WO2016158375A1 - 浸炭窒化用鋼材および浸炭窒化部品 - Google Patents

浸炭窒化用鋼材および浸炭窒化部品 Download PDF

Info

Publication number
WO2016158375A1
WO2016158375A1 PCT/JP2016/058100 JP2016058100W WO2016158375A1 WO 2016158375 A1 WO2016158375 A1 WO 2016158375A1 JP 2016058100 W JP2016058100 W JP 2016058100W WO 2016158375 A1 WO2016158375 A1 WO 2016158375A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
less
carbonitriding
present
steel
Prior art date
Application number
PCT/JP2016/058100
Other languages
English (en)
French (fr)
Inventor
武浩 酒道
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2016158375A1 publication Critical patent/WO2016158375A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Definitions

  • the present invention relates to a carbonitriding steel material and parts obtained by carbonitriding the steel material.
  • the carbonitrided parts of the present invention are suitably used for power transmission parts such as constant velocity joint parts such as gears and shafts, bearings, and continuously variable transmission (CVT) pulleys.
  • CVT continuously variable transmission
  • Power transmission components are generally required to have a durability life against pitting damage (hereinafter referred to as pitching life).
  • Pitting is a surface-origin type fatigue delamination damage and is a phenomenon that occurs when a slip occurs on the contact surface between parts. Pitting damage occurs when minute peelings called micro pitches occur due to repetitive shear stress generated on the sliding surface and they are connected or a crack progresses.
  • Patent Document 1 is known as a technique for improving the pitching life. That is, Patent Document 1 contains Si: 0.40 to 1.50%, Ti: 0.10 to 0.25%, and Si + 5Ti: 1.0 to 2.5%. A technique for improving the pitching life of case hardening steel for gears is disclosed.
  • Patent Document 2 discloses that the peak fatigue stress value in the range from the surface to a depth of 100 ⁇ m is 1600 MPa or more, thereby improving the bending fatigue strength and improving the forgeability.
  • a technology for providing excellent steel parts is also disclosed.
  • Patent Document 3 discloses that at least one element selected from the group consisting of Nb, Ti, Zr, Ta, and Hf is contained in a range that satisfies a predetermined relationship, such as Cr, Mo, and Ni.
  • a machine structural steel that exhibits excellent hardenability while reducing the amount of expensive hardenability-enhancing elements as much as possible, and has excellent workability such as hot or cold forging before heat treatment. Techniques to provide are disclosed.
  • polishing step after carbonitriding is omitted, significant cost reduction can be expected.
  • the polishing step is omitted, as described above, the oxide, carbonitride, and heat treatment distortion on the surface of the component cannot be removed, so that the pitching life is reduced.
  • the present invention has been made paying attention to the circumstances as described above, and the purpose thereof is excellent in workability to a part shape, and excellent in pitching life even if the polishing step after carbonitriding is omitted.
  • the object is to provide a steel material and a part using the steel material.
  • the carbonitriding steel according to the present invention that has solved the above-mentioned problems is, in mass%, C: 0.15 to 0.25%, Si: 0.03 to 1.0%, Mn: 0.2 0.5%, P: more than 0% and 0.030% or less, S: more than 0% and 0.030% or less, Cr: 0.35 to 1.15%, Mo: 0.25 to 0.9%, Al: 0.01 to 0.08%, and N: more than 0% and 0.014% or less, the balance is made of iron and inevitable impurities, and the A value represented by the following formula (1) is 0.24
  • the B value expressed by the following formula (2) is 48 or more, and the C1 value expressed by the following formula (3) is 100 or less.
  • [] indicates the content (% by mass) of each element.
  • a value 0.102 ⁇ [Si] + 0.084 ⁇ [Mn] + 0.149 ⁇ [Cr] (1)
  • B value 21.538 ⁇ [Cr] + 71.825 ⁇ [Mo] (2)
  • C1 value 22.29 ⁇ [Si] + 60.60 ⁇ [Mn] + 18.09 ⁇ [Cr] + 121.99 ⁇ [Mo] ⁇ 50.12 (3)
  • [] indicates the content (% by mass) of each element.
  • a value 0.102 ⁇ [Si] + 0.084 ⁇ [Mn] + 0.149 ⁇ [Cr] (1)
  • B value 21.538 ⁇ [Cr] + 71.825 ⁇ [Mo] (2)
  • C2 value 22.29 x [Si] + 60.60 x [Mn] + 18.09 x [Cr] + 121.99 x [Mo] + 132.11 x [Ti] + 56.20 x [Nb] + 9455.95 x [ B] -50.12 (4)
  • the A value is preferably 0.07 or more.
  • the B value is preferably 89 or less.
  • the C1 value is preferably ⁇ 0.5 or more.
  • the C2 value is preferably 6.1 or more.
  • the present invention also includes a carbonitriding component obtained by carbonitriding the above steel material.
  • a carbonitriding steel material that is excellent in workability into a part shape and that has an excellent pitching life even if the polishing step after the carbonitriding process is omitted. can get. Further, according to the present invention, by subjecting the steel material to carbonitriding, a carbonitrided part having excellent pitching life can be obtained even if the polishing step after carbonitriding is omitted.
  • FIG. 1 a is a schematic diagram showing the appearance of a test piece
  • FIG. 1 b is a schematic diagram for explaining a procedure for measuring the protruding peak height Rpk.
  • FIG. 2 is a schematic diagram showing a state when a pitching test is performed.
  • FIG. 3 is a drawing-substituting photograph in which a cross section in the surface layer portion of the test piece is photographed using an optical microscope. In FIG. The photograph of No. 65 taken, FIG. This is a photograph of 1 taken.
  • the present inventor has intensively studied to provide a steel material that is excellent in workability to a part shape and has an excellent pitching life even if the polishing step after carbonitriding is omitted, and a carbonitrided component using the steel material. Has been repeated.
  • the A value calculated based on the amounts of Si, Mn and Cr and the B value calculated based on the amounts of Cr and Mo are appropriately controlled.
  • the C1 value calculated based on the amounts of Si, Mn, Cr, and Mo may be appropriately controlled in order to improve the workability to the part shape. completed.
  • the component composition contains at least one selected from the group consisting of Nb, Ti, and B, as described later, instead of the C1 value, Si, Mn, Cr, Mo, Ti,
  • the C2 value calculated based on Nb and the B amount may be appropriately controlled.
  • Carbonitriding processing is a carbonitriding treatment atmosphere, was heated and maintained at A 3 point or higher temperatures, a process of diffusing C atoms and N atoms in the component surface, after carbonitriding treatment, the surface by quenching Quench and harden.
  • C atoms and N atoms diffused and penetrated by the carbonitriding process combine with Cr in the steel material to form a hard carbonitride, and the N atoms that have been solid-solved by frictional heat at the time of sliding become Fe 4 N. Fine precipitates.
  • softening resistance is improved, and an improvement in pitching life can be expected.
  • the polishing step after carbonitriding is omitted, the pitching life may be reduced.
  • the surface roughness increases due to the influence of oxides, carbonitrides, and heat treatment distortion formed on the surface layer.
  • the contact area between parts decreases, so that the contact stress increases and pitching is promoted.
  • the influence of surface roughness on pitching was examined. In particular, a negative correlation was found between the protruding peak height Rpk and the pitching life, and the pitching life decreased as the protruding peak height Rpk increased. I understood that. Therefore, in order to lower the protruding peak height Rpk, among the component compositions of the carbonitriding steel material, the A value calculated as described later based on the amounts of Si, Mn and Cr should be controlled to 0.24 or less. I knew it would be good.
  • Softening during sliding has a positive correlation with the hardness at a depth of 0.01 mm from the part surface after tempering at 300 ° C., and it was found that the higher the hardness, the longer the pitching life. . And in order to raise the said hardness, it turned out that the B value calculated so that it may mention later based on the amount of Cr and Mo among the component compositions of carbonitriding steel should just be controlled to 48 or more.
  • the present invention is calculated as described later based on the amounts of Si, Mn, Cr, and Mo that affect the transformation rate among the component compositions of the carbonitriding steel. It was clarified that the C1 value may be adjusted to 100 or less.
  • the carbonitriding steel material of the present invention is, in mass%, C: 0.15-0.25%, Si: 0.03-1.0%, Mn: 0.2-0.5%, P: 0% More than 0.030% or less, S: more than 0% to 0.030% or less, Cr: 0.35 to 1.15%, Mo: 0.25 to 0.9%, Al: 0.01 to 0.08% N: more than 0% and 0.014% or less.
  • C is an element necessary for securing the core hardness of the carbonitrided part, and is 0.15% or more.
  • the amount of C is preferably 0.17% or more, more preferably 0.18% or more.
  • the C content is 0.25% or less.
  • the amount of C is preferably 0.23% or less, more preferably 0.22% or less.
  • the Si amount is 1.0% or less.
  • the amount of Si is preferably 0.95% or less, more preferably 0.90% or less.
  • Si is preferably reduced as much as possible, the manufacturing cost increases as the purity is increased. Therefore, the Si content is set to 0.03% or more in the present invention.
  • the amount of Si may be 0.05% or more, or 0.07% or more.
  • Mn is an element that suppresses the generation of FeS that combines with S in steel to generate MnS and lowers the workability to the part shape.
  • Mn is 0.2% or more.
  • the amount of Mn is preferably 0.3% or more, more preferably 0.35% or more.
  • the transformation rate in the heat treatment before being processed into the part shape is remarkably reduced, so that an excessively cooled structure is generated excessively and workability into the part shape is deteriorated.
  • a surface oxide is formed during the carbonitriding process, the protruding peak height Rpk is increased, and the pitching life is reduced. Therefore, in the present invention, the amount of Mn is 0.5% or less.
  • the amount of Mn is preferably 0.47% or less, more preferably 0.45% or less.
  • the P content is 0.030% or less.
  • the amount of P is preferably 0.025% or less, more preferably 0.02% or less. Although it is preferable to reduce P as much as possible, since the manufacturing cost increases as the purity increases, the amount of P may be 0.003% or more, or 0.005% or more.
  • the S amount is 0.030% or less.
  • the amount of S is preferably 0.025% or less, more preferably 0.02% or less.
  • a small amount of S has an effect of improving machinability.
  • the amount of S is preferably 0.003% or more, and more preferably 0.005% or more.
  • the Cr content is 0.35% or more.
  • the amount of Cr is preferably 0.38% or more, more preferably 0.4% or more.
  • the Cr content is 1.15% or less.
  • the amount of Cr is preferably 1.12% or less, more preferably 1.1% or less.
  • the Mo amount is an element that suppresses the formation of an incompletely quenched structure and increases the softening resistance without increasing the protruding peak height Rpk after carbonitriding. As a result, the pitching life can be improved. Therefore, in the present invention, the Mo amount is set to 0.25% or more. The Mo amount is preferably 0.3% or more, more preferably 0.35% or more. However, when Mo is contained excessively, the formation of a supercooled structure is promoted during the heat treatment before processing into the part shape, and the workability into the part shape is deteriorated. Further, excessive addition increases the cost of the steel material. Therefore, in the present invention, the Mo amount is set to 0.9% or less. The amount of Mo is preferably 0.85% or less, more preferably 0.8% or less.
  • Al is an element inevitably contained in steel, and if it is excessively contained, hot workability is lowered. Therefore, in the present invention, the Al content is 0.08% or less.
  • the amount of Al is preferably 0.06% or less, more preferably 0.05% or less.
  • Al combines with N in steel to produce AlN, and has the effect of suppressing the coarsening of crystal grains during carbonitriding. In order to exert such effects, Al needs to be 0.01% or more.
  • the amount of Al is preferably 0.015% or more, more preferably 0.02% or more.
  • N is an element that reduces hot workability when contained in excess. Therefore, in the present invention, the N amount is 0.014% or less.
  • the N amount is preferably 0.013% or less, more preferably 0.012% or less.
  • N combines with Al, Ti, and Nb in the steel to form fine carbonitrides, and has an action of suppressing coarsening of crystal grains during carbonitriding. In order to effectively exert such effects, the N amount is preferably 0.001% or more, more preferably 0.005% or more.
  • the basic components of the carbonitriding steel according to the present invention are as described above, and the balance is iron and inevitable impurities.
  • the A value represented by the following formula (1) is 0.24 or less and the B value represented by the following formula (2) is 48 or more after satisfying the above component composition.
  • the C1 value represented by the following formula (3) is 100 or less.
  • [] indicates the content (% by mass) of each element.
  • a value 0.102 ⁇ [Si] + 0.084 ⁇ [Mn] + 0.149 ⁇ [Cr] (1)
  • B value 21.538 ⁇ [Cr] + 71.825 ⁇ [Mo] (2)
  • C1 value 22.29 ⁇ [Si] + 60.60 ⁇ [Mn] + 18.09 ⁇ [Cr] + 121.99 ⁇ [Mo] ⁇ 50.12 (3)
  • the A value represented by the above formula (1) indicates the influence of the component composition of the steel material on the protruding peak height Rpk on the surface of the carbonitrided part obtained by carbonitriding. That is, when the present inventors examined, the protrusion peak part height Rpk of a carbonitriding component surface changes with the amount of Si, Mn, Cr in steel materials, and is calculated based on Si, Mn, Cr amount. It has been found that as the value increases, the protruding peak height Rpk increases and the pitching life decreases. Therefore, in the present invention, the A value is set to 0.24 or less. The A value is preferably 0.23 or less, more preferably 0.22 or less. The lower limit of the A value is determined by the amounts of Si, Mn, and Cr. Specifically, the A value is preferably 0.07 or more.
  • the B value represented by the above formula (2) indicates the influence of the component composition of the steel material on the softening resistance during the carbonitriding process. That is, when the present inventors examined, Cr has the effect of improving the softening resistance by forming fine carbonitride on the surface layer of the carbonitriding part, and Mo is soft during the carbonitriding process. It has been found that it acts to suppress the formation of a partially incompletely quenched structure. By containing Cr and Mo in a predetermined amount or more, the hardness at a depth of 0.01 mm from the surface of the carbonitrided part when the carbonitrided part is tempered at 300 ° C. can be increased. The temperature of 300 ° C.
  • the B value is 48 or more.
  • the B value is preferably 50 or more, more preferably 52 or more.
  • the upper limit of the B value is determined by the amount of Cr and Mo. Specifically, the B value is preferably 89 or less.
  • the C1 value represented by the above formula (3) shows the influence of the component composition of the steel material on the workability when processing into a part shape. That is, when an alloying element is added to the steel, the hardenability is improved, but on the other hand, the transformation rate when cooling from the austenite structure is lowered. As a result, a supercooled structure such as bainite is formed after rolling or annealing. Since the supercooled structure is harder than the ferrite or pearlite structure, the workability to the part shape is lowered. When the fraction of the supercooled structure exceeds 10%, the workability to the part shape is significantly lowered.
  • the fraction of the supercooled structure can be reduced to 10% or less, and the workability to the part shape can be reduced. It was found that can be improved.
  • the C1 value is preferably 95 or less, more preferably 90 or less.
  • the lower limit of the C1 value is determined by the amounts of Si, Mn, Cr, and Mo. Specifically, the C1 value is preferably ⁇ 0.5 or more.
  • the carbonitriding steel material according to the present invention is excellent in workability to a part shape because the area ratio of bainite in the entire metal structure is 10% or less.
  • the workability to the part shape is also affected by supercooled structures other than bainite, such as martensite, but the carbonitriding steel of the present invention produces almost no supercooled structure other than bainite.
  • the area ratio may be used as a reference.
  • the steel material of the present invention is further selected from the group consisting of Nb: more than 0% and 0.1% or less, Ti: more than 0% and 0.10% or less, and B: more than 0% and 0.005% or less in mass%. It may contain at least one kind. Nb, Ti, and B are preferably used alone or in combination of two or more.
  • Nb is an element that combines with C and N in steel to form Nb (C, N) that acts as pinning particles and prevents crystal grain coarsening during carbonitriding.
  • the Nb content is preferably 0.01% or more.
  • the amount of Nb is more preferably 0.015% or more, and further preferably 0.02% or more.
  • the Nb amount is preferably 0.1% or less.
  • the Nb amount is more preferably 0.09% or less, still more preferably 0.08% or less.
  • Ti combines with C in steel to form TiC, and like Nb (C, N), it acts as pinning particles and acts to prevent grain coarsening during carbonitriding. It is. Moreover, when adding B, it is recommended to add Ti in order to suppress the formation of BN and dissolve B. In order to effectively exhibit these effects, Ti is preferably contained in an amount of 0.01% or more. The amount of Ti is more preferably 0.015% or more, and further preferably 0.02% or more. However, even if Ti is contained excessively, the crystal grain coarsening prevention characteristic is saturated, resulting in an increase in steel material cost. Therefore, the Ti amount is preferably 0.10% or less. The amount of Ti is more preferably 0.09% or less, still more preferably 0.08% or less.
  • B is an element that increases the grain boundary strength of the prior austenite grains and improves the pitching life.
  • the B content is preferably 0.0005% or more.
  • the amount of B is more preferably 0.001% or more, and still more preferably 0.0015% or more.
  • the B content is preferably 0.005% or less.
  • the amount of B is more preferably 0.004% or less, and still more preferably 0.003% or less.
  • the C2 value represented by the following formula (4) Is preferably 100 or less.
  • [] indicates the content (% by mass) of each element.
  • C2 value 22.29 x [Si] + 60.60 x [Mn] + 18.09 x [Cr] + 121.99 x [Mo] + 132.11 x [Ti] + 56.20 x [Nb] + 9455.95 x [ B] -50.12 (4)
  • the preferable range of the C2 value is the same as the C1 value. That is, in the present invention, the C2 value is controlled to 100 or less.
  • the C2 value is preferably 95 or less, more preferably 90 or less.
  • the lower limit of the C2 value is determined by the amounts of Si, Mn, Cr, Mo, Ti, Nb, and B. Specifically, the C2 value is preferably 6.1 or more, for example.
  • the steel material of the present invention can be produced by casting, slabbing, and finish rolling steel melted according to a conventional method according to a conventional method.
  • the cast slab obtained by casting may be heated and held at 1100 to 1300 ° C. for 30 minutes to 5 hours, and then subjected to block rolling.
  • the steel slab after the block rolling is, for example, cooled to a temperature of A 1 point or less at an average cooling rate of 0.01 to 5 ° C./second, and further subjected to finish rolling in a state of being heated and held at 800 to 1100 ° C.
  • the steel material of the present invention can be obtained by cooling to room temperature at an average cooling rate of 0.01 to 5 ° C./second.
  • the steel material is processed by one or more methods selected from the group consisting of cutting, cold forging, and hot forging according to a conventional method to obtain an intermediate product, and carbonitriding treatment is performed on the intermediate product according to the present invention. Carbonitriding parts can be manufactured.
  • the steel material may be annealed according to a conventional method as necessary before being processed into an intermediate product. Further, the intermediate product may be annealed according to a conventional method as necessary.
  • the conditions for the annealing treatment are not particularly limited. For example, it may be held at 600 to 950 ° C. for 30 minutes to 10 hours.
  • the intermediate product may be subjected to a solution treatment and a normalization treatment according to a conventional method as necessary before carbonitriding.
  • the solution treatment conditions are not particularly limited.
  • the solution treatment may be performed at 900 to 1300 ° C. for 30 minutes to 3 hours.
  • the conditions for the normalizing treatment are not particularly limited, but for example, it may be held at 800 to 1000 ° C. for 30 minutes to 3 hours.
  • the carbonitriding conditions are not particularly limited, and known conditions can be applied. Specifically, a propane gas atmosphere containing a carbon potential of 0.5 to 1.0% by mass and NH 3 in a volume fraction of 2 to 15% is maintained at 800 to 1000 ° C. for 30 minutes to 6 hours. Good. After the carbonitriding treatment, tempering may be performed by quenching according to a conventional method, further heating to 100 to 300 ° C. and holding for 30 minutes to 3 hours.
  • the carbonitriding process may be performed after the carburizing process.
  • the carbon potential CP is set to 0.5 to 1.0 mass% and held at 850 to 1000 ° C. for 30 minutes to 3 hours, and then the carbon potential CP is set to 0.5 to 1 as the carbonitriding process. It may be held at 800 to 900 ° C. for 30 minutes to 3 hours in a propane gas atmosphere containing 0.0 mass% and NH 3 in a volume fraction of 2 to 15%.
  • the carburization process may be performed in two or more times.
  • the atmosphere for heating to the carbonitriding temperature may be a carbonitriding atmosphere.
  • the type of carbonitriding is not particularly limited, and known methods such as gas carbonitriding and vacuum carbonitriding can be employed.
  • the degree of vacuum when vacuum carbonitriding may be, for example, about 0.01 MPa or less.
  • a lubricating coating treatment or a shot peening treatment may be performed according to a conventional method as necessary.
  • Table 1 An ingot was manufactured by melting steel containing the composition shown in Table 1 below, the balance being iron and inevitable impurities in a small melting furnace.
  • “-” means not detected.
  • Table 1 below also shows the results of calculating the A value, the B value, the C1 value, and the C2 value based on each component composition and the above formulas (1) to (4).
  • the C1 value and the C2 value are described in the C value column without distinction.
  • the obtained ingot is heated and held at 1100 to 1300 ° C. for 30 minutes to 5 hours, then cooled to a temperature of A 1 point or less at an average cooling rate of 0.02 to 1 ° C./second, and further heated to 800 to 1100 ° C. Finishing rolling was performed in the state of being held, and the steel was manufactured by cooling to room temperature with an average cooling rate of 0.02 to 1 ° C./second.
  • the obtained steel material was hot forged to produce a steel material having a diameter of 32 mm. Further, the solution was heated and held at 1250 ° C. for 60 minutes as a solution treatment, then allowed to cool, and then heated and maintained at 900 ° C. for 60 minutes as a normalization treatment, and then allowed to cool.
  • the workability to the part shape was evaluated by the following procedure.
  • the ⁇ 32 mm steel material obtained by the above normalization treatment was softened and annealed.
  • the softening annealing treatment was performed by heating and holding at 900 ° C. for 1 hour, then heating and holding at 650 ° C. for 4 hours, and then allowing to cool to room temperature.
  • the central part in the longitudinal direction of the steel material obtained by the softening annealing was cut perpendicularly to the longitudinal direction, and the resin was embedded so that the cut surface could be observed.
  • a D / 4 position from the circumferential surface was photographed with an optical microscope at a magnification of 400 times. Photographing was carried out at 10 arbitrary locations, and the area ratio of bainite relative to the observation area was measured from the photograph taken using image analysis software, and the average value was obtained.
  • the measurement results are shown in Table 2 below.
  • the area ratio of bainite serves as an index for evaluating the workability to the part shape. When the area ratio of bainite exceeds 10%, the workability to the part shape is remarkably deteriorated. Therefore, in the present invention, the area ratio of bainite was 10% or less, and it was evaluated that it was excellent in workability to a part shape.
  • the surface roughness, the hardness when tempered at 300 ° C., and the pitching life were measured by the following procedure.
  • the ⁇ 32 mm steel material obtained by the above normalization treatment was processed into a test piece having the shape shown in FIG.
  • the protruding peak height Rpk on the circumferential surface at the ⁇ 26 mm position was 0.20 mm or less.
  • the obtained test piece was carbonitrided in a gas carburizing furnace. That is, first, as a carburizing treatment, the carbon potential was set to 0.9% by mass and held at 930 ° C. for 90 minutes, and then the carbon potential was set to 0.75% by mass and held at 930 ° C. for 60 minutes. After holding for 60 minutes, the temperature was lowered to 850 ° C., and as a carbonitriding treatment, oil quenching was performed immediately after holding in a propane gas atmosphere containing NH 3 in a volume fraction of 12% for 2 hours. After oil quenching, it was further tempered by heating to 170 ° C. and holding for 2 hours and allowing to cool.
  • the surface roughness of the tempered test piece was measured with a surface texture measuring instrument “CS-3200” manufactured by Mitutoyo Corporation.
  • the protruding peak height Rpk was measured.
  • the protruding peak height Rpk was measured on the circumferential surface at a position of ⁇ 26 mm in the test piece shown in FIG. A procedure for measuring the protruding peak height Rpk will be described with reference to FIG. FIG. 1 b shows only the ⁇ 26 mm position of the test piece shown in FIG. In FIG.
  • the protrusion center height Rpk was measured in a range of 2 mm in the left and right directions in the axial direction from the axial central portion, that is, the length of 4 mm.
  • the protrusion ridge height Rpk was also measured at a 180 ° position from the measurement position where the protrusion ridge height Rpa was measured, that is, at a position opposite to the measurement position by 180 °.
  • the average value of the protruding peak height Rpk measured at two locations was determined. The calculation results are shown in Table 2 below.
  • the surface roughness was measured at the ⁇ 26 mm position in the test piece without performing the polishing step.
  • test piece obtained by tempering was further heated and held at 300 ° C. for 3 hours, and then allowed to cool to perform a second tempering treatment.
  • FIG. 2 shows a state in which the test piece roller 1 and the load roller 2 are in contact with each other and roll while sliding, as an appearance during the test.
  • the high-carbon chromium steel SUJ2 specified by JIS G4805 was used for the load roller 2, and a commercially available automatic oil was used for the test oil.
  • the measurement conditions were: test surface pressure: 3.5 GPa, slip rate: -40%, and rotation speed: 1000 rpm.
  • the number of cycles when pitching occurred and the testing machine stopped was defined as the pitching life. When 10 million cycles were reached, the test was stopped at that point. Two steel types were tested, and the average value was obtained. The results are shown in Table 2 below. The case where the pitching life was 2 million times or more was accepted, and it was evaluated that the pitching life was excellent.
  • No. Nos. 1 to 45 are examples that satisfy the requirements defined in the present invention, and it can be seen that the processability to the part shape and the pitching life are excellent.
  • No. 46 to 65 are examples that do not satisfy any of the requirements defined in the present invention, and at least one of the workability to the part shape or the pitching life cannot be improved. Details are as follows.
  • No. No. 46 is an example in which the amount of C is too small, and the pitching life could not be improved.
  • No. 47 is an example which contains Si excessively and the A value and the C value do not satisfy the range defined in the present invention. Since the A value exceeded the range defined in the present invention, the protruding peak height Rpk was increased. As a result, the pitching life could not be improved. Moreover, since C value exceeded the range prescribed
  • No. 48 is an example in which the amount of Mn is too small, and the pitching life could not be improved.
  • No. 49 is an example which contains Mn excessively and the A value and the C value do not satisfy the range defined in the present invention. Since the A value exceeded the range defined in the present invention, the protruding peak height Rpk was increased. As a result, the pitching life could not be improved. Moreover, since C value exceeded the range prescribed
  • No. 50 is an example containing P excessively, and the pitching life could not be improved.
  • No. No. 51 is an example containing excessive S, and the pitching life could not be improved.
  • No. 52 is an example in which the amount of Cr is too small and the B value does not satisfy the range defined in the present invention. Since the B value was below the range defined in the present invention, the hardness when tempered at 300 ° C. was reduced. As a result, the pitching life could not be improved.
  • No. 53 is an example which contains Cr excessively and the A value does not satisfy the range defined in the present invention. Since the A value exceeded the range defined in the present invention, the protruding peak height Rpk was increased. As a result, the pitching life could not be improved.
  • No. 54 is an example in which the amount of Mo is too small and the B value does not satisfy the range defined in the present invention. Since the B value was below the range defined in the present invention, the hardness when tempered at 300 ° C. was reduced. As a result, the pitching life could not be improved.
  • No. 55 is an example which contains Mo excessively and the C value does not satisfy the range defined in the present invention. Since the C value exceeded the range specified in the present invention, bainite, which was a supercooled structure, was generated excessively. As a result, the processability to the part shape cannot be improved.
  • No. 56 is an example in which the A value does not satisfy the range defined by the present invention. Since the A value exceeded the range defined in the present invention, the protruding peak height Rpk was increased. As a result, the pitching life could not be improved.
  • No. 57 to 59 are examples in which the B value does not satisfy the range defined by the present invention. Since the B value was below the range defined in the present invention, the hardness when tempered at 300 ° C. was reduced. As a result, the pitching life could not be improved.
  • No. 60 to 64 are examples in which the C value does not satisfy the range defined in the present invention. Since the C value exceeded the range specified in the present invention, bainite, which was a supercooled structure, was generated excessively. As a result, the processability to the part shape cannot be improved.
  • No. 65 is an example which does not contain Mo and the B value does not satisfy the range defined in the present invention. Since the B value was below the range defined in the present invention, the hardness was reduced. As a result, the pitching life could not be improved.
  • No. 1 was subjected to oil quenching and tempering. About 65 test pieces, the cross section of the surface layer part was exposed, and it was subjected to natal corrosion, and was observed at 400 times with an optical microscope. A photograph substituted for a photograph taken is shown in FIG. Moreover, as an example containing Mo, No. A drawing substitute photo 1 is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 部品形状への加工性に優れ、しかも浸炭窒化処理後の研磨工程を省略してもピッチング寿命に優れた鋼材、および該鋼材を用いた部品を提供する。 質量%で、C、Si、Mn、P、S、Cr、Mo、Al、およびNを所定の範囲で含有し、残部が鉄および不可避不純物からなり、下記式(1)で表されるA値が0.24以下であり、下記式(2)で表されるB値が48以上であり、下記式(3)で表されるC1値が100以下である浸炭窒化用鋼材。 A値=0.102×[Si]+0.084×[Mn]+0.149×[Cr] ・・・(1) B値=21.538×[Cr]+71.825×[Mo] ・・・(2) C1値=22.29×[Si]+60.60×[Mn]+18.09×[Cr]+121.99×[Mo]-50.12 ・・・(3)

Description

浸炭窒化用鋼材および浸炭窒化部品
 本発明は、浸炭窒化用鋼材、および該鋼材を浸炭窒化処理して得られる部品に関する。本発明の浸炭窒化部品は、例えば、歯車、シャフトなどの等速ジョイント部品、軸受、無段変速機トランスミッション(Continuously Variable Transmission、CVT)プーリーなどの動力伝達部品に好適に用いられる。
 動力伝達部品には、ピッチング損傷に対する耐久寿命(以下、ピッチング寿命という)が一般的に求められる。ピッチングとは、表面起点型の疲労剥離損傷であり、部品間の接触面にすべりが発生する場合に起こる現象である。ピッチング損傷は、摺動表面に発生する繰り返しせん断応力によりマイクロピッチと呼ばれる微小な剥離が生じ、それらが連結し、或いはき裂が進展することにより発生する。
 近年、動力源の高出力化および動力伝達ユニットの小型化が進んでおり、これに伴って各部品への負荷荷重は増大している。また、自動車のハイブリッド車化または電気自動車化により、歯車同士のすべり速度が増大している。また、伝達効率を向上させるため、作動油は低粘度化が指向されている。こうしたことから、摺動環境は益々苛酷になっており、ピッチング寿命に優れた鋼材が一層望まれている。
 ピッチング損傷の発生を防止するには、部品表面を硬化させることが考えられる。表面硬化処理としては、浸炭窒化処理が知られている。しかし、鋼材に浸炭窒化処理を施すと、浸炭窒化処理時に雰囲気中の酸素、窒素と鋼材中の合金元素が反応し、部品の表層部に酸化物または炭窒化物が生成する。部品表面に生成した酸化物または炭窒化物は、焼入性を低下させるため、不完全焼入れ組織が形成されやすくなり、部品表面が軟質化し、ピッチング寿命が却って低下することがある。また、浸炭窒化処理部品は、摺動時の摩擦熱によりマルテンサイトが回復し、軟化しやすいため、ピッチング寿命が却って低下することがあった。
 ピッチング寿命を向上させる技術としては、特許文献1が知られている。即ち、特許文献1には、Si:0.40~1.50%、Ti:0.10~0.25%を含有し、Si+5Ti:1.0~2.5%とすることにより、高強度歯車用肌焼鋼のピッチング寿命を向上させる技術が開示されている。
 ピッチング寿命を改善する技術ではないが、特許文献2には、表面から100μmの深さまでの範囲での圧縮残留応力のピーク値を1600MPa以上とすることにより、曲げ疲労強度を向上させ、鍛造性にも優れた鋼部品を提供する技術が開示されている。また、特許文献3には、Nb、Ti、Zr、Ta、Hfよりなる群から選択される少なくとも1種の元素が、所定の関係を満たす範囲で含有させることにより、Cr、Mo、Niなどの高価な焼入れ性向上元素の添加量を極力低減しつつ優れた焼入れ性を発揮し、しかも熱処理前の状態では、熱間もしくは冷間鍛造などの加工性に優れた特性を有する機械構造用鋼を提供する技術が開示されている。
特開2005-163148号公報 特開2009-249700号公報 特開2006-299383号公報
 ところで浸炭窒化時には、加熱により熱処理歪みが導入される。導入された熱処理歪みは、ピッチング寿命を低下させる原因となる。そこで、浸炭窒化処理の後には、部品表面に生成した酸化物、炭窒化物、および熱処理歪みを除去するため、通常、部品表面を研磨する必要がある。
 一方、生産コストの低減が求められており、浸炭窒化処理後の研磨工程を省略すれば、大幅なコスト削減が期待できる。しかし、研磨工程を省略すると、上述したように、部品表面の酸化物、炭窒化物、および熱処理歪みを除去できないため、ピッチング寿命が却って低下する。
 ピッチング寿命を向上させるために、上記特許文献1のように、合金元素を積極的に添加することが考えられる。しかし、合金元素を多量に含有すると、熱間圧延後の冷却時や、部品形状へ加工する前に行う軟化焼鈍後の冷却時に、フェライトおよびパーライト変態が完了せず、ベイナイト等の過冷組織が形成される。過冷組織は硬質なため、部品形状への加工が著しく困難になるという新たな問題が生じる。
 本発明は上記の様な事情に着目してなされたものであって、その目的は、部品形状への加工性に優れ、しかも浸炭窒化処理後の研磨工程を省略してもピッチング寿命に優れた鋼材、および該鋼材を用いた部品を提供することにある。
 上記課題を解決することのできた本発明に係る浸炭窒化用鋼材とは、質量%で、C:0.15~0.25%、Si:0.03~1.0%、Mn:0.2~0.5%、P:0%超0.030%以下、S:0%超0.030%以下、Cr:0.35~1.15%、Mo:0.25~0.9%、Al:0.01~0.08%、およびN:0%超0.014%以下を含有し、残部が鉄および不可避不純物からなり、下記式(1)で表されるA値が0.24以下であり、下記式(2)で表されるB値が48以上であり、下記式(3)で表されるC1値が100以下である点に要旨を有する。式中、[ ]は、各元素の含有量(質量%)を示している。
A値=0.102×[Si]+0.084×[Mn]+0.149×[Cr] ・・・(1)
B値=21.538×[Cr]+71.825×[Mo] ・・・(2)
C1値=22.29×[Si]+60.60×[Mn]+18.09×[Cr]+121.99×[Mo]-50.12 ・・・(3)
 上記課題は、質量%で、C:0.15~0.25%、Si:0.03~1.0%、Mn:0.2~0.5%、P:0%超0.030%以下、S:0%超0.030%以下、Cr:0.35~1.15%、Mo:0.25~0.9%、Al:0.01~0.08%、およびN:0%超0.014%以下を含有し、更に、質量%で、Nb:0%超0.1%以下、Ti:0%超0.10%以下、B:0%超0.005%以下よりなる群から選ばれる少なくとも1種を含有し、残部が鉄および不可避不純物からなり、下記式(1)で表されるA値が0.24以下であり、下記式(2)で表されるB値が48以上であり、下記式(4)で表されるC2値が100以下である浸炭窒化用鋼材によっても解決できる。式中、[ ]は、各元素の含有量(質量%)を示している。
A値=0.102×[Si]+0.084×[Mn]+0.149×[Cr] ・・・(1)
B値=21.538×[Cr]+71.825×[Mo] ・・・(2)
C2値=22.29×[Si]+60.60×[Mn]+18.09×[Cr]+121.99×[Mo]+132.11×[Ti]+56.20×[Nb]+9455.95×[B]-50.12 ・・・(4)
 前記A値は、具体的には、0.07以上であることが好ましい。前記B値は、具体的には、89以下であることが好ましい。前記C1値は、具体的には、-0.5以上であることが好ましい。前記C2値は、具体的には、6.1以上であることが好ましい。
 本発明には、上記鋼材を浸炭窒化処理して得られる浸炭窒化部品も包含される。
 本発明によれば、鋼材の成分組成を適切に制御することにより、部品形状への加工性に優れ、しかも浸炭窒化処理後の研磨工程を省略してもピッチング寿命に優れた浸炭窒化用鋼材が得られる。また、本発明によれば、上記鋼材に浸炭窒化処理を施すことにより、浸炭窒化処理後の研磨工程を省略してもピッチング寿命に優れた浸炭窒化部品が得られる。
図1のaは、試験片の外観を示した模式図であり、図1のbは突出山部高さRpkを測定する手順を説明するための模式図である。 図2は、ピッチング試験を行ったときの様子を示した模式図である。 図3は、試験片の表層部における断面を光学顕微鏡を用いて撮影した図面代用写真である。図3のaは試験片No.65を撮影した写真、図3のbは試験片No.1を撮影した写真である。
 本発明者は、部品形状への加工性に優れ、しかも浸炭窒化処理後の研磨工程を省略してもピッチング寿命に優れた鋼材、および該鋼材を用いた浸炭窒化部品を提供するために鋭意検討を重ねてきた。その結果、ピッチング寿命を改善するには、鋼材の成分組成のうち、Si、MnおよびCr量に基づいて算出されるA値、並びにCrおよびMo量に基づいて算出されるB値を適切に制御すればよいこと、また、部品形状への加工性を改善するには、Si、Mn、Cr、およびMo量に基づいて算出されるC1値を適切に制御すればよいことを見出し、本発明を完成した。なお、上記成分組成として、Nb、Ti、およびBよりなる群から選ばれる少なくとも1種を含有する場合は、後述するように、上記C1値の代わりに、Si、Mn、Cr、Mo、Ti、Nb、およびB量に基づいて算出されるC2値を適切に制御すればよい。
 まず、本発明を完成するに至った経緯について説明する。
 本発明では、表面硬化処理として浸炭窒化処理を施すことを前提としている。浸炭窒化処理とは、浸炭窒化処理雰囲気で、A3点以上の温度で加熱保持し、部品表面にC原子およびN原子を拡散させる処理であり、浸炭窒化処理後は、急冷することにより表面を焼入れ、硬化させる。浸炭窒化処理により拡散侵入したC原子とN原子は、鋼材中のCrと結合して硬質な炭窒化物を形成すると共に、摺動時には摩擦熱により固溶していたN原子がFe4Nとして微細析出する。その結果、軟化抵抗が向上しピッチング寿命の改善が期待できる。しかし、浸炭窒化処理後の研磨工程を省略するとピッチング寿命が低下することがあった。
 浸炭窒化処理のままでは、表層部に形成される酸化物、炭窒化物、および熱処理歪みの影響により表面粗さが増大する。表面粗さが増大すると、部品同士が接触する面積が小さくなるため接触応力が大きくなり、ピッチングが促進される。表面粗さがピッチングに及ぼす影響を検討したところ、特に突出山部高さRpkとピッチング寿命との間に負の相関関係が認められ、突出山部高さRpkが高くなるほど、ピッチング寿命は低下することが分かった。そこで、突出山部高さRpkを低くするには、浸炭窒化用鋼材の成分組成のうち、Si、MnおよびCr量に基づいて後述するように算出されるA値を0.24以下に制御すれば良いことが分かった。
 ところが、浸炭窒化処理後の研磨工程を省略したときのピッチング寿命を改善するには、上記A値を調整するだけでは不充分であった。即ち、浸炭窒化処理時に、部品の表層部に酸化物、炭窒化物が形成されると共に、熱処理歪みが導入されると、焼入れ性が低下し、表層部に不完全焼入れ組織が形成される。そこで焼入性を高め、不完全焼入れ組織の生成を抑制するために、本発明では、所定量のMoを含有させる必要がある。また、摺動時の軟化を防止すれば、浸炭窒化部品のピッチング寿命を改善できる。摺動時の軟化は、300℃で焼戻し処理した後の部品表面から深さ0.01mm位置における硬さと正の相関関係があり、上記硬さが硬いほど、ピッチング寿命が増加することが判明した。そして上記硬さを高めるには、浸炭窒化用鋼材の成分組成のうち、CrおよびMo量に基づいて後述するように算出されるB値を48以上に制御すれば良いことが分かった。
 一方、部品形状への加工性を改善するには、加工前に過冷組織を形成させないことが重要である。過冷組織を形成させないためには、加工前に行われる軟化焼鈍後の冷却時に、フェライトおよびパーライト変態を完了させる必要がある。そこで、フェライトおよびパーライト変態を完了させるために、本発明では、浸炭窒化用鋼材の成分組成のうち、変態速度に影響を及ぼすSi、Mn、Cr、およびMo量に基づいて後述するように算出されるC1値を100以下に調整すれば良いことを明らかにした。
 以上、本発明を完成するに至った経緯について説明した。以下、本発明について詳細に説明する。
 まず、本発明に係る浸炭窒化用鋼材における基本成分について説明する。
 本発明の浸炭窒化用鋼材は、質量%で、C:0.15~0.25%、Si:0.03~1.0%、Mn:0.2~0.5%、P:0%超0.030%以下、S:0%超0.030%以下、Cr:0.35~1.15%、Mo:0.25~0.9%、Al:0.01~0.08%、およびN:0%超0.014%以下を含有する。
 Cは、浸炭窒化部品の芯部硬さを確保するために必要な元素であり、0.15%以上とする。C量は、好ましくは0.17%以上、より好ましくは0.18%以上である。しかしCを過剰に含有すると、部品形状に加工する前にパーライトなどの過冷組織の分率が増加し、部品形状への加工性が低下する。従って本発明では、C量は0.25%以下とする。C量は、好ましくは0.23%以下、より好ましくは0.22%以下である。
 Siは、1.0%を超えて含有すると、浸炭窒化処理時に表面酸化物の形成が促進され、突出山部高さRpkが大きくなり、ピッチング寿命が低下する。また、部品形状に加工する前の熱処理により過冷組織が生じやすくなり、部品形状への加工性が低下する。従って本発明では、Si量は1.0%以下とする。Si量は、好ましくは0.95%以下、より好ましくは0.90%以下である。Siは、できるだけ低減することが好ましいが、純度を高めるほど製造コストが増大するため、本発明では0.03%以上とする。Si量は、0.05%以上であってもよく、0.07%以上であってもよい。
 Mnは、鋼中のSと結合してMnSを生成し、部品形状への加工性を低下させるFeSの生成を抑制する元素である。本発明では、Mnは、0.2%以上とする。Mn量は、好ましくは0.3%以上、より好ましくは0.35%以上である。しかしMnを過剰に含有すると、部品形状に加工する前の熱処理における変態速度を著しく低下させるため、過冷組織が過剰に生成し、部品形状への加工性が低下する。また、浸炭窒化処理時に表面酸化物が形成され、突出山部高さRpkが大きくなり、ピッチング寿命が低下する。従って本発明では、Mn量は0.5%以下とする。Mn量は、好ましくは0.47%以下、より好ましくは0.45%以下である。
 Pは、鋼中に不可避的に含まれる元素であり、結晶粒界に偏析してピッチング寿命を低下させるため、できるだけ低減する必要がある。従って本発明では、P量は0.030%以下とする。P量は、好ましくは0.025%以下、より好ましくは0.02%以下である。Pは、できるだけ低減することが好ましいが、純度を高めるほど製造コストが増加するため、P量は、0.003%以上であってもよく、0.005%以上であってもよい。
 Sは、鋼中に不可避的に含まれる元素であり、鋼中のMnと結合してMnS系介在物を形成し、疲労強度を低下させる元素である。従って本発明では、S量は0.030%以下とする。S量は、好ましくは0.025%以下、より好ましくは0.02%以下である。しかし、少量のSは、切削性を向上させる作用を有する。こうした作用を有効に発揮させるには、S量は0.003%以上が好ましく、より好ましくは0.005%以上である。
 Crは、浸炭窒化処理後の軟化抵抗を向上させ、ピッチング寿命の向上に寄与する元素である。本発明では、Cr量は、0.35%以上とする。Cr量は、好ましくは0.38%以上、より好ましくは0.4%以上である。しかしCrを過剰に含有すると、部品形状に加工する前の熱処理において過冷組織が過剰に生成し、部品形状への加工性が低下する。また、表面酸化物の形成により突出山部高さRpkが大きくなり、表面粗さを増大させ、ピッチング寿命が却って低下する。従って本発明では、Cr量は、1.15%以下とする。Cr量は、好ましくは1.12%以下、より好ましくは1.1%以下である。
 Moは、浸炭窒化処理後の突出山部高さRpkを増大させることなく、不完全焼入れ組織の生成を抑制し、かつ軟化抵抗を向上させる元素である。その結果、ピッチング寿命を向上できる。そこで、本発明では、Mo量を0.25%以上とする。Mo量は、好ましくは0.3%以上、より好ましくは0.35%以上である。しかしMoを過剰に含有すると、部品形状への加工前の熱処理時に過冷組織の生成が促進され、部品形状への加工性が低下する。また、過剰な添加は、鋼材のコスト高になる。従って本発明では、Mo量は0.9%以下とする。Mo量は、好ましくは0.85%以下、より好ましくは0.8%以下である。
 Alは、鋼中に不可避的に含まれる元素であり、過剰に含有すると、熱間加工性が低下する。従って本発明では、Al量は、0.08%以下とする。Al量は、好ましくは0.06%以下、より好ましくは0.05%以下である。Alは、脱酸剤として有用に作用するほか、鋼中のNと結合してAlNを生成し、浸炭窒化処理時に結晶粒が粗大化するのを抑制する作用を有する。こうした作用を発揮させるには、Alは、0.01%以上とする必要がある。Al量は、好ましくは0.015%以上、より好ましくは0.02%以上である。
 Nは、過剰に含有すると、熱間加工性が低下させる元素である。従って本発明では、N量は、0.014%以下とする。N量は、好ましくは0.013%以下、より好ましくは0.012%以下である。Nは、鋼中のAl、Ti、Nbと結合して微細な炭窒化物を形成し、浸炭窒化処理時に結晶粒が粗大化するのを抑制する作用を有する。こうした作用を有効に発揮させるには、N量は、好ましくは0.001%以上、より好ましくは0.005%以上とする。
 本発明に係る浸炭窒化用鋼材の基本成分は上述した通りであり、残部は鉄および不可避不純物である。
 本発明に係る鋼材は、上記成分組成を満足したうえで、下記式(1)で表されるA値が0.24以下であり、下記式(2)で表されるB値が48以上であり、下記式(3)で表されるC1値が100以下である。式中、[ ]は、各元素の含有量(質量%)を示している。
A値=0.102×[Si]+0.084×[Mn]+0.149×[Cr] ・・・(1)
B値=21.538×[Cr]+71.825×[Mo] ・・・(2)
C1値=22.29×[Si]+60.60×[Mn]+18.09×[Cr]+121.99×[Mo]-50.12 ・・・(3)
 上記式(1)で表されるA値は、鋼材の成分組成が、浸炭窒化処理して得られる浸炭窒化部品表面の突出山部高さRpkに及ぼす影響を示す。即ち、本発明者らが検討したところ、浸炭窒化部品表面の突出山部高さRpkは、鋼材中のSi、Mn、Cr量によって変化し、Si、Mn、Cr量に基づいて算出されるA値が大きくなるほど突出山部高さRpkが大きくなり、ピッチング寿命が低下することが分かった。従って本発明では、上記A値を0.24以下とする。上記A値は、好ましくは0.23以下、より好ましくは0.22以下である。なお、上記A値の下限は、Si、Mn、Cr量によって決定される。具体的には、上記A値は0.07以上であることが好ましい。
 上記式(2)で表されるB値は、鋼材の成分組成が、浸炭窒化処理時における軟化抵抗に及ぼす影響を示す。即ち、本発明者らが検討したところ、Crは、浸炭窒化部品の表層に微細な炭窒化物を形成することによって軟化抵抗を向上させるのに作用を有し、Moは、浸炭窒化処理時に軟質な不完全焼入れ組織が形成されるのを抑制するのに作用することが分かった。そしてCrとMoを所定量以上含有させることにより、浸炭窒化処理部品を300℃で焼戻したときにおける該浸炭窒化処理部品の表面から深さ0.01mm位置における硬さを高めることができる。温度300℃は、摺動時に発熱して浸炭窒化処理部品が到達する温度を意味し、ピッチングは、摺動発熱により軟化した表面を起点として発生するため、300℃で焼戻したときの硬さを高く維持できれば、軟化抵抗が高くなり、ピッチング寿命を向上できる。従って本発明では、上記B値は48以上とする。上記B値は、好ましくは50以上、より好ましくは52以上である。なお、上記B値の上限は、Cr、Mo量によって決定される。具体的には、上記B値は89以下であることが好ましい。
 上記式(3)で表されるC1値は、鋼材の成分組成が、部品形状に加工するときの加工性に及ぼす影響を示す。即ち、鋼中に合金元素を添加すると焼入性が向上するが、その反面、オーステナイト組織から冷却する際の変態速度が低下する。その結果、圧延後や焼鈍処理後にベイナイト等の過冷組織が形成される。過冷組織はフェライトやパーライト組織に比べて硬質なため、部品形状への加工性が低下する。過冷組織の分率が10%を超えると部品形状への加工性が著しく低下する。そこで、本発明者らが検討したところ、合金元素量を制御し、C1値を100以下に制御すれば、過冷組織の分率を10%以下とすることができ、部品形状への加工性を改善できることが分かった。上記C1値は、好ましくは95以下、より好ましくは90以下である。なお、上記C1値の下限は、Si、Mn、Cr、Mo量によって決定される。具体的には、上記C1値は-0.5以上であることが好ましい。
 本発明に係る浸炭窒化用鋼材は、金属組織全体に占めるベイナイトの面積率が、10%以下になっているため、部品形状への加工性に優れている。部品形状への加工性は、ベイナイト以外の過冷組織、例えば、マルテンサイトなどにも影響を受けるが、本発明の浸炭窒化用鋼材は、ベイナイト以外の過冷組織は殆ど生成しないため、ベイナイトの面積率を基準にすればよい。
 本発明の上記鋼材は、更に、質量%で、Nb:0%超0.1%以下、Ti:0%超0.10%以下、B:0%超0.005%以下よりなる群から選ばれる少なくとも1種を含有してもよい。Nb、Ti、およびBは、単独で、或いは2種以上を含有させることが好ましい。
 特にNbは、鋼中のCおよびNと結合し、ピンニング粒子として作用するNb(C,N)を形成し、浸炭窒化処理時の結晶粒粗大化を防止するのに作用する元素である。こうした効果を有効に発揮させるには、Nb量は、0.01%以上とすることが好ましい。Nb量は、より好ましくは0.015%以上、更に好ましくは0.02%以上である。しかしNbを過剰に含有させても結晶粒粗大化防止特性は飽和し、鋼材コストの増加を招く。従って本発明では、Nb量は、0.1%以下とすることが好ましい。Nb量は、より好ましくは0.09%以下、更に好ましくは0.08%以下である。
 特にTiは、鋼中のCと結合してTiCを形成し、上記Nb(C,N)と同様、ピンニング粒子として作用し、浸炭窒化処理時の結晶粒粗大化を防止するのに作用する元素である。また、Bを添加するときにはBNの形成を抑制し、Bを固溶させるためにTiを添加することが推奨される。こうした効果を有効に発揮させるには、Tiは、0.01%以上含有することが好ましい。Ti量は、より好ましくは0.015%以上、更に好ましくは0.02%以上である。しかしTiを過剰に含有しても結晶粒粗大化防止特性は飽和し、鋼材コストの増加を招く。従ってTi量は、0.10%以下とすることが好ましい。Ti量は、より好ましくは0.09%以下、更に好ましくは0.08%以下である。
 特にBは、旧オーステナイト粒の粒界強度を高めてピッチング寿命を向上させる元素である。こうした効果を有効に発揮させるには、B量は、0.0005%以上含有することが好ましい。B量は、より好ましくは0.001%以上、更に好ましくは0.0015%以上である。しかしBを過剰に含有しても上述した効果は飽和すると共に、B窒化物が過剰に生成して熱間加工性が低下する。従って本発明では、B量は0.005%以下とすることが好ましい。B量は、より好ましくは0.004%以下、更に好ましくは0.003%以下である。
 上記鋼材が、Nb、Ti、Bよりなる群から選ばれる少なくとも1種を含有する場合は、上記式(3)で表されるC1値の代わりに、下記式(4)で表されるC2値が100以下であることが好ましい。式中、[ ]は、各元素の含有量(質量%)を示している。
C2値=22.29×[Si]+60.60×[Mn]+18.09×[Cr]+121.99×[Mo]+132.11×[Ti]+56.20×[Nb]+9455.95×[B]-50.12 ・・・(4)
 上記C2値の好ましい範囲は、上記C1値と同じである。即ち、本発明では、上記C2値を100以下に制御する。上記C2値は、好ましくは95以下、より好ましくは90以下である。なお、上記C2値の下限は、Si、Mn、Cr、Mo、Ti、Nb、B量によって決定される。具体的には、上記C2値は、例えば、6.1以上であることが好ましい。
 次に、本発明に係る浸炭窒化用鋼材の製造方法について説明する。
 本発明の鋼材は、常法に従って溶製した鋼を、常法に従って鋳造、分塊圧延、および仕上げ圧延して製造できる。具体的には、鋳造して得られた鋳片を、1100~1300℃で30分間~5時間加熱保持した後、分塊圧延すればよい。分塊圧延後の鋼片は、例えば、平均冷却速度を0.01~5℃/秒としてA1点以下の温度に冷却し、更に800~1100℃に加熱保持した状態で仕上げ圧延を行ない、更に平均冷却速度を0.01~5℃/秒として室温まで冷却することにより本発明の鋼材が得られる。
 上記鋼材を、常法に従って切削、冷間鍛造、および熱間鍛造よりなる群から選ばれる1種以上の方法で加工して中間品とし、この中間品に浸炭窒化処理を施すことにより本発明の浸炭窒化部品を製造できる。
 上記鋼材は、中間品に加工する前に、必要に応じて常法に従って焼鈍処理を施してもよい。また、中間品に、必要に応じて常法に従って焼鈍処理を施してもよい。焼鈍処理の条件は特に限定されないが、例えば、600~950℃で、30分~10時間保持すればよい。
 上記中間品は、浸炭窒化処理する前に、必要に応じて常法に従って溶体化処理および焼準処理を施してもよい。溶体化処理の条件は特に限定されないが、例えば、900~1300℃で、30分~3時間保持すればよい。焼準処理の条件は特に限定されないが、例えば、800~1000℃で、30分~3時間保持すればよい。
 浸炭窒化処理条件は特に限定されず公知の条件を適用できる。具体的には、カーボンポテンシャルを0.5~1.0質量%、NH3を体積分率で2~15%含むプロパンガス雰囲気とし、800~1000℃で30分~6時間保持して行えばよい。浸炭窒化処理後は、常法に従って焼入れし、更に100~300℃に加熱して30分間~3時間保持して焼戻しを行えばよい。
 浸炭窒化処理は、浸炭処理してから浸炭窒化処理してもよい。例えば、浸炭処理として、カーボンポテンシャルCPを0.5~1.0質量%として850~1000℃で、30分~3時間保持してから、浸炭窒化処理として、カーボンポテンシャルCPを0.5~1.0質量%、NH3を体積分率で2~15%含むプロパンガス雰囲気で、800~900℃で、30分~3時間保持してもよい。なお、上記浸炭処理は、2回以上に分けて行ってもよい。上記浸炭窒化処理温度に加熱する際の雰囲気は、浸炭窒化雰囲気とすればよい。
 浸炭窒化の種類は特に限定されず、ガス浸炭窒化、真空浸炭窒化など公知の方法を採用できる。真空浸炭窒化するときの真空度は、例えば、0.01MPa程度以下とすればよい。
 浸炭窒化処理後には、必要に応じて常法に従って潤滑被膜処理またはショットピーニング処理などを施してもよい。
 本願は、2015年3月27日に出願された日本国特許出願第2015-67613号に基づく優先権の利益を主張するものである。上記日本国特許出願第2015-67613号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示す成分組成を含有し、残部が鉄および不可避不純物からなる鋼を小型溶解炉にて溶製し、インゴットを製造した。下記表1において、「-」は検出されなかったことを意味する。下記表1には、各成分組成および上記式(1)~(4)に基づいてA値、B値、C1値、C2値を算出した結果も併せて示す。なお、下記表1において、C1値とC2値は区別せずにC値の欄に記載した。
 得られたインゴットを1100~1300℃で30分~5時間加熱保持した後、平均冷却速度を0.02~1℃/秒としてA1点以下の温度に冷却し、更に800~1100℃に加熱保持した状態で仕上げ圧延を行ない、更に平均冷却速度を0.02~1℃/秒として室温まで冷却することにより鋼材を製造した。
 次に、得られた鋼材を熱間鍛造してφ32mmの鋼材を製造した。更に、溶体化処理として1250℃で60分間加熱保持した後、放冷し、次いで、焼準処理として900℃で60分間加熱保持した後、放冷した。
 上記焼準処理して得られたφ32mmの鋼材を用いて部品形状への加工性の評価、並びに表面粗さ、300℃で焼戻し処理した後の硬さ、およびピッチング寿命を測定した。
 部品形状への加工性は、次の手順で評価した。
 上記焼準処理して得られたφ32mmの鋼材に軟化焼鈍処理を施した。軟化焼鈍処理は、900℃にて1時間加熱保持し、次いで650℃にて4時間加熱保持した後に室温まで放冷して行った。
 上記軟化焼鈍処理して得られた鋼材の長手方向中央部を長手方向とは垂直に切断し、切断面を観察できるように樹脂埋めした。切断面を研磨し、ピクラル酸にて腐食後、鋼材の直径をDとしたとき、円周表面からD/4位置を光学顕微鏡にて400倍で写真撮影した。撮影は、任意の10箇所で行ない、画像解析ソフトを用いて撮影した写真から、観察面積に対するベイナイトの面積率をそれぞれ測定し、その平均値を求めた。測定結果を下記表2に示す。ベイナイトの面積率は、部品形状への加工性を評価するための指標となり、ベイナイトの面積率が10%を超えると部品形状への加工性が著しく悪化する。従って本発明では、ベイナイトの面積率が10%以下を合格とし、部品形状への加工性に優れると評価した。
 表面粗さ、300℃で焼戻し処理したときの硬さ、およびピッチング寿命は、次の手順で測定した。
 上記焼準処理して得られたφ32mmの鋼材を図1のaに示す形状の試験片に加工した。加工後の試験片において、φ26mm位置の円周面における突出山部高さRpkは0.20mm以下とした。
 得られた試験片をガス浸炭炉にて浸炭窒化処理した。即ち、まず、浸炭処理として、カーボンポテンシャルを0.9質量%として930℃で90分間保持した後、続けてカーボンポテンシャルを0.75質量%として930℃で60分間保持して行った。60分間保持後、850℃まで降温し、浸炭窒化処理として、NH3を体積分率で12%含むプロパンガス雰囲気で2時間保持した直後に油焼入れを行った。油焼入れ後、更に170℃に加熱して2時間保持し、放冷することにより焼戻しを行った。
 (表面粗さの測定)
 焼戻し処理した試験片の表面粗さを、ミツトヨ社製の表面性状測定器「CS-3200」にて測定した。表面粗さは、突出山部高さRpkを測定した。突出山部高さRpkは、図1のaに示した試験片におけるφ26mm位置の円周面において測定した。突出山部高さRpkの測定手順を図1のbを用いて説明する。図1のbは、図1のaに示した試験片のφ26mm位置のみを示している。図1のbに点線で示した試験片表面の軸方向中央部を含み、この軸方向中央部から軸方向に左右2mmの範囲、即ち、長さ4mmにおける突出山部高さRpkを測定した。次に、突出山部高さRpaを測定した測定位置から180°位置、即ち、測定位置に対して180°反対側の位置についても突出山部高さRpkを測定した。2箇所において測定した突出山部高さRpkの平均値を求めた。算出結果を下記表2に示す。
 なお、本実施例では、焼戻し処理した後、試験片におけるφ26mm位置については、研磨工程は行わずに表面粗さを測定した。
 (300℃で焼戻し処理したときの硬さの測定)
 焼戻し処理して得られた試験片を、更に300℃にて3時間加熱保持してから放冷して2回目の焼戻し処理を行った。
 次いで試験片中央部を軸方向に対して垂直に切断し、切断面の硬さを測定できるよう樹脂埋めした。切断面を研磨後、試験片表面から断面中心に向かって深さ0.01mm位置において5箇所のビッカース硬さを測定し、平均値を求めた。ビッカース硬さの測定は、100gfとした。測定結果を下記表2に示す。
 (ピッチング寿命の測定)
 ピッチング寿命は、コマツエンジニアリング株式会社製の「RP-201型ローラーピッチング試験機」を用いて測定した。図2に、試験時の外観として、試験片ローラー1と荷重ローラー2が接触し、すべりながら転動する様子を示す。
 荷重ローラー2にはJIS G4805で規定される高炭素クロム鋼SUJ2、試験油には市販のオートマチック油を用いた。測定条件は、試験面圧:3.5GPa、すべり率:-40%、回転数:1000rpmとした。
 ピッチングが発生して試験機が停止したときのサイクル数をピッチング寿命とし、1000万サイクルに到達した場合はその時点で試験を中止した。各鋼種2本ずつ試験を行ない、平均値を求めた。結果を下記表2に示す。ピッチング寿命が200万回以上の場合を合格とし、ピッチング寿命に優れると評価した。
 部品形状への加工性を評価する指標となるベイナイト分率、およびピッチング寿命の両方が本発明で推奨する基準を満足している場合を合格とし、少なくとも一方が本発明で推奨する基準を満足していない場合を不合格として評価し、評価結果を下記表2の判定の欄に記載した。
 表2に基づいて、次のように考察できる。No.1~45は、本発明で規定する要件を満足する例であり、部品形状への加工性およびピッチング寿命に優れることが分かる。
 No.46~65は、本発明で規定するいずれかの要件を満足しない例であり、部品形状への加工性またはピッチング寿命のうち、少なくとも一方が改善できていない。詳細は次の通りである。
 No.46は、C量が少なすぎる例であり、ピッチング寿命を向上できなかった。
 No.47は、Siを過剰に含有し、A値およびC値が本発明で規定する範囲を満足しない例である。A値が本発明で規定する範囲を超えたため、突出山部高さRpkが大きくなった。その結果、ピッチング寿命を向上できなかった。また、C値が本発明で規定する範囲を超えたため、過冷組織であるベイナイトが過剰に生成した。その結果、部品形状への加工性を改善できない。
 No.48は、Mn量が少なすぎる例であり、ピッチング寿命を向上できなかった。
 No.49は、Mnを過剰に含有し、A値およびC値が本発明で規定する範囲を満足しない例である。A値が本発明で規定する範囲を超えたため、突出山部高さRpkが大きくなった。その結果、ピッチング寿命を向上できなかった。また、C値が本発明で規定する範囲を超えたため、過冷組織であるベイナイトが過剰に生成した。その結果、部品形状への加工性を改善できない。
 No.50は、Pを過剰に含有する例であり、ピッチング寿命を向上できなかった。
 No.51は、Sを過剰に含有する例であり、ピッチング寿命を向上できなかった。
 No.52は、Cr量が少なすぎ、B値が本発明で規定する範囲を満足しない例である。B値が本発明で規定する範囲を下回ったため、300℃で焼戻したときの硬さが小さくなった。その結果、ピッチング寿命を向上できなかった。
 No.53は、Crを過剰に含有し、A値が本発明で規定する範囲を満足しない例である。A値が本発明で規定する範囲を超えたため、突出山部高さRpkが大きくなった。その結果、ピッチング寿命を向上できなかった。
 No.54は、Mo量が少なすぎ、B値が本発明で規定する範囲を満足しない例である。B値が本発明で規定する範囲を下回ったため、300℃で焼戻したときの硬さが小さくなった。その結果、ピッチング寿命を向上できなかった。
 No.55は、Moを過剰に含有し、C値が本発明で規定する範囲を満足しない例である。C値が本発明で規定する範囲を超えたため、過冷組織であるベイナイトが過剰に生成した。その結果、部品形状への加工性を改善できない。
 No.56は、A値が本発明で規定する範囲を満足しない例である。A値が本発明で規定する範囲を超えたため、突出山部高さRpkが大きくなった。その結果、ピッチング寿命を向上できなかった。
 No.57~59は、B値が本発明で規定する範囲を満足しない例である。B値が本発明で規定する範囲を下回ったため、300℃で焼戻したときの硬さが小さくなった。その結果、ピッチング寿命を向上できなかった。
 No.60~64は、C値が本発明で規定する範囲を満足しない例である。C値が本発明で規定する範囲を超えたため、過冷組織であるベイナイトが過剰に生成した。その結果、部品形状への加工性を改善できない。
 No.65は、Moを含有せず、B値が本発明で規定する範囲を満足しない例である。B値が本発明で規定する範囲を下回ったため、硬さが小さくなった。その結果、ピッチング寿命を向上できなかった。
 ここで、浸炭窒化処理後、上述したように、油焼入れおよび焼戻しを行ったNo.65の試験片について、表層部の断面を露出させ、ナイタル腐食し、光学顕微鏡で400倍で観察した。撮影した図面代用写真を図3のaに示す。また、Moを含有する例として、同じ条件で撮影したNo.1の図面代用写真を図3のbに示す。
 Moを含有しない場合は、図3のa中に矢印で示したように、不完全焼入組織が発生していることが分かる。一方、Moを含有する場合は、図3のbに示すように、不完全焼入組織が消失していることが分かる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 1 試験片ローラー
 2 荷重ローラー

Claims (7)

  1.  質量%で、
     C :0.15~0.25%、
     Si:0.03~1.0%、
     Mn:0.2~0.5%、
     P :0%超0.030%以下、
     S :0%超0.030%以下、
     Cr:0.35~1.15%、
     Mo:0.25~0.9%、
     Al:0.01~0.08%、および
     N :0%超0.014%以下を含有し、
     残部が鉄および不可避不純物からなり、
     下記式(1)で表されるA値が0.24以下であり、
     下記式(2)で表されるB値が48以上であり、
     下記式(3)で表されるC1値が100以下であることを特徴とする浸炭窒化用鋼材。
    A値=0.102×[Si]+0.084×[Mn]+0.149×[Cr] ・・・(1)
    B値=21.538×[Cr]+71.825×[Mo] ・・・(2)
    C1値=22.29×[Si]+60.60×[Mn]+18.09×[Cr]+121.99×[Mo]-50.12 ・・・(3)
    [式中、[ ]は、各元素の含有量(質量%)を示している。]
  2.  質量%で、
     C :0.15~0.25%、
     Si:0.03~1.0%、
     Mn:0.2~0.5%、
     P :0%超0.030%以下、
     S :0%超0.030%以下、
     Cr:0.35~1.15%、
     Mo:0.25~0.9%、
     Al:0.01~0.08%、および
     N :0%超0.014%以下を含有し、
     更に、質量%で、
     Nb:0%超0.1%以下、
     Ti:0%超0.10%以下、
     B :0%超0.005%以下よりなる群から選ばれる少なくとも1種を含有し、
     残部が鉄および不可避不純物からなり、
     下記式(1)で表されるA値が0.24以下であり、
     下記式(2)で表されるB値が48以上であり、
     下記式(4)で表されるC2値が100以下であることを特徴とする浸炭窒化用鋼材。
    A値=0.102×[Si]+0.084×[Mn]+0.149×[Cr] ・・・(1)
    B値=21.538×[Cr]+71.825×[Mo] ・・・(2)
    C2値=22.29×[Si]+60.60×[Mn]+18.09×[Cr]+121.99×[Mo]+132.11×[Ti]+56.20×[Nb]+9455.95×[B]-50.12 ・・・(4)
    [式中、[ ]は、各元素の含有量(質量%)を示している。]
  3.  前記A値が0.07以上である請求項1または2に記載の鋼材。
  4.  前記B値が89以下である請求項1または2に記載の鋼材。
  5.  前記C1値が-0.5以上である請求項1に記載の鋼材。
  6.  前記C2値が6.1以上である請求項2に記載の鋼材。
  7.  請求項1または2に記載の鋼材を浸炭窒化処理して得られることを特徴とする浸炭窒化部品。
PCT/JP2016/058100 2015-03-27 2016-03-15 浸炭窒化用鋼材および浸炭窒化部品 WO2016158375A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015067613A JP2016186120A (ja) 2015-03-27 2015-03-27 浸炭窒化用鋼材および浸炭窒化部品
JP2015-067613 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158375A1 true WO2016158375A1 (ja) 2016-10-06

Family

ID=57006722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058100 WO2016158375A1 (ja) 2015-03-27 2016-03-15 浸炭窒化用鋼材および浸炭窒化部品

Country Status (3)

Country Link
JP (1) JP2016186120A (ja)
TW (1) TWI579390B (ja)
WO (1) WO2016158375A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125232A (ja) * 2016-01-13 2017-07-20 株式会社神戸製鋼所 浸炭窒化用鋼材および浸炭窒化部品
JP7205112B2 (ja) * 2018-08-24 2023-01-17 大同特殊鋼株式会社 浸炭窒化用鋼

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432537A (ja) * 1990-05-30 1992-02-04 Nissan Motor Co Ltd 面圧強度にすぐれた高強度機械構造用部材
JPH06172867A (ja) * 1992-12-02 1994-06-21 Sumitomo Metal Ind Ltd 衝撃疲労寿命に優れた歯車の製造方法
JP2001200348A (ja) * 2000-01-17 2001-07-24 Daido Steel Co Ltd 面疲労強度に優れた歯車対

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080012942A (ko) * 2005-06-29 2008-02-12 제이에프이 스틸 가부시키가이샤 고탄소열간압연강판 및 그 제조방법
JP5576785B2 (ja) * 2010-12-28 2014-08-20 株式会社神戸製鋼所 冷間鍛造性に優れた鋼材、及びその製造方法
US20160060744A1 (en) * 2013-04-18 2016-03-03 Nippon Steel & Sumitomo Metal Corporation Case-hardening steel and case-hardened steel member
JP6394035B2 (ja) * 2013-06-26 2018-09-26 大同特殊鋼株式会社 肌焼鋼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432537A (ja) * 1990-05-30 1992-02-04 Nissan Motor Co Ltd 面圧強度にすぐれた高強度機械構造用部材
JPH06172867A (ja) * 1992-12-02 1994-06-21 Sumitomo Metal Ind Ltd 衝撃疲労寿命に優れた歯車の製造方法
JP2001200348A (ja) * 2000-01-17 2001-07-24 Daido Steel Co Ltd 面疲労強度に優れた歯車対

Also Published As

Publication number Publication date
TWI579390B (zh) 2017-04-21
JP2016186120A (ja) 2016-10-27
TW201706424A (zh) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5927868B2 (ja) 冷間鍛造性に優れた浸炭用鋼およびその製造方法
WO2011114836A1 (ja) 表層硬化処理用鋼及び表層硬化鋼部品とその製造方法
WO2014192117A1 (ja) 軟窒化高周波焼入れ鋼部品
JP4464862B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼
JP2006307273A (ja) 耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼およびその製法
JP4687616B2 (ja) 鋼製の浸炭部品又は浸炭窒化部品
JP5886119B2 (ja) 肌焼鋼鋼材
JP5652844B2 (ja) 高加工性浸炭用鋼板
JP2006307272A (ja) 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼およびその製法
WO2016158375A1 (ja) 浸炭窒化用鋼材および浸炭窒化部品
TWI630278B (zh) Surface hardened steel
JP2016204699A (ja) 疲労剥離特性に優れた冷間鍛造プーリ用肌焼鋼及びそれを用いたプーリの製造方法
US11326244B2 (en) Steel material for CVT sheave, CVT sheave, and method for manufacturing CVT sheave
WO2017122612A1 (ja) 浸炭窒化用鋼材および浸炭窒化部品
JP2021006659A (ja) 鋼部品およびその製造方法
JP2016102253A (ja) 鋼部品
JP6881496B2 (ja) 部品およびその製造方法
WO2021230383A1 (ja) 鋼および鋼部品
JP4411096B2 (ja) 球状化後の冷間鍛造性に優れた肌焼用鋼線材・棒鋼
JP6881497B2 (ja) 部品およびその製造方法
JP7323850B2 (ja) 鋼材及び浸炭鋼部品
JP6881498B2 (ja) 部品およびその製造方法
JP2008088482A (ja) 転動疲労特性と圧壊強度に優れた軸受のコロまたは球、および、軸受
TWI609090B (zh) 滲碳用鋼材及滲碳元件
JP2023158581A (ja) 歯車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772258

Country of ref document: EP

Kind code of ref document: A1