WO2012073568A1 - 量子収率測定装置 - Google Patents

量子収率測定装置 Download PDF

Info

Publication number
WO2012073568A1
WO2012073568A1 PCT/JP2011/069838 JP2011069838W WO2012073568A1 WO 2012073568 A1 WO2012073568 A1 WO 2012073568A1 JP 2011069838 W JP2011069838 W JP 2011069838W WO 2012073568 A1 WO2012073568 A1 WO 2012073568A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
measured
quantum yield
state
Prior art date
Application number
PCT/JP2011/069838
Other languages
English (en)
French (fr)
Inventor
和也 井口
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to ES11844537T priority Critical patent/ES2832526T3/es
Priority to EP11844537.8A priority patent/EP2647981B1/en
Priority to US13/988,778 priority patent/US9024278B2/en
Priority to CN201180057392.XA priority patent/CN103250045B/zh
Priority to KR1020137016691A priority patent/KR101739619B1/ko
Publication of WO2012073568A1 publication Critical patent/WO2012073568A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres

Definitions

  • the present invention relates to a quantum yield measuring apparatus for measuring a quantum yield of a light emitting material or the like using an integrating sphere.
  • a sample such as a luminescent material is irradiated with excitation light, and the fluorescence emitted from the sample is detected by multiple reflection in an integrating sphere to detect the quantum yield of the sample
  • luminescent material There is known a technique for measuring the ratio of “the number of photons of fluorescence emitted from a light emitting material” to the “number of photons of excitation light absorbed in the light” (see, for example, Patent Documents 1 to 3).
  • an object of the present invention is to provide a quantum yield measuring apparatus that can accurately and efficiently measure the quantum yield of a sample.
  • a quantum yield measuring apparatus irradiates a sample container of a sample cell for accommodating a sample with excitation light, and emits measured light emitted from at least one of the sample and the sample container.
  • a quantum yield measurement device that measures the quantum yield of a sample by detecting the sample, and has a dark box in which the sample container is disposed, and a light emitting unit connected to the dark box, and generates excitation light
  • a light incident part connected to the dark box, a light detection part for detecting the light to be measured, a light incident opening for entering the excitation light, and a light emission opening for emitting the measured light.
  • the integrating sphere arranged in the dark box, the first state where the sample accommodating portion is located in the integrating sphere, and the second state where the sample accommodating portion is located outside the integrating sphere are brought into the respective states.
  • the sample storage unit, the light emitting unit, and the light incident unit are moved, and in the first state, the light Are opposed to elevation portion on the light incident opening, and comprising a moving mechanism for facing the light incident portion to the light exit opening, the.
  • each of the first state in which the sample container of the sample cell is located in the integrating sphere and the second state in which the sample container of the sample cell is located outside the integrating sphere are obtained.
  • the sample storage unit, the light emitting unit, and the light incident unit are moved by the moving mechanism.
  • the fluorescence spectrum (fluorescence component (hereinafter the same)) in the second state is detected directly (without multiple reflection in the integrating sphere), and the fluorescence spectrum detected in the first state is Correction can be made on the basis of the fluorescence spectrum detected in the second state. Therefore, according to this quantum yield measuring apparatus, it is possible to accurately and efficiently measure the quantum yield of the sample.
  • the quantum yield measuring apparatus irradiates the sample accommodating portion of the sample cell for accommodating the sample with excitation light, and is measured from at least one of the sample and the sample accommodating portion.
  • a quantum yield measuring apparatus for measuring a quantum yield of a sample by detecting light wherein a sample container has a dark box disposed therein, and a light emitting unit connected to the dark box, and includes excitation light.
  • a light generating unit that generates light
  • a light incident unit connected to the dark box, a light detection unit that detects measured light
  • a light incident aperture that allows excitation light to enter
  • a light output aperture that emits measured light
  • the plurality of parts constituting the integrating sphere are moved so that in the first state, the light It is opposed to morphism opening to the light emitting portion, and comprises a moving mechanism for facing the light exit opening to the light incident portion.
  • each of the first state in which the sample container of the sample cell is located in the integrating sphere and the second state in which the sample container of the sample cell is located outside the integrating sphere are obtained.
  • the plurality of parts constituting the integrating sphere are moved by the moving mechanism.
  • the fluorescence spectrum in the second state is detected directly (without multiple reflection in the integrating sphere), and the fluorescence spectrum detected in the first state is detected in the second state. It can correct
  • the quantum yield measuring apparatus irradiates the sample receiving portion of the sample cell for storing the sample with excitation light and is emitted from at least one of the sample and the sample storing portion.
  • a quantum yield measuring apparatus for measuring the quantum yield of a sample by detecting light the sample container having a dark box disposed inside, and a light emitting unit connected to the dark box, and an excitation light
  • a light generating unit that generates light, a light incident unit connected to a dark box, a light detection unit that detects measured light, a light incident hole for allowing excitation light to enter, and a light to be measured
  • a light-shielding member formed in a shape that covers the sample storage portion, a light incident opening that allows excitation light to enter, and a light exit opening that emits light to be measured.
  • the first state where the light shielding member is located outside the integrating sphere and the second state where the light shielding member is located within the integrating sphere and covers the sample storage portion are set.
  • the light shielding member is moved by the moving mechanism.
  • the fluorescence spectrum in the second state is detected directly (without multiple reflection in the integrating sphere), and the fluorescence spectrum detected in the first state is detected in the second state. It can correct
  • the quantum yield measuring apparatus irradiates the sample receiving portion of the sample cell for storing the sample with excitation light and is emitted from at least one of the sample and the sample storing portion.
  • a quantum yield measuring apparatus for measuring a quantum yield of a sample by detecting light wherein a sample container has a dark box disposed therein, and a light emitting unit connected to the dark box, and includes excitation light.
  • a light generating unit that generates light
  • a light incident unit connected to the dark box, a light detection unit that detects measured light
  • a light incident aperture that allows excitation light to enter
  • a light output aperture that emits measured light
  • An integrating sphere disposed in a dark box so as to cover the sample storage portion with the light incident opening facing the light emitting portion and the light emitting opening facing the light incident portion, and emitted from the sample.
  • a light guide system for directly guiding the measured light directly to the light detection unit, and a light exit opening The optical path of the light to be measured is set so that each of the first state in which the measurement light is incident on the light detection unit and the second state in which the light to be measured is incident on the light detection unit through the light guide system.
  • An optical path switching mechanism for switching.
  • this quantum yield measuring apparatus a first state in which the light to be measured is incident on the light detection unit through the light exit opening, and a second state in which the light to be measured is incident on the light detection unit through the light guide system
  • the optical path of the light to be measured is switched by the optical path switching mechanism.
  • the fluorescence spectrum in the second state is detected directly (without multiple reflection in the integrating sphere), and the fluorescence spectrum detected in the first state is detected in the second state. It can correct
  • the quantum yield measuring apparatus irradiates the sample receiving portion of the sample cell for storing the sample with excitation light and is emitted from at least one of the sample and the sample storing portion.
  • a quantum yield measuring apparatus for measuring a quantum yield of a sample by detecting light wherein a sample container has a dark box disposed therein, and a light emitting unit connected to the dark box, and includes excitation light.
  • a light generating unit that generates light, a light incident unit connected to the dark box, a light detection unit that detects measured light, a light incident aperture that allows excitation light to enter, and a light output aperture that emits measured light
  • An integrating sphere disposed in a dark box so as to cover the sample storage portion with the light incident opening facing the light emitting portion and the light emitting opening facing the light incident portion; The light to be measured is emitted directly from the sample to the light detector
  • a first state in which excitation light is irradiated onto the sample accommodating portion through the light incident opening and light to be measured is incident on the light detecting portion through the light emitting opening;
  • the optical path of the excitation light and the optical path of the excitation light are set so as to be in each of the second states in which excitation light is irradiated onto the sample storage unit via the optical system and the measured light is incident on the light detection unit via the light guide system.
  • An optical path switching mechanism that switches an optical path of the light to be measured.
  • a first state in which excitation light is irradiated onto the sample accommodating portion through the light incident opening and light to be measured is incident on the light detecting portion through the light emitting opening, and the light guide
  • the optical path of the light to be measured is such that each of the second states in which excitation light is irradiated to the sample storage unit via the system and the light to be measured is incident on the light detection unit via the light guide system. It is switched by the optical path switching mechanism.
  • the fluorescence spectrum in the second state is detected directly (without multiple reflection in the integrating sphere), and the fluorescence spectrum detected in the first state is detected in the second state. It can correct
  • the quantum yield of a sample can be measured accurately and efficiently.
  • FIG. 1 is a transverse sectional view (a) and a longitudinal sectional view (b) of a quantum yield measuring apparatus according to a first embodiment of the present invention.
  • the quantum yield measuring apparatus 1 ⁇ / b> A irradiates the sample storage unit 3 of the sample cell 2 for storing the sample S with the excitation light L ⁇ b> 1, and from at least one of the sample S and the sample storage unit 3.
  • This is an apparatus for measuring the quantum yield (emission quantum yield, fluorescence quantum yield, phosphorescence quantum yield, etc.) of the sample S by detecting the emitted measurement light L2.
  • the sample S is obtained by dissolving a light emitting material used in a light emitting device such as an organic EL in a predetermined solvent.
  • the sample cell 2 is made of, for example, synthetic quartz, and the sample storage unit 3 is, for example, a square columnar container.
  • the quantum yield measuring apparatus 1A includes a dark box 5 in which a sample storage unit 3 is disposed.
  • the dark box 5 is a rectangular parallelepiped box made of metal and blocks light from entering from the outside.
  • the inner surface of the dark box 5 is coated with a material that absorbs the excitation light L1 and the measured light L2.
  • the light emitting part 7 of the light generating part 6 is connected to one side wall of the dark box 5.
  • the light generator 6 is an excitation light source configured by, for example, a xenon lamp or a spectroscope, and generates the excitation light L1.
  • the excitation light L1 enters the dark box 5 through the light emitting unit 7.
  • the light incident part 11 of the light detection part 9 is connected to the rear wall of the dark box 5.
  • the light detection unit 9 is a multichannel detector configured by, for example, a spectroscope, a CCD sensor, or the like, and detects the measured light L2.
  • the light L2 to be measured enters the light detection unit 9 through the light incident unit 11.
  • An integrating sphere 14 is disposed in the dark box 5, and the integrating sphere 14 is fixed at a predetermined position by a support column 69.
  • the integrating sphere 14 is coated with a highly diffuse reflector such as barium sulfate on its inner surface, or formed of a material such as PTFE or Spectralon.
  • the integrating sphere 14 is formed with a light incident opening 15 through which the excitation light L1 is incident and a light emitting opening 16 through which the measured light L2 is emitted.
  • the excitation light L1 enters the integrating sphere 14 through the light incident aperture 15.
  • the light L2 to be measured exits from the integrating sphere 14 through the light exit aperture 16.
  • the dark box 5, the light generation unit 6, and the light detection unit 9 described above are housed in a metal casing.
  • the optical axis of the excitation light L1 emitted from the light emitting part 7 of the light generating part 6 and the optical axis of the measured light L2 incident on the light incident part 11 of the light detecting part 9 are substantially in the horizontal plane. Orthogonal.
  • a cell insertion opening 18 through which the sample cell 2 is inserted is formed in the upper part of the integrating sphere 14.
  • the sample cell 2 is held by a cell holding member 61 that is inserted through the cell insertion opening 18.
  • the side surface of the sample container 3 serving as the light incident surface is inclined at a predetermined angle other than 90 ° with respect to the optical axis of the excitation light L1. As a result, the excitation light L ⁇ b> 1 reflected on the side surface is prevented from returning to the light emitting unit 7.
  • the quantum yield measuring apparatus 1A further includes a moving mechanism 30 that moves the sample accommodating part 3 of the sample cell 2, the light emitting part 7 of the light generating part 6, and the light incident part 11 of the light detecting part 9.
  • the moving mechanism 30 accommodates the sample so that the sample accommodating portion 3 is in a first state where the sample accommodating portion 3 is located in the integrating sphere 14 and a second state where the sample accommodating portion 3 is located outside the integrating sphere 14.
  • the part 3, the light emitting part 7, and the light incident part 11 are moved.
  • the moving mechanism 30 causes the light emitting portion 7 of the light generating portion 6 to face the light incident opening 15 of the integrating sphere 14 and the light incident portion 11 of the light detecting portion 9 to the integrating sphere 14. It is made to oppose the light emission opening 16.
  • the shutter 63 In the first state, the shutter 63 is opened, the light emitting unit 7 faces the dark box 5 from the opening 62 of the dark box 5, the shutter 66 is opened, and the light incident unit 11 is opened from the opening 65 of the dark box 5. Facing the dark box 5.
  • the shutter 70 is opened, the light emitting part 7 faces the dark box 5 from the opening 64 of the dark box 5, the shutter 68 is opened, and the light incident part 11 is opened from the opening 67 of the dark box 5. Facing the dark box 5.
  • an empty sample cell 2 in which the sample S is not accommodated is set in a dark box 5.
  • the excitation light L ⁇ b> 1 is emitted from the light generation unit 6 and is irradiated on the sample storage unit 3.
  • the excitation light L1 reflected by the sample storage unit 3 and the excitation light L1 transmitted through the sample storage unit 3 are subjected to multiple reflection in the integrating sphere 14 and are detected as measured light L2a emitted from the sample storage unit 3. Detected by the unit 9.
  • the shutters 63 and 66 are opened, and the shutters 70 and 68 are closed.
  • the sample S is accommodated in the sample cell 2, and the sample cell 2 is set in the dark box 5.
  • the excitation light L ⁇ b> 1 is emitted from the light generation unit 6 and irradiated on the sample storage unit 3.
  • the excitation light L1 reflected by the sample storage unit 3 and the fluorescence generated by the sample S are multiple-reflected in the integrating sphere 14 and are detected as light L2b to be measured emitted from the sample S and the sample storage unit 3. 9 is detected.
  • the shutters 63 and 66 are opened, and the shutters 70 and 68 are closed.
  • the sample storage unit 3, the light emitting unit 7, and the light incident unit 11 are moved by the moving mechanism 30 so that the sample storage unit 3 is in the second state located outside the integrating sphere 14. Is moved (in this case, raised). That is, with the change from the first state to the second state, the light incident aperture 15 and the light exit aperture 16 of the integrating sphere 14 are respectively changed to that of the light exit portion 7 and the light detector portion 9 of the light generator 6. It moves relative to the light incident part 11. At this time, the relative positional relationship among the sample storage unit 3, the light emitting unit 7, and the light incident unit 11 is maintained.
  • the excitation light L1 is emitted from the light generation unit 6 and irradiated onto the sample storage unit 3.
  • the fluorescence generated in the sample S is directly detected (without multiple reflection in the integrating sphere 14) by the light detection unit 9 as the measurement light L2c emitted from the sample S.
  • the shutters 63 and 66 are closed, and the shutters 70 and 68 are opened.
  • the data of the measured lights L2a, L2b, and L2c is acquired, the data is absorbed by the sample S based on the excitation light component data of the measured lights L2a and L2b by a data analysis device such as a personal computer.
  • the number of photons of the excitation light L1 (a value corresponding to the number of photons such as a value proportional to the number of photons (hereinafter the same)) is calculated.
  • the number of photons of the excitation light L1 absorbed by the sample S corresponds to the region A1 in FIG.
  • the data analysis apparatus corrects the fluorescence component data of the light to be measured L2b based on the data of the light to be measured L2c (refer to Non-Patent Document 1 for details).
  • the true value that is, the number of photons of fluorescence actually emitted from the sample S
  • the number of corrected photons of fluorescence is calculated by the data analyzer.
  • the number of fluorescent photons emitted from the sample S corresponds to the region A2 in FIG.
  • the quantum yield of the sample S which is “the number of photons of fluorescence emitted from the sample S” with respect to “the number of photons of the excitation light L1 absorbed by the sample S” is calculated by the data analysis apparatus.
  • a solvent in which the sample S is not dissolved is accommodated in the sample cell 2, the sample cell 2 is set in the dark box 5, and the measured light L2a is detected in the first state.
  • the quantum yield measuring apparatus 1A As described above, in the quantum yield measuring apparatus 1A, the first state in which the sample storage unit 3 of the sample cell 2 is located in the integrating sphere 14 and the sample storage unit 3 of the sample cell 2 are outside the integrating sphere 14.
  • the sample storage unit 3, the light emitting unit 7, and the light incident unit 11 are moved by the moving mechanism 30 so as to be in the respective second states.
  • the number of fluorescent photons in the second state is detected directly (without multiple reflection in the integrating sphere 14), and the number of fluorescent photons detected in the first state is detected in the second state. Correction can be made based on the number of photons of fluorescence. Therefore, according to the quantum yield measuring apparatus 1A, the quantum yield of the sample S can be accurately and efficiently measured.
  • the present invention is not limited to the above embodiment.
  • the light generation unit 6 and the dark box 5 may be optically connected to each other, and the light detection unit 9 and the dark box 5 may be optically connected to each other by an optical fiber 71.
  • FIG. 6 is a transverse sectional view (a) and a longitudinal sectional view (b) of the quantum yield measuring apparatus according to the second embodiment of the present invention.
  • the quantum yield measuring apparatus 1B includes the moving mechanism 72 that moves the plurality of portions 14a and 14b constituting the integrating sphere 14, and the quantum yield measuring apparatus 1A described above. Mainly different.
  • the moving mechanism 72 supports the integrating sphere 14 in the dark box 5 and opens and closes the plurality of portions 14 a and 14 b constituting the integrating sphere 14.
  • the portions 14a and 14b are hemispheres divided on a plane substantially perpendicular to the optical axis of the excitation light L1 and substantially parallel to the optical axis of the light to be measured L2.
  • the moving mechanism 72 opens the portions 14a and 14b so that the inner surfaces of the portions 14a and 14b face upward.
  • the moving mechanism 72 causes the light incident aperture 15 of the integrating sphere 14 to face the light emitting portion 7 of the light generating portion 6 and closes the light emitting aperture 16 of the integrating sphere 14 to the light when the portions 14a and 14b are closed. It is made to oppose to the light incident part 11 of the detection part 9.
  • an empty sample cell 2 in which the sample S is not accommodated is set in the dark box 5.
  • the excitation light L1 is emitted from the light generation unit 6 to store the sample.
  • Part 3 is irradiated.
  • the excitation light L1 reflected by the sample storage unit 3 and the excitation light L1 transmitted through the sample storage unit 3 are subjected to multiple reflection in the integrating sphere 14 and are detected as measured light L2a emitted from the sample storage unit 3. Detected by the unit 9.
  • the sample S is accommodated in the sample cell 2, and the sample cell 2 is set in the dark box 5.
  • the excitation light L 1 is emitted from the light generation unit 6 to the sample storage unit 3. Irradiated.
  • the excitation light L1 reflected by the sample storage unit 3 and the fluorescence generated by the sample S are multiple-reflected in the integrating sphere 14 and are detected as light L2b to be measured emitted from the sample S and the sample storage unit 3. 9 is detected.
  • the portions 14 a and 14 b are moved by the moving mechanism 72 so that the sample storage unit 3 is in the second state where it is located outside the integrating sphere 14.
  • the excitation light L1 is emitted from the light generation unit 6 and irradiated onto the sample storage unit 3.
  • the fluorescence generated in the sample S is directly detected (without multiple reflection in the integrating sphere 14) by the light detection unit 9 as the measurement light L2c emitted from the sample S.
  • the data analysis apparatus calculates the quantum yield of the sample S based on the data of the measured light L2a, L2b, and L2c.
  • the quantum yield measuring apparatus 1B As described above, in the quantum yield measuring apparatus 1B, the first state in which the sample storage unit 3 of the sample cell 2 is located in the integrating sphere 14 and the sample storage unit 3 of the sample cell 2 are outside the integrating sphere 14.
  • the plurality of portions 14a and 14b constituting the integrating sphere 14 are moved by the moving mechanism 72 so as to be in the respective second states.
  • the number of fluorescent photons in the second state is detected directly (without multiple reflection in the integrating sphere 14), and the number of fluorescent photons detected in the first state is detected in the second state. Correction can be made based on the number of photons of fluorescence. Therefore, according to the quantum yield measuring apparatus 1B, the quantum yield of the sample S can be accurately and efficiently measured.
  • the inner surfaces of the portions 14a and 14b are opened in a direction that does not face the light incident portion 11 of the light detection unit 9.
  • the reflected light can be prevented from entering the light incident portion 11.
  • the moving mechanism 72 may move three or more parts constituting the integrating sphere 14.
  • FIG. 8 is a transverse sectional view (a) and a longitudinal sectional view (b) of the quantum yield measuring apparatus according to the third embodiment of the present invention.
  • the quantum yield measuring apparatus 1 ⁇ / b> C is mainly different from the quantum yield measuring apparatus 1 ⁇ / b> A described above in that it includes a light shielding member 73 and a moving mechanism 80.
  • the light shielding member 73 is formed in a shape that covers the sample storage unit 3, and has a light incident hole 73a for allowing the excitation light L1 to enter and a light emitting hole 73b for emitting the measured light L2. .
  • the inner wall of the light shielding member 73 is preferably subjected to a treatment such as painting for preventing reflection.
  • the moving mechanism 80 is in a first state in which the light shielding member 73 is located outside the integrating sphere 14 and a second state in which the light shielding member 73 is located in the integrating sphere 14 and covers the sample storage unit 3. As described above, the light shielding member 73 is moved.
  • the integrating sphere 14 has the sample receiving portion 3 in a state where the light incident opening 15 faces the light emitting portion 7 of the light generating portion 6 and the light emitting opening 16 faces the light incident portion 11 of the light detecting portion 9. It is arranged in the dark box 5 so as to cover. Further, the integrating sphere 14 is provided with an opening 74 through which the light shielding member 73 is inserted, and the opening 74 is provided with a shutter 75 for opening and closing the opening 74.
  • an empty sample cell 2 in which the sample S is not accommodated is set in the dark box 5.
  • the excitation light L1 is emitted from the light generation unit 6 and irradiated onto the sample storage unit 3.
  • the excitation light L1 reflected by the sample storage unit 3 and the excitation light L1 transmitted through the sample storage unit 3 are subjected to multiple reflection in the integrating sphere 14 and are detected as measured light L2a emitted from the sample storage unit 3. Detected by the unit 9.
  • the shutter 75 is closed.
  • the sample S is accommodated in the sample cell 2, and the sample cell 2 is set in the dark box 5.
  • the excitation light L ⁇ b> 1 is emitted from the light generation unit 6 and irradiated onto the sample storage unit 3.
  • the excitation light L1 reflected by the sample storage unit 3 and the fluorescence generated by the sample S are multiple-reflected in the integrating sphere 14 and are detected as light L2b to be measured emitted from the sample S and the sample storage unit 3. 9 is detected.
  • the shutter 75 is closed.
  • the shutter 75 is opened, and the moving mechanism 80 blocks the light so that the light blocking member 73 is positioned in the integrating sphere 14 and covers the sample storage unit 3.
  • the member 73 is moved.
  • the excitation light L1 is emitted from the light generation unit 6 and irradiated onto the sample storage unit 3.
  • the fluorescence generated in the sample S is directly detected (without multiple reflection in the integrating sphere 14) by the light detection unit 9 as the measurement light L2c emitted from the sample S.
  • the light incident hole 73 a of the light shielding member 73 faces the light incident opening 15 of the integrating sphere 14, and the light emitting hole 73 b of the light shielding member 73 faces the light emitting opening 16 of the integrating sphere 14. .
  • the data analysis apparatus calculates the quantum yield of the sample S based on the data of the measured light L2a, L2b, and L2c.
  • the quantum yield measuring apparatus 1 As described above, in the quantum yield measuring apparatus 1 ⁇ / b> C, the first state where the light shielding member 73 is located outside the integrating sphere 14 and the first state where the light shielding member 73 is located within the integrating sphere 14 and covers the sample container 3.
  • the light shielding member 73 is moved by the moving mechanism 80 so as to be in each of the two states.
  • the number of fluorescent photons in the second state is detected directly (without multiple reflection in the integrating sphere 14), and the number of fluorescent photons detected in the first state is detected in the second state. Correction can be made based on the number of photons of fluorescence. Therefore, according to the quantum yield measuring apparatus 1C, the quantum yield of the sample S can be accurately and efficiently measured.
  • FIG. 10 is a cross-sectional view of a quantum yield measuring apparatus according to the fourth embodiment of the present invention.
  • the quantum yield measurement apparatus 1D is mainly different from the quantum yield measurement apparatus 1A described above in that it includes a light guide system 76 and optical path switching mechanisms 77 and 79. ing.
  • the light guide system 76 has an optical path from a position adjacent to the position where the light emitting section 7 of the light generating section 6 is connected in the dark box 5 to a position in the middle of the light incident section 11 of the light detecting section 9.
  • the light to be measured L2 emitted from the sample S is directly guided to the light detection unit 9.
  • the light guide system 76 has a mirror 78 that changes the direction of the optical path.
  • the optical path switching mechanism 77 is a mirror that can move forward and backward with respect to the optical path of the light guide system 76.
  • the optical path switching mechanism 79 is a mirror that can move forward and backward with respect to the intersection of the optical path of the light incident portion 11 and the optical path of the light guide system 76, and when located on the intersection, the light guide system 76 The light L2 to be measured is reflected on the optical path of the light incident portion 11.
  • the optical path switching mechanisms 77 and 79 are in the first state in which the measured light L2 is incident on the light detection unit 9 via the light exit opening 16 of the integrating sphere 14 and the measured light L2 via the light guide system 76.
  • the optical path of the light to be measured L2 is switched so as to be in each of the second states where the light is incident on the light detection unit 9.
  • the integrating sphere 14 has the sample receiving portion 3 in a state where the light incident opening 15 faces the light emitting portion 7 of the light generating portion 6 and the light emitting opening 16 faces the light incident portion 11 of the light detecting portion 9. It is arranged in the dark box 5 so as to cover.
  • an empty sample cell 2 in which the sample S is not accommodated is set in the dark box 5.
  • the excitation light L1 is emitted from the light generation unit 6 in the first state (that is, the state of FIG. 10) in which the light to be measured L2 enters the light detection unit 9 through the light emission opening 16 of the integrating sphere 14.
  • the sample storage unit 3 is irradiated.
  • the excitation light L1 reflected by the sample storage unit 3 and the excitation light L1 transmitted through the sample storage unit 3 are subjected to multiple reflection in the integrating sphere 14 and are detected as measured light L2a emitted from the sample storage unit 3.
  • the optical path switching mechanism 77 is located outside the optical path of the light guide system 76
  • the optical path switching mechanism 79 is located outside the intersection of the optical path of the light incident portion 11 and the optical path of the light guide system 76. .
  • the sample S is accommodated in the sample cell 2, and the sample cell 2 is set in the dark box 5.
  • the excitation light L1 is emitted from the light generation unit 6 and irradiated onto the sample storage unit 3.
  • the excitation light L1 reflected by the sample storage unit 3 and the fluorescence generated by the sample S are multiple-reflected in the integrating sphere 14 to be measured light L2b emitted from the sample S and the sample storage unit 3 as a light detection unit. 9 is detected.
  • the optical path switching mechanism 77 is located outside the optical path of the light guide system 76
  • the optical path switching mechanism 79 is located outside the intersection of the optical path of the light incident portion 11 and the optical path of the light guide system 76. .
  • the measured light L2 is measured by the optical path switching mechanisms 77 and 79 so that the measured light L2 enters the light detection unit 9 through the light guide system 76.
  • the optical path is switched.
  • the excitation light L1 is emitted from the light generation unit 6 and irradiated onto the sample storage unit 3.
  • the fluorescence generated in the sample S is directly detected (without multiple reflection in the integrating sphere 14) by the light detection unit 9 as the measurement light L2c emitted from the sample S.
  • the optical path switching mechanism 77 is located on the optical path of the light guide system 76
  • the optical path switching mechanism 79 is located on the intersection of the optical path of the light incident portion 11 and the optical path of the light guide system 76. .
  • the data analysis apparatus calculates the quantum yield of the sample S based on the data of the measured light L2a, L2b, and L2c.
  • the first state in which the light to be measured L2 enters the light detection unit 9 through the light exit opening 16 of the integrating sphere 14 and the light guide system 76 are used.
  • the optical path of the light to be measured L2 is switched by the optical path switching mechanisms 77 and 79 so that each of the second states in which the light to be measured L2 is incident on the light detection unit 9 is obtained.
  • the number of fluorescent photons in the second state is detected directly (without multiple reflection in the integrating sphere 14), and the number of fluorescent photons detected in the first state is detected in the second state. Correction can be made based on the number of photons of fluorescence. Therefore, according to the quantum yield measuring apparatus 1D, it is possible to accurately and efficiently measure the quantum yield of the sample S.
  • FIG. 12 is a cross-sectional view of the quantum yield measuring apparatus according to the fifth embodiment of the present invention.
  • the quantum yield measuring apparatus 1E is mainly different from the quantum yield measuring apparatus 1A described above in that it includes a light guide system 81 and optical path switching mechanisms 85 and 86. ing.
  • the light guide system 81 has an optical path from a position in the middle of the light emitting section 7 of the light generating section 6 to a position in the middle of the light incident section 11 of the light detecting section 9, and the excitation light L ⁇ b> 1 enters the sample storage section 3.
  • the light to be measured L2 emitted from the sample S is directly guided to the light detection unit 9 while being directly guided.
  • the light guide system 81 bundles the optical fiber 82 that guides the excitation light L1, the optical fiber 83 that guides the light L2 to be measured, the light emitting end of the optical fiber 82, and the light incident end of the optical fiber 83. It has a fiber holding member 84 for holding.
  • the fiber holding member 84 can be moved forward and backward with respect to the sample storage unit 3 through the opening 87 of the integrating sphere 14 opened and closed by the shutter 88.
  • the optical path switching mechanism 85 is a mirror that can be moved back and forth with respect to the optical path of the light emitting unit 7, and reflects the excitation light L ⁇ b> 1 onto the optical path of the light guide system 81 when positioned on the optical path.
  • the optical path switching mechanism 86 is a mirror that can be moved back and forth with respect to the optical path of the light incident section 11. When the optical path switching mechanism 86 is positioned on the optical path, the light L2 to be measured guided by the light guide system 81 is emitted as light. Reflected on the optical path of the incident portion 11.
  • the optical path switching mechanisms 85 and 86 irradiate the sample storage unit 3 with the excitation light L1 through the light incident opening 15 and make the measured light L2 enter the light detection unit 9 through the light emitting opening 16. 1 and a second state in which the excitation light L1 is irradiated onto the sample storage unit 3 through the light guide system 81 and the measured light L2 is incident on the light detection unit 9 through the light guide system 81.
  • the optical path of the excitation light L1 and the optical path of the measured light L2 are switched so as to be in each state.
  • the integrating sphere 14 has the sample receiving portion 3 in a state where the light incident opening 15 faces the light emitting portion 7 of the light generating portion 6 and the light emitting opening 16 faces the light incident portion 11 of the light detecting portion 9. It is arranged in the dark box 5 so as to cover.
  • the excitation light L1 reflected by the sample storage unit 3 and the excitation light L1 transmitted through the sample storage unit 3 are subjected to multiple reflection in the integrating sphere 14 and are detected as measured light L2a emitted from the sample storage unit 3. Detected by the unit 9.
  • the optical path switching mechanism 85 is located outside the optical path of the light emitting section 7, and the optical path switching mechanism 86 is located outside the optical path of the light incident section 11.
  • the fiber holding member 84 is located outside the integrating sphere 14 and the shutter 88 is closed.
  • the sample S is accommodated in the sample cell 2, and the sample cell 2 is set in the dark box 5.
  • the light generating unit Excitation light L ⁇ b> 1 is emitted from 6 and is irradiated to the sample container 3.
  • the excitation light L1 reflected by the sample storage unit 3 and the fluorescence generated by the sample S are multiple-reflected in the integrating sphere 14 and are detected as light L2b to be measured emitted from the sample S and the sample storage unit 3. 9 is detected.
  • the optical path switching mechanism 85 is located outside the optical path of the light emitting section 7, and the optical path switching mechanism 86 is located outside the optical path of the light incident section 11.
  • the fiber holding member 84 is located outside the integrating sphere 14 and the shutter 88 is closed.
  • the shutter 88 is opened, and the fiber holding member 84 is brought into contact with or brought close to the sample storage portion 3 through the opening 87 of the integrating sphere 14. Furthermore, the excitation light L1 is irradiated onto the sample storage unit 3 through the light guide system 81, and the second light is incident on the light detection unit 9 through the light guide system 81. The optical path of the excitation light L1 and the optical path of the measured light L2 are switched by the optical path switching mechanisms 85 and 86. Then, in the second state, the excitation light L 1 is emitted from the light generation unit 6 and irradiated onto the sample storage unit 3 through the optical fiber 82.
  • the fluorescence generated in the sample S is directly detected by the light detection unit 9 as the measurement light L2c emitted from the sample S (without multiple reflection in the integrating sphere 14) via the optical fiber 83.
  • the optical path switching mechanism 85 is located on the optical path of the light emitting section 7, and the optical path switching mechanism 86 is located on the optical path of the light incident section 11.
  • the data analysis apparatus calculates the quantum yield of the sample S based on the data of the measured light L2a, L2b, and L2c.
  • the sample receiving unit 3 is irradiated with the excitation light L1 through the light incident opening 15, and the light to be measured L2 is irradiated through the light emitting opening 16.
  • the first state in which the sample receiving unit 3 is irradiated with the excitation light L1 via the light guide system 81 and the light L2 to be measured is incident on the light detection unit 9 via the light guide system 81.
  • the optical path of the excitation light L1 and the optical path of the measured light L2 are switched by the optical path switching mechanisms 85 and 86 so as to be in the two states.
  • the quantum yield measuring apparatus 1E the quantum yield of the sample S can be accurately and efficiently measured.
  • the quantum yield of a sample can be measured accurately and efficiently.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 量子収率測定装置1Aは、試料Sを収容するための試料セル2の試料収容部3に励起光L1を照射し、試料S及び試料収容部3の少なくとも一方から放出される被測定光L2を検出することにより、試料Sの量子収率を測定する。量子収率測定装置1Aは、試料収容部3が内部に配置される暗箱5と、暗箱5に接続された光出射部7を有し、励起光L1を発生させる光発生部6と、暗箱5に接続された光入射部11を有し、被測定光L2を検出する光検出部9と、励起光L1を入射させる光入射開口15、及び被測定光L2を出射させる光出射開口16を有し、暗箱5内に配置された積分球14と、試料収容部3が積分球14内に位置する第1の状態、及び試料収容部3が積分球14外に位置する第2の状態のそれぞれの状態となるように、試料収容部3、光出射部7及び光入射部11を移動させ、第1の状態では、光出射部7を光入射開口15に対向させ、かつ光入射部11を光出射開口16に対向させる移動機構30と、を備える。

Description

量子収率測定装置
 本発明は、積分球を用いて発光材料等の量子収率を測定する量子収率測定装置に関する。
 従来の量子収率測定装置として、発光材料等の試料に励起光を照射し、試料から放出された蛍光を積分球内で多重反射させて検出することにより、試料の量子収率(「発光材料に吸収された励起光のフォトン数」に対する「発光材料から放出された蛍光のフォトン数」の割合)を測定する技術が知られている(例えば特許文献1~3参照)。
 このような技術においては、試料が蛍光成分に対して光吸収性を有していると、蛍光が積分球内で多重反射しているときに、蛍光の一部が試料に吸収される場合がある(この現象を以下「再吸収」という)。そのような場合、蛍光のフォトン数が真の値(すなわち、発光材料から実際に放出された蛍光のフォトン数)よりも低く検出されることになる。そのため、別途、蛍光光度計を用いて、再吸収が生じない状態で試料から放出される蛍光の強度を測定し、それに基づいて先の蛍光のフォトン数を補正して量子収率を求める方法が提案されている(例えば非特許文献1参照)。
特開2007-086031号公報 特開2009-074866号公報 特開2010-151632号公報
CHRISTIANWURTH、他7名、「Evaluation of a Commercial Integrating SphereSetup for the Determination of Absolute Photoluminescence Quantum Yields of DiluteDye Solutions」、APPLIED SPECTROSCOPY、(米国)、Volume 64, Number 7, 2010、p.733-741
 上述したように、積分球を用いて試料の量子収率を正確に測定するためには、積分球を備えた装置とは別に、蛍光光度計を用いる必要があるなど、煩雑な作業を要する。
 そこで、本発明は、試料の量子収率を正確にかつ効率良く測定することができる量子収率測定装置を提供することを目的とする。
 本発明の第1の観点の量子収率測定装置は、試料を収容するための試料セルの試料収容部に励起光を照射し、試料及び試料収容部の少なくとも一方から放出される被測定光を検出することにより、試料の量子収率を測定する量子収率測定装置であって、試料収容部が内部に配置される暗箱と、暗箱に接続された光出射部を有し、励起光を発生させる光発生部と、暗箱に接続された光入射部を有し、被測定光を検出する光検出部と、励起光を入射させる光入射開口、及び被測定光を出射させる光出射開口を有し、暗箱内に配置された積分球と、試料収容部が積分球内に位置する第1の状態、及び試料収容部が積分球外に位置する第2の状態のそれぞれの状態となるように、試料収容部、光出射部及び光入射部を移動させ、第1の状態では、光出射部を光入射開口に対向させ、かつ光入射部を光出射開口に対向させる移動機構と、を備える。
 この量子収率測定装置では、試料セルの試料収容部が積分球内に位置する第1の状態、及び試料セルの試料収容部が積分球外に位置する第2の状態のそれぞれの状態となるように、試料収容部、光出射部及び光入射部が移動機構によって移動させられる。これにより、第2の状態で蛍光のスペクトル(蛍光成分(以下、同じ))を直接(積分球内での多重反射なしに)検出して、第1の状態で検出された蛍光のスペクトルを、第2の状態で検出された蛍光のスペクトルに基づいて補正することができる。従って、この量子収率測定装置によれば、試料の量子収率を正確にかつ効率良く測定することが可能となる。
 また、本発明の第2の観点の量子収率測定装置は、試料を収容するための試料セルの試料収容部に励起光を照射し、試料及び試料収容部の少なくとも一方から放出される被測定光を検出することにより、試料の量子収率を測定する量子収率測定装置であって、試料収容部が内部に配置される暗箱と、暗箱に接続された光出射部を有し、励起光を発生させる光発生部と、暗箱に接続された光入射部を有し、被測定光を検出する光検出部と、励起光を入射させる光入射開口、及び被測定光を出射させる光出射開口を有し、暗箱内に配置された積分球と、試料収容部が積分球内に位置する第1の状態、及び試料収容部が積分球外に位置する第2の状態のそれぞれの状態となるように、積分球を構成する複数の部分を移動させ、第1の状態では、光入射開口を光出射部に対向させ、かつ光出射開口を光入射部に対向させる移動機構と、を備える。
 この量子収率測定装置では、試料セルの試料収容部が積分球内に位置する第1の状態、及び試料セルの試料収容部が積分球外に位置する第2の状態のそれぞれの状態となるように、積分球を構成する複数の部分が移動機構によって移動させられる。これにより、第2の状態で蛍光のスペクトルを直接(積分球内での多重反射なしに)検出して、第1の状態で検出された蛍光のスペクトルを、第2の状態で検出された蛍光のスペクトルに基づいて補正することができる。従って、この量子収率測定装置によれば、試料の量子収率を正確にかつ効率良く測定することが可能となる。
 また、本発明の第3の観点の量子収率測定装置は、試料を収容するための試料セルの試料収容部に励起光を照射し、試料及び試料収容部の少なくとも一方から放出される被測定光を検出することにより、試料の量子収率を測定する量子収率測定装置であって、試料収容部が内部に配置される暗箱と、暗箱に接続された光出射部を有し、励起光を発生させる光発生部と、暗箱に接続された光入射部を有し、被測定光を検出する光検出部と、励起光を入射させるための光入射孔、及び被測定光を出射させるための光出射孔を有し、試料収容部を覆う形状に形成された遮光部材と、励起光を入射させる光入射開口、及び被測定光を出射させる光出射開口を有し、光入射開口が光出射部に対向し、かつ光出射開口が光入射部に対向した状態で、試料収容部を覆うように暗箱内に配置された積分球と、遮光部材が積分球外に位置する第1の状態、及び遮光部材が積分球内に位置して試料収容部を覆う第2の状態のそれぞれの状態となるように、遮光部材を移動させる移動機構と、を備える。
 この量子収率測定装置では、遮光部材が積分球外に位置する第1の状態、及び遮光部材が積分球内に位置して試料収容部を覆う第2の状態のそれぞれの状態となるように、遮光部材が移動機構によって移動させられる。これにより、第2の状態で蛍光のスペクトルを直接(積分球内での多重反射なしに)検出して、第1の状態で検出された蛍光のスペクトルを、第2の状態で検出された蛍光のスペクトルに基づいて補正することができる。従って、この量子収率測定装置によれば、試料の量子収率を正確にかつ効率良く測定することが可能となる。
 また、本発明の第4の観点の量子収率測定装置は、試料を収容するための試料セルの試料収容部に励起光を照射し、試料及び試料収容部の少なくとも一方から放出される被測定光を検出することにより、試料の量子収率を測定する量子収率測定装置であって、試料収容部が内部に配置される暗箱と、暗箱に接続された光出射部を有し、励起光を発生させる光発生部と、暗箱に接続された光入射部を有し、被測定光を検出する光検出部と、励起光を入射させる光入射開口、及び被測定光を出射させる光出射開口を有し、光入射開口が光出射部に対向し、かつ光出射開口が光入射部に対向した状態で、試料収容部を覆うように暗箱内に配置された積分球と、試料から放出された被測定光を光検出部に直接導光する導光系と、光出射開口を介して被測定光を光検出部に入射させる第1の状態、及び導光系を介して被測定光を光検出部に入射させる第2の状態のそれぞれの状態となるように、被測定光の光路を切り替える光路切替機構と、を備える。
 この量子収率測定装置では、光出射開口を介して被測定光を光検出部に入射させる第1の状態、及び導光系を介して被測定光を光検出部に入射させる第2の状態のそれぞれの状態となるように、被測定光の光路が光路切替機構によって切り替えられる。これにより、第2の状態で蛍光のスペクトルを直接(積分球内での多重反射なしに)検出して、第1の状態で検出された蛍光のスペクトルを、第2の状態で検出された蛍光のスペクトルに基づいて補正することができる。従って、この量子収率測定装置によれば、試料の量子収率を正確にかつ効率良く測定することが可能となる。
 また、本発明の第5の観点の量子収率測定装置は、試料を収容するための試料セルの試料収容部に励起光を照射し、試料及び試料収容部の少なくとも一方から放出される被測定光を検出することにより、試料の量子収率を測定する量子収率測定装置であって、試料収容部が内部に配置される暗箱と、暗箱に接続された光出射部を有し、励起光を発生させる光発生部と、暗箱に接続された光入射部を有し、被測定光を検出する光検出部と、励起光を入射させる光入射開口、及び被測定光を出射させる光出射開口を有し、光入射開口が光出射部に対向し、かつ光出射開口が光入射部に対向した状態で、試料収容部を覆うように暗箱内に配置された積分球と、励起光を試料収容部に直接導光すると共に、試料から放出された被測定光を光検出部に直接導光する導光系と、光入射開口を介して励起光を試料収容部に照射し、かつ光出射開口を介して被測定光を光検出部に入射させる第1の状態、及び、導光系を介して励起光を試料収容部に照射し、かつ導光系を介して被測定光を光検出部に入射させる第2の状態のそれぞれの状態となるように、励起光の光路及び被測定光の光路を切り替える光路切替機構と、を備える。
 この量子収率測定装置では、光入射開口を介して励起光を試料収容部に照射し、かつ光出射開口を介して被測定光を光検出部に入射させる第1の状態、及び、導光系を介して励起光を試料収容部に照射し、かつ導光系を介して被測定光を光検出部に入射させる第2の状態のそれぞれの状態となるように、被測定光の光路が光路切替機構によって切り替えられる。これにより、第2の状態で蛍光のスペクトルを直接(積分球内での多重反射なしに)検出して、第1の状態で検出された蛍光のスペクトルを、第2の状態で検出された蛍光のスペクトルに基づいて補正することができる。従って、この量子収率測定装置によれば、試料の量子収率を正確にかつ効率良く測定することが可能となる。
 本発明によれば、試料の量子収率を正確にかつ効率良く測定することができる。
本発明の第1の実施形態の量子収率測定装置の横断面図(a)及び縦断面図(b)である。 図1の量子収率測定装置を用いて量子収率を測定する方法を説明するための横断面図(a)及び縦断面図(b)である。 図1の量子収率測定装置を用いて量子収率を測定する方法を説明するための横断面図(a)及び縦断面図(b)である。 図1の量子収率測定装置を用いて量子収率を測定する方法を説明するためのグラフである。 本発明の第1の実施形態の量子収率測定装置の変形例の縦断面図である。 本発明の第2の実施形態の量子収率測定装置の横断面図(a)及び縦断面図(b)である。 図6の量子収率測定装置を用いて量子収率を測定する方法を説明するための横断面図(a)及び縦断面図(b)である。 本発明の第3の実施形態の量子収率測定装置の横断面図(a)及び縦断面図(b)である。 図8の量子収率測定装置を用いて量子収率を測定する方法を説明するための横断面図(a)及び縦断面図(b)である。 本発明の第4の実施形態の量子収率測定装置の横断面図である。 図10の量子収率測定装置を用いて量子収率を測定する方法を説明するための横断面図である。 本発明の第5の実施形態の量子収率測定装置の横断面図である。 図12の量子収率測定装置を用いて量子収率を測定する方法を説明するための横断面図である。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1の実施形態]
 図1は、本発明の第1の実施形態の量子収率測定装置の横断面図(a)及び縦断面図(b)である。図1に示されるように、量子収率測定装置1Aは、試料Sを収容するための試料セル2の試料収容部3に励起光L1を照射し、試料S及び試料収容部3の少なくとも一方から放出される被測定光L2を検出することにより、試料Sの量子収率(発光量子収率、蛍光量子収率、りん光量子収率等)を測定する装置である。試料Sは、例えば有機EL等の発光デバイスに用いられる発光材料が所定の溶媒に溶かされたものである。試料セル2は、例えば合成石英からなり、試料収容部3は、例えば四角柱状の容器となっている。
 量子収率測定装置1Aは、試料収容部3が内部に配置される暗箱5を備えている。暗箱5は、金属からなる直方体状の箱体であって、外部からの光の侵入を遮断する。暗箱5の内面には、励起光L1及び被測定光L2を吸収する材料による塗装等が施されている。
 暗箱5の一方の側壁には、光発生部6の光出射部7が接続されている。光発生部6は、例えばキセノンランプや分光器等により構成された励起光源であって、励起光L1を発生させる。励起光L1は、光出射部7を介して暗箱5内に入射する。
 暗箱5の後壁には、光検出部9の光入射部11が接続されている。光検出部9は、例えば分光器やCCDセンサ等により構成されたマルチチャンネル検出器であって、被測定光L2を検出する。被測定光L2は、光入射部11を介して光検出部9内に入射する。
 暗箱5内には、積分球14が配置されており、積分球14は、支持柱69によって所定の位置に固定されている。積分球14は、その内面に硫酸バリウム等の高拡散反射剤の塗布が施されるか、若しくはPTFEやスペクトラロン等の材料で形成されている。積分球14には、励起光L1を入射させる光入射開口15、及び被測定光L2を出射させる光出射開口16が形成されている。励起光L1は、光入射開口15を介して積分球14内に入射する。被測定光L2は、光出射開口16を介して積分球14外に出射する。
 以上の暗箱5、光発生部6及び光検出部9は、金属からなる筐体内に収容されている。なお、光発生部6の光出射部7から出射させられる励起光L1の光軸と、光検出部9の光入射部11に入射させられる被測定光L2の光軸とは、水平面内において略直交している。
 積分球14の上部には、試料セル2を挿通させるセル挿通開口18が形成されている。試料セル2は、セル挿通開口18を挿通するセル保持部材61によって保持されている。なお、光入射面となる試料収容部3の側面は、励起光L1の光軸に対して90°以外の所定の角度で傾斜している。これにより、その側面で反射された励起光L1が光出射部7に戻ることが防止される。
 量子収率測定装置1Aは、さらに、試料セル2の試料収容部3、光発生部6の光出射部7及び光検出部9の光入射部11を移動させる移動機構30を備えている。移動機構30は、試料収容部3が積分球14内に位置する第1の状態、及び試料収容部3が積分球14外に位置する第2の状態のそれぞれの状態となるように、試料収容部3、光出射部7及び光入射部11を移動させる。そして、移動機構30は、第1の状態において、光発生部6の光出射部7を積分球14の光入射開口15に対向させ、かつ光検出部9の光入射部11を積分球14の光出射開口16に対向させる。
 また、第1の状態では、シャッタ63が開かれて、光出射部7が暗箱5の開口62から暗箱5内に臨み、シャッタ66が開かれて、光入射部11が暗箱5の開口65から暗箱5内に臨む。一方、第2の状態では、シャッタ70が開かれて、光出射部7が暗箱5の開口64から暗箱5内に臨み、シャッタ68が開かれて、光入射部11が暗箱5の開口67から暗箱5内に臨む。
 以上のように構成された量子収率測定装置1Aを用いて量子収率を測定する方法について説明する。まず、図2に示されるように、試料Sが収容されていない空の試料セル2を暗箱5にセットする。そして、試料収容部3が積分球14内に位置する第1の状態で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料収容部3を透過した励起光L1は、積分球14内で多重反射して、試料収容部3から放出された被測定光L2aとして光検出部9によって検出される。このとき、シャッタ63,66は開かれ、シャッタ70,68は閉じられている。
 続いて、図1に示されるように、試料セル2に試料Sを収容し、その試料セル2を暗箱5にセットする。そして、試料収容部3が積分球14内に位置する第1の状態で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料Sで発生した蛍光は、積分球14内で多重反射して、試料S及び試料収容部3から放出された被測定光L2bとして光検出部9によって検出される。このとき、シャッタ63,66は開かれ、シャッタ70,68は閉じられている。
 続いて、図3に示されるように、試料収容部3が積分球14外に位置する第2の状態となるように、移動機構30によって試料収容部3、光出射部7及び光入射部11が移動(ここでは、上昇)させられる。つまり、第1の状態から第2の状態に変更することに伴い、積分球14の光入射開口15及び光出射開口16は、それぞれ、光発生部6の光出射部7及び光検出部9の光入射部11に対して相対的に移動する。このとき、試料収容部3、光出射部7及び光入射部11の相対的な位置関係は保持される。そして、第2の状態で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料Sで発生した蛍光は、直接(積分球14内での多重反射なしに)、試料Sから放出された被測定光L2cとして光検出部9によって検出される。このとき、シャッタ63,66は閉じられ、シャッタ70,68は開かれている。
 以上のように、被測定光L2a,L2b,L2cのデータが取得されると、パーソナルコンピュータ等のデータ解析装置によって、被測定光L2a,L2bの励起光成分のデータに基づき、試料Sに吸収された励起光L1のフォトン数(フォトン数に比例する値等のフォトン数に相当する値(以下、同じ))が算出される。試料Sに吸収された励起光L1のフォトン数は、図4の領域A1に相当する。
 その一方で、データ解析装置によって、被測定光L2cのデータに基づき、被測定光L2bの蛍光成分のデータが補正される(詳細は非特許文献1参照)。これにより、試料Sが蛍光成分に対して光吸収性を有しており再吸収が生じたとしても、真の値(すなわち、試料Sから実際に放出された蛍光のフォトン数)となるように補正された蛍光のフォトン数がデータ解析装置によって算出される。試料Sから放出された蛍光のフォトン数は、図4の領域A2に相当する。
 そして、データ解析装置によって、「試料Sに吸収された励起光L1のフォトン数」に対する「試料Sから放出された蛍光のフォトン数」である試料Sの量子収率が算出される。なお、試料Sが溶かされていない溶媒を試料セル2に収容し、その試料セル2を暗箱5にセットして、第1の状態で被測定光L2aを検出する場合もある。
 以上説明したように、量子収率測定装置1Aでは、試料セル2の試料収容部3が積分球14内に位置する第1の状態、及び試料セル2の試料収容部3が積分球14外に位置する第2の状態のそれぞれの状態となるように、試料収容部3、光出射部7及び光入射部11が移動機構30によって移動させられる。これにより、第2の状態で蛍光のフォトン数を直接(積分球14内での多重反射なしに)検出して、第1の状態で検出された蛍光のフォトン数を、第2の状態で検出された蛍光のフォトン数に基づいて補正することができる。従って、量子収率測定装置1Aによれば、試料Sの量子収率を正確にかつ効率良く測定することが可能となる。
 以上、本発明の第1の実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、図5に示されるように、光発生部6と暗箱5とを、また、光検出部9と暗箱5とを、それぞれ光ファイバ71によって光学的に接続してもよい。この場合、各光ファイバ71を光出射部7及び光入射部11として移動させることで、光発生部6及び光検出部9を移動させることが不要となる。
[第2の実施形態]
 図6は、本発明の第2の実施形態の量子収率測定装置の横断面図(a)及び縦断面図(b)である。図6に示されるように、量子収率測定装置1Bは、積分球14を構成する複数の部分14a,14bを移動させる移動機構72を備えている点で、上述した量子収率測定装置1Aと主に相違している。
 移動機構72は、暗箱5内において積分球14を支持しており、積分球14を構成する複数の部分14a,14bを開いたり閉じたりする。部分14a,14bは、励起光L1の光軸に略垂直かつ被測定光L2の光軸に略平行な面で分割された半球体である。移動機構72は、部分14a,14bの内面が上方を向くように部分14a,14bを開く。なお、移動機構72は、部分14a,14bを閉じたときに、積分球14の光入射開口15を光発生部6の光出射部7に対向させ、かつ積分球14の光出射開口16を光検出部9の光入射部11に対向させる。
 次に、量子収率測定装置1Bを用いて量子収率を測定する方法について説明する。まず、試料Sが収容されていない空の試料セル2を暗箱5にセットする。そして、試料収容部3が積分球14内に位置する第1の状態(すなわち、部分14a,14bが閉じられた図6の状態)で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料収容部3を透過した励起光L1は、積分球14内で多重反射して、試料収容部3から放出された被測定光L2aとして光検出部9によって検出される。
 続いて、図6に示されるように、試料セル2に試料Sを収容し、その試料セル2を暗箱5にセットする。そして、試料収容部3が積分球14内に位置する第1の状態(すなわち、部分14a,14bが閉じられた状態)で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料Sで発生した蛍光は、積分球14内で多重反射して、試料S及び試料収容部3から放出された被測定光L2bとして光検出部9によって検出される。
 続いて、図7に示されるように、試料収容部3が積分球14外に位置する第2の状態となるように、移動機構72によって部分14a,14bが移動させられる。そして、第2の状態(すなわち、部分14a,14bが開かれた状態)で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料Sで発生した蛍光は、直接(積分球14内での多重反射なしに)、試料Sから放出された被測定光L2cとして光検出部9によって検出される。
 以下、上述した量子収率測定装置1Aの場合と同様に、データ解析装置によって、被測定光L2a,L2b,L2cのデータのデータに基づいて試料Sの量子収率が算出される。
 以上説明したように、量子収率測定装置1Bでは、試料セル2の試料収容部3が積分球14内に位置する第1の状態、及び試料セル2の試料収容部3が積分球14外に位置する第2の状態のそれぞれの状態となるように、積分球14を構成する複数の部分14a,14bが移動機構72によって移動させられる。これにより、第2の状態で蛍光のフォトン数を直接(積分球14内での多重反射なしに)検出して、第1の状態で検出された蛍光のフォトン数を、第2の状態で検出された蛍光のフォトン数に基づいて補正することができる。従って、量子収率測定装置1Bによれば、試料Sの量子収率を正確にかつ効率良く測定することが可能となる。
 また、第2の状態では、部分14a,14bの内面が光検出部9の光入射部11に対向しない方向に開かれるので、被測定光L2が部分14a,14bの内面で反射したとしても、その反射光が光入射部11に入射するのを抑制することができる。
 以上、本発明の第2の実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、移動機構72は、積分球14を構成する3以上の部分を移動させるものであってもよい。
[第3の実施形態]
 図8は、本発明の第3の実施形態の量子収率測定装置の横断面図(a)及び縦断面図(b)である。図8に示されるように、量子収率測定装置1Cは、遮光部材73と、移動機構80と、を備えている点で、上述した量子収率測定装置1Aと主に相違している。
 遮光部材73は、試料収容部3を覆う形状に形成されており、励起光L1を入射させるための光入射孔73a、及び被測定光L2を出射させるための光出射孔73bを有している。この遮光部材73の内壁には、反射防止のための塗装等の処理が施されることが好ましい。移動機構80は、遮光部材73が積分球14外に位置する第1の状態、及び遮光部材73が積分球14内に位置して試料収容部3を覆う第2の状態のそれぞれの状態となるように、遮光部材73を移動させる。
 なお、積分球14は、光入射開口15が光発生部6の光出射部7に対向し、かつ光出射開口16が光検出部9の光入射部11に対向した状態で、試料収容部3を覆うように暗箱5内に配置されている。また、積分球14には、遮光部材73を挿通させる開口74が形成されており、開口74には、開口74を開閉するシャッタ75が設けられている。
 次に、量子収率測定装置1Cを用いて量子収率を測定する方法について説明する。まず、試料Sが収容されていない空の試料セル2を暗箱5にセットする。そして、遮光部材73が積分球14外に位置する第1の状態(すなわち、図8の状態)で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料収容部3を透過した励起光L1は、積分球14内で多重反射して、試料収容部3から放出された被測定光L2aとして光検出部9によって検出される。このとき、シャッタ75は閉じられている。
 続いて、図8に示されるように、試料セル2に試料Sを収容し、その試料セル2を暗箱5にセットする。そして、遮光部材73が積分球14外に位置する第1の状態で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料Sで発生した蛍光は、積分球14内で多重反射して、試料S及び試料収容部3から放出された被測定光L2bとして光検出部9によって検出される。このとき、シャッタ75は閉じられている。
 続いて、図9に示されるように、シャッタ75が開かれて、遮光部材73が積分球14内に位置して試料収容部3を覆う第2の状態となるように、移動機構80によって遮光部材73が移動させられる。そして、第2の状態で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料Sで発生した蛍光は、直接(積分球14内での多重反射なしに)、試料Sから放出された被測定光L2cとして光検出部9によって検出される。なお、第2の状態においては、遮光部材73の光入射孔73aが積分球14の光入射開口15に対向し、遮光部材73の光出射孔73bが積分球14の光出射開口16に対向する。
 以下、上述した量子収率測定装置1Aの場合と同様に、データ解析装置によって、被測定光L2a,L2b,L2cのデータのデータに基づいて試料Sの量子収率が算出される。
 以上説明したように、量子収率測定装置1Cでは、遮光部材73が積分球14外に位置する第1の状態、及び遮光部材73が積分球14内に位置して試料収容部3を覆う第2の状態のそれぞれの状態となるように、遮光部材73が移動機構80によって移動させられる。これにより、第2の状態で蛍光のフォトン数を直接(積分球14内での多重反射なしに)検出して、第1の状態で検出された蛍光のフォトン数を、第2の状態で検出された蛍光のフォトン数に基づいて補正することができる。従って、量子収率測定装置1Cによれば、試料Sの量子収率を正確にかつ効率良く測定することが可能となる。
[第4の実施形態]
 図10は、本発明の第4の実施形態の量子収率測定装置の横断面図である。図10に示されるように、量子収率測定装置1Dは、導光系76と、光路切替機構77,79と、を備えている点で、上述した量子収率測定装置1Aと主に相違している。
 導光系76は、暗箱5において光発生部6の光出射部7が接続された位置に隣接する位置から光検出部9の光入射部11の途中の位置に至る光路を有しており、試料Sから放出された被測定光L2を光検出部9に直接導光する。導光系76は、その光路の方向を変えるミラー78を有している。
 光路切替機構77は、導光系76の光路に対して進退自在なミラーであって、その光路上に位置している場合には、導光系76に入射した被測定光L2を導光系76の光路上に反射する。光路切替機構79は、光入射部11の光路と導光系76の光路との交点に対して進退自在なミラーであって、その交点上に位置している場合には、導光系76によって導光された被測定光L2を光入射部11の光路上に反射する。つまり、光路切替機構77,79は、積分球14の光出射開口16を介して被測定光L2を光検出部9に入射させる第1の状態、及び導光系76を介して被測定光L2を光検出部9に入射させる第2の状態のそれぞれの状態となるように、被測定光L2の光路を切り替える。
 なお、積分球14は、光入射開口15が光発生部6の光出射部7に対向し、かつ光出射開口16が光検出部9の光入射部11に対向した状態で、試料収容部3を覆うように暗箱5内に配置されている。
 次に、量子収率測定装置1Dを用いて量子収率を測定する方法について説明する。まず、試料Sが収容されていない空の試料セル2を暗箱5にセットする。そして、積分球14の光出射開口16を介して被測定光L2を光検出部9に入射させる第1の状態(すなわち、図10の状態)で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料収容部3を透過した励起光L1は、積分球14内で多重反射して、試料収容部3から放出された被測定光L2aとして光検出部9によって検出される。このとき、光路切替機構77は、導光系76の光路外に位置しており、光路切替機構79は、光入射部11の光路と導光系76の光路との交点外に位置している。
 続いて、図10に示されるように、試料セル2に試料Sを収容し、その試料セル2を暗箱5にセットする。そして、積分球14の光出射開口16を介して被測定光L2を光検出部9に入射させる第1の状態で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料Sで発生した蛍光は、積分球14内で多重反射して、試料S及び試料収容部3から放出された被測定光L2bとして光検出部9によって検出される。このとき、光路切替機構77は、導光系76の光路外に位置しており、光路切替機構79は、光入射部11の光路と導光系76の光路との交点外に位置している。
 続いて、図11に示されるように、導光系76を介して被測定光L2を光検出部9に入射させる第2の状態となるように、光路切替機構77,79によって被測定光L2の光路が切り替えられる。そして、第2の状態で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料Sで発生した蛍光は、直接(積分球14内での多重反射なしに)、試料Sから放出された被測定光L2cとして光検出部9によって検出される。このとき、光路切替機構77は、導光系76の光路上に位置しており、光路切替機構79は、光入射部11の光路と導光系76の光路との交点上に位置している。
 以下、上述した量子収率測定装置1Aの場合と同様に、データ解析装置によって、被測定光L2a,L2b,L2cのデータのデータに基づいて試料Sの量子収率が算出される。
 以上説明したように、量子収率測定装置1Dでは、積分球14の光出射開口16を介して被測定光L2を光検出部9に入射させる第1の状態、及び導光系76を介して被測定光L2を光検出部9に入射させる第2の状態のそれぞれの状態となるように、被測定光L2の光路が光路切替機構77,79によって切り替えられる。これにより、第2の状態で蛍光のフォトン数を直接(積分球14内での多重反射なしに)検出して、第1の状態で検出された蛍光のフォトン数を、第2の状態で検出された蛍光のフォトン数に基づいて補正することができる。従って、量子収率測定装置1Dによれば、試料Sの量子収率を正確にかつ効率良く測定することが可能となる。
[第5の実施形態]
 図12は、本発明の第5の実施形態の量子収率測定装置の横断面図である。図12に示されるように、量子収率測定装置1Eは、導光系81と、光路切替機構85,86と、を備えている点で、上述した量子収率測定装置1Aと主に相違している。
 導光系81は、光発生部6の光出射部7の途中の位置から光検出部9の光入射部11の途中位置に至る光路を有しており、励起光L1を試料収容部3に直接導光すると共に、試料Sから放出された被測定光L2を光検出部9に直接導光する。導光系81は、励起光L1を導光する光ファイバ82、被測定光L2を導光する光ファイバ83、並びに光ファイバ82の光出射端部及び光ファイバ83の光入射端部を束ねて保持するファイバ保持部材84を有している。ファイバ保持部材84は、シャッタ88によって開閉される積分球14の開口87を介して、試料収容部3に対して進退自在となっている。
 光路切替機構85は、光出射部7の光路に対して進退自在なミラーであって、その光路上に位置している場合には、励起光L1を導光系81の光路上に反射する。光路切替機構86は、光入射部11の光路に対して進退自在なミラーであって、その光路上に位置している場合には、導光系81によって導光された被測定光L2を光入射部11の光路上に反射する。つまり、光路切替機構85,86は、光入射開口15を介して励起光L1を試料収容部3に照射し、かつ光出射開口16を介して被測定光L2を光検出部9に入射させる第1の状態、及び、導光系81を介して励起光L1を試料収容部3に照射し、かつ導光系81を介して被測定光L2を光検出部9に入射させる第2の状態のそれぞれの状態となるように、励起光L1の光路及び被測定光L2の光路を切り替える。
 なお、積分球14は、光入射開口15が光発生部6の光出射部7に対向し、かつ光出射開口16が光検出部9の光入射部11に対向した状態で、試料収容部3を覆うように暗箱5内に配置されている。
 次に、量子収率測定装置1Eを用いて量子収率を測定する方法について説明する。まず、試料Sが収容されていない空の試料セル2を暗箱5にセットする。そして、光入射開口15を介して励起光L1を試料収容部3に照射し、かつ光出射開口16を介して被測定光L2を光検出部9に入射させる第1の状態(すなわち、図12の状態)で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料収容部3を透過した励起光L1は、積分球14内で多重反射して、試料収容部3から放出された被測定光L2aとして光検出部9によって検出される。このとき、光路切替機構85は、光出射部7の光路外に位置しており、光路切替機構86は、光入射部11の光路外に位置している。また、ファイバ保持部材84は、積分球14外に位置し、シャッタ88は閉じられている。
 続いて、図12に示されるように、試料セル2に試料Sを収容し、その試料セル2を暗箱5にセットする。そして、光入射開口15を介して励起光L1を試料収容部3に照射し、かつ光出射開口16を介して被測定光L2を光検出部9に入射させる第1の状態で、光発生部6から励起光L1が出射されて試料収容部3に照射される。試料収容部3で反射された励起光L1、及び試料Sで発生した蛍光は、積分球14内で多重反射して、試料S及び試料収容部3から放出された被測定光L2bとして光検出部9によって検出される。このとき、光路切替機構85は、光出射部7の光路外に位置しており、光路切替機構86は、光入射部11の光路外に位置している。また、ファイバ保持部材84は、積分球14外に位置し、シャッタ88は閉じられている。
 続いて、図13に示されるように、シャッタ88が開かれて、積分球14の開口87を介してファイバ保持部材84が試料収容部3に接触若しくは接近させられる。さらに、導光系81を介して励起光L1を試料収容部3に照射し、かつ導光系81を介して被測定光L2を光検出部9に入射させる第2の状態となるように、光路切替機構85,86によって励起光L1の光路及び被測定光L2の光路が切り替えられる。そして、第2の状態で、光発生部6から励起光L1が出射されて、光ファイバ82を介して試料収容部3に照射される。試料Sで発生した蛍光は、光ファイバ83を介して直接(積分球14内での多重反射なしに)、試料Sから放出された被測定光L2cとして光検出部9によって検出される。このとき、光路切替機構85は、光出射部7の光路上に位置しており、光路切替機構86は、光入射部11の光路上に位置している。
 以下、上述した量子収率測定装置1Aの場合と同様に、データ解析装置によって、被測定光L2a,L2b,L2cのデータのデータに基づいて試料Sの量子収率が算出される。
 以上説明したように、量子収率測定装置1Eでは、光入射開口15を介して励起光L1を試料収容部3に照射し、かつ光出射開口16を介して被測定光L2を光検出部9に入射させる第1の状態、及び、導光系81を介して励起光L1を試料収容部3に照射し、かつ導光系81を介して被測定光L2を光検出部9に入射させる第2の状態のそれぞれの状態となるように、光路切替機構85,86によって励起光L1の光路及び被測定光L2の光路が切り替えられる。これにより、第2の状態で蛍光のフォトン数を直接(積分球14内での多重反射なしに)検出して、第1の状態で検出された蛍光のフォトン数を、第2の状態で検出された蛍光のフォトン数に基づいて補正することができる。従って、量子収率測定装置1Eによれば、試料Sの量子収率を正確にかつ効率良く測定することが可能となる。
 本発明によれば、試料の量子収率を正確にかつ効率良く測定することができる。
 1A,1B,1C,1D,1E…量子収率測定装置、2…試料セル、3…試料収容部、5…暗箱、6…光発生部、7…光出射部、9…光検出部、11…光入射部、14…積分球、15…光入射開口、16…光出射開口、30,72,80…移動機構、73…遮光部材、73a…光入射孔、73b…光出射孔、76,81…導光系、77,79,85,86…光路切替機構、L1…励起光、L2,L2a,L2b,L2c…被測定光、S…試料。

Claims (5)

  1.  試料を収容するための試料セルの試料収容部に励起光を照射し、前記試料及び前記試料収容部の少なくとも一方から放出される被測定光を検出することにより、前記試料の量子収率を測定する量子収率測定装置であって、
     前記試料収容部が内部に配置される暗箱と、
     前記暗箱に接続された光出射部を有し、前記励起光を発生させる光発生部と、
     前記暗箱に接続された光入射部を有し、前記被測定光を検出する光検出部と、
     前記励起光を入射させる光入射開口、及び前記被測定光を出射させる光出射開口を有し、前記暗箱内に配置された積分球と、
     前記試料収容部が前記積分球内に位置する第1の状態、及び前記試料収容部が前記積分球外に位置する第2の状態のそれぞれの状態となるように、前記試料収容部、前記光出射部及び前記光入射部を移動させ、前記第1の状態では、前記光出射部を前記光入射開口に対向させ、かつ前記光入射部を前記光出射開口に対向させる移動機構と、を備える、量子収率測定装置。
  2.  試料を収容するための試料セルの試料収容部に励起光を照射し、前記試料及び前記試料収容部の少なくとも一方から放出される被測定光を検出することにより、前記試料の量子収率を測定する量子収率測定装置であって、
     前記試料収容部が内部に配置される暗箱と、
     前記暗箱に接続された光出射部を有し、前記励起光を発生させる光発生部と、
     前記暗箱に接続された光入射部を有し、前記被測定光を検出する光検出部と、
     前記励起光を入射させる光入射開口、及び前記被測定光を出射させる光出射開口を有し、前記暗箱内に配置された積分球と、
     前記試料収容部が前記積分球内に位置する第1の状態、及び前記試料収容部が前記積分球外に位置する第2の状態のそれぞれの状態となるように、前記積分球を構成する複数の部分を移動させ、前記第1の状態では、前記光入射開口を前記光出射部に対向させ、かつ前記光出射開口を前記光入射部に対向させる移動機構と、を備える、量子収率測定装置。
  3.  試料を収容するための試料セルの試料収容部に励起光を照射し、前記試料及び前記試料収容部の少なくとも一方から放出される被測定光を検出することにより、前記試料の量子収率を測定する量子収率測定装置であって、
     前記試料収容部が内部に配置される暗箱と、
     前記暗箱に接続された光出射部を有し、前記励起光を発生させる光発生部と、
     前記暗箱に接続された光入射部を有し、前記被測定光を検出する光検出部と、
     前記励起光を入射させるための光入射孔、及び前記被測定光を出射させるための光出射孔を有し、前記試料収容部を覆う形状に形成された遮光部材と、
     前記励起光を入射させる光入射開口、及び前記被測定光を出射させる光出射開口を有し、前記光入射開口が前記光出射部に対向し、かつ前記光出射開口が前記光入射部に対向した状態で、前記試料収容部を覆うように前記暗箱内に配置された積分球と、
     前記遮光部材が積分球外に位置する第1の状態、及び前記遮光部材が前記積分球内に位置して試料収容部を覆う第2の状態のそれぞれの状態となるように、前記遮光部材を移動させる移動機構と、を備える、量子収率測定装置。
  4.  試料を収容するための試料セルの試料収容部に励起光を照射し、前記試料及び前記試料収容部の少なくとも一方から放出される被測定光を検出することにより、前記試料の量子収率を測定する量子収率測定装置であって、
     前記試料収容部が内部に配置される暗箱と、
     前記暗箱に接続された光出射部を有し、前記励起光を発生させる光発生部と、
     前記暗箱に接続された光入射部を有し、前記被測定光を検出する光検出部と、
     前記励起光を入射させる光入射開口、及び前記被測定光を出射させる光出射開口を有し、前記光入射開口が前記光出射部に対向し、かつ前記光出射開口が前記光入射部に対向した状態で、前記試料収容部を覆うように前記暗箱内に配置された積分球と、
     前記試料から放出された前記被測定光を前記光検出部に直接導光する導光系と、
     前記光出射開口を介して前記被測定光を前記光検出部に入射させる第1の状態、及び前記導光系を介して前記被測定光を前記光検出部に入射させる第2の状態のそれぞれの状態となるように、前記被測定光の光路を切り替える光路切替機構と、を備える、量子収率測定装置。
  5.  試料を収容するための試料セルの試料収容部に励起光を照射し、前記試料及び前記試料収容部の少なくとも一方から放出される被測定光を検出することにより、前記試料の量子収率を測定する量子収率測定装置であって、
     前記試料収容部が内部に配置される暗箱と、
     前記暗箱に接続された光出射部を有し、前記励起光を発生させる光発生部と、
     前記暗箱に接続された光入射部を有し、前記被測定光を検出する光検出部と、
     前記励起光を入射させる光入射開口、及び前記被測定光を出射させる光出射開口を有し、前記光入射開口が前記光出射部に対向し、かつ前記光出射開口が前記光入射部に対向した状態で、前記試料収容部を覆うように前記暗箱内に配置された積分球と、
     前記励起光を前記試料収容部に直接導光すると共に、前記試料から放出された前記被測定光を前記光検出部に直接導光する導光系と、
     前記光入射開口を介して前記励起光を前記試料収容部に照射し、かつ前記光出射開口を介して前記被測定光を前記光検出部に入射させる第1の状態、及び、前記導光系を介して前記励起光を前記試料収容部に照射し、かつ前記導光系を介して前記被測定光を前記光検出部に入射させる第2の状態のそれぞれの状態となるように、前記励起光の光路及び前記被測定光の光路を切り替える光路切替機構と、を備える、量子収率測定装置。
PCT/JP2011/069838 2010-11-29 2011-08-31 量子収率測定装置 WO2012073568A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES11844537T ES2832526T3 (es) 2010-11-29 2011-08-31 Dispositivo de medición de rendimiento cuántico
EP11844537.8A EP2647981B1 (en) 2010-11-29 2011-08-31 Quantum-yield measurement device
US13/988,778 US9024278B2 (en) 2010-11-29 2011-08-31 Quantum-yield measurement device
CN201180057392.XA CN103250045B (zh) 2010-11-29 2011-08-31 量子产率测定装置
KR1020137016691A KR101739619B1 (ko) 2010-11-29 2011-08-31 양자수율 측정장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010264853A JP5491369B2 (ja) 2010-11-29 2010-11-29 量子収率測定装置
JP2010-264853 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073568A1 true WO2012073568A1 (ja) 2012-06-07

Family

ID=46171524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069838 WO2012073568A1 (ja) 2010-11-29 2011-08-31 量子収率測定装置

Country Status (8)

Country Link
US (1) US9024278B2 (ja)
EP (1) EP2647981B1 (ja)
JP (1) JP5491369B2 (ja)
KR (1) KR101739619B1 (ja)
CN (1) CN103250045B (ja)
ES (1) ES2832526T3 (ja)
TW (1) TWI506268B (ja)
WO (1) WO2012073568A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344621A (zh) * 2013-07-03 2013-10-09 重庆大学 一种荧光量子效率测量装置及其测量方法
JP2016537655A (ja) * 2013-11-14 2016-12-01 グラインセンス オーワイGrainsense Oy 光学分析装置、光学分析方法及び試料調製装置
JP2020529592A (ja) * 2017-07-31 2020-10-08 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 試料または試料容器の特性を評価する方法および装置
JP2020529597A (ja) * 2017-07-31 2020-10-08 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 試料または試料容器の画像化の方法および装置
CN113218629A (zh) * 2021-04-26 2021-08-06 爱丁堡仪器有限公司 一种变温电致发光量子效率测试系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491368B2 (ja) * 2010-11-29 2014-05-14 浜松ホトニクス株式会社 量子収率測定装置及び量子収率測定方法
JP6227068B1 (ja) * 2016-07-27 2017-11-08 浜松ホトニクス株式会社 試料容器保持部材、光計測装置及び試料容器配置方法
JP6924439B2 (ja) * 2017-07-04 2021-08-25 国立大学法人九州大学 光測定装置、導光部材及び光測定方法
JP6856558B2 (ja) * 2018-01-23 2021-04-07 浜松ホトニクス株式会社 光測定装置及び光測定方法
KR102082801B1 (ko) * 2018-02-07 2020-02-28 (주)유니버셜스탠다드테크놀러지 양자 수율과 발광 수명 동시 측정장치
CA3093494C (en) 2018-03-14 2023-06-27 Grainsense Oy Sample containers for use inside integrating cavities, and tools
CN109781681A (zh) * 2019-01-14 2019-05-21 广州大学 一种荧光量子产率测试仪及其测试方法
KR102288873B1 (ko) * 2021-01-12 2021-08-11 주식회사 엠피아이코리아 대면광원 측정을 위한 적분구 장치
WO2024052821A1 (en) * 2022-09-07 2024-03-14 Marama Labs Limited Integrating cavity device for volume independent measurements

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783828A (ja) * 1993-09-09 1995-03-31 Jasco Corp 角度可変絶対反射率測定装置
JPH07120323A (ja) * 1993-10-25 1995-05-12 Nissan Motor Co Ltd 金属表面色測定装置
JPH1073486A (ja) * 1996-09-02 1998-03-17 Matsushita Electric Ind Co Ltd 蛍光体光学特性測定装置と蛍光体光学特性測定方法
JP2003215041A (ja) * 2002-01-24 2003-07-30 National Institute Of Advanced Industrial & Technology 固体試料の絶対蛍光量子効率測定方法及び装置
JP2007086031A (ja) 2005-09-26 2007-04-05 Hamamatsu Photonics Kk 光検出装置、及び試料ホルダ用治具
WO2009001846A1 (ja) * 2007-06-27 2008-12-31 Shinshu University 発光量子効率測定装置
JP2009074866A (ja) 2007-09-19 2009-04-09 Hamamatsu Photonics Kk 分光測定装置、分光測定方法、及び分光測定プログラム
JP2010151632A (ja) 2008-12-25 2010-07-08 Hamamatsu Photonics Kk 分光測定装置、分光測定方法、及び分光測定プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645340A (en) 1983-06-01 1987-02-24 Boston University Optically reflective sphere for efficient collection of Raman scattered light
JPH06105342B2 (ja) 1986-12-01 1994-12-21 富士写真フイルム株式会社 発光性色素によつて増感されたハロゲン化銀感光材料
US6413786B1 (en) 1997-01-23 2002-07-02 Union Biometrica Technology Holdings, Inc. Binding assays using optical resonance of colloidal particles
US6975891B2 (en) 2001-12-21 2005-12-13 Nir Diagnostics Inc. Raman spectroscopic system with integrating cavity
DE602004002571T2 (de) 2003-02-24 2007-06-21 Gretagmacbeth, L.L.C. Spektrophotometer und dessen baugruppen
JP4418731B2 (ja) * 2004-10-27 2010-02-24 日本放送協会 フォトルミネッセンス量子収率測定方法およびこれに用いる装置
US8324561B2 (en) 2007-03-01 2012-12-04 Hamamatsu Photonics K.K. Photodetector and jig for sample holder
CN101430278A (zh) 2008-12-04 2009-05-13 中国计量学院 一种测量光致发光体发光效率的装置
CN101666680B (zh) * 2009-09-15 2011-06-01 西安交通大学 积分球式光催化反应测量系统
JP5640257B2 (ja) * 2010-03-18 2014-12-17 大塚電子株式会社 量子効率測定方法および量子効率測定装置
JP5559643B2 (ja) * 2010-08-31 2014-07-23 日本分光株式会社 粉末試料の発光測定方法
JP5491368B2 (ja) 2010-11-29 2014-05-14 浜松ホトニクス株式会社 量子収率測定装置及び量子収率測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783828A (ja) * 1993-09-09 1995-03-31 Jasco Corp 角度可変絶対反射率測定装置
JPH07120323A (ja) * 1993-10-25 1995-05-12 Nissan Motor Co Ltd 金属表面色測定装置
JPH1073486A (ja) * 1996-09-02 1998-03-17 Matsushita Electric Ind Co Ltd 蛍光体光学特性測定装置と蛍光体光学特性測定方法
JP2003215041A (ja) * 2002-01-24 2003-07-30 National Institute Of Advanced Industrial & Technology 固体試料の絶対蛍光量子効率測定方法及び装置
JP2007086031A (ja) 2005-09-26 2007-04-05 Hamamatsu Photonics Kk 光検出装置、及び試料ホルダ用治具
WO2009001846A1 (ja) * 2007-06-27 2008-12-31 Shinshu University 発光量子効率測定装置
JP2009074866A (ja) 2007-09-19 2009-04-09 Hamamatsu Photonics Kk 分光測定装置、分光測定方法、及び分光測定プログラム
JP2010151632A (ja) 2008-12-25 2010-07-08 Hamamatsu Photonics Kk 分光測定装置、分光測定方法、及び分光測定プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN WURTH: "Evaluation of a Commercial Integrating Sphere Setup for the Determination of Absolute Photoluminescence Quantum Yields of Dilute Dye Solutions", APPLIED SPECTROSCOPY, (USA, vol. 64, 7 November 2010 (2010-11-07), pages 733 - 741, XP055088622

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344621A (zh) * 2013-07-03 2013-10-09 重庆大学 一种荧光量子效率测量装置及其测量方法
CN103344621B (zh) * 2013-07-03 2015-12-02 重庆大学 一种荧光量子效率测量装置及其测量方法
JP2016537655A (ja) * 2013-11-14 2016-12-01 グラインセンス オーワイGrainsense Oy 光学分析装置、光学分析方法及び試料調製装置
JP2020529592A (ja) * 2017-07-31 2020-10-08 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 試料または試料容器の特性を評価する方法および装置
JP2020529597A (ja) * 2017-07-31 2020-10-08 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 試料または試料容器の画像化の方法および装置
CN113218629A (zh) * 2021-04-26 2021-08-06 爱丁堡仪器有限公司 一种变温电致发光量子效率测试系统

Also Published As

Publication number Publication date
ES2832526T3 (es) 2021-06-10
EP2647981A4 (en) 2017-06-28
EP2647981B1 (en) 2020-10-28
TW201224438A (en) 2012-06-16
KR101739619B1 (ko) 2017-05-24
EP2647981A1 (en) 2013-10-09
KR20140003458A (ko) 2014-01-09
JP2012117817A (ja) 2012-06-21
CN103250045B (zh) 2015-03-18
CN103250045A (zh) 2013-08-14
TWI506268B (zh) 2015-11-01
US9024278B2 (en) 2015-05-05
JP5491369B2 (ja) 2014-05-14
US20130240754A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5491369B2 (ja) 量子収率測定装置
JP5491368B2 (ja) 量子収率測定装置及び量子収率測定方法
JP5529305B1 (ja) 分光測定装置、及び分光測定方法
KR101716902B1 (ko) 분광 측정 장치, 분광 측정 방법, 및 분광 측정 프로그램
JP6279399B2 (ja) 光計測装置及び光計測方法
JP5944843B2 (ja) 分光測定装置及び分光測定方法
JP4418731B2 (ja) フォトルミネッセンス量子収率測定方法およびこれに用いる装置
KR102259936B1 (ko) 시료 용기 유지 부재, 광 계측 장치 및 시료 용기 배치 방법
US10928246B2 (en) Optical measuring device comprising light receiving regions of light guide members overlap with each other in an integrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13988778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137016691

Country of ref document: KR

Kind code of ref document: A