전원 복합 고장 실시간 종합 감시 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944792

Country of ref document: EP

Kind code of ref document: A1