WO2012073564A1 - 点火装置及びその取付構造 - Google Patents

点火装置及びその取付構造 Download PDF

Info

Publication number
WO2012073564A1
WO2012073564A1 PCT/JP2011/069529 JP2011069529W WO2012073564A1 WO 2012073564 A1 WO2012073564 A1 WO 2012073564A1 JP 2011069529 W JP2011069529 W JP 2011069529W WO 2012073564 A1 WO2012073564 A1 WO 2012073564A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulator
ignition device
high voltage
power
Prior art date
Application number
PCT/JP2011/069529
Other languages
English (en)
French (fr)
Inventor
浩平 鬘谷
山田 達範
勝稔 中山
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to US13/881,339 priority Critical patent/US9316199B2/en
Priority to KR1020137017073A priority patent/KR20130100190A/ko
Priority to JP2011553022A priority patent/JP5250119B2/ja
Priority to EP11844411.6A priority patent/EP2647834B1/en
Publication of WO2012073564A1 publication Critical patent/WO2012073564A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/083Layout of circuits for generating sparks by opening or closing a coil circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/04Means providing electrical connection to sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • F02P3/051Opening or closing the primary coil circuit with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/09Layout of circuits for control of the charging current in the capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression

Definitions

  • the present invention relates to an ignition device used in an internal combustion engine or the like, and a mounting structure thereof.
  • an ignition device used for a combustion apparatus such as an internal combustion engine
  • an ignition coil having a primary coil and a secondary coil, a discharge power source for applying a voltage to the primary coil, and a secondary coil are electrically connected.
  • a spark plug having a center electrode and a ground electrode and having a gap formed between both electrodes is known.
  • a spark discharge is generated in the gap of the spark plug by applying a high voltage secondary voltage generated in the secondary coil to the spark plug as the voltage is applied to the primary coil. As a result, the fuel gas is ignited.
  • misfire a situation in which spark discharge does not occur (so-called misfire) tends to occur despite the high frequency power being applied.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an ignition device capable of realizing excellent ignitability while suppressing the occurrence of misfire, and an attachment structure thereof. is there.
  • the ignition device of this configuration includes a discharge power source, An AC power supply for supplying AC power; An ignition coil having a primary coil and a secondary coil, and boosting the voltage of the discharge power source applied to the primary coil to generate a secondary voltage of high voltage in the secondary coil; A spark plug electrically connected to the secondary coil; An ignition device comprising: An AC electrode electrically connected to the AC power source; A high voltage electrode positioned between the secondary coil and the spark plug and electrically connected to the secondary coil and the spark plug; An insulator disposed between the high voltage electrode and the AC electrode; A capacitor formed by the AC electrode, the high-voltage electrode, and the insulator, and a second insulator that covers the ignition coil; The secondary voltage and the AC power are supplied to the spark plug through the high voltage electrode.
  • the spark plug is caused to generate a spark by the secondary voltage, and then the AC power from the AC power source is input to the spark. Accordingly, the spark is strengthened by the AC power, and the spark can be grown larger, and as a result, the ignitability can be dramatically improved.
  • the spark plug when both the secondary voltage and the AC power are supplied to the spark plug, current flows from the discharge power source to the AC power source side or from the AC power source to the discharge power source side. On the other hand, there is a concern that sufficient voltage and AC power cannot be input.
  • the high voltage electrode, the AC electrode, and the capacitor formed by the insulator sandwiched between the electrodes are interposed between the spark plug and the AC power source.
  • An ignition coil (secondary coil) is interposed between the power source for discharge and the discharge power source. Therefore, AC power with a relatively high oscillation frequency passes through the capacitor and is inserted into the spark plug, while a relatively low frequency current output from the secondary coil exists for the presence of the capacitor.
  • the presence of the secondary coil prevents the AC power supplied from the AC power source from flowing into the discharge power source. Therefore, a sufficient voltage can be applied to the spark plug and a sufficient AC power can be supplied. As a result, the spark can be generated more reliably, the spark can be grown more reliably, and the above-described effect of improving the ignitability can be more reliably exhibited.
  • the second insulator covering the capacitor and the ignition coil is provided. Therefore, it is possible to more reliably prevent a situation in which the AC power input to the capacitor (AC electrode) is transmitted to the low potential side (for example, an engine to which a spark plug is attached).
  • the ignition device according to this configuration is characterized in that, in the above configuration 1, the capacitor is connected to an end portion on the side where a higher voltage is generated among both end portions of the secondary coil.
  • the end on the side where a higher voltage is generated means the end on the side where the absolute value of the voltage is large.
  • an end such as an igniter for controlling supply / stop of the secondary voltage to the spark plug may be provided at the end where the lower voltage is generated.
  • a device such as an igniter is close to the capacitor to which a secondary voltage is applied or AC power is supplied, the device may malfunction due to noise generated in the capacitor. is there.
  • the capacitor is connected to the end portion on the side where the higher voltage is generated among the both end portions of the secondary coil.
  • the ignition device of this configuration is the above configuration 1 or 2, wherein the oscillation frequency of the AC power is 50 kHz to 100 MHz, The dielectric constant of the insulator is greater than the dielectric constant of the second insulator; The capacitance of the capacitor is C (F), When the oscillation frequency of the AC power is f (Hz), C ⁇ 0.0005 (F ⁇ Hz) / f It is characterized by satisfying.
  • the oscillation frequency of the AC power is set to a sufficiently small value of 100 MHz or less. Therefore, for example, when the oscillation frequency of the AC power is extremely increased, the wavelength of the AC power becomes extremely short, and as a result, resonance occurs inside the spark plug, which hinders the application of the AC power.
  • the wavelength of the AC power can be sufficiently increased, and the above-described concerns can be eliminated. That is, according to the said structure 3, generation
  • the capacitance C (F) of the capacitor satisfies C ⁇ 0.0005 (F ⁇ Hz) / f with respect to the oscillation frequency f (Hz) of the AC power. Is set. Therefore, when the AC power passes through the capacitor, the loss of AC power is further reduced, and as a result, the ignitability can be further improved.
  • the dielectric constant of the insulator constituting a part of the capacitor is larger than the dielectric constant of the second insulator covering the capacitor and the ignition coil. Therefore, the AC power input to the capacitor (AC electrode) is more reliably transmitted to the low potential side (for example, an engine with a spark plug attached) via the second insulator. Can be prevented. As a result, the loss of AC power during transmission can be more reliably reduced, and sparks can be grown more effectively.
  • one of the high voltage electrode and the AC electrode has a cylindrical shape
  • the tubular insulator is disposed on the inner periphery of the one electrode
  • the other electrode of the two electrodes is disposed on the inner periphery of the insulator.
  • the ignition device of the present configuration has any one of the configurations 1 to 3, wherein at least a part of the high voltage electrode has a plate shape, Of the AC electrode, at least the portion facing the plate portion of the high voltage electrode has a plate shape, The insulator is disposed between a plate-like portion of the high-voltage electrode and a plate-like portion of the AC electrode.
  • At least a part of the high voltage electrode has a spiral shape in a cross section orthogonal to the longitudinal direction of the high voltage electrode, Of the AC electrode, at least the portion facing the spiral portion of the high voltage electrode has a spiral shape,
  • the insulator is disposed between a spiral portion of the high voltage electrode and a spiral portion of the AC electrode.
  • the high voltage electrode extends from the first main electrode plate extending along the longitudinal direction, and is orthogonal to the longitudinal direction.
  • a plurality of first auxiliary electrode plates arranged in a direction The AC electrode includes a second main electrode plate extending along the longitudinal direction, and a plurality of second auxiliary electrode plates extending from the second main electrode plate and arranged along a direction orthogonal to the longitudinal direction,
  • the high voltage electrode and the AC electrode are arranged so that the first main electrode plate and the second main electrode plate face each other, and the first auxiliary electrode plate and the second auxiliary electrode plate are alternately arranged.
  • the insulator is disposed between the auxiliary electrode plates.
  • the ignition device of this configuration is characterized in that, in any one of the above configurations 1 to 7, the insulator is made of ceramic.
  • the insulator is made of ceramic having excellent heat resistance and voltage resistance, the durability of the capacitor can be enhanced. As a result, excellent ignitability can be maintained over a longer period.
  • the ignition device of this configuration is characterized in that, in any one of the above configurations 1 to 7, the insulator is formed of a composite material of ceramic and resin or rubber.
  • the insulator is formed of a composite material made of ceramic and resin or rubber. Accordingly, the resin and rubber function as a buffer material against mechanical shock and thermal shock, and the peeling of the ceramic from the high voltage electrode and the AC electrode due to the shock can be more reliably prevented. As a result, the durability of the capacitor can be further increased, and excellent ignitability can be maintained for a longer period of time.
  • the ignition device of this configuration is characterized in that, in the above configuration 8 or 9, the ceramic is barium titanate (BaTiO 3 ).
  • BaTiO 3 that is particularly excellent in terms of heat resistance among ceramics is used as the ceramic constituting the insulator. Therefore, the durability of the capacitor can be further improved, and excellent ignitability can be maintained for a longer period of time.
  • the capacitance of the capacitor can be further increased. Therefore, the transmittance of AC power when AC power passes through the capacitor can be further improved, and the ignitability can be further improved.
  • a portion of the high voltage electrode and the AC electrode facing each other with at least the insulator interposed therebetween has a volume resistivity of 0.1 ⁇ ⁇ m. It is characterized by being formed of a metal material having no magnetism below.
  • the loss of AC power during transmission can be further reduced, and the AC power input to the spark can be further increased.
  • the ignitability can be further improved.
  • the ignition device according to this configuration is characterized in that, in the above configuration 11, the metal material is copper, silver, gold, aluminum, zinc, or an alloy containing any of these as a main component.
  • the portions facing each other with the insulator interposed therebetween are formed of a metal material having a very small volume resistivity such as Cu or Ag. Therefore, the loss of AC power can be prevented more effectively, and the ignitability can be further improved.
  • the ignition device of this configuration is the semiconductor device according to any one of the above configurations 1 to 12, wherein a semiconductor element capable of switching supply / stop of AC power from the AC power source to the AC electrode is provided between the AC power source and the AC electrode. It is provided.
  • the semiconductor element capable of switching supply / stop of AC power is provided between the AC power supply and the AC electrode.
  • the ignition device mounting structure of this configuration is an ignition device mounting structure in which the ignition plug in the ignition device according to any one of the above configurations 1 to 13 is mounted in a mounting hole of an internal combustion engine, The capacitor is disposed in a cylindrical plug hole provided in the internal combustion engine and into which the spark plug is inserted.
  • the plug hole functions as a noise shield, and it is possible to more reliably prevent a situation in which an abnormality occurs in the operation of the capacitor due to the influence of noise.
  • FIG. 1 It is a schematic block diagram which shows schematic structure of an ignition device. It is a partially broken front view which shows the structure etc. of a spark plug.
  • (A), (b) is the elements on larger scale which show another example of an insulator.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of the ignition device 100.
  • an actual engine EN is provided with a plurality of cylinders, and the spark plugs 1 are provided corresponding to the respective cylinders.
  • the electric power from the discharge power supply 2 and the alternating current power supply 3 which are described below is supplied to each spark plug 1 via the distributor which is not shown in figure.
  • the ignition device 100 includes an ignition plug 1, a discharge power source 2, an AC power source 3, and a mixing device 4.
  • the spark plug 1 is disposed on the outer periphery of the insulator 12 having a cylindrical insulator 12 having a shaft hole 14, a center electrode 15 and a terminal electrode 16 inserted through the shaft hole 14, and the insulator 12.
  • a cylindrical metal shell 13 and a ground electrode 17 fixed to the tip of the metal shell 13 are provided.
  • the center electrode 15 and the terminal electrode 16 are fixed to the insulator 12 by a conductive glass seal layer 18 and are electrically connected.
  • a gap 19 is formed between the tip of the center electrode 15 and the tip of the ground electrode 17.
  • the spark plug 1 is mounted in a mounting hole SH formed in the engine EN. As a result, the metal shell 13 is in contact with the engine EN and is grounded.
  • the metal shell 3 has a relatively small diameter, and the male screw provided on the outer periphery of the metal shell 3 has a relatively small diameter (M10 or less). Furthermore, with the diameter reduction of the metal shell 3, the insulator 2 is also reduced in diameter, and as a result, the insulator 2 is relatively thin.
  • the discharge power source 2 supplies a voltage to a primary coil 41 ⁇ / b> A described later of the mixing device 4, and the AC power source 3 supplies an AC power to an AC electrode 43 described later of the mixing device 4. It is.
  • the oscillation frequency of AC power supplied from the AC power supply 3 is set to 50 kHz to 100 MHz (for example, 13 MHz to 42 MHz).
  • the mixing device 4 includes an ignition coil 41, a high voltage electrode 42, an AC electrode 43, an insulator 44, an igniter 45, a shield member 46, a second insulator 47, and a triac 48 as a semiconductor element. It has.
  • the ignition coil 41 includes a primary coil 41A, a secondary coil 41B, and a core 41C.
  • the primary coil 41A is wound around a core 41C, and one end thereof is connected to the discharge power source 2 and the other end is connected to the igniter 45.
  • the secondary coil 41 ⁇ / b> B is wound around the core 41 ⁇ / b> C.
  • One end of the secondary coil 41 ⁇ / b> B is connected between the primary coil 41 ⁇ / b> A and the discharge power supply 2, and the other end is connected to the high voltage electrode 42.
  • the high voltage electrode 42 is located between the secondary coil 41B and the spark plug 1, and electrically connects the secondary coil 41B and the spark plug 1.
  • the high voltage electrode 42 is formed of a metal material having a plate shape, a volume resistivity of 0.1 ⁇ ⁇ m or less, and having no magnetism.
  • the metal material is copper (Cu), silver (Ag), gold (Au), aluminum (Al), zinc (Zn), or an alloy containing any of these as a main component. Is used.
  • the high voltage electrode 42 and the spark plug 1 are connected via the conductive wire 7, and the high voltage electrode 42 and the spark plug 1 are electrically connected as the conductive wire 7.
  • a coaxial cable including an inner conductor 71 and a cylindrical outer conductor 72 covering the outer periphery of the inner conductor 71 is used. One end of the outer conductor 72 is connected to the shield member 46, and the other end is in contact with the rear end of the metal shell 13 in contact with the engine EN and grounded (see FIG. 2).
  • the AC electrode 43 is formed of a plate-like metal and is electrically connected to the AC power source 3 via the triac 48.
  • the AC electrode 43 is formed of a metal material having a volume resistivity of 0.1 ⁇ ⁇ m or less and not having magnetism, like the high voltage electrode 42 described above, and Cu, Ag, Au, Al, Zn, or an alloy containing any of these as a main component is used. Further, the AC electrode 43 faces the high voltage electrode 42 with the insulator 44 interposed therebetween, and a capacitor 49 is formed by the high voltage electrode 42, the AC electrode 43, and the insulator 44.
  • the spark plug 1 when the spark plug 1 is mounted in the mounting hole SH of the internal combustion engine EN, at least the capacitor 49 of the mixing device 4 is placed in the cylindrical plug hole HO provided in the internal combustion engine EN.
  • the shape and the like of the mixing device 4 are set so as to be arranged.
  • the insulator 44 is formed of an insulating ceramic.
  • barium titanate (BaTiO 3 ) is used as the insulating ceramic.
  • the insulator 44 may be formed using another ceramic (for example, PbTiO 3 or Al 2 O 3 ), a heat resistant resin, or the like.
  • the ceramic 81 (82) and resin (for example, epoxy resin) or rubber (for example, silicone rubber) may be made of a composite material such as fluororubber 83 (84). As shown in FIG. 3 (a), the ceramic and the resin may be stacked and arranged alternately or as shown in FIG. 3 (b). Good.
  • the igniter 45 is formed of a predetermined transistor, and supplies electric power from the discharge power supply 2 to the primary coil 41 ⁇ / b> A in accordance with an energization signal input from an electronic control unit (ECU) 6 of the automobile. And a supply stoppage.
  • ECU electronice control unit
  • a high voltage is applied to the spark plug 1 via the high voltage electrode 42, a current is passed from the discharge power source 2 to the primary coil 41A, a magnetic field is formed inside the core 41C, and then the energization from the ECU 6 is performed.
  • the signal from on to off the current from the discharge power supply 2 to the primary coil 41A is stopped.
  • a primary voltage is generated in the primary coil 41A by self-dielectric action, and a high voltage (several to several tens kV) of negative polarity and relatively low frequency is generated in the secondary coil 41B.
  • a secondary voltage is generated.
  • this secondary voltage is applied to the spark plug 1 (terminal electrode 16) via the high voltage electrode 42, a spark discharge is generated in the gap 19 of the spark plug 1.
  • a higher voltage is generated at the end of the secondary coil 41B on the side connected to the high voltage electrode 42. That is, the capacitor 49 is connected to the end portion on the side where a higher voltage is generated, among the both end portions of the secondary coil 41B.
  • the shield member 46 is a casing that covers the ignition coil 41, the igniter 45, the second insulator 47, the triac 48, and the capacitor 49, and is made of a predetermined metal material.
  • the shield member 46 and the outer conductor 72 prevent power reflection and radiation of electromagnetic noise to the outside, and more reliable supply of AC power to the spark plug 1 is achieved.
  • a cover member made of resin or the like may be provided on the outer periphery of the shield member 46.
  • the second insulator 47 is provided inside the shield member 46 and is disposed so as to cover the ignition coil 41 and the capacitor 49.
  • the second insulator 47 is made of a predetermined insulating material (for example, resin or rubber) having a relatively small dielectric constant. As a result, the dielectric constant of the insulator 44 is equal to the dielectric constant of the second insulator 47. It is said that it is bigger than that.
  • the triac 48 is provided between the AC power source 3 and the AC electrode 43 and switches supply / stop of AC power from the AC power source 3 to the AC electrode 43 in accordance with an energization signal input from the ECU 6. .
  • the oscillation frequency of the AC power supplied from the AC power supply 3 is set to 50 kHz or more and 100 MHz or less, and the capacitance of the capacitor 49 corresponding to this oscillation frequency. Is set. That is, when the capacitance of the capacitor 49 is C (F) and the oscillation frequency of AC power is f (Hz), the capacitance of the capacitor 49 is set so as to satisfy C ⁇ 0.0005 (F ⁇ Hz) / f. The capacity is set.
  • AC power supplied from the AC power source 3 can be input to the spark. It is configured. Accordingly, the spark is strengthened by the AC power, and the spark can be grown larger, and as a result, the ignitability can be dramatically improved.
  • a capacitor 49 is interposed between the spark plug 1 and the AC power source 3, and an ignition coil 41 (secondary coil 41B) is interposed between the spark plug 1 and the discharge power source 2. Therefore, AC power having a relatively high frequency with an oscillation frequency of 50 kHz or higher is passed through the capacitor 49 and inserted into the spark plug 1, while a relatively low frequency current output from the secondary coil 41B is used.
  • the presence of the capacitor 49 suppresses the inflow to the AC power source 3 side.
  • the presence of the secondary coil 41B prevents the AC power supplied from the AC power source 3 from flowing into the discharge power source 2 side. Therefore, a sufficient voltage can be applied to the spark plug 1 and a sufficient AC power can be supplied. As a result, the spark can be generated more reliably, the spark can be grown more reliably, and the above-described effect of improving the ignitability can be more reliably exhibited.
  • the oscillation frequency of the AC power is sufficiently low, such as 100 MHz or less, the occurrence of resonance in the spark plug 1 can be more reliably prevented, and the ignitability improvement effect can be further ensured. Will be played.
  • it is possible to prevent the occurrence of resonance without finely adjusting the design of the spark plug 1 etc. it is possible to secure a sufficient degree of design freedom in the spark plug 1 etc., and in addition to specially used spark plugs that have been used in the past. It can be used as it is without any adjustment.
  • the oscillation frequency of the AC power is set to 50 kHz or more, the voltage applied to the spark plug 1 (center electrode 15) with the input of AC power can be sufficiently reduced. As a result, even if the insulator 12 is relatively thin as described above, it is possible to more reliably prevent the insulator 12 from penetrating with voltage application.
  • the capacitance C (F) of the capacitor 49 is set to satisfy C ⁇ 0.0005 (F ⁇ Hz) / f with respect to the oscillation frequency f (Hz) of the AC power. Therefore, when the AC power passes through the capacitor 49, the loss of AC power is further reduced, and as a result, the ignitability can be further improved.
  • the dielectric constant of the insulator 44 is made larger than the dielectric constant of the second insulator 47. Accordingly, it is possible to more reliably prevent the situation where the AC power input to the capacitor 49 (AC electrode 43) is transmitted to the low potential (engine EN) side via the second insulator 47. . As a result, the loss of AC power during transmission can be more reliably reduced, and sparks can be grown more effectively.
  • a capacitor 49 is connected to an end portion on the side where a higher voltage is generated among both end portions of the secondary coil 41B. Therefore, it is possible to more reliably prevent the igniter 45 connected to the end on the side where the lower voltage is generated from the both ends of the secondary coil 41B from malfunctioning due to noise generated in the capacitor 49. .
  • the insulator 44 is made of BaTiO 3 which is extremely excellent in terms of heat resistance and voltage resistance, the durability of the capacitor 49 can be dramatically increased. As a result, excellent ignitability can be maintained over a longer period.
  • BaTiO 3 has a very high dielectric constant, the capacitance of the capacitor 49 can be further increased. Therefore, the transmittance of AC power when AC power passes through the capacitor 49 can be further improved, and the ignitability can be further improved.
  • the insulator is formed of a composite material of ceramic and resin or rubber, the resin and rubber function as a buffer material against mechanical shock and thermal shock, further enhancing the durability of the capacitor. It becomes possible to raise.
  • the high voltage electrode 42 and the AC electrode 43 are made of a metal material having a volume resistivity of 0.1 ⁇ ⁇ m or less and having no magnetism. For this reason, the loss of the alternating current power at the time of transmission can be reduced further, and the alternating current power thrown into the spark can be further increased. As a result, the ignitability can be further improved.
  • the supply / stop of the AC power to the capacitor 49 (AC electrode 43) can be switched at high speed by the triac 48 provided between the AC power supply 3 and the AC electrode 43.
  • a capacitor 49 is disposed in the plug hole HO. Therefore, the plug hole HO functions as a noise shield, and it is possible to more reliably prevent a situation in which an abnormality occurs in the operation of the capacitor 49 due to the influence of noise.
  • samples of the ignition device in which the capacitances of the capacitors were variously changed were produced, and an ignitability evaluation test was performed on each sample.
  • the outline of the ignitability evaluation test is as follows. That is, the spark plug of each sample was attached to a 2000 cc displacement 4-cylinder DOHC engine, and the air-fuel ratio (A / F) was set to 17. Then, after setting the power of the AC power supply to 300 W, the power frequency of the AC power was changed to 100 MHz, 10 MHz, 1 MHz, or 50 kHz, and power was applied 1000 times to each sample. While measuring the number of misfires (abnormal discharge), the occurrence rate of misfires (misfire rate) was calculated.
  • FIG. 4 shows the test results of the test.
  • the test results when the transmission frequency is 100 MHz are indicated by circles, and the test results when the transmission frequency is 10 MHz are indicated by triangles.
  • the test result when the transmission frequency is 1 MHz is indicated by a square, and the test result when the transmission frequency is 50 kHz is indicated by a cross mark.
  • the capacitance of the capacitor is 5 pF or more.
  • the capacitance of the capacitor is 50 pF or more.
  • the transmission frequency is 1 MHz
  • the capacitance of the capacitor is 500 pF or more
  • the transmission frequency is 50 kHz
  • the capacitance is 10000 pF or more, that is, the transmission frequency is f (Hz) and the capacitance of the capacitor is C (F).
  • FIG. 5 shows the test results of the test.
  • the capacitance of the capacitor was 200 pF.
  • the output power of the AC power supply was 300 W, and the oscillation frequency of the AC power was 50 MHz.
  • a sample mixing device was placed in the plug hole of the engine.
  • a sample in which the insulator is made of ceramic (PbTiO 3 or BaTiO 3 ) or a composite material having excellent heat resistance has excellent durability, and in particular, the insulator is made of BaTiO 3 .
  • the sample had a durability of about 400 hours and was confirmed to have a very excellent durability.
  • the sample in which the insulator was formed of a composite material of ceramic and rubber had a durability exceeding 1000 hours and extremely excellent durability. This is presumably because rubber functions as a buffer against thermal expansion such as vibration and electrodes, and the strength of the capacitor against mechanical shock and thermal shock is improved.
  • a test was performed using a composite material made of ceramic and rubber. However, it is considered that the same result can be obtained even when a resin is used instead of rubber.
  • the insulator in order to improve durability, it is preferable to form the insulator with ceramic, and it is particularly preferable to form the insulator with a composite material such as BaTiO 3 , ceramic and rubber.
  • FIG. 6 shows the test results of the test.
  • Table 1 shows the volume resistivity and the presence or absence of magnetism in each metal.
  • the capacitance of the capacitor and the transmission frequency of the AC power were set so as to satisfy C ⁇ 0.0005 (F ⁇ Hz) / f.
  • each sample had a misfire rate of less than 3.0% and had excellent ignitability, but in particular the volume resistivity was 0.10 ⁇ ⁇ m or less, and The sample using a metal having no magnetism had a misfire rate of less than 1.0%, and was found to be extremely excellent in ignitability. This is presumably because the loss of AC power during transmission was suppressed and the AC power input to the spark was further increased.
  • the volume resistivity of the high voltage electrode and the AC electrode facing each other with at least the insulator interposed therebetween is 0.1 ⁇ ⁇ m or less, and It can be said that it is preferable to form a metal material having no magnetism.
  • a metal material having no magnetism Cu or Ag having a relatively low volume resistivity, or a metal having any one of them as a main component is used in terms of realizing even better ignitability. It is even more preferable.
  • the high voltage electrode 42 and the AC electrode 43 have a plate shape, but at least a part of the high voltage electrode 42 has a plate shape, and at least the high voltage electrode 42 of the AC electrode 43. It is good also as comprising so that the site
  • the capacitor 49 is configured such that the plate-like high voltage electrode 42 and the AC electrode 43 face each other, but the configuration of the capacitor 49 is not particularly limited. Therefore, for example, as shown in FIG. 7, a cylindrical AC electrode 87, a cylindrical insulator 88 disposed inside the AC electrode 87, and a cylindrical shape disposed inside the insulator 88 ( A capacitor 90 having a high voltage electrode 89 (which may be rod-shaped) may be used.
  • the AC electrode may be provided on the inner peripheral side and the high voltage electrode may be provided on the outer peripheral side.
  • At least a part of the high voltage electrode 91 having a spiral shape and an alternating current having at least a portion facing the spiral portion of the high voltage electrode 91 having a spiral shape are formed.
  • a capacitor 94 including an electrode 92 and an insulator 93 disposed between the spiral portion of the high voltage electrode 91 and the spiral portion of the AC electrode 92 may be used.
  • the first main electrode plate 95A and a plurality of first auxiliary electrodes extending from the first main electrode plate 95A and arranged in a direction perpendicular to the longitudinal direction of the first main electrode plate 95A.
  • a high voltage electrode 95 having an electrode plate 95B, a second main electrode plate 96A extending along the longitudinal direction of the high voltage electrode 95 (the depth direction in FIG.
  • An AC electrode 96 including a plurality of second auxiliary electrode plates 96B extending from the main electrode plate 96A and arranged alternately with the first auxiliary electrode plates 95B along a direction orthogonal to the longitudinal direction of the second main electrode plate 96A, and both auxiliary electrodes
  • a capacitor 98 having an insulator 97 disposed between the electrode plates 95B and 96B may be used.
  • the triac 48 is exemplified as a semiconductor element capable of switching supply / stop of AC power from the AC power supply 3 to the AC electrode 43.
  • a semiconductor element 111 in which transistors 112 and 113 are arranged in parallel is provided, and in accordance with an energization signal from the ECU 6 sent to the transistor 114 connected to the bases of the transistors 112 and 113, The supply / stop of AC power to the AC electrode 43 may be configured to be switchable. Further, as shown in FIG.
  • a semiconductor element 115 having FETs 116 and 117 arranged in parallel is provided, and an energization signal from the ECU 6 sent to the transistor 118 connected to the gates of the FETs 116 and 117. Accordingly, the supply / stop of AC power to the AC electrode 43 may be switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

 点火装置(100)は、放電用電源(2)と、交流電源(3)と、二次コイル(41B)に二次電圧を発生させる点火コイル(41)と、二次コイル(41B)に接続される点火プラグ(1)と、交流電源(3)と電気的に接続される交流電極(43)と、二次コイル(41B)及び点火プラグ(1)間に位置する高電圧電極(42)と、両電極(42),(43)間に位置する絶縁体(44)と、両電極(42),(43)、及び、絶縁体(44)により形成されるコンデンサ(49)、並びに、点火コイル(41)を覆う第2絶縁体(47)とを備える。二次電圧及び交流電力は高電圧電極(42)を介して点火プラグ(1)に供給される。これにより、失火の発生を抑制しつつ、優れた着火性を実現することができる。

Description

点火装置及びその取付構造
 本発明は、内燃機関等に使用される点火装置、及び、その取付構造に関する。
 内燃機関等の燃焼装置に使用される点火装置としては、一次コイル及び二次コイルを有する点火コイルと、一次コイルに電圧を印加する放電用電源と、二次コイルと電気的に接続されるとともに、中心電極及び接地電極を有し、両電極間に間隙が形成されてなる点火プラグとを備えたものが知られている。このような点火装置においては、一次コイルに対する電圧の印加に伴って二次コイルで発生した高電圧の二次電圧を点火プラグに印加することで点火プラグの前記間隙に火花放電を生じさせ、その結果、燃料ガスに対する着火がなされるようになっている。
 また近年では、着火性の更なる向上を図るべく、高電圧に代えて、交流電源からの交流電力(高周波電力)を前記間隙に投入することで、火花放電を生じさせる技術が提案されている(例えば、特許文献1等参照)。
特開2009-8100号公報
 しかしながら、上記技術においては、交流電力のみにより火花を生じさせるため、燃焼室内の状態によっては要求電圧を出力できないことがある。従って、高周波電力を投入しているにも関わらず、火花放電が生じないという事態(いわゆる失火)が発生してしまいやすい。
 これに対して、失火の発生を防止すべく、交流電力を増大させ、要求電圧をより確実に出力することが考えられるが、例えば、出力を増大させるためには、交流電力を2乗倍増大させる必要があり、非効率的にしか状態を改善することができない。それどころか、電力の増大により、中心電極や接地電極がより損耗しやすくなってしまうおそれがある。
 本発明は、上記事情を鑑みてなされたものであり、その目的は、失火の発生を抑制しつつ、優れた着火性を実現することができる点火装置、及び、その取付構造を提供することにある。
 以下、上記目的を解決するのに適した各構成につき、項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果を付記する。
 構成1.本構成の点火装置は、放電用電源と、
 交流電力を供給する交流電源と、
 一次コイル及び二次コイルを有し、前記一次コイルに印加される前記放電用電源の電圧を昇圧して前記二次コイルに高電圧の二次電圧を発生させる点火コイルと、
 前記二次コイルに電気的に接続される点火プラグと、
を備えた点火装置であって、
 前記交流電源と電気的に接続される交流電極と、
 前記二次コイルと前記点火プラグとの間に位置し、前記二次コイル及び前記点火プラグに電気的に接続される高電圧電極と、
 前記高電圧電極、及び、前記交流電極の間に配置される絶縁体と、
 前記交流電極、前記高電圧電極、及び、前記絶縁体により形成されるコンデンサ、並びに、前記点火コイルを覆う第2絶縁体とを備え、
 前記高電圧電極を介して、前記二次電圧と前記交流電力とが前記点火プラグに対して供給されることを特徴とする。
 上記構成1によれば、二次電圧により点火プラグにて火花を生じさせた上で、当該火花に対して交流電源からの交流電力が投入されるように構成されている。従って、交流電力により火花が強化されて、火花をより大きく成長させることができ、その結果、着火性を飛躍的に向上させることができる。
 また、電圧の印加により火花を生じさせるため、交流電力のみを投入して火花を生じさせる場合のように、要求電圧を出力できないといった事態が生じにくく、失火の発生をより確実に防止することができる。
 ところで、点火プラグに対して二次電圧及び交流電力の双方を投入するにあたっては、放電用電源から交流電源側へ、又は、交流電源から放電用電源側へと電流が流れてしまい、点火プラグに対して十分な電圧や交流電力を投入できないことが懸念される。この点、上記構成1によれば、点火プラグと交流電源との間に、高電圧電極、交流電極、及び、両電極に挟まれた絶縁体により形成されたコンデンサが介在され、また、点火プラグと放電用電源との間には、点火コイル(二次コイル)が介在されている。従って、発振周波数が比較的高周波数の交流電力については、前記コンデンサを透過して点火プラグに投入される一方で、二次コイルから出力される比較的低周波数の電流については、前記コンデンサの存在により交流電源側への流入が抑制されることとなる。さらに、二次コイルの存在により、交流電源から供給された交流電力の放電用電源側への流入が防止されることとなる。従って、点火プラグに対して十分な電圧を加えることができるとともに、十分な交流電力を投入することができる。その結果、火花をより確実に発生させることができるとともに、その火花をより確実に成長させることができ、上述した着火性の向上効果をより確実に発揮させることができる。
 また、上記構成1によれば、前記コンデンサ及び点火コイルを覆う第2絶縁体が設けられている。従って、コンデンサ(交流電極)に投入された交流電力が、低電位側(例えば、点火プラグの取付けられたエンジンなど)へと伝送されてしまうといった事態をより確実に防止することができる。
 構成2.本構成の点火装置は、上記構成1において、前記二次コイルの両端部のうち、より高い電圧が発生する側の端部に、前記コンデンサが接続されることを特徴とする。
 尚、「より高い電圧が発生する側の端部」とあるのは、電圧の絶対値が大きい側の端部を意味する。
 二次コイルの両端部のうち、より低い電圧が発生する側の端部には、点火プラグに対する二次電圧の供給・停止を制御するイグナイタ等の機器が設けられることがある。ここで、イグナイタ等の機器が、二次電圧の印加や交流電力の供給がされる前記コンデンサに接近していると、コンデンサにおいて発生したノイズの影響で前記機器に誤作動が生じてしまうおそれがある。
 この点、上記構成2によれば、二次コイルの両端部のうち、より高い電圧が発生する側の端部にコンデンサが接続されている。これにより、コンデンサにおいて発生したノイズによる機器の誤作動をより確実に防止することができる。
 構成3.本構成の点火装置は、上記構成1又は2において、前記交流電力の発振周波数は50kHz以上100MHz以下であり、
 前記絶縁体の誘電率が、前記第2絶縁体の誘電率よりも大きく、
 前記コンデンサの静電容量をC(F)とし、
 前記交流電力の発振周波数をf(Hz)としたとき、
 C≧0.0005(F・Hz)/f
を満たすことを特徴とする。
 上記構成3によれば、交流電力の発振周波数が100MHz以下と十分に小さなものとされている。従って、例えば、交流電力の発振周波数を極めて大きくした場合には、交流電力の波長が極めて短くなり、その結果、点火プラグの内部にて共振が生じ、交流電力の投入等に支障が生じてしまうことが懸念されるが、上記構成3によれば、交流電力の波長を十分に大きくすることができ、前述の懸念を払拭することができる。すなわち、上記構成3によれば、点火プラグの内部における共振の発生をより確実に防止することができ、上述した着火性の向上効果をより一層確実に発揮させることができる。また、点火プラグ等の設計を細かく調節することなく共振の発生を防止できるため、点火プラグ等における設計の自由度を十分に確保でき、さらに、従前から一般に利用されてきた点火プラグを特別な調節を施すことなくそのまま用いることができる。
 併せて、上記構成3によれば、コンデンサの静電容量C(F)が、交流電力の発振周波数f(Hz)に対して、C≧0.0005(F・Hz)/fを満たすように設定されている。従って、交流電力がコンデンサを透過するにあたって、交流電力の損失がより一層低減することとなり、ひいては着火性の更なる向上を図ることができる。
 さらに、コンデンサの一部を構成する絶縁体の誘電率が、コンデンサ及び点火コイルを覆う第2絶縁体の誘電率よりも大きなものとされている。従って、コンデンサ(交流電極)に投入された交流電力が、第2絶縁体を介して、低電位側(例えば、点火プラグの取付けられたエンジンなど)へと伝送されてしまうといった事態をより確実に防止することができる。その結果、伝送時における交流電力の損失をより一層確実に低減させることができ、火花を一層効果的に成長させることができる。
 構成4.本構成の点火装置は、上記構成1乃至3のいずれかにおいて、前記高電圧電極、及び、前記交流電極のうち一方の電極は筒状をなし、
 当該一方の電極の内周に、筒状の前記絶縁体が配置され、
 前記絶縁体の内周に、前記両電極のうち他方の電極が配置されることを特徴とする。
 上記構成4によれば、基本的には上記構成1等と同様の作用効果が奏される。
 構成5.本構成の点火装置は、上記構成1乃至3のいずれかにおいて、前記高電圧電極の少なくとも一部は板状をなすとともに、
 前記交流電極のうち、少なくとも前記高電圧電極の板状部分と対向する部位は板状をなし、
 前記高電圧電極の板状部分と前記交流電極の板状部分との間に前記絶縁体が配置されることを特徴とする。
 上記構成5によれば、基本的には上記構成1等と同様の作用効果が奏される。
 構成6.本構成の点火装置は、上記構成1乃至3のいずれかにおいて、前記高電圧電極の長手方向と直交する断面において、前記高電圧電極の少なくとも一部は渦巻き状をなすとともに、
 前記交流電極のうち、少なくとも前記高電圧電極の渦巻き状部分と対向する部位は渦巻き状をなし、
 前記高電圧電極の渦巻き状部分と前記交流電極の渦巻き状部分との間に前記絶縁体が配置されることを特徴とする。
 上記構成6によれば、基本的には上記構成1等と同様の作用効果が奏される。
 構成7.本構成の点火装置は、上記構成1乃至3のいずれかにおいて、前記高電圧電極は、長手方向に沿って延びる第1主電極板と、前記第1主電極板から延び、長手方向と直交する方向に沿って並ぶ複数の第1補助電極板とを備え、
 前記交流電極は、長手方向に沿って延びる第2主電極板と、前記第2主電極板から延び、長手方向と直交する方向に沿って並ぶ複数の第2補助電極板とを備え、
 前記第1主電極板と前記第2主電極板とが対向するとともに、前記第1補助電極板と前記第2補助電極板とが交互に並ぶように、前記高電圧電極及び前記交流電極が配置され、
 前記絶縁体は、前記両補助電極板の間に配置されることを特徴とする。
 上記構成7によれば、基本的には上記構成1等と同様の作用効果が奏される。
 構成8.本構成の点火装置は、上記構成1乃至7のいずれかにおいて、前記絶縁体は、セラミックにより形成されることを特徴とする。
 上記構成8によれば、絶縁体が耐熱性及び耐電圧性に優れるセラミックにより形成されているため、コンデンサの耐久性を高めることができる。その結果、優れた着火性をより長期間に亘って維持することができる。
 構成9.本構成の点火装置は、上記構成1乃至7のいずれかにおいて、前記絶縁体は、セラミックと、樹脂又はゴムとの複合材料により形成されることを特徴とする。
 上記構成9によれば、セラミックと樹脂又はゴムとからなる複合材料により絶縁体が形成されている。従って、機械的な衝撃や熱衝撃に対して樹脂やゴムが緩衝材として機能することとなり、衝撃に伴う高電圧電極や交流電極からのセラミックの剥離をより確実に防止することができる。その結果、コンデンサの耐久性をより一層高めることができ、優れた着火性を一層長期間に亘って維持することができる。
 構成10.本構成の点火装置は、上記構成8又は9において、前記セラミックは、チタン酸バリウム(BaTiO3)であることを特徴とする。
 上記構成10によれば、絶縁体を構成するセラミックとして、セラミックの中でも耐熱性等の面で特に優れるBaTiO3が用いられている。従って、コンデンサの耐久性をより向上させることができ、優れた着火性をより一層長期間に亘って維持できる。
 また、BaTiO3は極めて高い誘電率を有するため、コンデンサの静電容量をより一層増大させることができる。そのため、交流電力がコンデンサを透過する際の交流電力の透過率をより一層向上させることができ、着火性を一層向上させることができる。
 構成11.本構成の点火装置は、上記構成1乃至10のいずれかにおいて、前記高電圧電極、及び、前記交流電極のうち少なくとも前記絶縁体を挟んで対向する部位は、体積抵抗率が0.1μΩ・m以下で、かつ、磁性を持たない金属材料により形成されることを特徴とする。
 上記構成11によれば、伝送時における交流電力の損失を一層低減させることができ、火花に投入される交流電力をより増大させることができる。その結果、着火性をより一層向上させることができる。
 構成12.本構成の点火装置は、上記構成11において、前記金属材料は、銅、銀、金、アルミニウム、亜鉛、又は、これらのうちいずれかを主成分とする合金であることを特徴とする。
 上記構成12によれば、コンデンサを形成する電極のうち、絶縁体を挟んで対向する部位が、CuやAg等の体積抵抗率が極めて小さい金属材料により形成されている。そのため、交流電力の損失をより効果的に防止することができ、着火性の更なる向上を図ることができる。
 構成13.本構成の点火装置は、上記構成1乃至12のいずれかにおいて、前記交流電源と前記交流電極との間に、前記交流電源から前記交流電極に対する交流電力の供給・停止を切替可能な半導体素子を設けたことを特徴とする。
 交流電極に対する交流電力の供給・停止を切替えるにあたっては、例えば、ディストリビュータを用いる手法が考えられる。しかしながら、ディストリビュータを用いた場合には、交流電力のオン・オフの切り替えを繰り返し行うことで、ディストリビュータの構成部品が磨耗してしまうおそれがある。
 この点、上記構成13によれば、交流電源と交流電極との間に、交流電力の供給・停止を切替可能な半導体素子が設けられている。これにより、ディストリビュータを用いる場合に生じ得る構成部品の磨耗といった事態を防止することができ、ひいては点火装置の長寿命化を図ることができる。
 構成14.本構成の点火装置の取付構造は、上記構成1乃至13のいずれかに記載の点火装置における点火プラグを、内燃機関の取付孔に取付けてなる点火装置の取付構造であって、
 前記内燃機関に設けられ前記点火プラグが挿設される筒状のプラグホール内に、前記コンデンサが配置されることを特徴とする。
 上記構成14によれば、プラグホールがノイズシールドとして機能することとなり、ノイズの影響によりコンデンサの動作に異常が生じてしまうという事態をより確実に防止することができる。
点火装置の概略構成を示す概略構成図である。 点火プラグの構成等を示す一部破断正面図である。 (a),(b)は、絶縁体の別例を示す部分拡大断面図である。 コンデンサの静電容量を変更したサンプルにおける着火性評価試験の結果を示すグラフである。 絶縁体の構成材料を変更したサンプルにおける耐久性評価試験の結果を示すグラフである。 高電圧電極、及び、交流電極のうち絶縁体を挟んで対向する部位の構成材料を変更したサンプルにおける着火性評価試験の結果を示すグラフである。 別の実施形態におけるコンデンサの構成を示す断面図である。 別の実施形態におけるコンデンサの構成を示す断面図である。 別の実施形態におけるコンデンサの構成を示す断面図である。 (a),(b)は、別の実施形態における半導体素子の構成を示すブロック図である。
 以下に、一実施形態について図面を参照しつつ説明する。図1は、点火装置100の概略構成を示す概略構成図である。尚、図1では、点火プラグ1を1つのみ示しているが、実際のエンジンENには複数の気筒が設けられており、各気筒に対応して点火プラグ1が設けられている。そして、次述する放電用電源2や交流電源3からの電力が、図示しないディストリビュータを介して各点火プラグ1に供給されるようになっている。
 点火装置100は、点火プラグ1と、放電用電源2と、交流電源3と、混合装置4とを備えている。
 点火プラグ1は、図2に示すように、軸孔14を有する筒状の絶縁碍子12と、軸孔14に挿通された中心電極15及び端子電極16と、絶縁碍子12の外周に配置された筒状の主体金具13と、主体金具13の先端部に固定された接地電極17とを備えている。そして、中心電極15と端子電極16とは、導電性のガラスシール層18により絶縁碍子12に固定されるとともに、電気的に接続されている。また、中心電極15の先端部と接地電極17の先端部との間には間隙19が形成されている。尚、点火プラグ1は、エンジンENに形成された取付孔SHに取付けられており、その結果、主体金具13はエンジンENと接触し、接地された状態となっている。また、主体金具3は比較的小径とされており、主体金具3の外周に設けられた雄ねじのねじ径が比較的小径(M10以下)とされている。さらに、主体金具3の小径化に伴い、絶縁碍子2も小径化されており、その結果、絶縁碍子2は比較的薄肉とされている。
 図1に戻り、放電用電源2は、混合装置4の後述する一次コイル41Aに電圧を供給するものであり、交流電源3は、混合装置4の後述する交流電極43に交流電力を供給するものである。尚、本実施形態では、交流電源3から供給される交流電力の発振周波数が50kHz以上100MHz以下(例えば、13MHz以上42MHz以下)に設定されている。
 前記混合装置4は、点火コイル41と、高電圧電極42と、交流電極43と、絶縁体44と、イグナイタ45と、シールド部材46と、第2絶縁体47と、半導体素子としてのトライアック48とを備えている。
 点火コイル41は、一次コイル41Aと、二次コイル41Bと、コア41Cとを備えている。一次コイル41Aは、コア41Cを中心に巻回されており、その一端が放電用電源2に接続されるとともに、その他端がイグナイタ45に接続されている。また、二次コイル41Bは、コア41Cを中心に巻回されており、その一端が一次コイル41A及び放電用電源2間に接続されるとともに、その他端が高電圧電極42に接続されている。
 高電圧電極42は、二次コイル41Bと点火プラグ1との間に位置し、二次コイル41Bと点火プラグ1とを電気的に接続している。また、高電圧電極42は、板状をなすとともに、体積抵抗率が0.1μΩ・m以下で、かつ、磁性を持たない金属材料により形成されている。尚、本実施形態では、前記金属材料として、銅(Cu)、銀(Ag)、金(Au)、アルミニウム(Al)、亜鉛(Zn)、又は、これらのうちいずれかを主成分とする合金が用いられている。
 また、高電圧電極42と点火プラグ1(端子電極16)とは、導電線7を介して接続されており、当該導電線7として、高電圧電極42と点火プラグ1とを電気的に接続する内部導体71と、内部導体71の外周を覆う筒状の外部導体72とを備えた同軸ケーブルが用いられている。そして、外部導体72のうち、その一端部は前記シールド部材46に接続され、その他端部は、エンジンENに接触し接地された状態にある主体金具13の後端部に接触している(図2参照)。
 前記交流電極43は、板状の金属により形成されるとともに、トライアック48を介して交流電源3と電気的に接続されている。また、交流電極43は、上述した高電圧電極42と同様に、体積抵抗率が0.1μΩ・m以下で、かつ、磁性を持たない金属材料により形成されており、当該金属材料として、Cu、Ag、Au、Al、Zn、又は、これらのうちいずれかを主成分とする合金が用いられている。さらに、交流電極43は、絶縁体44を挟んで高電圧電極42と対向しており、高電圧電極42、交流電極43、及び、絶縁体44によってコンデンサ49が形成されている。尚、本実施形態では、点火プラグ1が内燃機関ENの取付孔SHに取付けられた際に、混合装置4のうち少なくともコンデンサ49が、内燃機関ENに設けられた筒状のプラグホールHO内に配置されるように混合装置4の形状等が設定されている。
 加えて、絶縁体44は、絶縁性のセラミックにより形成されており、本実施形態では、絶縁性のセラミックとしてチタン酸バリウム(BaTiO3)が用いられている。尚、他のセラミック(例えば、PbTiO3やAl23等)や耐熱性樹脂等を用いて絶縁体44を形成することとしてもよい。また、図3(a),(b)に示すように、絶縁体をセラミック単体により構成することなく、セラミック81(82)と、樹脂(例えば、エポキシ樹脂等)又はゴム(例えば、シリコーンゴムやフッ素ゴム等)83(84)との複合材料により絶縁体85(86)を構成することとしてもよい。尚、セラミックと樹脂等とは、図3(a)に示すように、それぞれを積層して配置してもよいし、図3(b)に示すように、それぞれを交互に並べて配置してもよい。
 図1に戻り、前記イグナイタ45は、所定のトランジスタにより形成されており、自動車の電子制御装置(ECU)6から入力される通電信号に応じて、放電用電源2から一次コイル41Aに対する電力の供給及び供給停止を切り替えるものである。高電圧電極42を介して点火プラグ1に高電圧を印加する場合には、放電用電源2から一次コイル41Aに電流を流し、前記コア41Cの内部に磁界を形成した上で、ECU6からの通電信号をオンからオフに切り替えることで、放電用電源2から一次コイル41Aに対する電流を停止する。電流の停止により、前記コア41Cの磁界が変化し、自己誘電作用によって一次コイル41Aに一次電圧が生じるとともに、二次コイル41Bに負極性かつ比較的低周波数の高圧(数~数十kV)の二次電圧が発生する。この二次電圧が高電圧電極42を介して点火プラグ1(端子電極16)に印加されることで、点火プラグ1の間隙19において火花放電が発生する。尚、本実施形態では、二次コイル41Bの両端部のうち高電圧電極42と接続される側の端部において、より高い電圧が発生する。すなわち、前記コンデンサ49は、二次コイル41Bの両端部のうち、より高い電圧が発生する側の端部に接続された状態となっている。
 さらに、前記シールド部材46は、点火コイル41、イグナイタ45、第2絶縁体47、トライアック48、及び、コンデンサ49を覆う筐体であり、所定の金属材料により形成されている。当該シールド部材46と前記外部導体72とにより、電力の反射や外部への電磁波ノイズの放射が防止され、点火プラグ1に対する交流電力のより確実な供給が図られている。尚、シールド部材46の外周に、樹脂等からなるカバー部材を設けることとしてもよい。
 第2絶縁体47は、シールド部材46の内部に設けられており、点火コイル41やコンデンサ49を覆うようにして配置されている。第2絶縁体47は、誘電率の比較的小さい所定の絶縁材料(例えば、樹脂やゴム等)により構成されており、その結果、絶縁体44の誘電率が、第2絶縁体47の誘電率よりも大きなものとされている。
 トライアック48は、交流電源3と交流電極43との間に設けられており、ECU6から入力される通電信号に応じて、交流電源3から交流電極43に対する交流電力の供給・停止を切替えるものである。
 加えて、本実施形態では、上述の通り、交流電源3から供給される交流電力の発振周波数が50kHz以上100MHz以下に設定されているが、この発振周波数に対応して前記コンデンサ49の静電容量が設定されている。すなわち、コンデンサ49の静電容量をC(F)とし、交流電力の発振周波数をf(Hz)としたとき、C≧0.0005(F・Hz)/fを満たすように、コンデンサ49の静電容量が設定されている。
 以上詳述したように、本実施形態によれば、二次電圧により点火プラグ1にて火花を生じさせた上で、当該火花に対して交流電源3から供給される交流電力を投入できるように構成されている。従って、交流電力により火花が強化されて、火花をより大きく成長させることができ、その結果、着火性を飛躍的に向上させることができる。
 また、電圧の印加により火花を生じさせるため、交流電力のみを投入して火花を生じさせる場合のように、要求電圧を出力できないといった事態が生じにくく、失火の発生をより確実に防止することができる。
 さらに、点火プラグ1と交流電源3との間にコンデンサ49が介在され、また、点火プラグ1と放電用電源2との間には、点火コイル41(二次コイル41B)が介在されている。従って、発振周波数が50kHz以上と比較的高周波数の交流電力については、コンデンサ49を透過して点火プラグ1に投入される一方で、二次コイル41Bから出力される比較的低周波数の電流については、コンデンサ49の存在により交流電源3側への流入が抑制される。さらに、二次コイル41Bの存在により、交流電源3から供給された交流電力の放電用電源2側への流入が防止される。従って、点火プラグ1に対して十分な電圧を加えることができるとともに、十分な交流電力を投入することができる。その結果、火花をより確実に発生させることができるとともに、その火花をより確実に成長させることができ、上述した着火性の向上効果をより確実に発揮させることができる。
 加えて、交流電力の発振周波数が100MHz以下と十分に小さなものとされているため、点火プラグ1の内部における共振の発生をより確実に防止することができ、着火性の向上効果がより一層確実に奏されることとなる。また、点火プラグ1等の設計を細かく調節することなく共振の発生を防止できるため、点火プラグ1等における設計の自由度を十分に確保でき、さらに、従前から一般に利用されてきた点火プラグを特別な調節を施すことなくそのまま用いることができる。
 また、交流電力の発振周波数が50kHz以上とされているため、交流電力の投入に伴い点火プラグ1(中心電極15)に印加される電圧を十分に小さくすることができる。その結果、上述のように絶縁碍子12が比較的薄肉であっても、電圧の印加に伴う絶縁碍子12の貫通をより確実に防止することができる。
 併せて、コンデンサ49の静電容量C(F)が、交流電力の発振周波数f(Hz)に対して、C≧0.0005(F・Hz)/fを満たすように設定されている。従って、交流電力がコンデンサ49を透過するにあたって、交流電力の損失がより一層低減することとなり、ひいては着火性の更なる向上を図ることができる。
 さらに、絶縁体44の誘電率が、第2絶縁体47の誘電率よりも大きなものとされている。従って、コンデンサ49(交流電極43)に投入された交流電力が、第2絶縁体47を介して、低電位(エンジンEN)側へと伝送されてしまうといった事態をより確実に防止することができる。その結果、伝送時における交流電力の損失をより一層確実に低減させることができ、火花を一層効果的に成長させることができる。
 また、二次コイル41Bの両端部のうち、より高い電圧が発生する側の端部にコンデンサ49が接続されている。従って、二次コイル41Bの両端部のうち、より低い電圧が発生する側の端部に接続されたイグナイタ45が、コンデンサ49において発生したノイズにより誤作動してしまうという事態をより確実に防止できる。
 加えて、絶縁体44が耐熱性及び耐電圧性の面で非常に優れるBaTiO3により形成されているため、コンデンサ49の耐久性を飛躍的に高めることができる。その結果、優れた着火性をより長期間に亘って維持することができる。また、BaTiO3は極めて高い誘電率を有するため、コンデンサ49の静電容量をより一層増大させることができる。従って、交流電力がコンデンサ49を透過する際の交流電力の透過率をより一層向上させることができ、着火性を一層向上させることができる。さらに、絶縁体をセラミックと樹脂又はゴムとの複合材料により形成した場合には、機械的な衝撃や熱衝撃に対して樹脂やゴムが緩衝材として機能することとなり、コンデンサの耐久性をより一層高めることが可能となる。
 併せて、高電圧電極42、及び、交流電極43は、体積抵抗率が0.1μΩ・m以下で、かつ、磁性を持たない金属材料により形成されている。このため、伝送時における交流電力の損失を一層低減させることができ、火花に投入される交流電力をより増大させることができる。その結果、着火性をより一層向上させることができる。
 また、交流電源3と交流電極43との間に設けられたトライアック48により、コンデンサ49(交流電極43)への交流電力の供給・停止を高速に切替えることができる。
 さらに、本実施形態では、プラグホールHO内にコンデンサ49が配置されている。従って、プラグホールHOがノイズシールドとして機能することとなり、ノイズの影響によりコンデンサ49の動作に異常が生じてしまうという事態をより確実に防止できる。
 次に、上記実施形態によって奏される作用効果を確認すべく、コンデンサの静電容量を種々変更した点火装置のサンプルを作製し、各サンプルについて着火性評価試験を行った。着火性評価試験の概要は次の通りである。すなわち、各サンプルの点火プラグを排気量2000cc、4気筒DOHCエンジンに取付けた上で、空燃比(A/F)を17に設定した。そして、交流電源の電力を300Wとした上で、交流電力の発信周波数を100MHz、10MHz、1MHz、又は、50kHzと変化させて各サンプルに対して1000回電力を投入し、1000回中に発生した失火(異常放電)の回数を測定するとともに、失火の発生割合(失火率)を算出した。図4に、当該試験の試験結果を示す。尚、図4においては、発信周波数を100MHzとした際の試験結果を丸印で示し、発信周波数を10MHzとした際の試験結果を三角で示す。また、発信周波数を1MHzとした際の試験結果を四角で示し、発信周波数を50kHzとした際の試験結果をバツ印で示す。
 図4に示すように、発信周波数を100MHzとした場合には、コンデンサの静電容量を5pF以上とすることで、発信周波数を10MHzとした場合には、コンデンサの静電容量を50pF以上とすることで、発信周波数を1MHzとした場合には、コンデンサの静電容量を500pF以上とすることで、発信周波数を50kHzとした場合には、コンデンサの10000pF以上とすることで、すなわち、発信周波数をf(Hz)とし、コンデンサの静電容量をC(F)としたとき、C≧0.0005(F・Hz)/fを満たすようにコンデンサの静電容量等を設定することで、失火率が3%未満となり、優れた着火性を実現できることが明らかとなった。これは、コンデンサの静電容量を大きくしたことで、交流電力がコンデンサをより確実に透過することとなり、ひいては火花に対して交流電力がより確実に投入されたためであると考えられる。
 以上の試験結果より、着火性の向上を図るべく、C≧0.0005(F・Hz)/fを満たすようにコンデンサの静電容量等を設定することが好ましいといえる。
 次いで、絶縁体をポリフェニレンサルファイド樹脂(PPS)、チタン酸鉛(PbTiO3)、チタン酸バリウム(BaTiO3)、又は、BaTiO3とシリコーンゴム(Siゴム)との複合材料により形成した点火装置のサンプルを作製し、各サンプルについて耐久性評価試験を行った。耐久性評価試験の概要は次の通りである。すなわち、サンプルの点火プラグを排気量2000ccの4気筒DOHCエンジンに取付けた上で、全開状態(=4000rpm)で30分間エンジンを動作させた後、30分間アイドリング状態とすることを繰り返し行い、絶縁体のうち高電圧電極及び交流電極に挟まれた部位(つまり、コンデンサを形成する部位)に貫通が生じるまでの時間(耐久時間)を測定した。図5に、当該試験の試験結果を示す。尚、各サンプルともに、コンデンサの静電容量を200pFとした。また、交流電源の出力電力を300Wとし、交流電力の発振周波数を50MHzとした。さらに、サンプルの混合装置をエンジンのプラグホール内に配置した。
 図5に示すように、絶縁体を耐熱性に優れるセラミック(PbTiO3、又は、BaTiO3)や複合材料により形成したサンプルは、優れた耐久性を有し、特に絶縁体をBaTiO3により形成したサンプルは、耐久時間が約400時間となり、非常に優れた耐久性を有することが確認された。
 また、絶縁体をセラミックとゴムとの複合材料により形成したサンプルは、耐久時間が1000時間を超え、極めて優れた耐久性を有することが確認された。これは、ゴムが振動や電極等の熱膨張に対する緩衝材として機能し、コンデンサの機械的な衝撃や熱衝撃に対する強度が向上したことによると考えられる。尚、上記試験では、セラミック及びゴムからなる複合材料を用いて試験を行ったが、ゴムに代えて樹脂を用いた場合であっても、同様の結果が得られると考えられる。
 以上の試験結果より、耐久性の向上を図るべく、絶縁体をセラミックにより形成することが好ましく、特にBaTiO3やセラミック及びゴム等の複合材料により絶縁体を形成することがより好ましいといえる。
 次に、高電圧電極、及び、交流電極のうち絶縁体を挟んで対向する部位を構成する金属を種々変更した点火装置のサンプルを作製し、各サンプルについて上述の着火性評価試験を行った。図6に、当該試験の試験結果を示す。また、表1に、各金属における体積抵抗率及び磁性の有無を示す。尚、コンデンサの静電容量、及び、交流電力の発信周波数は、C≧0.0005(F・Hz)/fを満たすように設定した。
Figure JPOXMLDOC01-appb-T000001
 図6及び表1に示すように、各サンプルともに失火率が3.0%未満となり、優れた着火性を有していたが、特に体積抵抗率が0.10μΩ・m以下であり、かつ、磁性を持たない金属を用いたサンプルは、失火率が1.0%未満となり、着火性に極めて優れることが明らかとなった。これは、伝送時における交流電力の損失が抑制され、火花に投入される交流電力がより増大したためであると考えられる。
 また特に、金属材料として、Cu、Ag、Au、Al、又は、Znを用いたサンプルは、一層優れた着火性を実現できることが確認された。
 以上の試験結果より、着火性の更なる向上を図るべく、高電圧電極、及び、交流電極のうち少なくとも絶縁体を挟んで対向する部位を体積抵抗率が0.1μΩ・m以下で、かつ、磁性を持たない金属材料により形成することが好ましいといえる。また、このような金属材料の中でも、より一層優れた着火性を実現するという点において、体積抵抗率が比較的低いCuやAg等、又は、これらのうちいずれかを主成分とする金属を用いることが一層好ましいといえる。
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
 (a)上記実施形態では、高電圧電極42及び交流電極43は板状をなしているが、高電圧電極42の少なくとも一部が板状をなすとともに、交流電極43のうち少なくとも高電圧電極42の板状部分と対向する部位が板状をなすように構成することとしてもよい。
 (b)上記実施形態において、コンデンサ49は、板状の高電圧電極42と交流電極43が対向してなる構成とされているが、コンデンサ49の構成は特に限定されるものではない。従って、例えば、図7に示すように、筒状の交流電極87と、当該交流電極87の内部に配置された筒状の絶縁体88と、当該絶縁体88の内部に配置された筒状(棒状であってもよい)の高電圧電極89とを有するコンデンサ90を用いることとしてもよい。また、この場合においては、交流電極を内周側に設け、高電圧電極を外周側に設けてもよい。
 さらに、図8に示すように、長手方向と直交する断面において、少なくとも一部が渦巻き状をなす高電圧電極91と、少なくとも高電圧電極91の渦巻き状部分と対向する部位が渦巻き状をなす交流電極92と、高電圧電極91の渦巻き状部分及び交流電極92の渦巻き状部分の間に配置される絶縁体93とを備えるコンデンサ94を用いてもよい。
 加えて、図9に示すように、第1主電極板95A、及び、第1主電極板95Aから延び、第1主電極板95Aの長手方向と直交する方向に沿って並ぶ複数の第1補助電極板95Bを備える高電圧電極95と、高電圧電極95の長手方向(図9の奥行方向)に沿って延びるとともに第1主電極板95Aと対向する第2主電極板96A、及び、第2主電極板96Aから延び、第2主電極板96Aの長手方向と直交する方向に沿って第1補助電極板95Bと交互に並ぶ複数の第2補助電極板96Bを備える交流電極96と、両補助電極板95B,96Bの間に配置される絶縁体97とを有するコンデンサ98を用いてもよい。
 (c)上記実施形態では、交流電源3から交流電極43に対する交流電力の供給・停止を切替可能な半導体素子としてトライアック48が例示されているが、例えば、図10(a)に示すように、トライアック48に代えて、トランジスタ112,113が並列に配置されてなる半導体素子111を設け、前記両トランジスタ112,113のベースに接続されたトランジスタ114へと送られるECU6からの通電信号に応じて、交流電極43に対する交流電力の供給・停止を切替可能に構成することとしてもよい。また、図10(b)に示すように、FET116,117が並列に配置されてなる半導体素子115を設け、前記両FET116,117のゲートに接続されたトランジスタ118へと送られるECU6からの通電信号に応じて、交流電極43に対する交流電力の供給・停止を切替可能に構成することとしてもよい。
 (d)上記実施形態では、放電用電源2や交流電源3からの電力がディストリビュータを介して各点火プラグ1に供給されているが、各点火プラグ1ごとに放電用電源2や交流電源3を設けることとしてもよい。
 1…点火プラグ
 2…放電用電源
 3…交流電源
 41…点火コイル
 41A…一次コイル
 41B…二次コイル
 42…高電圧電極
 43…交流電極
 44…絶縁体
 47…第2絶縁体
 48…トライアック(半導体素子)
 49…コンデンサ
 95A…第1主電極板
 95B…第1補助電極板
 96A…第2主電極板
 96B…第2補助電極板
 100…点火装置
 EN…内燃機関
 HO…プラグホール
 SH…取付孔

Claims (14)

  1.  放電用電源と、
     交流電力を供給する交流電源と、
     一次コイル及び二次コイルを有し、前記一次コイルに印加される前記放電用電源の電圧を昇圧して前記二次コイルに高電圧の二次電圧を発生させる点火コイルと、
     前記二次コイルに電気的に接続される点火プラグと、
    を備えた点火装置であって、
     前記交流電源と電気的に接続される交流電極と、
     前記二次コイルと前記点火プラグとの間に位置し、前記二次コイル及び前記点火プラグに電気的に接続される高電圧電極と、
     前記高電圧電極、及び、前記交流電極の間に配置される絶縁体と、
     前記交流電極、前記高電圧電極、及び、前記絶縁体により形成されるコンデンサ、並びに、前記点火コイルを覆う第2絶縁体とを備え、
     前記高電圧電極を介して、前記二次電圧と前記交流電力とが前記点火プラグに対して供給されることを特徴とする点火装置。
  2.  前記二次コイルの両端部のうち、より高い電圧が発生する側の端部に、前記コンデンサが接続されることを特徴とする請求項1に記載の点火装置。
  3.  前記交流電力の発振周波数は50kHz以上100MHz以下であり、
     前記絶縁体の誘電率が、前記第2絶縁体の誘電率よりも大きく、
     前記コンデンサの静電容量をC(F)とし、
     前記交流電力の発振周波数をf(Hz)としたとき、
     C≧0.0005(F・Hz)/f
    を満たすことを特徴とする請求項1又は2に記載の点火装置。
  4.  前記高電圧電極、及び、前記交流電極のうち一方の電極は筒状をなし、
     当該一方の電極の内周に、筒状の前記絶縁体が配置され、
     前記絶縁体の内周に、前記両電極のうち他方の電極が配置されることを特徴とする請求項1乃至3のいずれか1項に記載の点火装置。
  5.  前記高電圧電極の少なくとも一部は板状をなすとともに、
     前記交流電極のうち、少なくとも前記高電圧電極の板状部分と対向する部位は板状をなし、
     前記高電圧電極の板状部分と前記交流電極の板状部分との間に前記絶縁体が配置されることを特徴とする請求項1乃至3のいずれか1項に記載の点火装置。
  6.  前記高電圧電極の長手方向と直交する断面において、前記高電圧電極の少なくとも一部は渦巻き状をなすとともに、
     前記交流電極のうち、少なくとも前記高電圧電極の渦巻き状部分と対向する部位は渦巻き状をなし、
     前記高電圧電極の渦巻き状部分と前記交流電極の渦巻き状部分との間に前記絶縁体が配置されることを特徴とする請求項1乃至3のいずれか1項に記載の点火装置。
  7.  前記高電圧電極は、長手方向に沿って延びる第1主電極板と、前記第1主電極板から延び、長手方向と直交する方向に沿って並ぶ複数の第1補助電極板とを備え、
     前記交流電極は、長手方向に沿って延びる第2主電極板と、前記第2主電極板から延び、長手方向と直交する方向に沿って並ぶ複数の第2補助電極板とを備え、
     前記第1主電極板と前記第2主電極板とが対向するとともに、前記第1補助電極板と前記第2補助電極板とが交互に並ぶように、前記高電圧電極及び前記交流電極が配置され、
     前記絶縁体は、前記両補助電極板の間に配置されることを特徴とする請求項1乃至3のいずれか1項に記載の点火装置。
  8.  前記絶縁体は、セラミックにより形成されることを特徴とする請求項1乃至7のいずれか1項に記載の点火装置。
  9.  前記絶縁体は、セラミックと、樹脂又はゴムとの複合材料により形成されることを特徴とする請求項1乃至7のいずれか1項に記載の点火装置。
  10.  前記セラミックは、チタン酸バリウムであることを特徴とする請求項8又は9に記載の点火装置。
  11.  前記高電圧電極、及び、前記交流電極のうち少なくとも前記絶縁体を挟んで対向する部位は、体積抵抗率が0.1μΩ・m以下で、かつ、磁性を持たない金属材料により形成されることを特徴とする請求項1乃至10のいずれか1項に記載の点火装置。
  12.  前記金属材料は、銅、銀、金、アルミニウム、亜鉛、又は、これらのうちいずれかを主成分とする合金であることを特徴とする請求項11に記載の点火装置。
  13.  前記交流電源と前記交流電極との間に、前記交流電源から前記交流電極に対する交流電力の供給・停止を切替可能な半導体素子を設けたことを特徴とする請求項1乃至12のいずれか1項に記載の点火装置。
  14.  請求項1乃至13のいずれか1項に記載の点火装置における点火プラグを、内燃機関の取付孔に取付けてなる点火装置の取付構造であって、
     前記内燃機関に設けられ前記点火プラグが挿設される筒状のプラグホール内に、前記コンデンサが配置されることを特徴とする点火装置の取付構造。
PCT/JP2011/069529 2010-11-29 2011-08-30 点火装置及びその取付構造 WO2012073564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/881,339 US9316199B2 (en) 2010-11-29 2011-08-30 Ignition device and structure for mounting same
KR1020137017073A KR20130100190A (ko) 2010-11-29 2011-08-30 점화장치 및 그 부착구조
JP2011553022A JP5250119B2 (ja) 2010-11-29 2011-08-30 点火装置及びその取付構造
EP11844411.6A EP2647834B1 (en) 2010-11-29 2011-08-30 Ignition device and structure for mounting same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-264511 2010-11-29
JP2010264511 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073564A1 true WO2012073564A1 (ja) 2012-06-07

Family

ID=46171520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069529 WO2012073564A1 (ja) 2010-11-29 2011-08-30 点火装置及びその取付構造

Country Status (5)

Country Link
US (1) US9316199B2 (ja)
EP (1) EP2647834B1 (ja)
JP (1) JP5250119B2 (ja)
KR (1) KR20130100190A (ja)
WO (1) WO2012073564A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090912A (ja) * 2018-12-04 2020-06-11 ダイヤモンド電機株式会社 イグナイタ組立体およびイグナイタユニット

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805125B2 (ja) * 2013-03-18 2015-11-04 三菱電機株式会社 点火装置
JP6470066B2 (ja) * 2015-02-23 2019-02-13 サンケン電気株式会社 点火装置
JP6395162B1 (ja) * 2017-03-23 2018-09-26 三菱電機株式会社 高周波放電点火装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175197A (ja) * 2006-12-20 2008-07-31 Denso Corp プラズマ式点火装置
WO2009008518A1 (ja) * 2007-07-12 2009-01-15 Imagineering, Inc. 点火またはプラズマ発生装置
JP2009008100A (ja) 2003-01-06 2009-01-15 Etatech Inc 可燃性の気体混合物に点火するための、コロナ放電を生成し持続させるための点火システムと点火方法
JP2009158559A (ja) * 2007-12-25 2009-07-16 Hanshin Electric Co Ltd コイル
JP2010249029A (ja) * 2009-04-15 2010-11-04 Daihatsu Motor Co Ltd 火花点火式内燃機関

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2818020A (en) * 1955-11-17 1957-12-31 Glenn A Burklund Safeguarded electric firing initiating devices
US3231799A (en) * 1962-09-12 1966-01-25 Sprague Electric Co Modified barium titanate ceramic materials and capacitor
US3504244A (en) * 1967-06-17 1970-03-31 Nichicon Capacitor Ltd Ceramic capacitor and method of manufacture
DE1963671C3 (de) * 1969-12-19 1978-08-03 Robert Bosch Gmbh, 7000 Stuttgart Zündeinrichtung zum Betrieb einer Brennkraftmaschine
JP3188757B2 (ja) * 1992-04-28 2001-07-16 本田技研工業株式会社 点火コイル構造
JPH0897079A (ja) 1994-09-27 1996-04-12 Murata Mfg Co Ltd 積層コンデンサの製造方法
JPH08298225A (ja) 1995-04-26 1996-11-12 Sumitomo Metal Ind Ltd 単層コンデンサ
KR100576882B1 (ko) * 2005-02-15 2006-05-10 삼성전기주식회사 Tcc 특성이 우수한 커패시터용 수지 조성물 및 폴리머/세라믹 복합체
JP2007032349A (ja) * 2005-07-25 2007-02-08 Denso Corp 内燃機関用点火装置
US7387115B1 (en) * 2006-12-20 2008-06-17 Denso Corporation Plasma ignition system
US7969268B2 (en) * 2008-08-15 2011-06-28 Federal Mogul Ignition Company Ignition coil with spaced secondary sector windings
US8528531B2 (en) * 2009-02-18 2013-09-10 Ngk Spark Plug Co., Ltd. Ignition apparatus of plasma jet ignition plug
US9413314B2 (en) * 2009-05-08 2016-08-09 Federal-Mogul Ignition Company Corona ignition with self-tuning power amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008100A (ja) 2003-01-06 2009-01-15 Etatech Inc 可燃性の気体混合物に点火するための、コロナ放電を生成し持続させるための点火システムと点火方法
JP2008175197A (ja) * 2006-12-20 2008-07-31 Denso Corp プラズマ式点火装置
WO2009008518A1 (ja) * 2007-07-12 2009-01-15 Imagineering, Inc. 点火またはプラズマ発生装置
JP2009158559A (ja) * 2007-12-25 2009-07-16 Hanshin Electric Co Ltd コイル
JP2010249029A (ja) * 2009-04-15 2010-11-04 Daihatsu Motor Co Ltd 火花点火式内燃機関

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090912A (ja) * 2018-12-04 2020-06-11 ダイヤモンド電機株式会社 イグナイタ組立体およびイグナイタユニット
JP7232027B2 (ja) 2018-12-04 2023-03-02 ダイヤゼブラ電機株式会社 イグナイタ組立体およびイグナイタユニット

Also Published As

Publication number Publication date
KR20130100190A (ko) 2013-09-09
US20130233291A1 (en) 2013-09-12
EP2647834A4 (en) 2017-08-09
EP2647834B1 (en) 2020-08-19
JP5250119B2 (ja) 2013-07-31
US9316199B2 (en) 2016-04-19
EP2647834A1 (en) 2013-10-09
JPWO2012073564A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5033872B2 (ja) 内燃機関用の複合点火装置を形成する方法
US8191540B2 (en) Ignition system
JP5677810B2 (ja) Hf点火装置
JP5250119B2 (ja) 点火装置及びその取付構造
US9765751B2 (en) Ignition apparatus
CN104137356B (zh) 具有用于与火花塞电气连接的延长部的点火线圈组件
JP5902182B2 (ja) Rfスパークプラグの短絡防止
JP2002530572A (ja) 高周波点火のための点火装置
JP2014084836A (ja) 高周波放電用点火コイル装置
TW201742343A (zh) 用於高頻點火系統的火星塞
JPWO2010095694A1 (ja) プラズマジェット点火プラグの点火装置
JP5421952B2 (ja) 点火システム
JP4777463B2 (ja) プラズマジェット点火プラグ
JP2019511671A (ja) 燃焼室内の空気/燃料の混合物に点火を行う点火装置
JP6397687B2 (ja) 交流点火装置
JP2019511670A (ja) 燃焼室内の空気/燃料の混合物に点火を行う点火装置
CN104919565A (zh) 闪光光源装置
JP5411822B2 (ja) 点火システム及び点火プラグ
US1290780A (en) Spark-plug.
JP5438840B2 (ja) 接続装置及び点火装置並びに点火システム
JP2017139209A (ja) 点火プラグ
RU2227278C2 (ru) Сборочный узел катушки зажигания
JP2024500421A (ja) 内燃機関のための点火装置
US806017A (en) Ignition-plug.
KR20020010683A (ko) 내연기관의 연료 혼합물 점화 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011553022

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13881339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137017073

Country of ref document: KR

Kind code of ref document: A