WO2012073629A1 - 鋳鉄材料の疲労強度向上方法 - Google Patents

鋳鉄材料の疲労強度向上方法 Download PDF

Info

Publication number
WO2012073629A1
WO2012073629A1 PCT/JP2011/075033 JP2011075033W WO2012073629A1 WO 2012073629 A1 WO2012073629 A1 WO 2012073629A1 JP 2011075033 W JP2011075033 W JP 2011075033W WO 2012073629 A1 WO2012073629 A1 WO 2012073629A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast iron
fatigue strength
shot
less
mpa
Prior art date
Application number
PCT/JP2011/075033
Other languages
English (en)
French (fr)
Inventor
精彦 野崎
誠 田口
和宏 平川
Original Assignee
Udトラックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Udトラックス株式会社 filed Critical Udトラックス株式会社
Priority to US13/990,175 priority Critical patent/US9102992B2/en
Priority to DE112011103990.5T priority patent/DE112011103990B4/de
Publication of WO2012073629A1 publication Critical patent/WO2012073629A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising

Definitions

  • the present invention relates to a technique for improving the fatigue strength of cast iron materials, particularly spheroidal graphite cast iron.
  • spheroidal graphite cast iron has high strength among cast iron.
  • Techniques for improving the fatigue strength of spheroidal graphite cast iron include weight ratio C: 2.0 to 4.0%, Si: 1.5 to 4.5%, Mn: 2.0% or less, P: 0.08%
  • Bending fatigue strength at 10 7 times of spheroidal graphite cast iron composition according can be a high-tensile cast iron 1400 MPa, not only about 350 MPa.
  • This numerical value is the same as that of a forged product, and a strength of 600 MPa or more, which is the same as that of a carburized and quenched steel material, is not obtained.
  • a fatigue strength of “about 350 MPa” cannot be used for an automobile transmission gear.
  • Patent Document 1 a technique has been proposed in which an additive is contained in a flake of graphite flake cast iron to cast spheroidal graphite cast iron to improve its fatigue strength.
  • Patent Document 1 a technique has been proposed in which an additive is contained in a flake of graphite flake cast iron to cast spheroidal graphite cast iron to improve its fatigue strength.
  • Patent Document 1 improves the fatigue strength by devising the casting stage, and cannot improve the fatigue strength of the material after machining the cast iron material.
  • the present invention has been proposed in view of the above-described problems of the prior art, and the fatigue strength of cast iron materials, particularly spheroidal graphite cast iron, can be improved to the same extent as carbon steel when carburized and quenched.
  • the purpose is to provide an improvement method.
  • the method for improving the fatigue strength of the cast iron material according to the present invention is as follows: C: 2.0 to 4.0%, Si: 1.5 to 4.5%, Mn: 2.0% or less, P: 0.08 by weight ratio. %, S: 0.03% or less, Mg: 0.02-0.1%, Cu: 1.8-4.0% spheroidal graphite cast iron, tempering heat treatment at 150-300 ° C
  • the first to third shot peening treatments described above are performed, then the shot peening treatment is performed using a shot made of tin and molybdenum, and metal lubrication is performed.
  • C 2.0 to 4.0% by weight, Si: 1.5 to 4.5%, Mn: 2.0% or less, P: 0.08 %, S: 0.03% or less, Mg: 0.02-0.1%, Cu: 1.8-4.0% spheroidal graphite cast iron, tempering heat treatment at 150-300 ° C Is applied to the spheroidal graphite cast iron having a tensile strength of 800 MPa or more, and the fatigue strength of 600 MPa or more, which is the bending fatigue strength of the carburized and quenched steel material by performing the above-described first to third shot peening treatments. Can be obtained.
  • high (approximately 600 MPa) compressive residual stress is applied even in the range of 100 ⁇ m from the surface.
  • the occurrence of fine cracks and the progress of cracks are delayed, and fatigue strength is improved.
  • C 2.0 to 4.0% by weight, Si: 1.5 to 4.5%, Mn: 2.0% or less, P: 0.08% or less, S: 0 Spheroidal graphite cast iron containing 0.03% or less, Mg: 0.02 to 0.1%, Cu: 1.8 to 4.0%, and subjected to tempering heat treatment at 150 to 300 ° C. to obtain tensile strength
  • Carburizing and quenching treatment is performed by subjecting spheroidal graphite cast iron of 800 MPa or more to predetermined machining (for example, gear cutting in the case of a transmission gear for automobiles), and then performing the first to third shot peening treatments described above. Without application, bending fatigue strength comparable to that of carburized and quenched steel can be obtained. And since it is not necessary to perform heat treatment (for example, carburizing and quenching treatment) after machining, heat treatment distortion can be prevented.
  • FIG. 6 is a view showing a compressive residual stress distribution of a test material subjected to first to third shot peening treatments. It is a figure which shows the test result of the rotation bending fatigue test in Experimental example 1.
  • FIG. 2 is a table
  • FIG. 3 shows the result of Experimental example 3 as a table
  • FIG. 4 shows the result of Experimental example 4 as a table
  • FIG. 5 is a table
  • surface It is a figure which shows the result of Experimental example 7 as a table
  • step S1 first shot peening process: first process).
  • step S2 shot peening process: second process.
  • step S3 a step of performing a third shot peening process: three steps).
  • step S4 step of performing a fourth shot peening process: four steps.
  • step S4 it is possible to apply metal lubrication to the surface of the workpiece subjected to the first to third shot peening treatments. Note that step S4 can be omitted.
  • a fatigue test piece shown in FIG. 3 was prepared from the test material after the first to third shot peening treatments (1 to 3 steps) were performed.
  • the bending fatigue test piece generally indicated by reference numeral 13 is provided with a reduced diameter portion 7 at the center of a round bar portion 5 having an outer diameter of 12 mm. Both end portions of the small diameter portion 7 are smoothly connected to the round bar portion 5 by an arcuate R curve 6.
  • a rotating bending fatigue test was performed using the test piece 13.
  • the fatigue strength of the spheroidal graphite cast iron subjected to the shot peening process in steps S1 to S3 in FIG. 1 is the same bending fatigue strength as that of the carburized and quenched steel (for example, about 600 MPa). have.
  • the inventor has the following weight ratios: C: 2.0 to 4.0%, Si: 1.5 to 4.5%, Mn: 2.0% or less, P: 0.08% or less, S: 0.03 %
  • the following experiments were performed using spheroidal graphite cast iron containing Mg: 0.02 to 0.1% and Cu: 1.8 to 4.0%. It was.
  • Example 1 The spheroidal graphite cast iron was tempered at 150 to 300 ° C. to obtain a tensile strength of 800 MPa or more.
  • a tensile test result of a test material obtained by subjecting the spheroidal graphite cast iron to tempering heat treatment (the spheroidal graphite cast iron subjected to tempering heat treatment) is shown by a characteristic curve FCD in FIG.
  • the vertical axis represents tensile stress (MPa) and the horizontal axis represents tensile strain ( ⁇ ).
  • the maximum tensile stress in the characteristic curve FCD is 898 MPa.
  • the characteristic curve FCA shows the characteristics of ordinary cast iron (grey cast iron), and the maximum tensile stress was 272 MPa.
  • a first shot peening treatment was performed with a hardness of 600 Hv or more and a shot particle diameter ( ⁇ ) of 0.5 to 0.8 mm.
  • the test piece was subjected to a second shot peening treatment with a hardness of 600 Hv or more and a shot particle diameter ( ⁇ ) of 0.1 to 0.3 mm.
  • the test piece subjected to the first and second shot peening treatments was subjected to a third shot peening treatment with a hardness of 600 Hv or more and a shot particle size ( ⁇ ) of 0.1 mm or less.
  • the measurement result of the residual stress of the test piece subjected to the first to third shot peening processes is shown in the curve Sa showing the residual stress distribution in FIG.
  • the residual stress slightly varies from the test piece surface (0 ⁇ m) to the depth of 100 ⁇ m, but the compressive residual stress is about ⁇ 600 (MPa).
  • the vertical axis indicates the value of tensile stress. For this reason, when the numerical value of the compressive residual stress is high, it is displayed below (in the side where the negative absolute value is large) in FIG.
  • the test pieces subjected to the first to third shot peening treatments are the test pieces not subjected to the first to third shot peening treatments (in FIG. 4, the vertical axis represents zero MPa, the horizontal axis Unlike the line So) parallel to the abscissa, it can be seen that compressive residual stress exists in a region 200 ⁇ m deep from the surface.
  • Experimental Example 1 the first to third shot peening treatments were performed on the same test piece, and the fatigue test piece shown in FIG. 3 was prepared from the material, and the rotating bending fatigue test was performed.
  • the fatigue test result is shown in FIG.
  • the vertical axis represents the bending stress ( ⁇ ), and the horizontal axis represents the number of repetitions (N).
  • the symbol Ha in FIG. 5 is a characteristic curve showing the bending fatigue strength of the test pieces subjected to the first to third shot peening treatments in Experimental Example 1, and the fatigue strength was 620 to 630 MPa.
  • the fatigue strength of 620 to 630 MPa in Experimental Example 1 is a numerical value close to the fatigue strength of 700 MPa in the carburized state of the carburized and quenched steel SCM420H indicated by the symbol K in FIG. That is, according to Experimental Example 1, fatigue strength comparable to that of the carburized and quenched steel SCM420H is obtained.
  • the bending fatigue curve Ja in FIG. 5 has shown the bending fatigue strength of the cast state of high tensile cast iron FCD900MPa which does not perform a shot peening process, The fatigue curve strength was 300MPa.
  • the bending fatigue curve C has shown the bending fatigue strength of normal cast iron (gray cast iron) of a casting state, and the fatigue strength was 100 MPa.
  • the characteristic in the tensile test of cast iron is shown by the characteristic curve FCA of FIG.
  • Test pieces used in Experimental Example 1 (C: 2.0 to 4.0% by weight, Si: 1.5 to 4.5%, Mn: 2.0% or less, P: 0.08% or less) , S: 0.03% or less, Mg: 0.02-0.1%, Cu: 1.8-4.0% containing spheroidal graphite cast iron is subjected to tempering heat treatment at 150-300 ° C. and tensile strength
  • a shot having a particle size larger than 0.8 mm (particle size: 0.9 mm, 1.0 mm, 1.1 mm) is used.
  • the other specimens were subjected to a bending fatigue strength fatigue test on the test pieces that were the same as in Experimental Example 1.
  • FIG. 6 shows the fatigue test results (results of Experimental Example 2) when the first shot peening treatment is performed with shot particle sizes of 0.8 mm, 0.9 mm, 1.0 mm, and 1.1 mm.
  • indicates that a fatigue strength of about 600 MPa is obtained
  • X indicates that the fatigue strength does not reach about 600 MPa.
  • indicates that a fatigue strength of about 600 MPa is obtained
  • X indicates that the fatigue strength does not reach about 600 MPa.
  • a particle size of 0.8 mm fatigue strength of about the same level as carburized and quenched steel (about 600 MPa) was obtained (“ ⁇ ” in FIG. 6), but with particle sizes of 0.9 mm, 1.0 mm, and 1.1 mm
  • the bending fatigue strength was 600 MPa or less (“ ⁇ ” in FIG. 6). From the result of Experimental Example 2 (FIG.
  • the shot particle size should be 0.8 mm or less in the first shot peening process. In the first shot peening process, if the shot particle size is larger than 0.8 mm, it is considered that the shot does not get on the air flow when the shot is shot and the test piece is not sufficiently impacted.
  • the shot particle size should be 0.5 mm or more in the first shot peening process.
  • the first shot peening treatment if the shot particle size is smaller than 0.5 mm, the compressive stress on the steel material surface side becomes high, but it seems that the compressive stress inside the steel material becomes small.
  • Example 4 In the second shot peening treatment, a shot having a particle size of 0.3 mm or more (particle size: 0.3 mm, 0.4 mm, 0.5 mm) was used, and the other treatments were performed in the same manner as in Experimental Example 1 and the bending fatigue strength. A fatigue test was conducted. In FIG. 8, “ ⁇ ” indicates that a fatigue strength of about 600 MPa is obtained, and “X” indicates that the fatigue strength does not reach about 600 MPa. As shown in FIG. 8, with a shot particle size of 0.3 mm, fatigue strength of about the same level as that of the carburized and quenched steel material (about 600 MPa) (“ ⁇ ” in FIG. 8) was obtained.
  • the bending fatigue strength was 600 MPa or less (“ ⁇ ” in FIG. 8). From the results of Experimental Example 4 (FIG. 8), it was found that in the second shot peening process, the shot particle size should be 0.3 mm or less.
  • the second shot peening treatment is a treatment for increasing the compressive residual stress on the outermost surface of the cast iron test piece (surface to a depth of 50 microns). If the shot particle size is larger than 0.3 mm, It is presumed that the peak of compressive residual stress did not occur and the fatigue strength did not increase.
  • Example 5 In the second shot peening treatment, a shot with a particle size of 0.1 mm or less (particle size 0.1 mm, 0.07 mm, 0.01 mm) was used, and the other treatments were performed in the same manner as in Experimental Example 1, and bending fatigue strength A fatigue test was conducted.
  • “ ⁇ ” indicates that a fatigue strength of about 600 MPa is obtained
  • “X” indicates that the fatigue strength does not reach about 600 MPa.
  • FIG. 9 at a shot particle size of 0.1 mm fatigue strength of the same level as that of carburized and quenched steel (about 600 MPa) was obtained (“ ⁇ ” in FIG.
  • Example 6 Prepare a gear Z (gear subjected to the first to third shot peening treatment) Z made of the test material of Experimental Example 1 and a gear Y made of the test material omitting the third shot peening treatment. As shown in FIG. 10, the slippage of the meshing surfaces was compared. In the gear Z (gear subjected to the first to third shot peening treatments) Z made of the test material of Experimental Example 1, the slip of the meshing surface showed a good numerical value. On the other hand, in the gear Y made of the test material in which the third shot peening process was omitted, there was an abnormality in the slippage of the meshing surface.
  • the uneven surface of the first and second shot peening is smoothed by the third shot peening process, the unevenness of the tooth surface becomes small, and if it is a minute uneven surface, oil accumulates there and lubricates. Demonstrate.
  • the lubrication process is not performed and an abnormality occurs in the slippage of the meshing surface.
  • Test piece used in Experimental Example 1 (C: 2.0 to 4.0% by weight, Si: 1.5 to 4.5%, Mn: 2.0% or less, P: 0.08% or less, Spherical graphite cast iron containing S: 0.03% or less, Mg: 0.02 to 0.1%, Cu: 1.8 to 4.0% subjected to tempering heat treatment)
  • Six types of test pieces were prepared by changing the temperature of the heat treatment by 50 ° C. in the range of 100 ° C. to 350 ° C.
  • the other treatments for each sample were the same as those in Experimental Example 1.
  • the other treatments for each sample were the same as those in Experimental Example 1.
  • the fatigue test of bending fatigue strength was done about each of six types of test pieces.
  • FIG. 11 shows the results of Experimental Example 7.
  • the illustrated embodiment is merely an example, and is not intended to limit the technical scope of the present invention.
  • the present invention can be applied to a valve, a cam, a connecting rod, a gear, and various pumps for supplying high-pressure oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 本発明は、鋳鉄材料、特に球状黒鉛鋳鉄の疲労強度を、浸炭焼入れした場合の炭素鋼と同程度まで向上することが出来る疲労強度向上方法の提供を目的としている。 そのため、本発明では、重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄であって、150~300℃で焼き戻し熱処理を行なって引張強さ800MPa以上とした球状黒鉛鋳鉄に対して、それぞれ所定のショット粒径による第1、第2、第3のショットピーニング処理を行なう工程を有している。

Description

鋳鉄材料の疲労強度向上方法
 本発明は、鋳鉄材料、特に球状黒鉛鋳鉄の疲労強度を向上する技術に関する。
 従来の自動車用トランスミッションギヤは、鉄鋼材料を切削歯切り加工後に浸炭焼入れをしていた。しかし、熱処理歪みによる部材の変形が欠点であった。
 一方、球状黒鉛鋳鉄は製造が容易であるが、疲労強度が低く、自動車用トランスミッションギヤに使用できないという欠点があった。そのため、浸炭焼入れをしない鋳鉄材料について、浸炭焼入れした鉄鋼材料と同程度の疲労強度が望まれている。
 ここで、球状黒鉛鋳鉄は、鋳鉄の中で、強度が高い。球状黒鉛鋳鉄の疲労強度を向上させる技術として、重量比C:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%、を含有した球状黒鉛鋳鉄にオーステンパ処理もしくは、焼入れ焼もどししたものがある。
 係る組成の球状黒鉛鋳鉄の10回における曲げ疲労強度は、1400MPaの高張力鋳鉄であっても、350MPa程度に過ぎない。この数値は、鍛造品並であって、浸炭焼入れした鉄鋼材料並みの600MPa以上の強度は得られていない。
 そして、「350MPa程度」という疲労強度では、自動車用トランスミッションギヤには使用できない。
 その他の従来技術として、片状黒鉛鋳鉄の溶湯に添加物を含有せしめて球状黒鉛鋳鉄を鋳造して、その疲労強度を向上する技術が提案されている(特許文献1参照)。
 しかし、係る従来技術は、鋳造段階を工夫することにより疲労強度を向上するものであり、鋳鉄材料を機械加工した後に材料の疲労強度を向上することは出来ない。
特開2005-8913号公報
 本発明は上述した従来技術の問題点に鑑みて提案されたものであり、鋳鉄材料、特に球状黒鉛鋳鉄の疲労強度を、浸炭焼入れした場合の炭素鋼と同程度まで向上することが出来る疲労強度向上方法の提供を目的としている。
 本発明の鋳鉄材料の疲労強度向上方法は、重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄であって、150~300℃で焼き戻し熱処理を行なって引張強さ800MPa以上とした球状黒鉛鋳鉄に対して、
 硬さ600Hv以上、ショット粒径(φ)0.5~0.8mmで第1のショットピーニング処理を行なう工程(1工程)と、
 硬さ600Hv以上、ショット粒径(φ)0.1~0.3mmで第2のショットピーニング処理を行なう工程(2工程)と、
 硬さ600Hv以上、ショット粒径(φ)0.1mm以下で第3のショットピーニング処理を行なう工程(3工程)、
 を有することを特徴としている。
 本発明の実施に際して、上述した第1~第3のショットピーニング処理を施した後、錫、モリブデンから成るショットを用いてショットピーニング処理を行ない、金属潤滑を行なうように構成することが好ましい。
 上述した構成を具備する本発明によれば、重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄であって、150~300℃で焼き戻し熱処理を行なって引張強さ800MPa以上とした球状黒鉛鋳鉄に対して、上述した第1~第3のショットピーニング処理を施すことにより、浸炭焼入れをした鋼材レベルの曲げ疲労強度である600MPa以上の疲労強度を得ることが出来る。
 そして本発明によれば、上述した第1~第3のショットピーニング処理を施すことにより、表面から100μmの範囲についても高い(ほぼ600MPaの)圧縮残留応力が付与されるので、球状黒鉛鋳鉄表面における微細亀裂の発生と、亀裂の進展が遅延して、疲労強度が向上する。
 本発明によれば、重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄であって、150~300℃で焼き戻し熱処理を行なって引張強さ800MPa以上とした球状黒鉛鋳鉄に所定の機械加工(例えば、自動車用トランスミッションギヤであれば歯切り加工)を施し、その後、上述した第1~第3のショットピーニング処理を施せば、浸炭焼入れ処理を施すこと無く、浸炭焼入れをした鋼材と同程度の曲げ疲労強度を得ることが出来る。
 そして、機械加工後に熱処理(例えば、浸炭焼入れ処理)を行なう必要がないため、熱処理歪みを防止することが出来る。
本発明の疲労強度向上方法の手順を示す図である。 試験材料の引張試験の試験結果を示す図である。 曲げ疲労試験片を示す図である。 第1~第3のショットピーニング処理を施した試験材料の圧縮残留応力分布を示す図である。 実験例1における回転曲げ疲労試験の試験結果を示す図である。 実験例2の結果を表として示す図である。 実験例3の結果を表として示す図である。 実験例4の結果を表として示す図である。 実験例5の結果を表として示す図である。 実験例6の結果を表として示す図である。 実験例7の結果を表として示す図である。
 以下、添付図面を参照して、本発明の実施形態について説明する。
 先ず、図1を参照して、図示の実施形態における作業手順を説明する。
 図1において、重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄を、150~300℃で焼き戻し熱処理を行って、引張り強さを800MPa以上にする(ステップS0)。
 ついで、硬さ600Hv以上、ショットの粒径φが0.5~0.8mmでショットピーニングをする(ステップS1:第1のショットピーニング処理を行う工程:第1工程)。
 次に、硬さ600Hv以上、ショットの粒径φが0.1~0.3mmでショットピーニングをする(ステップS2:第2のショットピーニング処理を行う工程:第2工程)。
 そして、硬さ600Hv以上、ショットの粒径φが0.1mm以下でショットピーニングをする(ステップS3:第3のショットピーニング処理を行う工程:3工程)。
 その後、適宜の硬さ、ショットの粒径の錫、モリブデンでショットピーニングをする(ステップS4:第4のショットピーニング処理を行う工程:4工程)。
 ステップS4によって、第1~第3のショットピーニング処理が施されたワークの表面に金属潤滑を施すことが可能である。
 なお、このステップS4は省略することが可能である。
 第1~第3のショットピーニング処理(1~3工程)を行なった後の試験材料により、図3で示す疲労試験片を作成した。
 全体を符号13で示す曲げ疲労試験片の形状は、図示の実施形態では、外径12mmの丸棒部5の中央部に、縮径された小径部7が設けられている。小径部7の両端部は円弧状のR曲線6によって丸棒部5に滑らかに接続されている。
 係る試験片13を用いて、回転曲げ疲労試験を行なった。
 後述の実験例1で記載する通り、図1のステップS1~S3のショットピーニング処理を行なった球状黒鉛鋳鉄の疲労強度は、浸炭焼入れをした鋼材と同程度の曲げ疲労強度(例えば、600MPa程度)を有している。
 発明者は、重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄を用いて、以下のような実験(実験例1~実験例7)を行った。
 [実験例1]
 上記球状黒鉛鋳鉄に150~300℃で焼き戻し熱処理を行なって、引張強さ800MPa以上とした。
 上記球状黒鉛鋳鉄に焼き戻し熱処理を行なった試験材料(焼き戻し熱処理を行なった上記球状黒鉛鋳鉄)の引張り試験結果が図2の特性曲線FCDで示されている。
 図2において、縦軸は引張り応力(MPa)で、横軸は引張り歪(ε)である。特性曲線FCDにおける最大引張り応力は898MPaである。
 図2において示した特性曲線FCDQは、球状黒鉛鋳鉄を調質して最大引張応力1300MPaにしたものである。特性曲線FCAは、普通鋳鉄(ねずみ鋳鉄)の特性を示しており、最大引張り応力が272MPaであった。
 次に、硬さ600Hv以上、ショット粒径(φ)0.5~0.8mmで第1のショットピーニング処理を行なった。ついで、その試験片に硬さ600Hv以上、ショット粒径(φ)0.1~0.3mmで第2のショットピーニング処理を行なった。さらに、第1、第2のショットピーニング処理を行なった試験片に、硬さ600Hv以上、ショット粒径(φ)0.1mm以下で第3のショットピーニング処理を行なった。
 上記第1~第3のショットピーニング処理を行った試験片の残留応力の測定結果が、図4の残留応力分布を示す曲線Saに示されている。
 図4において、試験片表面(0μm)から深さ100μmまでは僅かに残留応力の変動があるが、圧縮残留応力は約-600(MPa)になっている。
 なお、図4では、縦軸は引っ張り応力の数値を示している。そのため、圧縮残留応力の数値が高い場合には、図4では下方(負の絶対値が大きい側)に表示されることになる。
 図4を参照すれば、第1~第3のショットピーニング処理を施した試験片は、第1~第3のショットピーニング処理を施していない試験片(図4において縦軸でゼロMPa、横軸が横座標に平行な線So)とは異なり、表面から深さ200μmの領域で圧縮残留応力が存在していることがわかる。
 実験例1では、同一の試験片に対して第1~第3のショットピーニング処理を行ない、当該材料により、図3で示す疲労試験片を作成して、回転曲げ疲労試験を行なった。係る疲労試験結果を図5に示す。図5において、縦軸には曲げ応力(σ)、横軸には繰り返し回数(N)が表示されている。
 図5における符号Haが、実験例1で、第1~第3のショットピーニング処理を施した試験片の曲げ疲労強度を示す特性曲線であり、疲労強度が620~630MPaであった。
 実験例1における620~630MPaという疲労強度は、図5において、符号Kで示す浸炭焼入れ鋼SCM420Hの浸炭状態の疲労強度700MPaに近い数値である。
 すなわち、実験例1によれば、浸炭焼入れ鋼SCM420Hと同程度の疲労強度が得られている。
 なお、図5における曲げ疲労曲線Jaは、ショットピーニング処理を行わない高張力鋳鉄FCD900MPaの鋳造状態の曲げ疲労強度を示しており、その疲労曲線強度は300MPaであった。
 また曲げ疲労曲線Cは、鋳造状態の普通鋳鉄(ねずみ鋳鉄)の曲げ疲労強度を示しており、その疲労強度は100MPaであった。なお、鋳鉄の引張り試験における特性が、図2の特性曲線FCAで示されている。
 第1実験例において、図5で示す結果より、重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄に150~300℃で焼き戻し熱処理を行なって、引張強さ800MPa以上として、第1~第3のショットピーニング処理を行なえば、浸炭焼入れをした低炭素鋼材と同程度(600MPa程度)の曲げ疲労強度を得ることが出来ることが明らかになった。
 [実験例2]
 実験例1で用いられた試験片(重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄に150~300℃で焼き戻し熱処理を行なって引張り強さ850MPa以上とした上記球状黒鉛鋳鉄)に対して第1ショットピーニング処理を行なうに際して、粒径が0.8mmより大きいショット(粒径が0.9mm、1.0mm、1.1mm)を用いて、その他の処理は実験例1と同様にした試験片について、曲げ疲労強度の疲労試験を行なった。
 図6において、ショット粒径0.8mm、0.9mm、1.0mm、1.1mmで第1ショットピーニング処理を行なった場合の疲労試験結果(実験例2の結果)を示す。
 図6では、「○」は600MPa程度の疲労強度が得られたことを示しており、「×」は、疲労強度が600MPa程度に到達していないことを示している。
0.8mmの粒径では浸炭焼入れをした鋼材と同程度(600MPa程度)の疲労強度が得られた(図6の「○」)が、粒径0.9mm、1.0mm、1.1mmでは、曲げ疲労強度は600MPa以下であった(図6の「×」)。
 実験例2の結果(図6)から、第1ショットピーニング処理では、ショット粒径を0.8mm以下にするべきであることが分った。
第1ショットピーニング処理において、ショット粒径が0.8mmより大きいと、ショットを打ち出す際の空気の流れにショットが乗らず、十分に試験片に衝撃が与えられないことが原因と思われる。
 [実験例3]
 第1ショットピーニング処理で、0.5mm以下のショット(粒径が、0.5mm、0.4mm、0.3mm)を用いて、その他の処理は実験例1と同様にして、曲げ疲労強度について疲労試験を行なった。
 図7においても、「○」は600MPa程度の疲労強度が得られたことを示しており、「×」は、疲労強度が600MPa程度に到達していないことを示している。
図7で示すように、ショット粒径0.5mmでは、浸炭焼入れをした鋼材と同程度(600MPa程度)の疲労強度が得られた(図7の「○」)が、粒径0.4mm、0.3mmでは、曲げ疲労強度は600MPa以下であった(図7の「×」)。
 図7から、第1ショットピーニング処理では、ショット粒径を0.5mm以上にするべきであることが分った。
 第1ショットピーニング処理において、ショット粒径が0.5mmよりも小さいと、鋼材表面側の圧縮応力は高くなるが、鋼材内部の圧縮応力が小さくなってしまうことが原因と思われる。
 [実験例4]
 第2ショットピーニング処理で、粒径が0.3mm以上(粒径0.3mm、0.4mm、0.5mm)のショットを用いて、その他の処理は実験例1と同様にして、曲げ疲労強度について疲労試験を行なった。
 図8において、「○」は600MPa程度の疲労強度が得られたことを示しており、「×」は、疲労強度が600MPa程度に到達していないことを示している。
 図8で示すように、ショット粒径0.3mmでは、浸炭焼入れをした鋼材と同程度(600MPa程度)の疲労強度が得られた(図8の「○」)が、粒径0.4mm、0.5mmでは、曲げ疲労強度は600MPa以下であった(図8の「×」)。
 実験例4の結果(図8)から、第2ショットピーニング処理では、ショット粒径を0.3mm以下にするべきであることが分った。
第2ショットピーニング処理は、鋳鉄試験片の最表面(表面~深さ50ミクロンまでの領域)の圧縮残留応力を高める処理であるが、ショット粒径が0.3mmよりも大きいと、最表面に圧縮残留応力のピークが発生せず、疲労強度が上昇しなかったものと推定される。
 [実験例5]
 第2ショットピーニング処理で、粒径が0.1mm以下(粒径0.1mm、0.07mm、0.01mm)のショットを用いて、その他の処理は実験例1と同様にして、曲げ疲労強度について疲労試験を行なった。
 図9において、「○」は600MPa程度の疲労強度が得られたことを示しており、「×」は、疲労強度が600MPa程度に到達していないことを示している。
 図9で示すように、ショット粒径0.1mmでは、浸炭焼入れをした鋼材と同程度(600MPa程度)の疲労強度が得られた(図9の「○」)が、粒径0.07mm、0.01mmでは、曲げ疲労強度は600MPa以下であった(図9の「×」)。
 実験例5の結果(図9)から、第2ショットピーニング処理では、ショット粒径を0.1mm以上にするべきであることが分った。
 第2ショットピーニング処理で使用されるショットの粒径が小さいと、鋳鉄表面をならすのみであり、鋼材最表面の圧縮残留応力は生せず、疲労強度は向上しなかったと推定される。
 [実験例6]
 実験例1の試験材料で作成された歯車(第1~第3ショットピーニング処理が行なわれた歯車)Zと、第3ショットピーニング処理を省略した試験材料で作成した歯車Yを用意して、図10に示す様に、噛み合い面の滑りを比較した。
 実験例1の試験材料で作成された歯車(第1~第3ショットピーニング処理が行なわれた歯車)Zでは、噛み合い面の滑りは良好な数値を示した。
 一方、第3ショットピーニング処理を省略した試験材料で作成した歯車Yでは、噛み合い面の滑りに異常があった。
 より詳細には、図10において、歯車Zでは噛み合い歯面が当たり及び滑りが良好で所定の耐久性試験をクリアした。一方、歯車Yでは噛み合い歯面が当たり及び滑りが不良で歯面に微細亀裂が生じて所定の耐久性試験をクリアできなかった。
 実験例6の結果(図10)から、第3ショットピーニング処理は省略するべきではないことが判明した。
 第3ショットピーニング処理により、第1及び第2ショットピーニングで凸凹になった表面がならされると、歯面表面の凸凹が小さくなり、微小な凸凹であれば、そこに油がたまって潤滑作用を発揮する。
 第3ショットピーニング処理を省略した試験材料では、係る潤滑処理が発揮されず、噛み合い面の滑りに異常が発生したものと推定される。
 [実験例7]
 実験例1で用いられる試験片(重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄に焼き戻し熱処理を行なった球状黒鉛鋳鉄)について、焼き戻し熱処理の温度を100℃~350℃の範囲で50℃ずつ変化させて、6種類の試験片を作成し、各サンプルへの他の処理は実験例1と同様にした。そして、6種類の試験片の各々について、曲げ疲労強度の疲労試験を行った。
 図11に、実験例7の結果を示す。
 図11において、符号「○」は、浸炭焼入れをした低炭素鋼材と同程度(600MPa)程度の曲げ疲労強度を得ることが出来たことを示している。
 一方、符号「×」は、浸炭焼入れをした低炭素鋼材と同程度(600MPa程度)の曲げ疲労強度を得ることが出来なかったことを示している。
 実験例7の結果(図11)から、浸炭焼入れをした低炭素鋼材と同程度(600MPa)程度の曲げ疲労強度を得ることが出来ることが確認できたのは、焼き戻し熱処理の温度を150℃~300℃の範囲にした場合であることが分る。
 図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない。
 例えば図示の実施形態において、動弁系のカム、コンロッド、ギヤ、高圧油供給用各種ポンプへ適用することも可能である。
5・・・・丸棒部
6・・・・R曲線
7・・・・小径部
13・・・曲げ試験片
Y・・・・3工程を省略した材料で作製した歯車
Z・・・・実験1の後の材料で作製した歯車

Claims (1)

  1.  重量比でC:2.0~4.0%、Si:1.5~4.5%、Mn:2.0%以下、P:0.08%以下、S:0.03%以下、Mg:0.02~0.1%、Cu:1.8~4.0%を含有した球状黒鉛鋳鉄であって、焼き戻し熱処理を行なって引張強さ800MPa以上とした球状黒鉛鋳鉄に対して、
     硬さ600Hv以上、ショット粒径0.5~0.8mmで第1のショットピーニング処理を行なう工程と、
     硬さ600Hv以上、ショット粒径0.1~0.3mmで第2のショットピーニング処理を行なう工程と、
     硬さ600Hv以上、ショット粒径0.1mm以下で第3のショットピーニング処理を行なう工程、
    を有することを特徴とする鋳鉄材料の疲労強度向上方法。
PCT/JP2011/075033 2010-12-02 2011-10-31 鋳鉄材料の疲労強度向上方法 WO2012073629A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/990,175 US9102992B2 (en) 2010-12-02 2011-10-31 Method for improving fatigue strength of cast iron material
DE112011103990.5T DE112011103990B4 (de) 2010-12-02 2011-10-31 Verfahren zur Verbesserung der Ermüdungsfestigkeit von Gusseisenmaterial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-268928 2010-12-02
JP2010268928A JP2012115881A (ja) 2010-12-02 2010-12-02 鋳鉄材料の疲労強度向上方法

Publications (1)

Publication Number Publication Date
WO2012073629A1 true WO2012073629A1 (ja) 2012-06-07

Family

ID=46171579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075033 WO2012073629A1 (ja) 2010-12-02 2011-10-31 鋳鉄材料の疲労強度向上方法

Country Status (4)

Country Link
US (1) US9102992B2 (ja)
JP (1) JP2012115881A (ja)
DE (1) DE112011103990B4 (ja)
WO (1) WO2012073629A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614887B2 (ja) * 2010-11-30 2014-10-29 Udトラックス株式会社 鋳鉄材料の疲労強度向上方法
JP2012117095A (ja) * 2010-11-30 2012-06-21 Ud Trucks Corp 鋳鉄材料の疲労強度向上方法
CN106884080B (zh) * 2017-02-23 2018-11-06 江苏宏威重工机床制造有限公司 大型剪切设备关键零件喷丸强化工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987795A (ja) * 1995-09-25 1997-03-31 Hitachi Metals Ltd 疲労強度に優れる球状黒鉛鋳鉄鋳造品
JPH09217142A (ja) * 1996-02-13 1997-08-19 Senshiyuu:Kk 振動減衰能に優れた球状黒鉛鋳鉄
JPH09279229A (ja) * 1996-04-15 1997-10-28 Suncall Corp 鋼製ワークの表面処理方法
JPH1162945A (ja) * 1997-06-10 1999-03-05 Hitachi Metals Ltd 鋳造コンロッドおよびロッド部並びにキャップ部
JPH11207522A (ja) * 1998-01-22 1999-08-03 Sumitomo Metal Ind Ltd 高疲労強度歯車の製造方法
JP2000239780A (ja) * 1999-02-25 2000-09-05 Kubota Tekkosho:Kk 球状黒鉛鋳鉄及びこれを用いた歯車等の機械部品
JP2007307678A (ja) * 2006-05-22 2007-11-29 Kanzaki Kokyukoki Mfg Co Ltd ショットピーニング処理方法
JP2009191342A (ja) * 2008-02-18 2009-08-27 Jfe Pipe Fitting Mfg Co Ltd シーブ材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704680A1 (de) * 1987-02-14 1988-08-25 Schwaebische Huettenwerke Gmbh Gusseisen zur fertigung von bremsenkoerpern
US5352305A (en) * 1991-10-16 1994-10-04 Dayton Walther Corporation Prestressed brake drum or rotor
US5193375A (en) * 1991-11-27 1993-03-16 Metal Improvement Company, Inc. Method for enhancing the wear performance and life characteristics of a brake drum
JP3212433B2 (ja) * 1993-12-28 2001-09-25 株式会社不二機販 金属成品の摺動部の摩耗防止方法
US6458225B1 (en) * 1998-09-03 2002-10-01 Uit, L.L.C. Company Ultrasonic machining and reconfiguration of braking surfaces
JP3992281B2 (ja) 2003-06-17 2007-10-17 アイシン高丘株式会社 疲労強度に優れた球状黒鉛鋳鉄部材及びその製造方法
JP2012117095A (ja) * 2010-11-30 2012-06-21 Ud Trucks Corp 鋳鉄材料の疲労強度向上方法
US8893538B2 (en) * 2010-12-08 2014-11-25 Fuji Kihan Co., Ltd. Instantaneous heat treatment method for metal product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987795A (ja) * 1995-09-25 1997-03-31 Hitachi Metals Ltd 疲労強度に優れる球状黒鉛鋳鉄鋳造品
JPH09217142A (ja) * 1996-02-13 1997-08-19 Senshiyuu:Kk 振動減衰能に優れた球状黒鉛鋳鉄
JPH09279229A (ja) * 1996-04-15 1997-10-28 Suncall Corp 鋼製ワークの表面処理方法
JPH1162945A (ja) * 1997-06-10 1999-03-05 Hitachi Metals Ltd 鋳造コンロッドおよびロッド部並びにキャップ部
JPH11207522A (ja) * 1998-01-22 1999-08-03 Sumitomo Metal Ind Ltd 高疲労強度歯車の製造方法
JP2000239780A (ja) * 1999-02-25 2000-09-05 Kubota Tekkosho:Kk 球状黒鉛鋳鉄及びこれを用いた歯車等の機械部品
JP2007307678A (ja) * 2006-05-22 2007-11-29 Kanzaki Kokyukoki Mfg Co Ltd ショットピーニング処理方法
JP2009191342A (ja) * 2008-02-18 2009-08-27 Jfe Pipe Fitting Mfg Co Ltd シーブ材料

Also Published As

Publication number Publication date
JP2012115881A (ja) 2012-06-21
DE112011103990T5 (de) 2013-08-29
DE112011103990B4 (de) 2017-08-31
US20130247634A1 (en) 2013-09-26
US9102992B2 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
WO2012073631A1 (ja) 鋳鉄材料の疲労強度向上方法
JP3308377B2 (ja) 歯面強度の優れた歯車およびその製造方法
JP5530763B2 (ja) 低サイクル曲げ疲労強度に優れた浸炭鋼部品
WO2011111269A1 (ja) 低サイクル曲げ疲労強度に優れた浸炭鋼部品
JP5207805B2 (ja) 曲げ疲労強度に優れた鋼部品、及びその製造方法
JP5614887B2 (ja) 鋳鉄材料の疲労強度向上方法
WO2012073629A1 (ja) 鋳鉄材料の疲労強度向上方法
JP4752635B2 (ja) 軟窒化部品の製造方法
JP2010053429A (ja) 耐高面圧性に優れた歯車
JP2005264331A (ja) 機械構造部品
JP5683348B2 (ja) 浸炭部材、浸炭部材用鋼および浸炭部材の製造方法
TWI544088B (zh) Vacuum carburizing steel and its manufacturing method
JP2008255470A (ja) 低サイクル疲労特性に優れた浸炭部品
WO2017170540A1 (ja) 面疲労強度および曲げ疲労強度に優れた浸炭窒化部品、並びにその製造方法
WO2017170127A1 (ja) 肌焼鋼
JP6127694B2 (ja) 歯面強度及び歯元強度に優れた高強度歯車及びその製造方法
JP6160054B2 (ja) 耐高面圧部品
JP5335523B2 (ja) 耐曲げ疲労性および耐剥離性に優れた歯車用軸鋼並びに歯車用軸
JP4361916B2 (ja) 金属部材の表面強化方法
WO2023182333A1 (ja) 歯車部品
JP2003183808A (ja) 機械構造部品
KR100427381B1 (ko) 변속기용 디퍼런셜 피니언 샤프트 및 그 제조 방법
JP2005163148A (ja) 高強度歯車用肌焼鋼
JP2023081506A (ja) 横孔付きシャフト部品及びこれを製造するための鋼材
JP2011068917A (ja) 鋼材とその熱処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13990175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011103990

Country of ref document: DE

Ref document number: 1120111039905

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844388

Country of ref document: EP

Kind code of ref document: A1