WO2017170127A1 - 肌焼鋼 - Google Patents

肌焼鋼 Download PDF

Info

Publication number
WO2017170127A1
WO2017170127A1 PCT/JP2017/011733 JP2017011733W WO2017170127A1 WO 2017170127 A1 WO2017170127 A1 WO 2017170127A1 JP 2017011733 W JP2017011733 W JP 2017011733W WO 2017170127 A1 WO2017170127 A1 WO 2017170127A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
fatigue life
amount
carburizing
steel
Prior art date
Application number
PCT/JP2017/011733
Other languages
English (en)
French (fr)
Inventor
武浩 酒道
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017170127A1 publication Critical patent/WO2017170127A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like

Definitions

  • the case-hardened steel of the present disclosure is suitably used as a material for power transmission parts such as constant velocity joint parts such as gears and shafts, bearings, and continuously variable transmission (CVT) pulleys.
  • power transmission parts such as constant velocity joint parts such as gears and shafts, bearings, and continuously variable transmission (CVT) pulleys.
  • CVT continuously variable transmission
  • the power transmission component generally requires a durability life against surface fatigue damage (hereinafter referred to as surface fatigue life) and a durability life against bending breakage (hereinafter referred to as bending fatigue life).
  • Surface fatigue damage is a general term for damage that causes cracks that develop on the sliding surfaces between parts to cause separation (pitching damage) and damage that causes cracks that develop on the surface of the part to cause separation (spoling damage). It is.
  • Bending breakage is a phenomenon in which parts are repeatedly brought into contact with each other, cracks are generated and propagated from the surface of the part due to repeated bending stress received, and finally break.
  • an alloy steel for machine structure defined in JIS G4053 has been conventionally used.
  • Patent Document 1 discloses a carburized material that can obtain excellent rolling fatigue characteristics even when a high surface pressure is applied.
  • the carburized material described in Patent Document 1 contains 0.005 to 0.04% Nb, the austenite grain size of the carburized layer is 7 or more, and the surface carbon content is 0.9 to 1.5%.
  • the amount of retained austenite on the surface satisfies 25 to 40%.
  • Nb is combined with C and N in steel to form Nb (C, N), which is effective for refining crystal grains and suppressing coarsening of crystal grains during carburizing heating. It is described that.
  • Patent Document 2 discloses a case-hardening steel material having excellent surface fatigue strength after spheroidizing annealing and having good pitting resistance and wear resistance.
  • the case hardening steel described in Patent Document 2 contains less than 0.02% (not including 0%) of Nb, the area fraction of the metal structure is appropriately controlled, and the ferrite grain size number is 7-9. Is pleased.
  • Patent Document 1 the rolling fatigue characteristics of the carburized material are improved, but the surface fatigue life is not considered.
  • Patent Document 2 the surface fatigue strength after spheroidizing annealing is improved, but the bending fatigue life is not considered.
  • Embodiments of the present invention have been made paying attention to the above-described circumstances, and the purpose thereof is to provide a case-hardened steel as a material for manufacturing a part with improved surface fatigue life and bending fatigue life. There is to do.
  • the case-hardened steel according to the embodiment of the present invention that has solved the above problems is, in mass%, C: 0.15 to 0.25%, Si: 0.4 to 1%, and Mn: 0.3. ⁇ 0.6%, P: more than 0%, 0.03% or less, S: more than 0%, 0.03% or less, Cr: 1.2-2%, Mo: 0.3-0.5%, Al: 0.01 to 0.08%, N: more than 0%, 0.02% or less, Ti: more than 0%, 0.005% or less, and Nb: more than 0%, 0.005% or less
  • the remainder consists of iron and inevitable impurities, and the Z value represented by the following formula (1) is more than 0 and 1.0 ⁇ 10 ⁇ 4 or less.
  • [] indicates the content (% by mass) of each element.
  • Z value [Ti] / 48 + [Nb] / 93 (1)
  • the case-hardened steel may further contain at least one selected from Cu: more than 0%, 1% or less, and Ni: more than 0%, 2% or less as other elements, as other elements. Good.
  • the hardened steel in a cross section perpendicular to the axial direction, the total number of area 3 [mu] m 2 or more titanium nitride and area of 3 [mu] m 2 or more niobium carbonitride, 2 ⁇ 10 5 ⁇ m 2 per 5 or less If it is.
  • Ti and Nb are controlled to 0.005% or less, and the Ti and Nb contents are controlled to satisfy a predetermined relationship.
  • a case-hardened steel that is a material for producing a part with improved surface fatigue life and bending fatigue life.
  • FIG. 1 is a schematic diagram showing the shape of a test piece.
  • FIG. 2 is a schematic diagram showing the shape of the test piece.
  • FIG. 3 is a pattern diagram showing carburizing heat treatment conditions performed in the examples.
  • FIG. 4 is a schematic view showing a state when the surface fatigue life is measured.
  • FIG. 5 is a schematic diagram showing a state when the bending fatigue life is measured.
  • the present inventor conducted extensive studies to improve both the surface fatigue life and the bending fatigue life of parts used for power transmission and the like. As a result, among the components of case-hardened steel used as a raw material for manufacturing parts, particularly when the Ti and Nb amounts are adjusted appropriately, nitride inclusions that become stress concentration sources can be reduced, so that the surface fatigue of the parts We have found that both life and bending fatigue life can be improved and have completed the present invention.
  • nitrogen-based inclusions such as aluminum nitride, titanium nitride, and niobium carbonitride are produced during the manufacturing process of case hardening steel.
  • nitrogen-based inclusions such as aluminum nitride, titanium nitride, and niobium carbonitride are produced during the manufacturing process of case hardening steel.
  • niobium carbonitride is known to effectively act to refine crystal grains and suppress coarsening of crystal grains.
  • the Ti amount is more than 0% and 0.005% or less
  • the Nb amount is strictly controlled to be more than 0% and 0.005% or less
  • the Z value calculated based on the Ti amount and the Nb amount is controlled to be more than 0 and 1.0 ⁇ 10 ⁇ 4 or less.
  • unit% display of a component composition means the mass% altogether.
  • the case-hardened steel according to the embodiment of the present invention includes, as basic components, C: 0.15 to 0.25%, Si: 0.4 to 1%, Mn: 0.3 to 0.6%, P: 0 %, 0.03% or less, S: more than 0%, 0.03% or less, Cr: 1.2-2%, Mo: 0.3-0.5%, Al: 0.01-0.08 %, N: more than 0%, 0.02% or less, Ti: more than 0%, 0.005% or less, and Nb: more than 0%, 0.005% or less.
  • the C amount is an element necessary for ensuring the core hardness of the component. If the C content is less than 0.15%, the core hardness of the component cannot be ensured, and the surface fatigue life and the bending fatigue life are reduced. To do. Therefore, in the embodiment of the present invention, the C amount is 0.15% or more. The amount of C is preferably 0.17% or more, more preferably 0.18% or more. However, when C is contained excessively, the toughness is lowered and the bending fatigue life is lowered. Therefore, in the embodiment of the present invention, the C amount is set to 0.25% or less. The amount of C is preferably 0.23% or less, more preferably 0.20% or less.
  • the Si is an element that increases the softening resistance after carburizing. If the Si content is less than 0.4%, the softening resistance after carburization is lowered, and the surface fatigue life cannot be improved. Therefore, in the embodiment of the present invention, the Si amount is set to 0.4% or more.
  • the amount of Si is preferably 0.43% or more, more preferably 0.45% or more.
  • the Si amount is 1% or less.
  • the amount of Si is preferably 0.9% or less, more preferably 0.8% or less.
  • Mn is an element that combines with S to generate MnS and acts to prevent cracking during hot working. Further, Mn is an element that suppresses the generation of FeS that deteriorates the workability to the part shape. In order to exhibit such an effect, the amount of Mn is 0.3% or more. The amount of Mn is preferably 0.35% or more, more preferably 0.40% or more. However, when Mn is contained excessively, workability to a part shape is lowered. Therefore, in the embodiment of the present invention, the amount of Mn is set to 0.6% or less. The amount of Mn is preferably 0.55% or less, more preferably 0.50% or less.
  • P is an element that is inevitably contained and needs to be reduced as much as possible because it segregates at the grain boundaries and decreases the surface fatigue life and bending fatigue life. From this point of view, the P content is 0.03% or less.
  • the amount of P is preferably 0.025% or less, more preferably 0.020% or less.
  • the amount of P is preferably reduced as much as possible, but the production cost increases to increase the purity. From this viewpoint, the amount of P is preferably 0.003% or more, more preferably 0.005% or more.
  • the S amount is 0.03% or less.
  • the amount of S is preferably 0.025% or less, more preferably 0.020% or less.
  • a small amount of S has an effect of improving machinability.
  • the manufacturing cost increases to increase the purity. From this viewpoint, the S amount is preferably 0.003% or more, more preferably 0.005% or more.
  • the Cr amount is an element that improves the hardenability of the steel material and improves the bending fatigue life and surface fatigue life. Therefore, in the embodiment of the present invention, the Cr amount is 1.2% or more.
  • the amount of Cr is preferably 1.3% or more, more preferably 1.35% or more.
  • the Cr amount is 2% or less.
  • the amount of Cr is preferably 1.8% or less, more preferably 1.7% or less.
  • the Mo amount is an element that suppresses the formation of a soft incompletely quenched structure during carburizing, increases softening resistance, and improves surface fatigue life. Therefore, in the embodiment of the present invention, the Mo amount is 0.3% or more.
  • the Mo amount is preferably 0.33% or more, more preferably 0.35% or more.
  • the Mo amount is set to 0.5% or less.
  • the Mo amount is preferably 0.47% or less, more preferably 0.45% or less.
  • Al is an element inevitably contained, but is an element that acts as a deoxidizer. In addition, it is an element that suppresses coarsening of crystal grains during carbonitriding by forming AlN. In order to exert such effects, the Al amount is set to 0.01% or more.
  • the amount of Al is preferably 0.015% or more, more preferably 0.020% or more. However, when Al is contained excessively, hot workability deteriorates. Therefore, in the embodiment of the present invention, the Al amount is 0.08% or less.
  • the amount of Al is preferably 0.06% or less, more preferably 0.05% or less.
  • N is an element that combines with Al in the steel to form fine carbonitrides and suppresses the coarsening of crystal grains during the carburizing process due to the pinning effect.
  • the N amount is preferably 0.001% or more, more preferably 0.003% or more.
  • the N amount is 0.02% or less.
  • the N amount is preferably 0.019% or less, more preferably 0.018% or less.
  • Ti is an element that inevitably generates titanium nitride during casting and reduces the bending fatigue life and surface fatigue life. Therefore, in the embodiment of the present invention, the Ti amount is set to 0.005% or less.
  • the amount of Ti is preferably 0.0045% or less, more preferably 0.0040% or less. Although the Ti amount is preferably reduced as much as possible, it is difficult to reduce it to 0% in industrial production.
  • Nb is an element that inevitably generates niobium carbonitride during casting and decreases the bending fatigue life and surface fatigue life. Therefore, in the embodiment of the present invention, the Nb amount is set to 0.005% or less.
  • the Nb amount is preferably 0.0045% or less, more preferably 0.0040% or less.
  • the amount of Nb is preferably reduced as much as possible, but it is difficult to reduce it to 0% for industrial production.
  • the basic components of the case-hardened steel are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought from raw materials, materials, manufacturing facilities, etc. are contained in the steel.
  • the case-hardened steel further contains at least one selected from Cu: more than 0%, 1% or less, and Ni: more than 0%, 2% or less as other elements. May be.
  • Cu and Ni are elements that improve hardenability and improve surface fatigue life.
  • Cu and Ni can be used alone or in combination of two.
  • the amount of Cu is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the amount of Ni is preferably 0.01% or more, more preferably 0.1% or more, and still more preferably 0.3% or more.
  • the amount of Cu is preferably 1% or less, more preferably 0.7% or less, and still more preferably 0.5% or less.
  • the amount of Ni is preferably 2% or less, more preferably 1.9% or less, and still more preferably 1.8% or less.
  • the Ti content In the case-hardened steel according to the embodiment of the present invention, it is not sufficient to control the Ti content to be more than 0% and 0.005% or less, and the Nb content to be more than 0% and 0.005% or less.
  • the Z value represented by (1) needs to satisfy more than 0 and 1.0 ⁇ 10 ⁇ 4 or less.
  • [] indicates the content (% by mass) of each element.
  • Z value [Ti] / 48 + [Nb] / 93 (1)
  • the Z value is set to 1.0 ⁇ 10 ⁇ 4 or less.
  • the Z value is preferably 9.0 ⁇ 10 ⁇ 5 or less, more preferably 8.0 ⁇ 10 ⁇ 5 or less. Since Ti and Nb are elements inevitably included, the lower limit of the Z value is more than zero.
  • the total number of area 3 [mu] m 2 or more titanium nitride and area of 3 [mu] m 2 or more niobium carbonitride (hereinafter, sometimes referred to number density.) Is 2 It may be 5 or less per ⁇ 10 5 ⁇ m 2 .
  • the number may be measured at a quarter position of the diameter in a cross section perpendicular to the axial direction.
  • the 1/4 position of the diameter was set to represent the characteristics of case-hardened steel.
  • the number density per 2 ⁇ 10 5 ⁇ m 2 is preferably 5 or less, more preferably 4.0 or less, and still more preferably 3.5 or less. Most preferably 0.
  • the total number of coarse titanium nitrides and niobium carbonitrides may be determined by, for example, using an optical microscope and observing the number of observation fields of five or more and obtaining an average value.
  • the said titanium nitride contains the compound of Ti and N from which stoichiometric ratio remove
  • the niobium carbonitride includes NbCN and Nb, C, and N compounds out of stoichiometric ratio.
  • the number density of the coarse titanium nitride and niobium carbonitride can be adjusted by appropriately controlling the component composition of the case hardening steel. In addition, it has been confirmed that the number density does not change even if carburized steel is processed into a part shape and carburized.
  • the case-hardened steel according to the embodiment of the present invention can be manufactured by casting, split-rolling and finish-rolling steel melted according to a conventional method.
  • the cast slab obtained by casting may be heated and held at 1100 to 1300 ° C. for 30 minutes to 5 hours, and then subjected to block rolling.
  • the steel slab after the block rolling is, for example, cooled to a temperature below the A1 point with an average cooling rate of 0.01 to 5 ° C./second, and further subjected to finish rolling in a state of being heated and held at 850 to 1100 ° C.
  • the case-hardened steel according to the embodiment of the present invention is obtained by cooling to room temperature with an average cooling rate of 0.01 to 5 ° C./second.
  • the shape of the case-hardened steel according to the embodiment of the present invention is, for example, a steel bar, and the diameter is, for example, 20 to 50 mm.
  • the case-hardened steel is processed by one or more methods selected from the group consisting of cutting, cold forging, and hot forging according to a conventional method to obtain an intermediate product, and carburized by subjecting the intermediate product to carburizing treatment. Can be manufactured.
  • the case-hardened steel may be annealed according to a conventional method as necessary before being processed into an intermediate product.
  • the intermediate product may be annealed according to a conventional method as necessary.
  • the conditions for the annealing treatment are not particularly limited.
  • the annealing treatment may be held at 600 to 950 ° C. for 30 minutes to 10 hours.
  • the above-mentioned carburizing process includes a carbonitriding process or a high-concentration carburizing process in addition to the carburizing process.
  • quenching and tempering treatment may be performed according to a conventional method.
  • the carburizing conditions are not particularly limited, and known conditions can be applied.
  • the carbon potential CP may be set to 0.5 to 1.0% by mass and held at 850 to 1000 ° C. for 30 minutes to 6 hours.
  • tempering may be performed by quenching according to a conventional method, further heating to 100 to 300 ° C. and holding for 30 minutes to 3 hours.
  • the conditions for the carbonitriding process are not particularly limited, and known conditions can be applied. Specifically, in a propane gas atmosphere having a carbon potential CP of 0.5 to 1.0 mass% and NH 3 in a volume fraction of 2 to 15%, the temperature is maintained at 800 to 1000 ° C. for 30 minutes to 6 hours. Just do it. After the carbonitriding treatment, tempering may be performed by quenching according to a conventional method, further heating to 100 to 300 ° C. and holding for 30 minutes to 3 hours.
  • the carbonitriding process may be performed after the carburizing process.
  • the carbon potential CP is set to 0.5 to 1.0 mass%, held at 850 to 1000 ° C. for 30 minutes to 3 hours, and then as a carbonitriding process, the carbon potential CP is set to 0.5 to 1.0%. It may be kept at 800 to 900 ° C. for 30 minutes to 3 hours in a propane gas atmosphere containing 1.0 mass% and NH 3 in a volume fraction of 2 to 15%.
  • the high-concentration carburization treatment may be performed at a carbon potential CP of 1.0 to 1.5 mass% and held at 850 to 1000 ° C. for 30 minutes to 6 hours.
  • tempering may be performed by quenching according to a conventional method, further heating to 100 to 300 ° C. and holding for 30 minutes to 3 hours.
  • the carburizing process, the carbonitriding process and the high-concentration carburizing process may be performed in two or more times.
  • the atmosphere at the time of heating to the temperature of the carburizing treatment or the high-concentration carburizing treatment may be a carburizing atmosphere, and the atmosphere at the time of heating to the temperature of the carbonitriding treatment may be a carbonitriding atmosphere.
  • the carburizing method is not particularly limited, and known methods such as gas carburizing and vacuum carburizing can be employed.
  • the carburizing gas for example, a mixed gas of RX gas (modified gas) and propane gas can be used.
  • the carbonitriding method is not particularly limited, and known methods such as gas carbonitriding, vacuum carbonitriding, and high concentration carbonitriding can be employed.
  • the degree of vacuum when vacuum carburizing or vacuum carbonitriding may be about 0.01 MPa or less, for example.
  • polishing after the carbonitriding treatment and after the high-concentration carburizing treatment, polishing, lubricating coating treatment, shot peening treatment or the like may be performed according to a conventional method as necessary.
  • the parts obtained by the carburizing process, the carbonitriding process or the high-concentration carburizing process can be suitably used for power transmission parts such as gears, bearings, shafts, and CVT pulleys.
  • the obtained ingot was heated and held at 1100 to 1300 ° C. for 10 minutes to 2 hours, and then hot forged to produce a ⁇ 32 mm steel bar. Hot forging simulates rolling.
  • the obtained ⁇ 32 mm steel bar was cut in a direction perpendicular to the axial direction, embedded in resin so that the cut surface could be observed, and the cut surface was polished.
  • a quarter position with respect to the diameter of the steel bar was observed with an optical microscope at a magnification of 400 times for any five visual fields.
  • the photographed images were subjected to image analysis, and the areas of titanium nitride and niobium carbonitride observed in each field of view were calculated.
  • “Particle Analysis III (software name)” manufactured by Nippon Steel & Sumikin Technology Co., Ltd. was used, and the area of inclusions was counted for each pixel to calculate the areas of titanium nitride and niobium carbonitride. .
  • Titanium nitride and niobium carbonitride are pink and angular, whereas nitrides other than titanium nitride, carbonitrides other than niobium carbonitride, and other materials such as sulfides and oxides Inclusions can be distinguished based on color and shape.
  • the number of titanium nitrides and niobium carbonitrides having an area of 3 ⁇ m 2 or more was measured, and the number density per 2 ⁇ 10 5 ⁇ m 2 observation field was calculated.
  • the calculation results are shown in Table 2 below.
  • the obtained specimen was carburized in a carburizing furnace with a carburizing heat treatment pattern shown in FIG. Specifically, first, carbon potential CP was set to 0.85 mass%, held at 930 ° C. for 180 minutes, then cooled to 860 ° C., and carbon potential CP remained at 0.85 mass% immediately after being held for 30 minutes. Quenching was performed.
  • As the carburizing gas a mixed gas of RX gas and propane gas was used. The temperature of the oil bath is 100 ° C. After oil quenching, it was further tempered by heating to 170 ° C. and holding for 3 hours, followed by cooling.
  • the grip portion having a diameter of 24 mm was polished.
  • FIG. 4 shows a state during the test. As shown in FIG. 4, during the test, the test piece 1 and the load roller 2 come into contact with each other and roll while sliding. 4 of FIG. 4 has shown the sliding part.
  • a high carbon chrome steel SUJ2 defined by JIS G4805 was used, and a commercially available automatic oil was used as a test oil.
  • the test conditions were as follows: surface pressure: 3.3 GPa, slip ratio: -40%, and rotation speed: 2000 rpm.
  • the number of rotations was 1.00E + 06 or more, and the surface fatigue life was excellent.
  • FIG. 5 shows a state during the test.
  • 11 indicates a test piece
  • 12 indicates a jig
  • 13 indicates a load direction.
  • the applied stress was 955 MPa
  • the frequency was 20 Hz
  • the stress ratio was 0.1.
  • the stress ratio means the ratio of the minimum stress to the maximum stress.
  • No. Nos. 1 to 17 are examples that satisfy the requirements defined in the embodiment of the present invention.
  • both surface fatigue life and bending fatigue life are included. Has been improved.
  • No. 18 to 29 are examples that do not satisfy any of the requirements defined in the embodiment of the present invention, and at least one of the surface fatigue life and the bending fatigue life cannot be improved. Details are as follows.
  • No. No. 18 is an example in which the component composition defined in the embodiment of the present invention is satisfied, but the amount of Ti and Nb does not satisfy the relationship of the formula (1), and both the surface fatigue life and the bending fatigue life are shown. Can not improve.
  • No. Nos. 19 to 22 are examples in which at least one of the Ti and Nb amounts is outside the range defined in the embodiment of the present invention, and the Ti and Nb amounts do not satisfy the relationship of the formula (1). Both life and bending fatigue life could not be improved.
  • No. 23 is an example in which the amount of C was too much, and the bending fatigue life could not be improved.
  • No. No. 24 was an example in which the amount of C was too small, and could not improve both the surface fatigue life and the bending fatigue life.
  • No. No. 25 is an example in which the amount of Si is too small, and the surface fatigue life could not be improved.
  • No. No. 26 is an example in which the amount of P is too large, and both the surface fatigue life and the bending fatigue life could not be improved.
  • No. No. 27 is an example in which the amount of C and S was too large, and both the surface fatigue life and the bending fatigue life could not be improved.
  • No. No. 28 is an example in which the amount of Cr is too small, and both the surface fatigue life and the bending fatigue life could not be improved.
  • No. 29 is an example in which the amount of Mo is too small, and the surface fatigue life and bending fatigue life could not be improved.
  • Test piece 2 Load roller 3 Sliding part 11 Test piece 12 Jig 13 Load direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

質量%で、C:0.15~0.25%、Si:0.4~1%、Mn:0.3~0.6%、P:0%超、0.03%以下、S:0%超、0.03%以下、Cr:1.2~2%、Mo:0.3~0.5%、Al:0.01~0.08%、N:0%超、0.02%以下、Ti:0%超、0.005%以下、およびNb:0%超、0.005%以下を含有し、残部が鉄および不可避不純物からなり、下記式(1)で表されるZ値が0超、1.0×10-4以下である肌焼鋼。 Z値=[Ti]/48+[Nb]/93 ・・・(1)

Description

肌焼鋼
 本開示は、肌焼鋼に関する。本開示の肌焼鋼は、例えば、歯車、シャフトなどの等速ジョイント部品、軸受、無段変速機トランスミッション(Continuously Variable Transmission;CVT)プーリーなどの動力伝達部品の素材に好適に用いられる。
 動力伝達部品には、面疲労損傷に対する耐久寿命(以下、面疲労寿命という)および曲げ折損に対する耐久寿命(以下、曲げ疲労寿命)が一般的に求められる。面疲労損傷とは、部品同士の摺動面で発生した亀裂が進展して剥離に至る損傷(ピッチング損傷)および部品表層で発生した亀裂が進展して剥離に至る損傷(スポーリング損傷)の総称である。曲げ折損とは、部品同士が繰り返し接触し、受けた繰り返し曲げ応力により、部品の表面から亀裂が発生、進展し、最終的に破断に至る現象である。上記動力伝達部品の素材には、JIS G4053で規定される機械構造用合金鋼鋼材が従来から用いられている。
 近年、動力源の高出力化および動力伝達ユニットの小型化が進んでおり、これに伴って各部品への負荷荷重は増大している。そのため、上記機械構造用合金鋼鋼材を用いた場合には、充分な部品寿命が得られなくなっている。
 高面圧が負荷される場合においても優れた転動疲労特性を得ることができる浸炭材が、特許文献1に開示されている。特許文献1に記載の浸炭材は、Nbを0.005~0.04%含有し、浸炭層のオーステナイト結晶粒度が7番以上であり、表面の炭素含有量が0.9~1.5%であり、表面の残留オーステナイト量が25~40%を満足している。上記特許文献1には、Nbは、鋼中のCおよびNと結び付いてNb(C、N)を形成し、浸炭加熱の際に、結晶粒の微細化、及び結晶粒の粗大化抑制に有効であることが記載されている。
 また、球状化焼鈍後の面疲労強度を優れたものとして耐ピッチング性および耐摩耗性を良好にした肌焼用鋼材が、特許文献2に開示されている。特許文献2に記載の肌焼用鋼は、Nbを0.02%未満(0%を含まない)含有し、金属組織の面積分率が適切に制御され、フェライト結晶粒度番号が7~9を満足している。
特開2000-54069号公報 特開2014-185389号公報
 上記特許文献1では、浸炭材の転動疲労特性を改善しているが、面疲労寿命については考慮されていない。一方、上記特許文献2では、球状化焼鈍後の面疲労強度を改善しているが、曲げ疲労寿命については考慮されていない。
 本発明の実施形態は上記の様な事情に着目してなされたものであって、その目的は、面疲労寿命および曲げ疲労寿命の両方を改善した部品を製造する素材となる肌焼鋼を提供することにある。
 上記課題を解決することのできた本発明の実施形態に係る肌焼鋼とは、質量%で、C:0.15~0.25%、Si:0.4~1%、Mn:0.3~0.6%、P:0%超、0.03%以下、S:0%超、0.03%以下、Cr:1.2~2%、Mo:0.3~0.5%、Al:0.01~0.08%、N:0%超、0.02%以下、Ti:0%超、0.005%以下、およびNb:0%超、0.005%以下を含有し、残部が鉄および不可避不純物からなり、下記式(1)で表されるZ値が0超、1.0×10-4以下である点に要旨を有する。下記式(1)中、[ ]は、各元素の含有量(質量%)を示す。
 Z値=[Ti]/48+[Nb]/93 ・・・(1)
 上記肌焼鋼は、更に、他の元素として、質量%で、Cu:0%超、1%以下、およびNi:0%超、2%以下から選択される少なくとも1種等を含有してもよい。
 前記肌焼鋼は、軸方向に垂直な断面において、面積が3μm2以上のチタン窒化物および面積が3μm2以上のニオブ炭窒化物の個数の合計が、2×105μm2あたり5個以下であればよい。
 本発明の実施形態によれば、成分組成のうち、特に、TiおよびNbをそれぞれ0.005%以下に抑え、且つTiとNbの含有量が所定の関係を満足するように制御している。その結果、面疲労寿命および曲げ疲労寿命の両方を改善した部品を製造する素材となる肌焼鋼を提供できる。
図1は、試験片の形状を示す模式図である。 図2は、試験片の形状を示す模式図である。 図3は、実施例で行った浸炭熱処理条件を示すパターン図である。 図4は、面疲労寿命を測定したときの様子を示した模式図である。 図5は、曲げ疲労寿命を測定したときの様子を示した模式図である。
 本発明者は、動力伝達等に用いられる部品の面疲労寿命および曲げ疲労寿命の両方を改善するために、鋭意検討を重ねた。その結果、部品を製造する素材として用いる肌焼鋼の成分のうち、特に、TiおよびNb量を適切に調整すれば、応力集中源となる窒化物系介在物を低減できるため、部品の面疲労寿命および曲げ疲労寿命の両方を改善できることを見出し、本発明を完成した。
 即ち、肌焼鋼の製造過程で、アルミ窒化物、チタン窒化物、およびニオブ炭窒化物などの窒素系介在物が生成する。例えば、ニオブ炭窒化物は、上記特許文献1に記載されているように、結晶粒の微細化および結晶粒の粗大化抑制に有効に作用することが知られている。
 しかし、本発明者が窒素系介在物と、部品の疲労寿命(面疲労寿命および曲げ疲労寿命)との関係について検討したところ、AlNは、圧延および浸炭時の加熱温度で殆ど固溶するため、部品の疲労寿命に影響を及ぼさないが、粗大なチタン窒化物およびニオブ炭窒化物は、部品の疲労寿命に悪影響を及ぼすこと、部品に含まれる粗大なチタン窒化物およびニオブ炭窒化物量を低減するには、部品の素材としてTiおよびNb量を厳密に制御した肌焼鋼を用いればよいとの知見を得た。このような観点から、本発明の実施形態では、部品の面疲労寿命および曲げ疲労寿命の両方を改善するために、成分組成のうち、特に、Ti量を0%超、0.005%以下、Nb量を0%超、0.005%以下に厳密に制御し、且つTi量とNb量に基づいて算出される上記Z値を0超、1.0×10-4以下に制御している。
 以下、本発明の実施形態に係る肌焼鋼の成分組成について説明した後、上記Z値について説明する。
 なお、成分組成について単位の%表示は、すべて質量%を意味する。
 本発明の実施形態に係る肌焼鋼は、基本成分として、C:0.15~0.25%、Si:0.4~1%、Mn:0.3~0.6%、P:0%超、0.03%以下、S:0%超、0.03%以下、Cr:1.2~2%、Mo:0.3~0.5%、Al:0.01~0.08%、N:0%超、0.02%以下、Ti:0%超、0.005%以下、およびNb:0%超、0.005%以下を含有する。
 Cは、部品の芯部硬さを確保するために必要な元素であり、C量が0.15%を下回ると部品の芯部硬さを確保できず、面疲労寿命および曲げ疲労寿命が低下する。従って本発明の実施形態では、C量は、0.15%以上とする。C量は、好ましくは0.17%以上、より好ましくは0.18%以上である。しかし、Cを過剰に含有すると、靭性が低下し、曲げ疲労寿命が低下する。従って本発明の実施形態では、C量は、0.25%以下とする。C量は、好ましくは0.23%以下、より好ましくは0.20%以下である。
 Siは、浸炭後の軟化抵抗を高める元素である。Si量が0.4%を下回ると浸炭後の軟化抵抗が低下し、面疲労寿命を改善できない。従って本発明の実施形態では、Si量は、0.4%以上とする。Si量は、好ましくは0.43%以上、より好ましくは0.45%以上である。しかし、Siを過剰に含有すると、部品形状への加工性が悪化する。また、鋼材の炭素原子の活量を下げて浸炭不良を引き起こす。従って本発明の実施形態では、Si量は、1%以下とする。Si量は、好ましくは0.9%以下、より好ましくは0.8%以下である。
 Mnは、Sと結合してMnSを生成し、熱間加工時の割れを防止するのに作用する元素である。また、Mnは、部品形状への加工性を悪化させるFeSの生成を抑制する元素である。こうした効果を発揮させるために、Mn量は、0.3%以上とする。Mn量は、好ましくは0.35%以上、より好ましくは0.40%以上である。しかし、Mnを過剰に含有すると、部品形状への加工性が低下する。従って本発明の実施形態では、Mn量は0.6%以下とする。Mn量は、好ましくは0.55%以下、より好ましくは0.50%以下である。
 Pは、不可避的に含まれる元素であり、結晶粒界に偏析して面疲労寿命および曲げ疲労寿命を低下させるため、できるだけ低減する必要がある。こうした観点からP量は、0.03%以下とする。P量は、好ましくは0.025%以下、より好ましくは0.020%以下である。P量は、できるだけ低減することが好ましいが、純度を高めるには製造コストが増加する。こうした観点からP量は、好ましくは0.003%以上、より好ましくは0.005%以上である。
 Sは、不可避的に含まれる元素であり、Mnと結合して形成したMnS系介在物は、面疲労寿命を低下させる。従って本発明の実施形態では、S量は0.03%以下とする。S量は、好ましくは0.025%以下、より好ましくは0.020%以下である。しかし、少量のSは、被削性を向上させる作用を有する。また、純度を高めるには製造コストが増加する。こうした観点からS量は、好ましくは0.003%以上、より好ましくは0.005%以上である。
 Crは、鋼材の焼入れ性を高め、曲げ疲労寿命および面疲労寿命を向上させる元素である。従って本発明の実施形態では、Cr量は1.2%以上とする。Cr量は、好ましくは1.3%以上、より好ましくは1.35%以上である。しかし、過剰に含有すると、部品形状への加工性を悪化させたり、浸炭不良を引き起こすことがある。従って本発明の実施形態では、Cr量は2%以下とする。Cr量は、好ましくは1.8%以下、より好ましくは1.7%以下である。
 Moは、浸炭時に軟質な不完全焼入れ組織が形成されるのを抑制し、軟化抵抗を高め、面疲労寿命を改善する元素である。従って本発明の実施形態では、Mo量は0.3%以上とする。Mo量は、好ましくは0.33%以上、より好ましくは0.35%以上である。しかし、Moを過剰に含有すると、部品形状への加工性が悪化する。また、コスト高となる。こうした観点からMo量は、0.5%以下とする。Mo量は、好ましくは0.47%以下、より好ましくは0.45%以下である。
 Alは、不可避的に含まれる元素であるが、脱酸剤として作用する元素である。また、AlNを形成して浸炭窒化処理時に結晶粒が粗大化するのを抑制する元素である。こうした効果を発揮させために、Al量は0.01%以上とする。Al量は、好ましくは0.015%以上、より好ましくは0.020%以上である。しかし、Alを過剰に含有すると、熱間加工性が悪化する。従って本発明の実施形態では、Al量は、0.08%以下とする。Al量は、好ましくは0.06%以下、より好ましくは0.05%以下である。
 Nは、鋼中のAlと結合して微細な炭窒化物を形成し、ピンニング効果によって浸炭処理時に結晶粒が粗大化するのを抑制する元素である。こうした効果を有効に発揮させるには、N量は、好ましくは0.001%以上、より好ましくは0.003%以上である。しかし、Nを過剰に含有すると、TiおよびNbの粗大な介在物が形成され、曲げ疲労寿命および面疲労寿命を改善できない。従って本発明の実施形態では、N量は、0.02%以下とする。N量は、好ましくは0.019%以下、より好ましくは0.018%以下である。
 Tiは、鋳造時にチタン窒化物を不可避的に生成し、曲げ疲労寿命および面疲労寿命を低下させる元素である。従って本発明の実施形態では、Ti量は、0.005%以下とする。Ti量は、好ましくは0.0045%以下、より好ましくは0.0040%以下である。Ti量はできるだけ低減することが好ましいが、工業生産上、0%とすることは困難である。
 Nbは、鋳造時にニオブ炭窒化物を不可避的に生成し、曲げ疲労寿命および面疲労寿命を低下させる元素である。従って本発明の実施形態では、Nb量は、0.005%以下とする。Nb量は、好ましくは0.0045%以下、より好ましくは0.0040%以下である。Nb量はできるだけ低減することが好ましいが、工業生産上、0%とすることは困難である。
 上記肌焼鋼の基本成分は、上述した通りであり、残部は、実質的に鉄である。但し、原材料、資材、製造設備等から持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。
 上記肌焼鋼は、上記基本成分に加え、更に、他の元素として、Cu:0%超、1%以下、およびNi:0%超、2%以下から選択される少なくとも1種、等を含有してもよい。
 Cu、およびNiは、焼入性を高めて面疲労寿命を向上させる元素である。Cu、およびNiは、単独で、あるいは2種を併用できる。こうした効果を有効に発揮させるには、Cu量は、好ましくは0.01%以上、より好ましくは0.05%以上、更に好ましくは0.10%以上である。Ni量は、好ましくは0.01%以上、より好ましくは0.1%以上、更に好ましくは0.3%以上である。しかし、CuおよびNiを過剰に含有するとコスト高となる。こうした観点から、Cu量は、好ましくは1%以下、より好ましくは0.7%以下、更に好ましくは0.5%以下である。Ni量は、好ましくは2%以下、より好ましくは1.9%以下、更に好ましくは1.8%以下である。
 以上、本発明の実施形態に係る肌焼鋼の成分組成について説明した。
 本発明の実施形態に係る肌焼鋼は、Ti量を0%超、0.005%以下、およびNb量を0%超、0.005%以下に制御するだけでは不充分であり、下記式(1)で表されるZ値が0超、1.0×10-4以下を満足する必要がある。下記式(1)中、[ ]は、各元素の含有量(質量%)を示す。
 Z値=[Ti]/48+[Nb]/93 ・・・(1)
 Ti量およびNb量が上記範囲を満足していても、上記Z値が、1.0×10-4を超えると、粗大なチタン窒化物およびニオブ炭窒化物が鋳造過程で生成し、これらの窒素系介在物が応力集中源となり、亀裂の発生および進展が促進される。その結果、面疲労寿命および曲げ疲労寿命の両方を改善できない。TiおよびNbは、不純物レベルで含有する場合があるが、不純物レベルであってもTi量とNb量に基づいて算出される上記Z値が所定の範囲を外れると、面疲労寿命および曲げ疲労寿命を改善できない。
 従って本発明の実施形態では、上記Z値を1.0×10-4以下とする。上記Z値は、好ましくは9.0×10-5以下、より好ましくは8.0×10-5以下である。TiおよびNbは、不可避的に含まれる元素であるため、上記Z値の下限は、0超である。
 本発明の実施形態に係る肌焼鋼は、面積が3μm2以上のチタン窒化物および面積が3μm2以上のニオブ炭窒化物の個数の合計(以下、個数密度ということがある。)が、2×105μm2あたり5個以下であればよい。
 上記個数は、例えば肌焼鋼の形状が棒鋼の場合、軸方向に垂直な断面において、直径の1/4位置で測定すればよい。
 直径の1/4位置は、肌焼鋼の特性を代表するために設定した。
 チタン窒化物およびニオブ炭窒化物のうち、応力集中源となる面積が3μm2以上の粗大なチタン窒化物およびニオブ炭窒化物の個数密度を制御することによって、面疲労寿命および曲げ疲労寿命の両方を改善できる。従って本発明の実施形態では、2×105μm2あたりの個数密度は、好ましくは5個以下、より好ましくは4.0個以下、更に好ましくは3.5個以下である。最も好ましくは0個である。
 上記粗大なチタン窒化物およびニオブ炭窒化物の個数の合計は、例えば、光学顕微鏡を用い、観察視野数を5視野以上として観察し、平均値を求めればよい。
 なお、上記チタン窒化物は、TiNの他、化学量論比が外れたTiとNの化合物も含む意味である。
 また、上記ニオブ炭窒化物は、NbCNの他、化学量論比が外れたNbとCとNの化合物も含む意味である。
 上記粗大なチタン窒化物およびニオブ炭窒化物の個数密度は、肌焼鋼の成分組成を適切に制御することによって調整できる。なお、上記個数密度は、肌焼鋼を部品形状に加工し、浸炭処理等を行っても変化しないことを確認している。
 次に、本発明の実施形態に係る肌焼鋼の製造方法について説明する。
 本発明の実施形態に係る肌焼鋼は、常法に従って溶製した鋼を、常法に従って鋳造、分塊圧延、および仕上げ圧延して製造できる。具体的には、鋳造して得られた鋳片を、1100~1300℃で30分間~5時間加熱保持した後、分塊圧延すればよい。分塊圧延後の鋼片は、例えば、平均冷却速度を0.01~5℃/秒としてA1点以下の温度に冷却し、更に850~1100℃に加熱保持した状態で仕上げ圧延を行ない、更に平均冷却速度を0.01~5℃/秒として室温まで冷却することにより本発明の実施形態の肌焼鋼が得られる。
 本発明の実施形態に係る肌焼鋼の形状は、例えば、棒鋼であり、直径は、例えば、20~50mmである。
 上記肌焼鋼を、常法に従って切削、冷間鍛造、および熱間鍛造よりなる群から選ばれる1種以上の方法で加工して中間品とし、この中間品に浸炭処理を施すことにより浸炭部品を製造できる。
 上記肌焼鋼は、中間品に加工する前に、必要に応じて常法に従って焼鈍処理を施してもよい。また、上記中間品に、必要に応じて常法に従って焼鈍処理を施してもよい。上記焼鈍処理の条件は特に限定されないが、例えば、600~950℃で、30分~10時間保持すればよい。
 上記浸炭処理は、浸炭処理のほか、浸炭窒化処理または高濃度浸炭処理も含む意味である。浸炭処理の後は、常法に従って焼入れ焼戻し処理してもよい。
 上記浸炭処理の条件は特に限定されず公知の条件を適用できる。具体的には、カーボンポテンシャルCPを0.5~1.0質量%とし、850~1000℃で、30分間~6時間保持して行えばよい。浸炭処理後は、常法に従って焼入れし、更に100~300℃に加熱して30分間~3時間保持して焼戻しを行えばよい。
 上記浸炭窒化処理の条件は特に限定されず公知の条件を適用できる。具体的には、カーボンポテンシャルCPが0.5~1.0質量%で、NH3を体積分率で2~15%含むプロパンガス雰囲気で、800~1000℃で、30分間~6時間保持して行えばよい。浸炭窒化処理後は、常法に従って焼入れし、更に100~300℃に加熱して30分間~3時間保持して焼戻しを行えばよい。
 上記浸炭窒化処理は、浸炭処理してから浸炭窒化処理してもよい。例えば、浸炭処理として、カーボンポテンシャルCPを0.5~1.0質量%とし、850~1000℃で、30分間~3時間保持してから、浸炭窒化処理として、カーボンポテンシャルCPを0.5~1.0質量%とし、NH3を体積分率で2~15%含むプロパンガス雰囲気で、800~900℃で、30分間~3時間保持してもよい。
 上記高濃度浸炭処理は、カーボンポテンシャルCPを1.0~1.5質量%として850~1000℃で、30分間~6時間保持して行えばよい。浸炭処理後は、常法に従って焼入れし、更に100~300℃に加熱して30分間~3時間保持して焼戻しを行えばよい。
 なお、上記浸炭処理、上記浸炭窒化処理および上記高濃度浸炭処理は、2回以上に分けて行ってもよい。
 上記浸炭処理または上記高濃度浸炭処理の温度に加熱するときの雰囲気は、浸炭雰囲気とすればよく、上記浸炭窒化処理の温度に加熱するときの雰囲気は、浸炭窒化雰囲気とすればよい。
 上記浸炭方法は特に限定されず、例えば、ガス浸炭、真空浸炭など公知の方法を採用できる。浸炭ガスとしては、例えば、RXガス(変性ガス)とプロパンガスの混合ガスを用いることができる。
 上記浸炭窒化方法は特に限定されず、例えば、ガス浸炭窒化、真空浸炭窒化、高濃度浸炭窒化など公知の方法を採用できる。
 真空浸炭または真空浸炭窒化するときの真空度は、例えば、0.01MPa程度以下とすればよい。
 上記浸炭処理後、浸炭窒化処理後および高濃度浸炭処理後は、必要に応じて常法に従って研磨、潤滑被膜処理、またはショットピーニング処理などを行ってもよい。
 上記浸炭処理、浸炭窒化処理、または高濃度浸炭処理して得られた部品は、例えば、歯車、軸受、シャフト、CVTプーリー等の動力伝達部品などに好適に用いることができる。
 以下、実施例を挙げて本発明の実施形態をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示す成分組成を満足し、残部は、鉄および不可避不純物からなる鋼を小型溶解炉で溶製し、インゴットを製造した。下記表1において、「-」は検出されなかったことを意味する。下記表1に示したTi量およびNb量と、上記式(1)に基づいてZ値を算出し、結果を下記表2に示す。下記表2において、αE-βは、α×10を意味する。
 次に、得られたインゴットを、1100~1300℃で10分間~2時間加熱保持した後、熱間鍛造してφ32mmの棒鋼を製造した。熱間鍛造は、圧延を模擬している。
 得られたφ32mmの棒鋼を、軸方向に垂直な方向に切断し、切断面を観察できるように樹脂に埋め、切断面を研磨した。棒鋼の直径に対して1/4位置を、光学顕微鏡で、倍率400倍で、任意の5視野について観察した。撮影した写真を画像解析し、各視野で観察されるチタン窒化物およびニオブ炭窒化物の面積をそれぞれ算出した。画像解析には、日鉄住金テクノロジー株式会社製の「粒子解析III(ソフト名)」を用い、介在物の面積を1画素ごとにカウントしてチタン窒化物およびニオブ炭窒化物の面積を算出した。
 チタン窒化物およびニオブ炭窒化物はピンク色で、角ばった形状であるのに対し、チタン窒化物以外の窒化物、ニオブ炭窒化物以外の炭窒化物、並びに硫化物および酸化物等の他の介在物とは、色および形状に基づいて区別できる。
 面積が3μm2以上のチタン窒化物およびニオブ炭窒化物の個数を測定し、観察視野2×105μm2あたりの個数密度を算出した。算出結果を下記表2に示す。
 本発明の実施形態では、面積が3μm2以上のチタン窒化物およびニオブ炭窒化物の合計個数を、観察視野2×105μm2あたりに換算したとき、5個以下[5個/(2×105μm2)以下]を合格と評価する。
 次に、得られたφ32mmの棒鋼を、図1および図2に示す形状の試験片に加工した。
 次に、得られた試験片をガス浸炭炉にて、図3に示す浸炭熱処理パターンで浸炭処理した。具体的には、まず、カーボンポテンシャルCPを0.85質量%として930℃で180分間保持した後、860℃に降温し、カーボンポテンシャルCPは0.85質量%のまま30分間保持した直後に油焼入れを行った。浸炭ガスは、RXガスとプロパンガスの混合ガスを用いた。油浴の温度は100℃である。油焼入れ後、更に170℃に加熱して3時間保持してから放冷することにより焼戻しを行った。なお、図1に示した試験片については、浸炭処理後の焼入れ焼戻しにおける熱処理歪みを除くため、φ24mmのつかみ部を研磨した。
 次に、浸炭処理後に焼入れ焼戻しして得られた試験片を用い、面疲労寿命および曲げ疲労寿命を評価した。
[面疲労寿命]
 面疲労寿命は、図1に示した形状の試験片を用い、コマツエンジニアリング株式会社製の「RP-201型ローラーピッチング試験機」を用いて測定した。図4に、試験時の様子を示す。図4に示すように、試験中は、試験片1と荷重ローラー2が接触し、すべりながら転動する。図4の3は摺動部を示している。荷重ローラー2としてはJIS G4805で規定される高炭素クロム鋼SUJ2、試験油として市販のオートマチック油を用いた。試験条件は、面圧:3.3GPa、すべり率:-40%、回転数:2000rpmとした。剥離損傷によって試験機が停止するまでの回転数を測定し、この回転数を面疲労寿命とした。各鋼種2本ずつ試験を行ない、平均値を求めた。結果を下記表2に示す。下記表2において、αE+βは、α×10βを意味する。
 本発明の実施形態では、上記回転数が1.00E+06回以上を合格とし、面疲労寿命に優れると評価した。
[曲げ疲労寿命]
 曲げ疲労寿命は、図2に示した形状の試験片を用い、4点曲げ試験で測定した。図5に、試験時の様子を示す。図5に示すように、上記図2に示した形状の試験片を4点支持した状態で、該試験片に繰り返し応力を加え、試験片が破断するまでの繰り返し回数を測定した。図5において、11は試験片、12は治具、13は荷重の方向をそれぞれ示している。加えた応力は955MPaで、周波数は20Hz、応力比は0.1とした。応力比とは、最大応力に対する最小応力の比を意味する。
 試験片が破断するまでの繰り返し回数を曲げ疲労寿命とした。各鋼種2本ずつ試験を行ない、平均値を求めた。結果を下記表2に示す。下記表2において、αE+βは、α×10βを意味する。
 本発明の実施形態では、上記回転数が1.00E+05回以上を合格とし、曲げ疲労寿命に優れると評価した。
 下記表2に基づいて、次のように考察できる。
 No.1~17は、本発明の実施形態で規定する要件を満足する例であり、成分組成のうち、特に、TiとNb量を厳密に制御しているため、面疲労寿命および曲げ疲労寿命の両方を改善できている。
 これに対し、No.18~29は、本発明の実施形態で規定するいずれかの要件を満足しない例であり、面疲労寿命または曲げ疲労寿命の少なくとも一方を改善できていない。詳細は次の通りである。
 No.18は、本発明の実施形態で規定する成分組成を満足しているが、TiとNb量が式(1)の関係を満足しなかった例であり、面疲労寿命および曲げ疲労寿命の両方を改善できなかった。
 No.19~22は、TiおよびNb量の少なくとも一方が本発明の実施形態で規定する範囲を外れており、且つTiとNb量が式(1)の関係を満足しなかった例であり、面疲労寿命および曲げ疲労寿命の両方を改善できなかった。
 No.23は、C量が多すぎた例であり、曲げ疲労寿命を改善できなかった。
 No.24は、C量が少なすぎた例であり、面疲労寿命および曲げ疲労寿命の両方を改善できなかった。
 No.25は、Si量が少なすぎる例であり、面疲労寿命を改善できなかった。
 No.26は、P量が多すぎる例であり、面疲労寿命および曲げ疲労寿命の両方を改善できなかった。
 No.27は、C量およびS量が多すぎた例であり、面疲労寿命および曲げ疲労寿命の両方を改善できなかった。
 No.28は、Cr量が少なすぎる例であり、面疲労寿命および曲げ疲労寿命の両方を改善できなかった。
 No.29は、Mo量が少なすぎる例であり、面疲労寿命および曲げ疲労寿命を改善できなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本出願は、出願日が2016年3月28日である日本国特許出願、特願第2016-063334号を基礎出願とする優先権主張を伴う。特願第2016-063334号は参照することにより本明細書に取り込まれる。
1  試験片
2  荷重ローラー
3  摺動部
11 試験片
12 治具
13 荷重の方向

Claims (3)

  1.  質量%で、
     C :0.15~0.25%、
     Si:0.4~1%、
     Mn:0.3~0.6%、
     P :0%超、0.03%以下、
     S :0%超、0.03%以下、
     Cr:1.2~2%、
     Mo:0.3~0.5%、
     Al:0.01~0.08%、
     N :0%超、0.02%以下、
     Ti:0%超、0.005%以下、および
     Nb:0%超、0.005%以下を含有し、
     残部が鉄および不可避不純物からなり、
     下記式(1)で表されるZ値が0超、1.0×10-4以下であることを特徴とする肌焼鋼。
     Z値=[Ti]/48+[Nb]/93 ・・・(1)
    [式(1)中、[ ]は、各元素の含有量(質量%)を示す。]
  2.  更に、他の元素として、質量%で、
     Cu:0%超、1%以下、および
     Ni:0%超、2%以下から選択される少なくとも1種を含有する請求項1に記載の肌焼鋼。
  3.  軸方向に垂直な断面において、面積が3μm2以上のチタン窒化物および面積が3μm2以上のニオブ炭窒化物の個数の合計が、2×105μm2あたり5個以下である請求項1または2に記載の肌焼鋼。
PCT/JP2017/011733 2016-03-28 2017-03-23 肌焼鋼 WO2017170127A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016063334A JP2017179394A (ja) 2016-03-28 2016-03-28 肌焼鋼
JP2016-063334 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017170127A1 true WO2017170127A1 (ja) 2017-10-05

Family

ID=59964510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011733 WO2017170127A1 (ja) 2016-03-28 2017-03-23 肌焼鋼

Country Status (3)

Country Link
JP (1) JP2017179394A (ja)
TW (1) TWI630278B (ja)
WO (1) WO2017170127A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028414A (ja) * 2019-08-09 2021-02-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP2021161476A (ja) * 2020-03-31 2021-10-11 株式会社神戸製鋼所 被削性、製造性および結晶粒粗大化防止特性に優れたはだ焼鋼

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052062A (ja) * 2007-08-24 2009-03-12 Sumitomo Metal Ind Ltd 熱間圧延棒鋼または線材
JP2010270348A (ja) * 2009-05-19 2010-12-02 Kobe Steel Ltd 窒化処理摺動部材および摺動部材用鋼材並びに摺動部材の製造方法
JP2011174176A (ja) * 2010-01-27 2011-09-08 Jfe Steel Corp 肌焼鋼および浸炭材
JP2011208262A (ja) * 2010-03-30 2011-10-20 Jfe Steel Corp 高疲労強度肌焼鋼の製造方法
JP2015028206A (ja) * 2013-06-26 2015-02-12 大同特殊鋼株式会社 肌焼鋼
JP2015127434A (ja) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 浸炭処理時の結晶粒粗大化防止特性に優れた肌焼鋼
JP2015140482A (ja) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 肌焼鋼及びこれを用いた浸炭部品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301694B2 (ja) * 2014-03-24 2018-03-28 株式会社神戸製鋼所 真空浸炭用鋼材及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052062A (ja) * 2007-08-24 2009-03-12 Sumitomo Metal Ind Ltd 熱間圧延棒鋼または線材
JP2010270348A (ja) * 2009-05-19 2010-12-02 Kobe Steel Ltd 窒化処理摺動部材および摺動部材用鋼材並びに摺動部材の製造方法
JP2011174176A (ja) * 2010-01-27 2011-09-08 Jfe Steel Corp 肌焼鋼および浸炭材
JP2011208262A (ja) * 2010-03-30 2011-10-20 Jfe Steel Corp 高疲労強度肌焼鋼の製造方法
JP2015028206A (ja) * 2013-06-26 2015-02-12 大同特殊鋼株式会社 肌焼鋼
JP2015127434A (ja) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 浸炭処理時の結晶粒粗大化防止特性に優れた肌焼鋼
JP2015140482A (ja) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 肌焼鋼及びこれを用いた浸炭部品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028414A (ja) * 2019-08-09 2021-02-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP7436779B2 (ja) 2019-08-09 2024-02-22 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP2021161476A (ja) * 2020-03-31 2021-10-11 株式会社神戸製鋼所 被削性、製造性および結晶粒粗大化防止特性に優れたはだ焼鋼
JP7477343B2 (ja) 2020-03-31 2024-05-01 株式会社神戸製鋼所 被削性、製造性および結晶粒粗大化防止特性に優れたはだ焼鋼

Also Published As

Publication number Publication date
TWI630278B (zh) 2018-07-21
JP2017179394A (ja) 2017-10-05
TW201739933A (zh) 2017-11-16

Similar Documents

Publication Publication Date Title
JP4352261B2 (ja) 歯車
WO2012073485A1 (ja) 冷間鍛造性に優れた浸炭用鋼およびその製造方法
JP5558887B2 (ja) 低サイクル疲労強度に優れるTi、B添加鋼を用いた高強度部品の製造方法
JP5886119B2 (ja) 肌焼鋼鋼材
JPWO2012073896A1 (ja) 熱間鍛造用圧延棒鋼または線材
JP2006307271A (ja) 耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼およびその製法
JP2008057017A (ja) 鋼製の浸炭部品又は浸炭窒化部品
JP5258458B2 (ja) 耐高面圧性に優れた歯車
JP2023002842A (ja) 静捩り強度ならびに捩り疲労強度に優れた浸炭用鋼材による自動車用機械部品
WO2015146837A1 (ja) 優れた冷間鍛造性を有し、浸炭処理時の異常粒発生が抑制可能な肌焼鋼
JP2010070827A (ja) 鋼製の浸炭窒化部品
JP2008261037A (ja) ショットピーニングを施した鋼製の浸炭部品又は浸炭窒化部品
JP2007113071A (ja) 転動疲労特性および結晶粒粗大化防止特性に優れた肌焼用鋼
JPH10306343A (ja) 冷間鍛造性及び耐ピッチング性に優れた軟窒化用鋼
JP5381171B2 (ja) 高強度肌焼鋼部品の製造方法
WO2017170127A1 (ja) 肌焼鋼
JP4488228B2 (ja) 高周波焼入れ用鋼材
JP4464861B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼
JP2006291335A (ja) 高温浸炭特性と加工性に優れた肌焼用鋼
WO2015146703A1 (ja) 真空浸炭用鋼材及びその製造方法
JP5365477B2 (ja) 表面硬化処理用鋼材
WO2016158375A1 (ja) 浸炭窒化用鋼材および浸炭窒化部品
JP5272609B2 (ja) 鋼製の浸炭窒化部品
WO2012102233A1 (ja) 浸炭または浸炭窒化用の鋼
JP7436779B2 (ja) 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774665

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774665

Country of ref document: EP

Kind code of ref document: A1