WO2020242163A1 - 계통 전압 위상 검출 장치 - Google Patents

계통 전압 위상 검출 장치 Download PDF

Info

Publication number
WO2020242163A1
WO2020242163A1 PCT/KR2020/006762 KR2020006762W WO2020242163A1 WO 2020242163 A1 WO2020242163 A1 WO 2020242163A1 KR 2020006762 W KR2020006762 W KR 2020006762W WO 2020242163 A1 WO2020242163 A1 WO 2020242163A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
filter
frequency
signal
filtering
Prior art date
Application number
PCT/KR2020/006762
Other languages
English (en)
French (fr)
Inventor
김현준
서해원
정병환
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Priority to US17/611,843 priority Critical patent/US11971437B2/en
Priority to GB2116579.0A priority patent/GB2597211B/en
Publication of WO2020242163A1 publication Critical patent/WO2020242163A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal

Definitions

  • the present invention relates to a system voltage phase detection apparatus, and in particular, in a synchronous rope circuit of a reference phase of a three-phase voltage signal, the voltage and phase of the system power are detected even in poor environments such as an instantaneous voltage drop, harmonic, and phase angle jump of a power supply. It relates to a system voltage phase detection device that can accurately detect.
  • phase detector determines the performance of the quality compensation device that performs power factor compensation, harmonic current compensation, and voltage disturbance compensation.
  • the voltage of the actual system contains many harmonics due to the influence of harmonic currents generated by many nonlinear loads.
  • Methods for detecting the phase of a single-phase system voltage include a zero-crossing PLL (Phase Locked Loop) and a three-phase PLL by extending the single phase to the d-q axis.
  • PLL Phase Locked Loop
  • a three-phase PLL by extending the single phase to the d-q axis.
  • An object of the present invention is to provide a system voltage phase detection apparatus capable of suppressing errors caused by an unbalance component and a harmonic component of the system voltage.
  • another object of the present invention is to improve the operational stability of a phase locked loop circuit including a system voltage phase detection device and a PCS including the same.
  • a system voltage phase detection apparatus includes: a d-q converter configured to receive a three-phase signal and calculate a d-axis signal and a q-axis signal; A phase signal calculator configured to calculate a signal for phase synchronization of the system voltage from the d-axis signal and the q-axis signal; And
  • a fourth filter having no phase change may include a PR filter unit that removes an unbalance component and a harmonic component from the d-axis signal and the q-axis signal calculated by the dq conversion unit and provides the phase signal calculation unit.
  • the d-axis signal is input to the first filter and the third filter
  • the q-axis signal is input to the second filter and the fourth filter
  • the output signal of the first filter and the second filter The output signal of is halved after being summed and provided as a filtered d-axis signal to the phase signal calculation unit, and the output signal of the third filter and the output signal of the fourth filter are summed and halved to form the filtered q-axis signal. It may be provided as a signal calculating unit.
  • the first filter and the fourth filter have a steep peak at the rated frequency, with respect to a coordinate plane having a frequency and a magnititude of an exponential scale, and with respect to a coordinate plane having a frequency and a phase of the exponential scale, It has a phase of 0 degrees at the rated frequency, a phase of -90 degrees at an upper frequency belonging to the filtering cutoff range, and has a filtering characteristic having a phase of 90 degrees at a lower frequency belonging to the filtering cutoff range,
  • the second filter has a steep peak at the rated frequency with respect to a coordinate plane with a frequency and a magnititude of an exponential scale, and 90 degrees at the rated frequency with respect to a coordinate plane with a frequency and a phase of the exponential scale. It has a phase, has a phase of 0 degrees at an upper frequency that falls within the filtering cutoff range, and has a filtering characteristic that has a phase of 180 degrees at a lower frequency that falls within the filtering cutoff range,
  • the third filter has a steep peak at the rated frequency with respect to a coordinate plane with a frequency and magnititude of an exponential scale, and -90 at the rated frequency with respect to a coordinate plane with a frequency and phase of the exponential scale. It has a phase of degrees, has a phase of 0 degrees at an upper frequency that falls within the filtering cutoff range, and has a filtering characteristic that has a phase of -180 degrees at a lower frequency that falls within the filtering cutoff range.
  • the first filter and the fourth filter with respect to a coordinate plane having a frequency and a magnititude of an exponential scale, have a filtering characteristic in a form symmetrical to the left and right around the rated frequency point,
  • the second filter with respect to a coordinate plane having a frequency and a magnititude of an exponential scale, falls with an almost linear slope at an upper frequency that falls within the filtering cutoff range, and has a substantially constant size at a lower frequency that falls within the filtering cutoff range.
  • the third filter falls with a substantially linear slope at a lower frequency that falls within the filtering cutoff range, and has an almost constant size at an upper frequency that falls within the filtering cutoff range. It can have a type of filtering characteristic.
  • the first filter and the fourth filter have filtering characteristics according to the following Laplace coordinate system equation
  • the second filter has a filtering characteristic according to the following Laplace coordinate system equation,
  • the third filter may have filtering characteristics according to the following Laplace coordinate system equation.
  • is the resonance frequency
  • k is the damping factor
  • ⁇ c is the cutoff frequency
  • the PR filter unit may be a digital filter that receives the detected system voltage signal as a digital value and digitally converts the value according to predetermined conversion equations.
  • system voltage phase detection apparatus of the present invention has the advantage that the phase locked loop circuit provided with the system voltage phase detection device can follow the correct system frequency and voltage level from the distorted system voltage.
  • system voltage phase detection apparatus of the present invention improves the reliability of PCS and can stably operate even in a weak grid, there is an advantage of reducing maintenance costs.
  • 1 shows measuring points of each measurement value for PLL method control in a power supply structure for a system.
  • FIG. 2 is a block diagram showing a general PLL control circuit.
  • FIG. 3 shows a more detailed block diagram of a general PLL structure.
  • FIG. 4 is a block diagram showing a current control structure through PLL control.
  • FIG. 5 is a block diagram showing a PLL control circuit according to the spirit of the present invention.
  • 6A and 6B are graphs showing G PR_C (s) filtering characteristics according to k.
  • 7A and 7B are graphs showing G PR_SP (s) filtering characteristics.
  • 8A and 8B are graphs showing G PR_SN (s) filtering characteristics.
  • 9 is a phasor diagram in which normal and reverse voltages of a three-phase unbalanced voltage are summed.
  • Fig. 10 is a phasor diagram of the d-axis and the q-axis of the unbalanced voltage converted to the dq stop coordinates of the two phases.
  • 11 is a control block diagram for obtaining a normal dq-axis voltage from a two-phase unbalanced voltage.
  • FIG. 12 is a phasor diagram showing a process of extracting a normal d-axis voltage.
  • 13 is a phasor diagram showing a process of extracting a normal q-axis voltage.
  • FIG. 14 is a control block diagram for obtaining a reverse-phase dq-axis voltage from a two-phase unbalanced voltage.
  • 15 is a phasor diagram for obtaining a reverse-phase d-axis voltage.
  • 16 is a phasor diagram for obtaining a reverse phase q-axis voltage.
  • Fig. 17 is a simulation waveform diagram for extracting normal and reverse voltages from an unbalanced voltage.
  • first and second may be used to describe various elements, but the elements may not be limited by terms. The terms are only for the purpose of distinguishing one component from other components.
  • a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
  • 1 shows measuring points of each measurement value for PLL method control in a power supply structure for a system.
  • FIG. 2 is a block diagram showing a general PLL control circuit.
  • the general PLL method controls the PCS operation to detect Vabc voltage (ie, Va, Vb, Vc) and follow the magnitude (Vde) and frequency ( ⁇ ) of the system voltage.
  • Vds, Vqs voltage signals
  • the voltage signals Vds and Vqs are multiplied by the PLL signals SINPLL and COSPLL and multipliers 2 and 4, respectively, and may be output as a PLL error signal Pllerr through the adder and subtractor 3.
  • Vqs * COSPLL Vds * SINPLL and the PLL error signal becomes 0, it can be an ideal PLL circuit.
  • the PLL signal ⁇ PLL is generated through the integrator 6, the gain adjuster 8, and the integrator 9 in order to bring it close to zero.
  • FIG. 4 is a block diagram showing a current control structure through PLL control.
  • the stability of the PLL control is lowered if the correct frequency of the system is not known.
  • FIG. 5 is a block diagram showing a PLL control circuit according to the spirit of the present invention.
  • the system voltage phase detection apparatus configured with the illustrated PLL control circuit includes: a d-q converter 11 for receiving a three-phase signal and calculating a d-axis signal and a q-axis signal; A phase signal calculator 20 for calculating a signal for phase synchronization of the system voltage from the d-axis signal and the q-axis signal; And a PR filter unit 12 that removes an unbalance component and a harmonic component from the d-axis signal and the q-axis signal calculated by the d-q converter 11 and provides the phase signal calculation unit 20 to the phase signal calculation unit 20.
  • the PR filter unit 12 includes a first filter 121 having no change in size and phase at a rated (resonant) frequency, a second filter 122 whose phase is 90 degrees ahead of the rated frequency, and a rated frequency A third filter 123 that is 90 degrees behind in phase and a fourth filter 124 with no change in magnitude and no change in phase at rated frequency are provided.
  • the d-axis signal output from the dq converter 11 is input to the first filter 121 and the third filter 123, and the q-axis signal is the second filter 122 )
  • the fourth filter 124, and the output signal of the first filter 121 and the output signal of the second filter 122 are summed by a signal summer 125 and then a signal half-life 127 a d-axis signal (V ds _P) is the filtered half-by, is provided as the phase signal output section 20, the output signal of the output signal and the fourth filter (124) of the third filter 123, the signal After being summed up by the summer 126 and halved by the signal half-life 128, the filtered q-axis signal V qs _P is provided to the phase signal calculating unit 20.
  • the illustrated d-q converter 11 may receive the three-phase voltage signals Va, Vb, and Vc and convert d-q to calculate a two-axis stop signal.
  • a three-phase voltage signal is input to the d-q converter 11, but any three-phase signal having three phases may be input, such as a three-phase current signal.
  • the dq converter 11 may receive the three-phase voltage signals Va, Vb, and Vc and output the d-axis signal Vds and the q-axis signal Vqs through the conversion equation of Equation 1 below. .
  • the phase signal calculator 20 shown in FIG. 5 receives the filtered d-axis signal V ds _P and the filtered q-axis signal V qs _P , and converts the system power through coordinate transformation and PI control.
  • the phase angle and voltage follow the phase angle and voltage.
  • other configurations for estimating the system voltage and phase angle for example, the configuration of FIG. 3 may be followed.
  • 6A and 6B are graphs showing filtering characteristics of the first filter 121 and the fourth filter 124, and the filtering characteristics shown in the graph are according to Equation 2 below, which is an equation for the Laplace transformed coordinate system. .
  • the graph of FIG. 6A for the first filter 121 and the fourth filter 124 has a steep peak at the rated frequency with respect to a coordinate plane with a frequency and magnititude of an exponential scale, and a rated frequency point Represents a shape that is symmetrical (that is, filtering characteristics) around the axis.
  • the graph of FIG. 6B for the first filter 121 and the fourth filter 124 shows that the coordinate plane of the frequency and phase of the exponential scale has a phase of 0 degrees at the rated frequency and falls within the filtering cutoff range. It has a phase of -90 degrees at an upper frequency and a phase of 90 degrees at a lower frequency that falls within the filtering cutoff range (ie, filtering characteristics).
  • 7A and 7B are graphs showing the filtering characteristics of the second filter 122, and the filtering characteristics shown in the graph are according to Equation 3 below, which is an equation for a Laplace-transformed coordinate system.
  • the graph of FIG. 7A for the second filter 122 has a steep peak at the rated frequency with respect to a coordinate plane with a frequency and magnititude of an exponential scale, and is almost a straight line at an upper frequency falling within the filtering cutoff range. At a lower frequency that falls with the slope of and falls within the filtering cutoff range, it exhibits a shape (ie, filtering characteristics) having an almost constant size.
  • the graph of FIG. 7B for the second filter 122 has a phase of 90 degrees at the rated frequency and a phase of 0 degrees at an upper frequency belonging to the filtering cutoff range with respect to the coordinate plane of the frequency and phase of the exponential scale. And has a phase of 180 degrees at a lower frequency belonging to the filtering cutoff range (ie, filtering characteristics).
  • Equation 4 is an equation for the Laplace-transformed coordinate system.
  • the graph of FIG. 8A for the third filter 123 shows a steep peak at the rated frequency with respect to a coordinate plane with a frequency and magnititude of an exponential scale, and a substantially straight line at a lower frequency falling within the filtering cutoff range. It falls with a slope of, and exhibits a shape (ie, filtering characteristic) having an almost constant size at an upper frequency that falls within the filtering cutoff range.
  • the graph of FIG. 8B for the third filter 123 shows a phase of -90 degrees at the rated frequency and a phase of 0 degrees at an upper frequency belonging to the filtering cutoff range with respect to the coordinate plane of the frequency and phase of the exponential scale. And has a phase of -180 degrees at a lower frequency belonging to the filtering cutoff range (ie, filtering characteristics).
  • Equation 5 The unbalanced voltage of a general three-phase system can be summarized as in Equation 5 below as a normal voltage and a negative voltage as follows. At this time, it is assumed that there is no zero voltage.
  • Vp and Vn represent the maximum values of the normal and reverse voltage levels.
  • a three-unit PR filter having a transfer function such as Equation 2, Equation 3, and Equation 4
  • Equation 2 Equation 2
  • Equation 3 Equation 4
  • is a resonance frequency
  • k is a damping element
  • ⁇ c is a cut-off frequency.
  • the PR filter can extract components of a specific frequency without magnitude and phase delay.
  • the performance of the PR filter is determined by the value of k, a damping factor.
  • Equations 3 and 4 show the frequency response as shown in FIGS. 7A and 7B and FIGS. 8A and 8B, respectively. This results in a filtering effect that delays only the phase by 90 degrees and leads 90 degrees without a change in magnitude near the rated frequency (377 rad/s).
  • Equation 5 is used as Equation 6 and Equation 7, which are stationary coordinate conversion equations
  • Equation 8 and 9 are stationary coordinate conversion equations
  • Equation 5 can be expressed by a phasor diagram shown in FIG. 9.
  • FIG. 9 shows a phasor diagram in which the normal and reverse voltages of the three-phase unbalanced voltage are combined
  • FIG. 10 shows the d-axis and q-axis phasor diagrams of Equations 8 and 9 converted to dq stop coordinates of the two phases. .
  • the method for extracting the normal and reverse voltages proposed in the present invention is performed by changing the phase of the normal and reverse voltages on the stationary-transformed coordinates using a PR filter.
  • a control block diagram for obtaining a normal voltage from a two-phase unbalanced voltage is shown in FIG. 11.
  • the v ds voltage including the normal and reverse phase voltages is obtained without phase delay and G PR _C ( Filter through s).
  • G PR _C Filter through s.
  • G PR _C (s), G PR _ SN (s) If the sum of the filter's output value v ds_C and v qs _ SN is multiplied by 1/2, the d-axis voltage v ds_p is normal at the unbalanced voltage of two phases expressed in the stationary coordinate system. Can only be extracted.
  • FIG. 12 shows a phasor diagram for obtaining the d-axis voltage of the normal component analyzed above.
  • unbalanced two-phase d-axis voltage v ds and q-axis voltage v qs are filtered through G PR _C (s) and G PR _ SN (s), respectively, to obtain the normal d-axis voltage v ds_p .
  • the filtered voltages v ds_C and v qs _ SN are all in-phase with the d-axis.
  • the normal dq-axis voltages v ds_p_C and v qs_n_C have the same phase
  • the reversed dq-axis voltages v ds_n_ SN and v qs _n_ SN have a phase of 180 degrees.
  • Equation 12 The phasor diagram of FIG. 12 is expressed as in Equation 10 and Equation 11 below, and as a result, the normal d-axis voltage in the unbalanced two-phase voltage can be obtained as in Equation 12.
  • Equation 13 The phasor diagram of FIG. 13 is expressed as Equation 13 and Equation 14 below, and as a result, the normal q-axis voltage can be obtained as Equation 15 below.
  • Fig. 14 shows a control block diagram for obtaining a negative-phase voltage from a two-phase unbalanced voltage.
  • the v ds voltage is passed through G PR _C (s) which can extract only the rated frequency without phase delay. Filter. And it filters through G PR_SP (s) that delays the v qs voltage by 90 degrees. If the sum of the output values v ds_C and v qs _ SP of the G PR _C (s) and G PR _ SP (s) filters is multiplied by 1/2, the reverse phase d-axis voltage v ds_n can be obtained on the stationary coordinate system.
  • FIG. 15 shows a phasor diagram for obtaining the previously analyzed negative-phase d-axis voltage.
  • filtering is performed on the two-phase unbalanced axis voltage and the axis voltage through and to obtain the reversed-phase voltage.
  • the normal-segment voltage becomes a voltage having a phase of 180 degrees of the same magnitude and is canceled out.
  • Equation 16 and Equation 17 This is expressed as Equation 16 and Equation 17 below, and the sum of Equations 16 and 17 is divided by 2, so that the d-axis voltage of the reverse phase can be obtained as Equation 18 below.
  • the d-axis voltage v ds and the q-axis voltage v qs are filtered through the transfer functions G PR _ SN (s) and G PR _C (s), respectively.
  • G PR _ SN (s) and G PR _C (s) the transfer functions
  • G PR _C (s) and G PR _C (s) the transfer functions
  • all of the negative-phase voltages are in phase with the q-axis voltage
  • the normal-sequence voltage becomes a voltage having the same phase of 180 degrees and is canceled out.
  • 16 shows a phasor diagram for obtaining a reverse phase q-axis voltage.
  • Equation 19 This is expressed as in Equation 19 and Equation 20 below, and by dividing the sum of Equations 19 and 20 by 2, the reverse phase q-axis voltage can be obtained as Equation 21 below.
  • FIG. 17 shows a simulation waveform for extracting the normal and negative voltages from the unbalanced voltage.
  • Vp 179.629[V]
  • Vn 17.96[V]
  • the negative phase voltage compared to the normal voltage was set to 10%.
  • about 3% of 7 harmonics were included.
  • FIG. 17 shows waveforms of unbalanced three-phase voltage, unbalanced two-phase voltage converted from dq stop coordinates, and extracted normal dq-axis voltage and negative-phase dq-axis voltage from above.
  • the three-phase unbalanced voltage was expressed as a two-phase voltage through stationary coordinate transformation.
  • the two-phase unbalanced voltage can be extracted as an independent normal voltage and a negative voltage through the proposed method.
  • the normal dq-axis voltage can accurately extract 179.629[V], which is the maximum value of the three phases of the normal voltage, and 17.96[v], which is 10% of the normal voltage, are accurately extracted.
  • the normal voltage controller compensates for the unbalanced voltage by performing the droop control proposed above and controlling the output voltage of the reverse phase voltage controller to 0V.
  • the PR filter unit 12 may be implemented with an analog filter circuit composed of passive/active circuit elements, but the digital value received by AD conversion of the detected system voltage signal is described above. It is advantageous in terms of ease of implementation and ease of adjustment to implement with a digital filter that performs conversion according to the equations.
  • the digital filter may include a DSP for performing digital conversion according to the above equations, or an AD converter for converting an analog detection signal for a system voltage into a digital value.
  • the present invention relates to a system voltage phase detection apparatus, and can be used in the field of power system control.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명의 계통 전압 위상 검출 장치는, 3상 신호를 입력받아 d축 신호 및 q축 신호로 산출하는 d-q 변환부; 상기 d축 신호 및 q축 신호로부터 계통 전압의 위상 동기를 위한 신호를 산출하는 위상 신호 산출부; 및 정격 주파수에서 크기의 변화와 위상의 변화가 없는 제1 필터와, 정격 주파수에서 위상이 90도 앞서는 제2 필터와, 정격 주파수에서 위상이 90도 뒤지는 제3 필터와, 정격 주파수에서 크기의 변화와 위상의 변화가 없는 제4 필터를 구비하며, 상기 d-q 변환부에서 산출된 d축 신호 및 q축 신호에서 불평형 성분 및 고조파 성분을 제거하여 상기 위상 신호 산출부로 제공하는 PR 필터부;를 포함할 수 있다.

Description

계통 전압 위상 검출 장치
본 발명은 계통 전압 위상 검출 장치에 관한 것으로서, 특히 3상 전압 신호의 기준 위상의 동기 로프 회로에 있어서, 전원의 순간 전압 강하, 고조파, 위상각 점프 등의 열악한 환경에서도 계통 전력의 전압 및 위상을 정확히 검출할 수 있는 계통 전압 위상 검출 장치에 관한 것이다.
최근에 화석에너지를 감소시키기 위하여 태양광, 풍력, 수소에너지 등 신재생에너지의 사용이 급속히 증가되고 있다. 따라서 태양광 셀, 연료전지 등 저공해 에너지원에서 전력계통으로 유효 및 무효 전력을 원활하게 공급하기 위하여 이 에너지원과 계통사이에 연결된 계통연계 인버터에서 계통전류 제어를 수행한다.
그런데 계통전압이 왜곡되거나 3상 전압이 불평형일 경우, 이것들이 계통전류 제어시스템에 왜란으로 작용하여 계통전류 역시 왜곡 및 불평형이 발생하게 된다. 그런데 계통연계 인버터에서 계통전류의 고조파성분 억제와 3상 계통전류의 불평형 개선이 다른 응용분야보다 더 중요한 이슈이므로 다양한 방법이 발표되었다.
먼저 낮은 주파수의 고조파 전류는 계통선로의 인덕턴스에 의해 필터링이 잘 되지 않으므로 부피가 크고 무거운 수동형 LC필터를 사용하여야 한다. 따라서 이 LC필터 대신 제어기법으로 이 고조파 전류를 감소시키기 위하여 먼저 비례적분 (PI) 제어기의 비례 및 적분이득을 증가시켜 대역폭을 증가시키는 방법이 제시되었다. 이 방법은 고조파 전류를 억제시킬 수 있으나, 시스템의 노이즈 강인성을 저하시킬 수 있다. 다음은 비례-공진(PR) 제어기를 사용하여 특정 주파수의 고조파전류를 제거할 수 있으나, 제거할 고조파의 수만큼 PR 제어기를 사용하여야 하며, 또한 제거할 고조파가 시스템의 대역폭을 벗어날 경우 시스템이 불안정 될 가능성도 있다. 고조파 전압을 전향제어하여 특정 주파수의 고조파 전류를 감소시키는 방법이 제시되었으나, 검출회로가 추가로 필요하며 연산이 복잡하다는 문제가 있다. 한편 계통전압이 불평형상태가 되면 계통전류 역시 불평형이 되므로 계통으로 공급하는 전력이 진동하게 된다
전력품질보상장치 및 전력변환 시스템에서 계통전압 및 그 위상을 정확히 검출하는 것은 제어에 있어서 가장 기본적인 요소이다. 위상검출기에 의해 생성된 기준전류 또는 기준전압은 역률보상, 고조파 전류보상, 그리고 전압외란 보상 등을 수행하는 품질보상장치의 성능을 좌우하게 된다. 실제 계통의 전압은 많은 비선형 부하에 의해 발생된 고조파전류의 영향으로 고조파가 많이 함유되어있다.
계통 단상 전압의 위상을 검출하는 방법으로 제로-크로싱(zero-crossing) PLL(Phase Locked Loop)과 단상을 d-q 축으로 확장하여 3상 개념의 PLL을 수행하는 방법 등이 있다. 그러나 이 두가지 방식의 경우 왜곡된 전원의 고조파 영향을 피할 수 없다.
계통의 왜곡된 전압을 검출하여 PLL을 수행하게 되면 특히, PCS 제어의 안정성이 크게 떨어진다.
본 발명은 계통 전압의 불평형 성분 및 고조파 성분에 의한 오류를 억제할 수 있는 계통 전압 위상 검출 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 계통 전압 위상 검출 장치가 구비된 위상 동기 루프 회로 및 이를 포함하는 PCS의 동작 안정성을 높이는 것을 다른 목적으로 한다.
본 발명의 일 측면에 따른 계통 전압 위상 검출 장치는, 3상 신호를 입력받아 d축 신호 및 q축 신호로 산출하는 d-q 변환부; 상기 d축 신호 및 q축 신호로부터 계통 전압의 위상 동기를 위한 신호를 산출하는 위상 신호 산출부; 및
정격 주파수에서 크기의 변화와 위상의 변화가 없는 제1 필터와, 정격 주파수에서 위상이 90도 앞서는 제2 필터와, 정격 주파수에서 위상이 90도 뒤지는 제3 필터와, 정격 주파수에서 크기의 변화와 위상의 변화가 없는 제4 필터를 구비하며, 상기 d-q 변환부에서 산출된 d축 신호 및 q축 신호에서 불평형 성분 및 고조파 성분을 제거하여 상기 위상 신호 산출부로 제공하는 PR 필터부를 포함할 수 있다.
여기서, 상기 d축 신호는 상기 제1 필터 및 상기 제3 필터로 입력되고, 상기 q축 신호는 상기 제2 필터 및 상기 제4 필터로 입력되며, 상기 제1 필터의 출력 신호와 상기 제2 필터의 출력 신호는 합해진 후 반감되어 필터링된 d축 신호로서 상기 위상 신호 산출부로 제공되며, 상기 제3 필터의 출력 신호와 상기 제4 필터의 출력 신호는 합해진 후 반감되어 필터링된 q축 신호로서 상기 위상 신호 산출부로 제공될 수 있다.
여기서, 상기 제1 필터 및 제4 필터는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며, 지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 0도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 -90도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 90도의 위상을 가지는 필터링 특성을 지니고,
상기 제2 필터는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며, 지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 90도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 0도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 180도의 위상을 가지는 필터링 특성을 지니고,
상기 제3 필터는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며, 지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 -90도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 0도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 -180도의 위상을 가지는 필터링 특성을 지닐 수 있다.
여기서, 상기 제1 필터 및 제4 필터는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수 지점을 축으로 좌우 대칭인 형태의 필터링 특성을 가지고,
상기 제2 필터는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 필터링 컷오프 범위로 속하는 상위 주파수에서는 거의 직선의 기울기로 떨어지고, 필터링 컷오프 범위로 속하는 하위 주파수에서는 거의 일정한 크기를 가지는 형태의 필터링 특성을 가지고,
상기 제3 필터는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 필터링 컷오프 범위로 속하는 하위 주파수에서는 거의 직선의 기울기로 떨어지고, 필터링 컷오프 범위로 속하는 상위 주파수에서는 거의 일정한 크기를 가지는 형태의 필터링 특성을 가질 수 있다.
여기서, 상기 제1 필터 및 제4 필터는 하기 라플라스 좌표계 수학식에 따른 필터링 특성을 가지고,
Figure PCTKR2020006762-appb-img-000001
상기 제2 필터는 하기 라플라스 좌표계 수학식에 따른 필터링 특성을 가지고,
Figure PCTKR2020006762-appb-img-000002
상기 제3 필터는 하기 라플라스 좌표계 수학식에 따른 필터링 특성을 가질 수 있다.
Figure PCTKR2020006762-appb-img-000003
(상기 3 수학식에서, ω는 공진주파수, k는 댐핑 요소, ω c는 차단 주파수)
여기서, 상기 PR 필터부는, 검출된 계통 전압 신호를 디지털 값으로 입력받아 값을 소정의 변환 수학식들에 따른 디지털 변환을 수행하는 디지털 필터일 수 있다.
상기 구성에 따른 본 발명의 계통 전압 위상 검출 장치를 실시하면, 계통 전압의 불평형 성분 및 고조파 성분에 의한 오류를 억제하는 이점이 있다.
또한, 본 발명의 계통 전압 위상 검출 장치는, 계통 전압 위상 검출 장치가 구비된 위상 동기 루프 회로가, 왜곡된 계통 전압에서 정확한 계통의 주파수와 전압 크기를 추종할 수 있도록 하는 이점이 있다.
또한, 본 발명의 계통 전압 위상 검출 장치는, PCS의 신뢰도를 향상시키고 Weak Grid에서도 안정적으로 동작할 수 있기 때문에, 유비 보수 비용을 절감하는 이점이 있다.
도 1은 계통에 대한 전력 공급 구조에서 PLL 방식 제어를 위한 각 측정값들의 측정점들을 도시한다.
도 2는 일반적인 PLL 제어 회로를 나타낸 블록도이다.
도 3은 일반적인 PLL 구조의 보다 구체화한 세부 블록도를 나타낸다.
도 4는 PLL 제어를 통한 전류 제어 구조를 나타낸 블록도이다.
도 5는 본 발명의 사상에 따른 PLL 제어 회로를 나타낸 블록도이다.
도 6a 및 6b는 k에 따른 G PR_C(s) 필터링 특성을 나타낸 그래프.
도 7a 및 7b는 G PR_SP(s) 필터링 특성을 나타낸 그래프.
도 8a 및 8b는 G PR_SN(s) 필터링 특성을 나타낸 그래프.
도 9는 3상 불평형 전압의 정상분과 역상분 전압이 합쳐있는 페이저도.
도 10은 2상의 dq 정지 좌표로 변환된 불평형 전압에 대한 d축과 q축의 페이저도.
도 11은 2상 불평형 전압에서 정상분 dq축 전압을 얻기 위한 제어 블록도.
도 12는 정상분 d축 전압을 추출하는 과정을 나타내는 페이저도.
도 13은 정상분 q축 전압을 추출하는 과정을 나타내는 페이저도.
도 14는 2상 불평형 전압에서 역상분 dq축 전압을 얻기 위한 제어 블록도.
도 15는 역상분 d축 전압을 얻기 위한 페이저도.
도 16은 역상분 q축 전압을 얻기 위한 페이저도.
도 17은 불평형 전압에서 정상분과 역상분 전압을 추출하는 시뮬레이션 파형도.
이하, 본 발명의 실시를 위한 구체적인 실시예를 첨부된 도면들을 참조하여 설명한다.
본 발명을 설명함에 있어서 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지 않을 수 있다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 연결되어 있다거나 접속되어 있다고 언급되는 경우는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해될 수 있다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
본 명세서에서, 포함하다 또는 구비하다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로서, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해될 수 있다.
또한, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
도 1은 계통에 대한 전력 공급 구조에서 PLL 방식 제어를 위한 각 측정값들의 측정점들을 도시한다.
도 2는 일반적인 PLL 제어 회로를 나타낸 블록도이다.
일반적인 PLL방식은 Vabc 전압(즉, Va, Vb, Vc)을 검출하여 계통 전압의 크기(Vde)와 주파수(ω)를 추종하도록, PCS 운전을 제어한다.
도 3은 일반적인 PLL 구조의 보다 구체화한 세부 블록도를 나타낸다. 도 3을 참조하면, 종래의 PLL 회로에서 입력 신호로서, 3상 교류 전압 신호(Va, Vb, Vc)가 입력되면 d-q 변환기(1)가 이들을 d-q 변환하여 전압 신호(Vds, Vqs)로 출력할 수 있다. 다음에, 전압 신호(Vds, Vqs)는 PLL신호(SINPLL, COSPLL)와 각각 곱셈기(2, 4)를 거쳐서 곱해지고, 가감기(3)를 거쳐서 PLL오차 신호(Pllerr)로서 출력될 수 있다. 여기서 Vqs * COSPLL = Vds * SINPLL 이 되어 PLL 오차 신호가 0이 되는 경우 이상적인 PLL 회로가 될 수 있다. 이때, PLL 오차 신호가 소정 값을 가진 경우에는 이를 0으로 가깝게 하기 위하여 적분기(6), 이득 조정기(8) 및 적분기(9) 를 경유하여 PLL신호(θ PLL)를 생성하게 된다.
도 4는 PLL 제어를 통한 전류 제어 구조를 나타낸 블록도이다.
도시한 PLL 제어는 도 2 및 도 3에서 추종된 주파수(ω를) 가지고 전류 제어를 수행하기 때문에 정확한 계통의 주파수를 알 수 없다면 PLL 제어의 안정성이 낮아진다.
본 발명에서는 상술한 바와 같이 계통 전압에 불평형 성분과 고조파 성분이 섞여 있어도, 정확한 계통 전압 위상을 검출할 수 있는 방안을 제시한다.
도 5는 본 발명의 사상에 따른 PLL 제어 회로를 나타낸 블록도이다.
도시한 PLL 제어 회로로 구성한 본 발명의 일 실시예에 따른 계통 전압 위상 검출 장치는, 3상 신호를 입력받아 d축 신호 및 q축 신호로 산출하는 d-q 변환부(11); 상기 d축 신호 및 q축 신호로부터 계통 전압의 위상 동기를 위한 신호를 산출하는 위상 신호 산출부(20); 및 상기 d-q 변환부(11)에서 산출된 d축 신호 및 q축 신호에서 불평형 성분 및 고조파 성분을 제거하여 상기 위상 신호 산출부(20)로 제공하는 PR 필터부(12)를 포함한다.
상기 PR 필터부(12)는, 정격(공진) 주파수에서 크기의 변화와 위상의 변화가 없는 제1 필터(121)와, 정격 주파수에서 위상이 90도 앞서는 제2 필터(122)와, 정격 주파수에서 위상이 90도 뒤지는 제3 필터(123)와, 정격 주파수에서 크기의 변화와 위상의 변화가 없는 제4 필터(124)를 구비한다.
도시한 바와 같이, 상기 d-q 변환부(11)에서 출력된 상기 d축 신호는 상기 제1 필터(121) 및 상기 제3 필터(123)로 입력되고, 상기 q축 신호는 상기 제2 필터(122) 및 상기 제4 필터(124)로 입력되며, 상기 제1 필터(121)의 출력 신호와 상기 제2 필터(122)의 출력 신호는 신호 합산기(125)에 의해 합해진 후 신호 반감기(127)에 의해 반감되어 필터링된 d축 신호(V ds _P)로서 상기 위상 신호 산출부(20)로 제공되며, 상기 제3 필터(123)의 출력 신호와 상기 제4 필터(124)의 출력 신호는 신호 합산기(126)에 의해 합해진 후 신호 반감기(128)에 의해 반감되어 필터링된 q축 신호(V qs _P)로서 상기 위상 신호 산출부(20)로 제공된다.
도시한 d-q 변환부(11)는, 3상 전압 신호(Va, Vb, Vc)를 입력받아 d-q 변환하여 2축 정지 신호를 산출할 수 있다. 본 실시예에서는, d-q 변환부(11)에 3상 전압 신호가 입력되고 있지만, 3상 전류 신호가 입력될 수도 있는 등, 3상을 가진 임의의 3상 신호가 입력될 수도 있다. 구체적으로, d-q 변환부(11)는 3상 전압 신호(Va, Vb, Vc)를 입력받아 하기 수학식 1의 변환식을 통하여 d축 신호(Vds) 및 q축 신호(Vqs)를 출력할 수 있다.
Figure PCTKR2020006762-appb-img-000004
도 5에 도시한 위상 신호 산출부(20)는, 상기 필터링된 d축 신호(V ds _P) 및 필터링된 q축 신호(V qs _P)를 입력받아, 좌표 변환 및 PI 제어를 통해 계통 전력의 위상각과 전압을 추종한다. 구현에 따라 계통 전압 및 위상각을 추정하기 위한 다른 구성, 예컨대, 도 3의 구성을 따를 수도 있다.
다음, 본 발명의 사상에 있어 중심이 되는 상기 PR 필터부(12)의 동작에 대하여 살펴보겠다.
도 6a 및 6b는 상기 제1 필터(121) 및 제4 필터(124)의 필터링 특성을 나타낸 그래프이며, 상기 그래프에 도시한 필터링 특성은 라플라스 변환된 좌표계에 대한 수식인 하기 수학식 2에 따른 것이다.
Figure PCTKR2020006762-appb-img-000005
상기 제1 필터(121) 및 제4 필터(124)에 대한 도 6a의 그래프는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며, 정격 주파수 지점을 축으로 좌우 대칭인 형태(즉, 필터링 특성)를 나타낸다.
상기 제1 필터(121) 및 제4 필터(124)에 대한 도 6b의 그래프는, 지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 0도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 -90도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 90도의 위상을 가지는 형태(즉, 필터링 특성)를 나타낸다.
도 7a 및 7b는 상기 제2 필터(122)의 필터링 특성을 나타낸 그래프이며, 상기 그래프에 도시한 필터링 특성은 라플라스 변환된 좌표계에 대한 수식인 하기 수학식 3에 따른 것이다.
Figure PCTKR2020006762-appb-img-000006
상기 제2 필터(122)에 대한 도 7a의 그래프는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며, 필터링 컷오프 범위로 속하는 상위 주파수에서는 거의 직선의 기울기로 떨어지고, 필터링 컷오프 범위로 속하는 하위 주파수에서는 거의 일정한 크기를 가지는 형태(즉, 필터링 특성)를 나타낸다.
상기 제2 필터(122)에 대한 도 7b의 그래프는, 지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 90도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 0도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 180도의 위상을 가지는 형태(즉, 필터링 특성)를 나타낸다.
도 8a 및 8b는 상기 제3 필터(123)의 필터링 특성을 나타낸 그래프이며, 상기 그래프에 도시한 필터링 특성은 라플라스 변환된 좌표계에 대한 수식인 하기 수학식 4에 따른 것이다.
Figure PCTKR2020006762-appb-img-000007
상기 제3 필터(123)에 대한 도 8a의 그래프는, 지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서는 거의 직선의 기울기로 떨어지고, 필터링 컷오프 범위로 속하는 상위 주파수에서는 거의 일정한 크기를 가지는 형태(즉, 필터링 특성)를 나타낸다.
상기 제3 필터(123)에 대한 도 8b의 그래프는, 지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 -90도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 0도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 -180도의 위상을 가지는 형태(즉, 필터링 특성)를 나타낸다.
다음, 본 발명의 사상에 있어 중심이 되는 상기 PR 필터부(12) 구성들의 동작 원리를 설명하겠다.
불평형 및 왜곡된 전압에서 계통 전압의 크기와 주파수를 정확하게 검출하기 위해서는 정상분과 역상분을 정확하게 추출하는 기법이 필요하다. 3상의 전압을 정지 좌표상에서 2상의 교류 전압으로 변환이 가능하고 이를 필터를 사용하여 불평형 전압에서 정확한 정상분과 역상분을 추출한다. 일반적인 3상 계통의 불평형 전압은 다음과 같이 정상분 전압과 역상분 전압으로 하기 수학식 5와 같이 정리 될 수 있다. 이때 영상분 전압은 존재하지 않는다고 가정하였다.
Figure PCTKR2020006762-appb-img-000008
여기서 Vp, Vn은 정상분과 역상분 전압크기의 최대치를 나타낸다. 상기 수학식 5에 나타난 정상분 전압과 역상분 전압을 독립적으로 분리하기 위해, 본 발명의 사상에 따라, 상기 수학식 2, 수학식 3, 수학식 4와 같은 전달 함수를 갖는 3가지 단위 PR 필터들을 이용하여 정지 좌표상에서 간단하게 정상분과 역상분 전압을 추출한다.
상기 수학식들에서, ω는 공진주파수, k는 댐핑 요소, ω c는 차단 주파수 (Cut-off Frequency)이다. PR 필터는 크기와 위상지연 없이 특정 주파수의 성분을 추출할 수 있다. 그리고 PR 필터의 성능은 댐핑 요소인 k의 값에 의해 결정된다.
도 6a 및 6b는 상기 수학식 2의 값에 따른 주파수 응답을 보여준다. k의 값을 낮춘다면 주파수 응답에서 볼 수 있듯이 정밀한 필터링 응답을 가져올 수 있으나, 대역폭이 좁아지기 때문에 필터링에 지연이 발생한다. 따라서 일반적으로 임계 반응 응답 (critically-damped response)를 위해서 k = (2) 1 /2로 설정한다.
마찬가지로, 상기 수학식 3과 수학식 4는 각각 도 7a 및 7b, 도 8a 및 8b와 같은 주파수 응답을 보여준다. 이는 정격 주파수 근처(377rad/s)에서 크기 변화 없이 위상만 90도 지연되고 90도 앞서는 필터링 효과를 가져온다.
따라서, 이러한 3가지 특성을 지닌 단위 PR 필터들을 통해 정지 좌표계 상에서 정상분과 역상분을 간단하고 정확하게 추출할 수 있다. 상기 수학식 5를 정지 좌표 변환식인 하기 수학식 6 및 수학식 7을 이용한다면, 하기 수학식 8과 수학식 9처럼 불평형 3상 전압은 2상의 전압으로 표현된다.
Figure PCTKR2020006762-appb-img-000009
Figure PCTKR2020006762-appb-img-000010
Figure PCTKR2020006762-appb-img-000011
Figure PCTKR2020006762-appb-img-000012
여기서, 상기 수학식 5는 도 9에 도시한 페이저도로 표현할 수 있다.
도 9는 3상 불평형 전압의 정상분과 역상분 전압이 합쳐있는 페이저도를 보여주고, 도 10은 2상의 dq 정지 좌표 변환된 상기 수학식 8 및 수학식 9의 d축과 q축의 페이저도를 보여준다.
이는 불평형 3상 전압을 정지 변환한다면, 3상 정상분 전압과 역상분 전압을 독립적으로 변환한 값과 동일하다는 것을 확인할 수 있다. 따라서, 정지 좌표계상에서 정상분과 역상분 전압에서 정상분과 역상분 전압을 추출한다면 연산량을 줄일 수 있게 되는 장점을 지닌다.
본 발명에서 제안한 정상분과 역상분 전압을 추출하기 위한 방법은 정지 변환된 좌표상에서 정상분과 역상분 전압을 PR필터를 이용하여 위상 변화를 통해 이루어진다. 2상 불평형 전압에서 정상분 전압을 얻기 위한 제어 블록도는 도 11에서 보여준다.
도 11의 제어 블록도를 보게 되면, 정지 좌표 상에서 정상분 d축 전압 v ds_p를 구하기 위해서 정상분과 역상분 전압이 포함된 v ds 전압을 위상 지연이 없고 정격 주파수만을 추출할 수 있는 G PR _C(s)을 통해서 필터링한다. 필터링을 수행함으로써 만약 v ds_p에 고조파 전압이 섞여 있다면, 고조파 전압 성분을 감소시킬 수 있다. 그리고 정상분 전압과 역상분 전압이 포함된 v qs전압을 90도 앞서게 하는 G PR _ SN(s)을 통해 필터링 한다. G PR _C(s), G PR _ SN(s) 필터의 출력값 v ds_C와 v qs _ SN의 합을 1/2로 곱해주면 정지 좌표계상에서 표현된 2상의 불평형 전압에서 정상분 d축 전압 v ds_p만을 추출할 수 있다.
도 12는 앞서 분석한 정상분 d축 전압을 얻기 위한 페이저도를 나타낸다. 도시한 페이저도를 보면, 정상분 d축 전압 v ds_p를 얻기 위해서 불평형 2상 d축 전압 v ds와 q축 전압 v qs를 각각 G PR _C(s)와 G PR _ SN(s)을 통해 필터링을 수행한다. 필터링된 전압 v ds_C, v qs _ SN은 모두 d축과 모두 동상이 된다. 이때 정상분 dq축 전압 v ds_p_C, v qs_n_C은 동일한 위상을 갖게 되고, 역상분 dq축 전압 v ds_n_ SN, v qs _n_ SN는 180도의 위상을 갖고 있다.
상기 도 12의 페이저도는 하기 수학식 10, 수학식 11처럼 표현되고, 결과적으로 불평형 2상 전압에서 정상분 d축 전압을 수학식 12와 같이 구할 수 있다.
Figure PCTKR2020006762-appb-img-000013
Figure PCTKR2020006762-appb-img-000014
Figure PCTKR2020006762-appb-img-000015
불평형 2상 전압에서 정상분 q축 전압 v qs _p를 얻기 위해서는 d축 전압 v ds와 q축 전압 v qs를 각각 전달함수 G PR _ SP(s)와 G PR _C(s)을 통해 필터링을 수행한다. 필터링된 전압 v ds_ SP와 v qs _C의 에서 정상분 전압은 모두 q축 전압과 모두 동상이 되게 되며, 역상분 전압은 크기가 동일한 180도의 위상을 갖는 전압이 되어 상쇄된다. 도 13은 정상분 q축 전압에 대한 페이저도를 보여준다.
상기 도 13의 페이저도는 하기 수학식 13 및 수학식 14와 같이 표현되고, 결과적으로 정상분 q축 전압을 하기 수학식 15와 같이 구할 수 있게 된다.
Figure PCTKR2020006762-appb-img-000016
Figure PCTKR2020006762-appb-img-000017
Figure PCTKR2020006762-appb-img-000018
이러한 정상분 전압을 가지고 일반적인 PLL 방법을 수행한다면 정확하게 계통 전압의 크기와 주파수를 검출할 수 있다.
역상분 전압을 구하는 방법은 정상분 전압을 구하는 방법과 유사하다. 2상 불평형 전압에서 역상분 전압을 얻기 위한 제어 블록도를 도 14에서 보여준다.
상기 도 14에 도시한 제어 블록도를 보게 되면, 정지 좌표 상에서 역상분 d축 전압 v ds_n를 구하기 위해서, v ds 전압을 위상 지연이 없고 정격 주파수만을 추출할 수 있는 G PR _C(s)을 통해서 필터링한다. 그리고 v qs 전압을 90도 지연시키는 G PR_SP(s)을 통해 필터링한다. 상기 G PR _C(s), G PR _ SP(s) 필터의 출력값 v ds_C, v qs _ SP의 합을 1/2로 곱해주면 정지 좌표계상에서 역상분 d축 전압 v ds_n를 구할 수 있다.
도 15는 앞서 분석한 역상분 d축 전압을 얻기 위한 페이저도를 나타낸다. 도시한 페이저도를 보면, 역상분 축 전압 를 얻기 위해서 2상 불평형 축 전압 와 축 전압 를 와 을 통해 필터링을 수행한다. 필터링된 전압에서 역상분 축 전압은 모두 축과 모두 동상이 되며, 정상분 축 전압은 크기가 동일한 180도의 위상을 갖는 전압이 되어 상쇄된다.
이는 하기 수학식 16 및 수학식 17처럼 표현되고, 수학식 16 및 수학식 17의 합을 2로 나눠주어 역상분 d축 전압을 하기 수학식 18과 같이 구할 수 있게 된다.
Figure PCTKR2020006762-appb-img-000019
Figure PCTKR2020006762-appb-img-000020
Figure PCTKR2020006762-appb-img-000021
역상분 q축 전압 v qs _n를 얻기 위해서 이번에는 d축 전압 v ds와 q축 전압 v qs를 각각 전달함수 G PR _ SN(s)와 G PR _C(s)을 통해 필터링을 수행한다. 필터링된 전압에서 역상분 전압은 모두 q축 전압과 모두 동상이 되게 되며, 정상분 전압은 크기가 동일한 180도의 위상을 갖는 전압이 되어 상쇄된다. 도 16은 역상분 q축 전압을 얻기 위한 페이저도를 보여준다.
이는 하기 수학식 19 및 수학식 20처럼 표현되고, 수학식 19 및 수학식 20의 합을 2로 나눠주어 역상분 q축 전압을 하기 수학식 21과 같이 구할 수 있게 된다.
Figure PCTKR2020006762-appb-img-000022
Figure PCTKR2020006762-appb-img-000023
Figure PCTKR2020006762-appb-img-000024
상술한 이론적 분석을 바탕으로 PSCAD/EMTDC을 통해 시뮬레이션을 수행 하였다. 도 17은 불평형 전압에서 정상분과 역상분 전압을 추출하는 시뮬레이션 파형을 보여준다. 이때 Vp = 179.629[V], Vn = 17.96[V]로 정상분 전압 대비 역상분 전압을 10%로 설정하였다. 그리고, 임의의 7고조파를 3%정도 포함시켰다. 도 17에서는 위부터 불평형 3상 전압, dq정지 좌표 변환된 불평형 2상 전압, 추출된 정상분 dq축 전압과 역상분 dq축 전압 파형을 보여준다.
상술한 언급처럼, 3상 불평형 전압을 정지 좌표 변환을 통해 2상의 전압으로 표현하였다. 이때 2상 불평형 전압을 제안한 방식을 통해서 2상의 독립된 정상분 전압과 역상분 전압으로 추출 할 수 있다. 이때 정상분 dq축 전압은 정확하게 정상분 전압의 3상의 최대치인 179.629[V]를 추출할 수 있으며, 역상분 전압은 정상분 대비 10%의 전압인 17.96[v]를 정확하게 추출하였다. 결과적으로 본 발명에서 제안하는 방식을 통해서 독립된 정상분과 역상분 전압 제어기로 구성 될 수 있다. 이때 정상분 전압 제어기는 앞서 제안된 드룹 제어를 수행하고, 역상분 전압제어기의 출력전압을 0V로 제어해 줌으로서 불평형 전압을 보상해준다.
상술한 본 발명의 사상에 따른 PR 필터부(12)는, 수동/능동 회로 소자들로 이루어진 아날로그 필터 회로로 구현하는 것도 가능하지만, 검출된 계통 전압 신호를 AD 변환하여 입력받은 디지털 값을 상술한 수학식들에 따른 변환을 수행하는 디지털 필터로 구현하는 것이 구현의 용이성, 조정 용이성 측면에서 유리하다. 예컨대, 상기 디지털 필터는 상기 수학식들에 따른 디지털 변환을 수행하는 DSP를 구비하거나, 계통 전압에 대한 아날로그 검출 신호를 디지털 값으로 변환하기 위한 AD 컨버터를 구비할 수 있다.
상기한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.
* 부호의 설명
11 : d-q 변환부
12 : PR 필터부
20 : 위상 신호 산출부
본 발명은 계통 전압 위상 검출 장치에 관한 것으로서, 전력 계통 제어분야에 이용 가능하다.

Claims (6)

  1. 3상 신호를 입력받아 d축 신호 및 q축 신호로 산출하는 d-q 변환부;
    상기 d축 신호 및 q축 신호로부터 계통 전압의 위상 동기를 위한 신호를 산출하는 위상 신호 산출부; 및
    정격 주파수에서 크기의 변화와 위상의 변화가 없는 제1 필터와,
    정격 주파수에서 위상이 90도 앞서는 제2 필터와,
    정격 주파수에서 위상이 90도 뒤지는 제3 필터와,
    정격 주파수에서 크기의 변화와 위상의 변화가 없는 제4 필터를 구비하며, 상기 d-q 변환부에서 산출된 d축 신호 및 q축 신호에서 불평형 성분 및 고조파 성분을 제거하여 상기 위상 신호 산출부로 제공하는 PR 필터부;
    를 포함하는 계통 전압 위상 검출 장치.
  2. 제1항에 있어서,
    상기 d축 신호는 상기 제1 필터 및 상기 제3 필터로 입력되고,
    상기 q축 신호는 상기 제2 필터 및 상기 제4 필터로 입력되며,
    상기 제1 필터의 출력 신호와 상기 제2 필터의 출력 신호는 합해진 후 반감되어 필터링된 d축 신호로서 상기 위상 신호 산출부로 제공되며,
    상기 제3 필터의 출력 신호와 상기 제4 필터의 출력 신호는 합해진 후 반감되어 필터링된 q축 신호로서 상기 위상 신호 산출부로 제공되는 계통 전압 위상 검출 장치.
  3. 제1항에 있어서,
    상기 제1 필터 및 상기 제4 필터는,
    지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며,
    지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 0도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 -90도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 90도의 위상을 가지는 필터링 특성을 지니고,
    상기 제2 필터는,
    지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며,
    지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 90도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 0도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 180도의 위상을 가지는 필터링 특성을 지니고,
    상기 제3 필터는,
    지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수에서 가파른 첨두를 가지며,
    지수 스케일의 주파수 및 위상으로 된 좌표 평면에 대하여, 상기 정격 주파수에서 -90도 위상을 가지고, 필터링 컷오프 범위로 속하는 상위 주파수에서 0도의 위상을 가지며, 필터링 컷오프 범위로 속하는 하위 주파수에서 -180도의 위상을 가지는 필터링 특성을 지닌 계통 전압 위상 검출 장치.
  4. 제3항에 있어서,
    상기 제1 필터 및 상기 제4 필터는,
    지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 상기 정격 주파수 지점을 축으로 좌우 대칭인 형태의 필터링 특성을 가지고,
    상기 제2 필터는,
    지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 필터링 컷오프 범위로 속하는 상위 주파수에서는 거의 직선의 기울기로 떨어지고, 필터링 컷오프 범위로 속하는 하위 주파수에서는 거의 일정한 크기를 가지는 형태의 필터링 특성을 가지고,
    상기 제3 필터는,
    지수 스케일의 주파수 및 크기(magnititude)로 된 좌표 평면에 대하여, 필터링 컷오프 범위로 속하는 하위 주파수에서는 거의 직선의 기울기로 떨어지고, 필터링 컷오프 범위로 속하는 상위 주파수에서는 거의 일정한 크기를 가지는 형태의 필터링 특성을 가지는 계통 전압 위상 검출 장치.
  5. 제3항에 있어서,
    상기 제1 필터 및 상기 제4 필터는 하기 라플라스 좌표계 수학식에 따른 필터링 특성을 가지고,
    Figure PCTKR2020006762-appb-img-000025
    상기 제2 필터는 하기 라플라스 좌표계 수학식에 따른 필터링 특성을 가지고,
    Figure PCTKR2020006762-appb-img-000026
    상기 제3 필터는 하기 라플라스 좌표계 수학식에 따른 필터링 특성을 가지는 계통 전압 위상 검출 장치.
    Figure PCTKR2020006762-appb-img-000027
    (상기 3 수학식에서, ω는 공진주파수, k는 댐핑 요소, ω c는 차단 주파수)
  6. 제1항에 있어서,
    상기 PR 필터부는,
    검출된 계통 전압 신호를 디지털 값으로 입력받아 값을 소정의 변환 수학식들에 따른 디지털 변환을 수행하는 디지털 필터인 계통 전압 위상 검출 장치.
PCT/KR2020/006762 2019-05-28 2020-05-25 계통 전압 위상 검출 장치 WO2020242163A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/611,843 US11971437B2 (en) 2019-05-28 2020-05-25 Grid voltage phase detector
GB2116579.0A GB2597211B (en) 2019-05-28 2020-05-25 Grid voltage phase detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190062476A KR102200554B1 (ko) 2019-05-28 2019-05-28 계통 전압 위상 검출 장치
KR10-2019-0062476 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020242163A1 true WO2020242163A1 (ko) 2020-12-03

Family

ID=73553475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006762 WO2020242163A1 (ko) 2019-05-28 2020-05-25 계통 전압 위상 검출 장치

Country Status (4)

Country Link
US (1) US11971437B2 (ko)
KR (1) KR102200554B1 (ko)
GB (1) GB2597211B (ko)
WO (1) WO2020242163A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124085A (zh) * 2021-10-29 2022-03-01 合肥工业大学 基于二阶滤波环节的多同步旋转坐标系锁相环的构造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625066B (zh) * 2021-08-03 2023-11-21 国网北京市电力公司 配电变压器相位不平衡检测方法、系统、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090067570A (ko) * 2007-12-21 2009-06-25 주식회사 포스콘 위상각 추정 방법 및 시스템
JP2012252443A (ja) * 2011-06-01 2012-12-20 Meidensha Corp 位相同期検出回路
KR20140110595A (ko) * 2013-03-08 2014-09-17 주식회사 엘지유플러스 계통 동기화 제어를 위한 제어장치, 제어방법, 기록매체
KR101781817B1 (ko) * 2016-11-24 2017-09-27 윤광희 하이브리드 고조파 필터 및 제어방법
KR20180057419A (ko) * 2016-11-22 2018-05-30 삼성전기주식회사 교류전력 측정장치 및 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2540936A1 (en) * 2005-03-24 2006-09-24 Hamid Shokrollah Timorabadi A method and system for wide-range synchronization to alternating current power signals
JP5259077B2 (ja) 2006-12-04 2013-08-07 株式会社京三製作所 瞬時電圧低下補償回路、電力変換装置、瞬時電圧低下補償方法及び瞬時電圧低下補償プログラム
KR101039310B1 (ko) * 2008-05-02 2011-06-08 한국수자원공사 복합형 능동 전력 필터
CN110557118B (zh) * 2018-05-31 2022-12-27 华为技术有限公司 一种锁相装置及锁相方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090067570A (ko) * 2007-12-21 2009-06-25 주식회사 포스콘 위상각 추정 방법 및 시스템
JP2012252443A (ja) * 2011-06-01 2012-12-20 Meidensha Corp 位相同期検出回路
KR20140110595A (ko) * 2013-03-08 2014-09-17 주식회사 엘지유플러스 계통 동기화 제어를 위한 제어장치, 제어방법, 기록매체
KR20180057419A (ko) * 2016-11-22 2018-05-30 삼성전기주식회사 교류전력 측정장치 및 방법
KR101781817B1 (ko) * 2016-11-24 2017-09-27 윤광희 하이브리드 고조파 필터 및 제어방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124085A (zh) * 2021-10-29 2022-03-01 合肥工业大学 基于二阶滤波环节的多同步旋转坐标系锁相环的构造方法
CN114124085B (zh) * 2021-10-29 2024-04-16 合肥工业大学 基于二阶滤波环节的多同步旋转坐标系锁相环的构造方法

Also Published As

Publication number Publication date
GB2597211A (en) 2022-01-19
KR20200136659A (ko) 2020-12-08
US11971437B2 (en) 2024-04-30
GB202116579D0 (en) 2021-12-29
KR102200554B1 (ko) 2021-01-08
GB2597211B (en) 2023-08-23
US20220214386A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2020242163A1 (ko) 계통 전압 위상 검출 장치
WO2017043750A1 (ko) 마이크로그리드용 인버터 장치 및 이를 제어하는 방법
CN110557118B (zh) 一种锁相装置及锁相方法
CN102735938A (zh) 一种电网电压基波正序相角的快速检测方法
CN106026140B (zh) 一种用于三相不平衡和无功补偿的控制装置及方法
CN105823921A (zh) 一种基于瞬时空间电压矢量定向的补偿电流检测方法
WO2019050276A1 (ko) 전류 센서의 스케일 및 옵셋 오차 보상 방법 및 장치
US11774994B2 (en) Method for current limitation of a virtual synchronous machine
JP3798894B2 (ja) 高調波補償方式
JP3324249B2 (ja) 電力変換装置
KR101043573B1 (ko) 3상 불평형시 svc의 불평형 전류를 개선하기 위한 svc 제어장치
CN206481057U (zh) 一种有源滤波器
CN111162563B (zh) 一种具有强鲁棒性的电网电压快速锁相方法
Jain et al. Comparative Analysis of DSOGI-PLL& Adaptive Frequency Loop-PLL for Voltage and Frequency Control of PMSG-BESS based Hybrid Standalone WECS
WO2020105838A1 (ko) 인버터 제어장치
JP3260610B2 (ja) 偏磁抑制制御装置及びそれを用いた電力変換システム
WO2021107280A1 (ko) 인버터 제어장치
CN114243784B (zh) 不平衡电压条件下的虚拟同步机平衡电流输出控制方法
WO2020105839A1 (ko) 인버터 제어장치
CN105391326B (zh) 一种光伏逆变的直流分量的控制方法及装置
JP6819818B1 (ja) 電力変換装置
JP3505626B2 (ja) 電力変換装置と電力変換器の制御装置
WO2020189862A1 (ko) 인버터 제어장치 및 방법
CN115313500B (zh) 一种四象限功率单元的控制方法
Lan et al. Research on APF Improved Control Strategy Under Three-phase Voltage Distortion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813106

Country of ref document: EP

Kind code of ref document: A1