WO2012073556A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2012073556A1
WO2012073556A1 PCT/JP2011/068175 JP2011068175W WO2012073556A1 WO 2012073556 A1 WO2012073556 A1 WO 2012073556A1 JP 2011068175 W JP2011068175 W JP 2011068175W WO 2012073556 A1 WO2012073556 A1 WO 2012073556A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
lighting device
translucent cover
translucent
Prior art date
Application number
PCT/JP2011/068175
Other languages
English (en)
French (fr)
Inventor
信雄 川村
横田 昌広
修 小野
高橋 健
大川 猛
修介 森田
西村 孝司
松田 秀三
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to KR1020137004333A priority Critical patent/KR101490065B1/ko
Priority to US13/231,245 priority patent/US20120134161A1/en
Publication of WO2012073556A1 publication Critical patent/WO2012073556A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/66Details of globes or covers forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • Embodiment of this invention is related with the illuminating device using the light source with the narrow light distribution distributed planarly like white LED.
  • Incandescent bulbs that use light emitted by filament heat and fluorescent lamps that use ultraviolet-excited phosphors have been widely used as lighting devices, but they have a short lifetime, infrared emission (ultraviolet emission), mercury use problems, luminous efficiency Had problems such as.
  • LED light sources and EL light sources have been developed as techniques for solving these problems, and the use of LED light sources in general lighting devices is accelerating.
  • a general surface-mount type LED light source emits light strongly in the normal direction of the mounting substrate, and when the angle formed with the normal direction of the mounting substrate is ⁇ , the light intensity is attenuated in proportion to cos ⁇ . Has directivity.
  • the structure of a general LED light source is such that the LED chip that emits primary light is covered in a planar shape with a protective layer containing a phosphor that converts primary light to secondary light. is there.
  • the illumination device using an LED light source for a light bulb or a fluorescent lamp has a light intensity distribution in which the light in the normal direction of the mounting substrate is strong, and almost no light is emitted from the side of the mounting substrate to the back.
  • the plane on which the LED is mounted is a polyhedron and is arranged facing the side or the back direction.
  • an illumination device in which a phosphor that is excited by light from an LED light source is applied to the inner surface of a translucent cover so that the translucent cover itself shines.
  • Japanese Patent No. 4076329 Japanese Patent No. 4290887 JP 2010-27282 A Japanese Patent Laying-Open No. 2005-05546
  • An object of the present invention is to provide an illumination device that can irradiate light to the side surface or the back surface direction and is easy to manufacture.
  • the lighting device includes a base material, a light source that emits visible light, and a translucent cover that covers at least a front surface of the light source and has a translucent region that emits light emitted from the light source to the outside.
  • the light source is disposed on the front flat portion of the base material, and the luminous intensity of the light emitted from the light source is strong in the normal direction of the front flat portion and becomes zero on the back side.
  • the translucent cover has a bulging shape having a maximum diameter at a position higher than the height at which the light source is disposed, and the transmittance of the region facing the light source is 60% or less.
  • FIG. 1 is a cross-sectional view showing a light bulb-type lighting device according to a first embodiment.
  • FIG. 2 is a cross-sectional view showing the fluorescent lamp type illumination device according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the angle and the luminous intensity with respect to the normal direction of the LED light source.
  • FIG. 4 is a diagram showing the relationship between the transmittance of the light-transmitting cover of the lighting device, the half-value light distribution angle 2 ⁇ ⁇ 1/2, and the efficiency.
  • FIG. 5 is a cross-sectional view of the illumination device schematically showing how light rays travel in the bulb-type illumination device.
  • FIG. 6 is a diagram showing a comparison of the area ratios when the bulge of the translucent cover is variously changed in the light bulb type lighting device.
  • FIG. 7 is a diagram showing the relationship between the transmittance of the translucent cover, the half-value light distribution angle 2 ⁇ ⁇ 1/2, and the efficiency of each lighting device in which the bulge of the translucent cover is variously changed.
  • FIG. 8 is a diagram showing the relationship between the transmittance and efficiency of the light-transmitting cover for each lighting device in which the bulge of the light-transmitting cover is variously changed.
  • FIG. 9 is a diagram showing the relationship between the area ratio and the half-value light distribution angle 2 ⁇ ⁇ 1/2 for each lighting device in which the bulges of the translucent cover are variously changed.
  • FIG. 10 is a diagram illustrating the relationship between the area ratio and the efficiency of each lighting device in which the bulge of the translucent cover is variously changed.
  • FIG. 11 is a diagram illustrating a relationship between an area ratio and a half-value light distribution angle for various light-transmitting covers having different transmittances.
  • FIG. 12 is a cross-sectional view illustrating a light bulb-type lighting device according to a second embodiment.
  • FIG. 13 is a cross-sectional view showing a fluorescent lamp type illumination device according to a second embodiment.
  • FIG. 14 is a cross-sectional view showing a light bulb-type lighting device according to a third embodiment.
  • FIG. 15 is a cross-sectional view showing a fluorescent lamp type illumination device according to a third embodiment.
  • FIG. 16 is a cross-sectional view showing a modification of the light bulb-type lighting device according to the third embodiment.
  • FIG. 17 is a diagram illustrating a relationship between an angle and a luminous intensity with respect to a normal direction of an LED light source in the illumination device according to the third embodiment.
  • FIG. 18 is a cross-sectional view illustrating a light bulb-type lighting device according to a fourth embodiment.
  • FIG. 19 is a radar chart showing the light intensity distribution when the transmittance of the milky white resin material constituting the translucent cover is changed in the illumination apparatus according to the fourth embodiment.
  • FIG. 20 is a cross-sectional view illustrating a lighting device according to a fifth embodiment.
  • FIG. 21 is a cross-sectional view showing a light bulb-type lighting device according to a sixth embodiment.
  • FIG. 22 is a plan view showing a base and a light source of a light bulb-type lighting device according to a third embodiment.
  • FIG. 23 shows the relationship between the angle between the tangent to the light-transmitting cover when the amount of eccentricity of the light source is changed, the half-value light distribution angle 2 ⁇ ⁇ 1/2, and the efficiency in the light bulb-type lighting device according to the sixth embodiment.
  • FIG. 24 is a diagram showing a relationship between the transmittance of the light-transmitting cover, the half-value light distribution angle 2 ⁇ ⁇ 1/2, and the efficiency in the light bulb-type lighting device according to the sixth embodiment.
  • FIG. 25 is a cross-sectional view showing a fluorescent lamp type illumination device according to a sixth embodiment.
  • FIG. 26 is a plan view showing a base and a light source of a fluorescent lamp type illumination device according to a sixth embodiment.
  • FIG. 27 shows the relationship between the angle formed by the tangent to the translucent cover when the amount of eccentricity of the light source is changed, the half-value light distribution angle 2 ⁇ ⁇ 1/2, and the efficiency in the fluorescent illumination device according to the sixth embodiment.
  • FIG. 1 shows an LED bulb 1 as a bulb-type lighting device according to the first embodiment
  • FIG. 2 shows a cross section of an LED fluorescent lamp 11 as a fluorescent lamp-type lighting device according to the first embodiment.
  • the LED bulb 1 has a shape to be rotated with respect to the central axis
  • the LED fluorescent lamp 11 has a rod-like three-dimensional shape extended linearly or an annular shape extended curvedly.
  • the LED bulb 1 and the LED fluorescent lamp 11 include a base material 2 having a front flat portion 2a, a light source 6 composed of LEDs mounted on a substrate 5, and a translucent cover 4.
  • the substrate 5 on which the light source 6 is mounted and the translucent cover 4 are supported by the front flat portion 2 a of the base material 2.
  • the LED as the light source 6 has directivity such that the intensity of light emitted from the LED is strong in the normal direction of the front flat portion 2a and becomes zero on the back side.
  • the translucent cover 4 of the LED bulb 1 is formed, for example, in a shape obtained by cutting a part of a substantially circular cross section, and the opening end 4a is fixed to the front flat portion 2a. Further, the translucent cover 4 of the LED fluorescent lamp 11 is formed in an elongated cylindrical shape having a cross section, for example, a shape obtained by cutting off a part of a sphere, and an opening end 4a thereof is fixed to the front flat portion 2a. Thereby, the translucent cover 4 covers the front side and the side of the light source 6.
  • the translucent cover 4 has a shape in which an intermediate portion of the cross section swells outward.
  • the translucent cover 4 is formed in a shape having a maximum diameter portion 4b or a maximum width portion 4b formed to have a diameter or width larger than the diameter or width of the opening end 4a fixed to the front flat portion 2a of the base material 2.
  • the translucent cover 4 is formed in a swollen shape having the maximum diameter portion 4b at a position higher than the height at which the light source 6 is disposed.
  • the translucent cover 4 of the LED bulb 1 is formed by injection molding with a material in which a scattering material that scatters light is mixed into a polycarbonate resin.
  • the translucent cover 4 has a spherical shape with a thickness of 1 mm with a maximum diameter portion 4b of, for example, 60 mm, a diameter of a back side end (opening end) 4a of 42 mm, and a height from the maximum diameter portion 4b to the back side end 4a. It has a swollen shape with a thickness of about 27 mm.
  • the translucent cover 4 is designed with the thickness and the concentration of the scattering material so that the transmittance is about 50%.
  • the translucent cover 4 of the LED fluorescent lamp 11 is formed by extrusion molding with a material in which a scattering material that scatters light is mixed with a polycarbonate resin.
  • the translucent cover 4 has a cylindrical shape with a thickness of 1 mm with a maximum diameter portion 4b of, for example, 22 mm, and a bulging shape with a diameter of a back side end portion (opening end) 4a of about 14.6 mm. .
  • the translucent cover 4 is designed with the thickness and the concentration of the scattering material so that the transmittance is about 50%.
  • the diameter or width of the front flat portion 2a of the substrate 2 is formed to be approximately equal to the diameter or width of the opening end 4a of the translucent cover 4.
  • the translucent cover 4 covers at least the front surface of the light source 6 and has a translucent region that emits light emitted from the light source to the outside.
  • the translucent cover 4 forms the translucent area
  • the upper direction (normal direction) perpendicular to the front flat portion 2a is the front direction
  • the direction parallel to the front flat portion 2a is the side surface direction
  • the lower direction perpendicular to the front flat portion 2a is the back direction.
  • a base 3 which is a terminal on the power supply side, is attached to the rear side end of the base material 2.
  • a drive circuit 7 for driving the light source 6 is provided inside the base material 2. Electric power is supplied from the base 3 to the drive circuit 7, and the light source 6 is turned on by the drive circuit 7.
  • the base material 2 also has a role of releasing heat generated by the light source 6, and is made of, for example, a metal material having a large heat capacity.
  • the drive circuit is provided separately from the lighting device. Therefore, you may comprise the base material 2 as an integral member combined with the board
  • the LED fluorescent lamp 11 has a shape obtained by extending the cross section shown in FIG. 2 to about 1.2 m.
  • the light source 6 is configured by arranging a plurality of surface-mounting type LEDs on the front flat portion 2a of the substrate 2 in a straight line.
  • the transmissivity of the translucent cover is conventionally 80 to 90% or transparent, whereas according to the first embodiment, the transmissivity of the translucent cover 4 is set as low as about 50%. ing.
  • FIG. 3 is a diagram showing a light distribution when the transmittance of the light-transmitting cover 4 is changed from 89 to 32% in the LED bulb 1, where the vertical axis indicates the luminous intensity and the horizontal axis indicates the normal line of the front flat portion 2a. It is an azimuth angle in which the direction is 0 degree.
  • FIG. 4 shows the relationship between the half-value light distribution angle (2 ⁇ ⁇ 1/2) due to the transmittance variation of the translucent cover 4 shown in FIG. The light distribution angle) is shown on the right, and the illumination efficiency of the LED bulb 1 is shown on the right.
  • the horizontal axis is the total light transmittance measurement described in JIS-K-7361 using a piece of the same material and thickness as the translucent cover 4. The transmittance based on is shown.
  • the transmittance of the translucent cover 4 it is desirable to set the transmittance of the translucent cover 4 to 40% to 60%.
  • the range in which the luminous intensity is halved can be expanded from 120 degrees to 290 degrees.
  • the LED fluorescent lamp 11 having the bulged translucent cover 4 shown in FIG. 2 the range in which the luminous intensity is halved can be expanded from the conventional 120 degrees to 220 degrees. That is, according to the LED bulb 1 and the LED fluorescent lamp 11, it is possible to widen the angular range with high luminous intensity, and it is possible to irradiate strong light also to the side surface side of the front flat portion 2a.
  • the translucent cover 4 when the transmittance of the translucent cover 4 is 60% or less, as described above, the translucent cover 4 itself shines with almost the same brightness due to the reflected scattered light inside the translucent cover 4, so that the first implementation is performed.
  • the light-transmitting cover 4 having a spherical shape and a uniform thickness as in the embodiment can realize a light distribution and a luminance distribution that are extremely uniform.
  • the extremely high luminance portion on the light-transmitting cover 4 corresponding to the LED light source is eliminated, and the entire area of the light-transmitting cover 4 is brightened with the same luminance. You can make it disappear. Therefore, the glare can be greatly reduced.
  • a lighting device close to a conventional incandescent bulb or fluorescent lamp is realized by using the transparent cover 4 having a bulging shape as shown in the first embodiment, a uniform thickness, and a low transmittance. can do.
  • FIG. 5 is a diagram showing how the light beam of the LED bulb 1 shown in FIG. 1 travels.
  • Rays A, B, C, and D in the figure are rays that are emitted from the light source 6 and reach the translucent cover 4, and broken arrows and circles indicate secondary rays that are reflected and scattered by the translucent cover 4.
  • the secondary ray is sufficiently diffused by the diffusing material inside the translucent cover 4, so that the angle formed from the normal direction of the surface of the translucent cover 4 is ⁇ .
  • the circle in the figure schematically shows the luminous intensity of the diffused light according to this cos distribution, and the longest broken line arrow points in the normal direction of the surface of the translucent cover 4.
  • the translucent cover 4 are configured to receive light from the light source 6. Further, the light rays reflected and scattered from the translucent cover 4 and emitted to the outside are all cos distributions with the normal direction of the translucent cover 4 as the main direction, and the spherical bulging shape is wide and natural light distribution. It can be seen that In particular, with respect to the irradiation in the back direction, as shown by the trajectory of the light ray D, the spherical area on the back side (light source side) of the swelled translucent cover 4 is strongly involved and becomes stronger by increasing this area. It can be seen that light can be irradiated in the back direction.
  • FIGS. 6A to 6D show an LED bulb 1 using a spherical light-transmitting cover 4 in which various bulges are changed with the maximum diameter portion 4b being 60 mm.
  • A the maximum area of the LED bulb viewed from the back direction
  • B the translucent area of the LED bulb viewed from the back direction
  • B / A is expressed as a percentage.
  • ⁇ S is set to 0, 17, 29, and 38%.
  • ⁇ S is 51%.
  • FIGS. 7 and 8 show the half-value light distribution angle and the effect of efficiency when the horizontal axis represents the transmittance of the LED bulb shown in FIGS. 6 (a) to 6 (d).
  • the light distribution is widened when the transmittance is 60% or less, and the efficiency deterioration is not significant when the transmittance is 40% or more. Focusing on ⁇ S, it can be seen that ⁇ S is 0% (that is, in the hemispherical light-transmitting cover 4, the effect of suppressing the spread of the light distribution and the efficiency loss is extremely small, and the effect becomes more remarkable as ⁇ S increases.
  • FIGS. 9 and 10 show graphs in which the horizontal axis of the graphs of FIGS. 7 and 8 is changed to ⁇ S. From these figures, it can be seen that when ⁇ S is increased, the light distribution is broadened and the efficiency loss is reduced when the transmittance is in the range of 40 to 60%. In order to sufficiently irradiate light to the back side of the light source 6, the half-value light distribution angle is desirably 180 degrees or more. In this case, ⁇ S may be 20% or more.
  • the transmittance of the light-transmitting cover 4 is desirably 40 to 60%. When the transmittance is as high as 60% or more, the light from the light source 6 passes through the light-transmitting cover 4 and the light distribution does not spread. In the ratio, it is difficult for light rays to pass through the translucent cover 4, and the efficiency is greatly deteriorated.
  • FIG. 11 shows the result of the same verification performed on the LED fluorescent lamp 11 shown in FIG. Similarly, the LED fluorescent lamp 11 has a swell (area ratio) ⁇ S of the translucent cover 4 of 20% or more and a transmittance of 40 to 60% within a range where optimum characteristics can be obtained.
  • FIG. 12 shows an LED bulb 1 as a bulb-type lighting device according to the second embodiment
  • FIG. 13 shows a cross section of an LED fluorescent lamp 11 as a fluorescent lamp-type lighting device according to the second embodiment.
  • the LED bulb 1 has a shape to be rotated with respect to the central axis
  • the LED fluorescent lamp 11 has a rod-like three-dimensional shape obtained by extending the cross section shown in a straight line, or a circle obtained by extending the cross section shown in a circle. It has an annular shape.
  • the translucent cover 4 has a shape swelled at a position higher than the light source 6, and the thickness thereof is thick at the front side portion.
  • the back side is thin.
  • the material of the translucent cover 4 is the same as that of the first embodiment described above, but the thickness of the translucent cover 4 is, for example, 4 mm at the thickest portion on the front side, and the thickness of the rear side end portion. The thickness is gradually reduced to 0.8 mm. In this way, by increasing the thickness of the translucent cover 4 in the front region and gradually decreasing the thickness on the side or back side, the brightness of the translucent cover 4 on the front side is low and unevenness is increased on the back side. The light intensity on the back side can be further increased than the light distribution that can be achieved by the shape of the translucent cover 4.
  • the transmission of the translucent cover 4 facing the light source is achieved by the light distribution angle expansion effect described in the first embodiment.
  • the rate is desirably 60% or less.
  • FIG. 14 shows an LED bulb 1 as a bulb-type lighting device according to the third embodiment
  • FIG. 15 shows a cross section of an LED fluorescent lamp 11 as a fluorescent lamp-type lighting device according to the fourth embodiment.
  • the LED bulb 1 has a shape to be rotated with respect to the central axis
  • the LED fluorescent lamp 11 has a rod-like three-dimensional shape drawn in a straight line or an annular shape.
  • the translucent cover 4 is formed in a bulging shape having the maximum diameter portion 4b or the maximum width portion 4b having a diameter or width larger than the opening end 4a.
  • the translucent cover 4 is divided into two parts, a front side and a back side, with a maximum diameter part 4b or a maximum width part 4b as a boundary, and is composed of two parts, a front side part 8a and a back side part 8b. ing.
  • the front side portion 8a and the back side portion 8b are connected to each other by the maximum diameter portion 4b or the maximum width portion 4b, and are formed of materials having the same thickness and different transmittances.
  • the transmittance of the back side portion 8b is set higher than the transmittance of the front side portion 8a.
  • the front side portion 8a of the translucent cover 4 is formed with a transmittance of 53%
  • the back side portion 8b is formed with a transmittance of 86%.
  • luminance unevenness of the translucent cover occurs at the boundary between the two portions 8a and 8b constituting the translucent cover 4.
  • the front side portion 8a, the back side portion 8b, and the boundary 9 are formed obliquely with respect to the central axis of the LED bulb 1, and the two portions 8a, 8b may be combined in a wedge shape.
  • the front side portion 8 a and the back side portion 8 b are positioned so as to overlap in the radial direction of the translucent cover 4.
  • FIG. 17 shows the light distribution of the light bulb 1 when the transmittance of the back side portion 8b of the translucent cover 4 is changed in the LED bulb 1 shown in FIG. This is an azimuth angle with the normal direction of the front flat portion 2a as 0 degree.
  • the translucent cover 4 (upper 53%, lower 53%) having the uniform transmittance shown in FIG. 1 is the best. It can be seen that the configurations shown in the second and third embodiments (upper 53%, lower 86%) (upper 53%, lower 89%) are also effective. Even if the transmittance is changed between the upper and lower portions of the light-transmitting cover 4, the light distribution of the LED bulb 1 can be changed, and the light distribution according to the application can be provided.
  • FIG. 18 shows an LED bulb 1 as a bulb-type illumination device according to the fourth embodiment.
  • the LED bulb 1 has a shape to be rotated with respect to the central axis.
  • the upper half portion (front side portion) 8a of the translucent cover 4 has a hemispherical shape with a thickness of 2.4 mm, and is substantially cylindrical from the lower end circular portion of the hemisphere to the back side.
  • a lower half portion (back side portion) 8b having a height of about 20 mm is provided.
  • the lower half portion 8b of the translucent cover 4 has a thickness of 2.4 mm at the upper end, but gradually decreases in thickness downward, and is formed at a thickness of 0.8 mm at the opening end 4a at the lower end. ing.
  • the inner surface of the translucent cover 4 is formed in a taper shape whose diameter increases toward the opening end 4a, and the opening end 4a of the cover has a maximum inner diameter.
  • Other configurations of the LED bulb 1 are the same as those of the various embodiments described above. According to such a structure, the translucent cover 4 can be formed by one component by an injection molding process, and manufacturing cost can be reduced.
  • FIG. 19 is a radar chart showing the luminous intensity distribution when the transmittance of the milky white resin material constituting the translucent cover 4 is changed.
  • the light intensity is shown in each direction with the front surface of the LED bulb 1 as the upward direction.
  • the transmittance is shown as the transmittance when the thickness of the front surface region of the translucent cover 4 is 2.4 mm.
  • the translucent cover 4 can be formed as one component by injection molding, and the wide light distribution And low cost.
  • FIG. 20 shows an LED fluorescent lamp 11 according to the fifth embodiment.
  • the LED substrate 5 may also be used as the base material 2 as in the illuminating device according to the eighth embodiment, and the number of parts may be reduced.
  • the thickest part of the light-transmitting cover 4 is 3 mm or more, the light-transmitting cover 4 can ensure the strength as the lighting device, so that the light-transmitting cover can be used as a base material in terms of strength. Reduction is possible.
  • the configuration of the LED bulb 1 or the LED fluorescent lamp 11 is specifically shown.
  • the effect of the light distribution is a swelled shape and a transmittance set to an appropriate range of transmittance. It is exhibited by the light cover 4, and other configurations may be deformed as appropriate.
  • (Sixth embodiment) 21 and 22 show an LED bulb 1 as a bulb-type illumination device according to the sixth embodiment.
  • the LED bulb 1 has a shape to be rotated with respect to the central axis.
  • the translucent cover 4 has a bulging shape with a maximum diameter portion 4a of 60 mm, a thickness of 1.5 mm, and a transmittance of 50%.
  • the distance in the height direction (direction perpendicular to the front flat portion 2a) between the maximum diameter portion 4b of the translucent cover 4 and the front flat portion 2a on which the light source 6 is mounted is 20 mm, and the front flat portion 2a has a maximum diameter of 48 mm.
  • the translucent cover 4 is supported in the periphery.
  • the half-value light distribution angle can be expanded by 17 degrees while maintaining the same efficiency as the configuration in which the light source 6 is arranged at the center of the substrate 2 as in the first embodiment.
  • the light beam arrow in FIG. 21 schematically illustrates the effect of expanding the half-value light distribution angle by arranging the light source 6 in the periphery.
  • the light source 6 emits the light most strongly in the normal direction of the front flat portion 2a, which is the mounting surface.
  • the light in the strongest normal direction is out of the translucent cover 4 because the light source 6 is eccentric.
  • the incident light is incident on the inclined surface at an angle ⁇ (29 degrees in the embodiment).
  • the translucent cover 4 Since the translucent cover 4 is set to have a transmittance of 60% or less so that incident light is sufficiently reflected and scattered, the secondary light rays (broken arrows) reflected and scattered from the translucent cover 4 to the inside and outside are mainly used.
  • the direction is inclined by ⁇ , and as a result, the effect of expanding the light distribution is exhibited.
  • FIG. 23 shows the LED bulb 1 shown in FIG. 21, in which the eccentricity r of the light source 6 is changed to 0 to 21 mm, and the angle ⁇ between the facing transparent cover 4 and the incident light is changed to 0 to 47 degrees.
  • the half-value light distribution angle 2 ⁇ ⁇ 1/2 and the fluctuation in efficiency are shown. From this figure, it can be seen that the light distribution spreads abruptly when the angle ⁇ exceeds 16 degrees and hardly affects the efficiency.
  • FIG. 24 shows the relationship between the light distribution expansion effect and the transmissivity of the translucent cover 4 when the light source 6 is arranged at a position deviated from the central axis C by 7 mm (at an angle ⁇ of 14 degrees).
  • the 2 ⁇ ⁇ 1/2 increase effect due to the eccentricity of the light source becomes significant when the transmissivity of the translucent cover 4 is 60% or less. This is because when the transmittance is high, the ratio of the light emitted from the light source 6 that passes through the translucent cover 4 as it is increases. Therefore, the light source 6 is arranged as close to the translucent cover 4 as possible so that the light emitted from the light source 6 is obliquely incident on the translucent cover 4 and the translucent cover 4 is 60% or less. It is desirable that the light from the light source 6 be sufficiently reflected and diffused.
  • the arrangement of the light source 6 and the transmittance of the light-transmitting cover 4 are merely changed in design, and the light distribution can be expanded with a simple configuration without causing an increase in production costs. Can do.
  • the transmission cover 4 is formed in a spherical shape with a uniform transmittance in consideration of the appearance as the LED bulb 1, but the bulb 1 is light emitted from the light source 6 and having strong directivity. Is incident on the inclined surface of the opposite transparent cover and deflected in the lateral direction, and the detailed light source mounting structure, transparent cover shape, material, and substrate shape are not limited to this form. These can be changed as appropriate.
  • the LED fluorescent lamp 11 shows an LED fluorescent lamp 11 as a fluorescent lamp type illumination device according to the second embodiment.
  • the basic configuration of the LED fluorescent lamp 11 is the same as that of the LED fluorescent lamp of the first embodiment, but the light sources 6 are arranged in two rows and are arranged close to the translucent cover 4. That is, the plate-like base material 2 is installed 7.75 mm outside from the center of the translucent cover 4.
  • the translucent cover 4 is formed of a spherical milky white resin having a diameter of ⁇ 25 and a thickness of 1.0 mm, and its transmittance is set as low as 50%.
  • the half-value light distribution angle can be expanded to 241 degrees, and can be expanded by 14 degrees relative to the light source arrangement in one row as in the first embodiment.
  • FIG. 27 shows the LED fluorescent lamp 11 shown in FIG. 25 when the eccentricity r of the light source 6 is changed and the angle ⁇ between the facing light-transmitting cover 4 and the incident light is varied from 0 to 34 degrees.
  • the angle range in which the luminous intensity is halved 2 ⁇ ⁇ 1/2, and the variation in efficiency are verified.
  • SYMBOLS 1 LED bulb, 2 ... Base material, 2a ... Front flat part, 3 ... Base, 4 ... Translucent cover, 4a ... Open end (back side end), 4b ... Maximum diameter part, Maximum width part, 5 ... LED substrate, 6 ... light source, 7 ... drive circuit, 8a ... front side part (upper half part), 8b ... back side (lower half), 9 ... boundary

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 照明装置は、基材(2)と、可視光線を放出する光源(6)と、光源の少なくとも前面を覆い、光源から放出された光を外部に放出する透光領域を有する透光カバー(4)と、を備えている。光源は、基材の前面平坦部(2a)に配置され、光源から放出される光の光度は、前面平坦部の法線方向で強く、背面側で零となる指向性を有している。透光カバーは、光源の配置された高さより高い位置に最大径部(4b)をもつ膨らんだ形状であり、光源と対向する領域の透過率が60%以下である。

Description

照明装置
 本発明の実施形態は、白色LEDのように平面実装された狭い配光分布を持つ光源を用いた照明装置に関する。
 照明装置としては、フィラメントの熱による発光を利用した白熱電球や、紫外線励起の蛍光体発光による蛍光灯が広く用いられてきたが、短い寿命、赤外線放出(紫外線放出)、水銀使用問題、発光効率などの問題を抱えていた。
 近年、これらの問題を解消する技術として、LED光源やEL光源が開発され、特にLED光源は一般の照明装置への利用が加速度的に広がっている。
 しかしながら、一般的な表面実装タイプのLED光源は、実装基板の法線方向に強く光を放出し、実装基板の法線方向となす角度をθとするとき、cosθに比例して光度が減衰する指向性を有している。これは、一般的なLED光源の構造が、1次光線を放出するLEDチップを、1次光線から2次光線に変換する蛍光体を含んだ保護層で面状に覆った構成としているためである。このため、電球や蛍光灯にLED光源を用いた照明装置は、実装基板の法線方向の光が強く、実装基板の側方から背面方向にかけては光がほとんど出ない光度分布となる。従って、正面から背面までほぼ均一な光度分布をもつ従来の白熱電球あるいは蛍光灯と、LED光源を用いた照明装置とを置き換えた場合、天井や壁の明るさが著しく変わってしまい、違った照度空間となってしまう。
 LED光源を用いた照明装置で背面方向まで光を放出する技術としては、LEDを実装する平面を多面体にして側面や背面方向を向いて配置する技術がある。また、別の技術として、LED光源の光により励起する蛍光体を透光カバーの内面に塗布し、透光カバー自体が光るようにした照明装置がある。
特許第4076329号公報 特許第4290887号公報 特開2010-27282号公報 特開2005-05546号公報
 LED光源を側面あるいは背面に向けて実装した場合、照明装置の製造組立が煩雑になるとともに、機械強度や放熱性の設計困難さが増大してしまう問題がある。また、透光カバーに蛍光体を塗布した場合も、同様に照明装置の製造組立が煩雑になる問題がある。
 この発明は以上の点を鑑みてなされたもので、その課題は、側面あるいは背面方向まで光を照射させることができるとともに製造が容易な照明装置を提供することにある。
 実施形態によれば、照明装置は、基材と、可視光線を放出する光源と、前記光源の少なくとも前面を覆い、前記光源から放出された光を外部に放出する透光領域を有する透光カバーと、を備え、前記光源は、前記基材の前面平坦部に配置され、前記光源から放出される光の光度は、前記前面平坦部の法線方向で強く、背面側で零となる指向性を有し、前記透光カバーは、前記光源の配置された高さより高い位置に最大径をもつ膨らんだ形状であり、前記光源と対向する領域の透過率が60%以下である。
図1は、第1の実施形態に係る電球型の照明装置を示す断面図。 図2は、第1の実施形態に係る蛍光灯型の照明装置を示す断面図。 図3は、LED光源の法線方向に対する角度と光度との関係を示す図。 図4は、前記照明装置の透光カバーの透過率と半値配光角2θ・1/2と効率との関係を示す図。 図5は、前記電球型の照明装置における光線の進み方を模式的に示す照明装置の断面図。 図6は、前記電球型の照明装置において、透光カバーの膨らみを種々変えた場合の面積比を比較して示す図。 図7は、前記透光カバーの膨らみを種々変えたそれぞれの照明装置について、透光カバーの透過率と半値配光角2θ・1/2と効率との関係を示す図。 図8は、前記透光カバーの膨らみを種々変えたそれぞれの照明装置について、透光カバーの透過率と効率との関係を示す図。 図9は、前記透光カバーの膨らみを種々変えたそれぞれの照明装置について、面積比と半値配光角2θ・1/2との関係を示す図。 図10は、前記透光カバーの膨らみを種々変えたそれぞれの照明装置について、面積比と効率との関係を示す図。 図11は、透過率の異なる種々の透光カバーについて、面積比と半値配光角との関係を示す図。 図12は、第2の実施形態に係る電球型の照明装置を示す断面図。 図13は、第2の実施形態に係る蛍光灯型の照明装置を示す断面図。 図14は、第3の実施形態に係る電球型の照明装置を示す断面図。 図15は、第3の実施形態に係る蛍光灯型の照明装置を示す断面図。 図16は、第3の実施形態に係る電球型の照明装置の変形例を示す断面図。 図17は、第3の実施形態に係る照明装置における、LED光源の法線方向に対する角度と光度との関係を示す図。 図18は、第4の実施形態に係る電球型の照明装置を示す断面図。 図19は、第4の実施形態に係る照明装置において、透光カバーを構成する乳白樹脂材の透過率を変えたときの光度分布を示すレーダーチャート。 図20は、第5の実施形態に係る照明装置を示す断面図。 図21は、第6の実施形態に係る電球型の照明装置を示す断面図。 図22は、第3の実施形態に係る電球型の照明装置の基台および光源を示す平面図。 図23は、第6の実施形態に係る電球型の照明装置において、光源の偏心量を変えた時の透光カバー接線とのなす角度と半値配光角2θ・1/2および効率との関係を示す図。 図24は、第6の実施形態に係る電球型の照明装置において、透光カバーの透過率と、半値配光角2θ・1/2および効率との関係を示す図。 図25は、第6の実施形態に係る蛍光灯型の照明装置を示す断面図。 図26は、第6の実施形態に係る蛍光灯型の照明装置の基台および光源を示す平面図。 図27は、第6の実施形態に係る蛍光型の照明装置において、光源の偏心量を変えた時の透光カバー接線とのなす角度と半値配光角2θ・1/2および効率との関係を示す図。
 以下、図面を参照しながら、種々の実施形態に係る照明装置について詳細に説明する。 
(第1の実施形態) 
 図1は、第1の実施形態に係る電球型の照明装置としてLED電球1を示し、図2は、第1の実施形態に係る蛍光灯型の照明装置としてLED蛍光灯11の断面を示している。LED電球1は、中心軸に対して回転対象の形状を有し、LED蛍光灯11は直線状に引き伸ばした棒状の立体形状、あるいは、曲線状に引き伸ばした環状を有している。
 LED電球1およびLED蛍光灯11は、前面平坦部2aを有する基材2と、基板5に実装されたLEDから成る光源6と、透光カバー4と、を備えている。光源6が実装された基板5および透光カバー4は、基材2の前面平坦部2aに支持されている。光源6としてのLEDは、このLEDから放出される光の光度が、前面平坦部2aの法線方向で強く、背面側で零となる指向性を有している。
 LED電球1の透光カバー4は、例えば、断面がほぼ円形の一部を切除した形状に形成され、その開口端4aが前面平坦部2aに固定されている。また、LED蛍光灯11の透光カバー4は、断面が例えば、球の一部を切除した形状の細長い筒状に形成され、その開口端4aが前面平坦部2aに固定されている。これにより、透光カバー4は、光源6の前面側および側面側を覆っている。
 透光カバー4は、その断面の中間部分が外側に膨らんだ形状を有している。透光カバー4は、基材2の前面平坦部2aに固定されている開口端4aの径あるいは幅よりも大きい径あるいは幅に形成された最大径部4bあるいは最大幅部4bを有する形状に形成されている。すなわち、透光カバー4は、光源6の配置された高さよりも高い位置に最大径部4bをもつ膨らんだ形状に形成されている。
 LED電球1の透光カバー4は、ポリカーボネート製の樹脂に光を散乱する散乱材を混ぜた材料で射出成型により形成されている。透光カバー4は、最大径部4bを例えば60mmとする厚さ1mmの球状で、背面側端部(開口端)4aの径を42mmとし、最大径部4bから背面側端部4aまでの高さを約27mmとする膨らんだ形状を有している。また、透光カバー4は、透過率が約50%となるように厚さと散乱材の濃度を設計している。
 LED蛍光灯11の透光カバー4は、ポリカーボネート製の樹脂に光を散乱する散乱材を混ぜた材料で押出成型により形成されている。この透光カバー4は、最大径部4bを例えば22mmとする厚さ1mmの円筒状で、背面側端部(開口端)4aの径を約14.6mmとする膨らんだ形状を有している。また、透光カバー4は、透過率が約50%となるように厚さと散乱材の濃度を設計している。 
 なお、基材2の前面平坦部2aの径あるいは幅は、透光カバー4の開口端4aの径あるいは幅とほぼ等しく形成されている。
 透光カバー4は、光源6の少なくとも前面を覆い光源から放出された光を外部に放出する透光領域を有している。本実施形態において、透光カバー4は、その全域が光を透過可能な透光領域を形成している。なお、実施形態において、前面平坦部2aに垂直な上方向(法線方向)を前面方向、前面平坦部2aと平行な方向を側面方向、前面平坦部2aに垂直な下方向を背面方向としている。
 LED電球1では、基材2の背面側端に、電源供給側の端子である口金3が取付けられている。基材2の内部に、光源6を駆動する駆動回路7が設けられている。口金3から駆動回路7に電力が供給され、この駆動回路7により光源6を点灯する。基材2は光源6で発生する熱を逃がす役割も有し、例えば、熱容量の大きい金属材料で構成されている。
 LED蛍光灯11では、駆動回路が照明装置とは別に設けられている。そのため、基材2はアルミニウム製の基板5と兼用の一体部材として構成してもよい。LED蛍光灯11は、図2に示す断面を1.2m程度に引き伸ばした形状を有している。光源6は表面実装タイプのLEDを、基材2の前面平坦部2a上に直線上に複数並べて構成されている。
 透光カバーの透過率は、従来は80~90%、あるいは、透明としているのに対して、第1の実施形態によれば、透光カバー4の透過率は、約50%と低く設定している。
 図3は、LED電球1において、透光カバー4の透過率を89~32%まで変えたときの配光分布を示す図であり、縦軸は光度、横軸は前面平坦部2aの法線方向を0度とする方位角度である。図4は、図3に示した透光カバー4の透過率変動による半値配光角(2θ・1/2)と効率との関係を示し、縦軸は左に光度が半減する角度範囲(半値配光角)を、右にLED電球1の照明効率をそれぞれ示し、横軸は透光カバー4と同じ材質、板厚の板片にてJIS-K-7361に記載された全光線透過率測定に基づく透過率を示している。
 図3および図4から、透光カバー4の透過率を低くしていくと効率は劣化していくものの、配光角が拡がっていくことが判る。これは、指向性の強い光源6を用いる場合、透光カバー4を直接透過する光を制限し、透光カバー4の内部で光を反射拡散させて出すことであたかも透光カバー4自体が光源のように振舞うためである。具体的には、透光カバー4の透過率が60%以上では指向性の強い光が透光カバー4を透けてしまい、透光カバー4の透過率が40%以下では配光角の拡がりは飽和して単に効率が劣化するだけとなる。従って、透光カバー4の透過率は40%~60%に設定するのが望ましい。これにより、図1に示した膨らんだ形状の透光カバー4を有するLED電球1では、光度が半減する範囲を従来の120度から290度に拡大することができる。同様に、図2に示した膨らんだ透光カバー4を有するLED蛍光灯11では、光度が半減する範囲を従来の120度から220度に拡大することができる。すなわち、LED電球1およびLED蛍光灯11によれば、光度の高い角度範囲を広げることができ、前面平坦部2aの側面側にも強い光を照射することが可能となる。
 また、透光カバー4の透過率が60%以下になると、上述した通り、透光カバー4内部での反射散乱光により透光カバー4自体が全域でほぼ同じ輝度で輝くため、第1の実施形態のように球状で均一厚さとした透光カバー4では極めてムラの無い配光分布と輝度分布を実現することができる。特に、従来の高い透過率の透光カバーを用いたLED電球と比べると、LED光源に対応する透光カバー4上の極めて高い輝度部分を無くし、透光カバー4全域を低めの同輝度で輝かせることが出来る。そのため、眩しさを大幅に軽減させることができる。結果として、第1の実施形態で示したような膨らんだ形状を有し均一厚さで、低い透過率の透光カバー4を用いることにより、従来の白熱電球や蛍光灯に近い照明装置を実現することができる。
 図5ないし図11を用いて、第1の実施形態の詳しい作用を説明する。 
 図5は、図1に示したLED電球1の光線の進み方を示した図である。図中の光線A、B、C、Dは、光源6から放出され透光カバー4に至る途中の光線であり、破線の矢印と円は透光カバー4で反射散乱される2次光線を示している。前述したように、第1の実施形態において、2次光線は透光カバー4内部の拡散材により十分に拡散されるため、透光カバー4の表面の法線方向からなす角度をθとしたとき、cosθに従う配光分布で光を放出する。図中の円は、このcos分布に従う拡散光線の光度を模式的に示し、最も長い破線矢印は透光カバー4の表面の法線方向を向いている。
 図5に示すように、第1の実施形態では、透光カバー4の全ての領域が光源6からの光を受ける構成であることが判る。また、透光カバー4から反射散乱されて外部に放出される光線は、全て透光カバー4の法線方向を主方向とするcos分布であり、球状の膨らんだ形状が広く自然な配光分布を実現していることが判る。特に、背面方向への照射に関しては、光線Dの軌跡で示すように、膨らんだ透光カバー4の背面側(光源側)球状領域が強く関与しており、この領域を大きくすることでより強く背面方向へ光を照射できることがわかる。
 図6、図7、図8、図9、図10は、前述の効果を検証した結果を示している。 
 図6(a)ないし(d)は、最大径部4bを60mmとして各種膨らみを変えた球状の透光カバー4を用いたLED電球1を示している。膨らみを数値化するため、背面方向からみたLED電球の最大面積をA、背面方向からみたLED電球の透光領域面積をBとし、B/AをΔSとしてパーセント表記している。検証したLED電球ではΔSを0、17、29、38%としているが、第1の実施形態のLED電球1ではΔSは51%である。
 図7および図8は、図6(a)ないし(d)に示したLED電球について、横軸を透過率とした場合の半値配光角と効率の影響をそれぞれ示している。透過率が60%以下で配光分布が拡がること、透過率が40%以上で効率劣化が顕著にならないことは図4で説明した通りである。ΔSに着目すると、ΔSが0%(すなわち、半球形状の透光カバー4では配光分布の広がりや効率損失抑制の効果は極めて小さく、ΔSが大きいほど効果が顕著に現れることが判る。
 図9および図10は、図7および図8のグラフの横軸をΔSに変えたグラフを示している。これらの図から、透過率が40~60%の範囲では、ΔSを大きくすると配光分布が拡がるとともに、効率損失が軽減することがわかる。光源6の背面側まで十分に光を照射しようとすれば、半値配光角は180度以上であることが望ましく、この場合、ΔSは20%以上とすればよい。透光カバー4の透過率は40~60%が望ましく、60%以上の高い透過率では光源6からの光線が透光カバー4を透けてしまい配光が拡がらず、40%以下の低い透過率では透光カバー4を光線が抜けにくくなり効率が大きく劣化する。
 図11は、図2に示したLED蛍光灯11について同様の検証を行った結果を示している。LED蛍光灯11も同様に、透光カバー4の膨らみ(面積比)ΔSは20%以上、透過率は40~60%が最適な特性を得られる範囲となる。
 次に、他の実施形態に係る照明装置について説明する。後述する他の実施形態において、前述した第1の実施形態と同一の部分には同一の参照符号を付してその詳細な説明を省略する。
 (第2の実施形態) 
 図12は、第2の実施形態に係る電球型の照明装置としてLED電球1を示し、図13は、第2の実施形態に係る蛍光灯型の照明装置としてLED蛍光灯11の断面を示している。LED電球1は、中心軸に対して回転対象の形状を有し、LED蛍光灯11は、図示の断面を直線状に引き伸ばした棒状の立体形状、あるいは、図示の断面をサークル状に引き伸ばした円環状を有している。
 図12および図13に示すように、第2の実施形態によれば、透光カバー4は、光源6よりも高い位置で膨らんだ形状を有し、その厚さは、前面側の部分で厚く、背面側の部分で薄く形成している。透光カバー4の材料は、前述した第1の実施形態と同じであるが、透光カバー4の厚さは、例えば、前面側の最厚部分で4mmの厚さとし、背面側端部の厚さが0.8mmとなるよう徐々に薄くしている。このように、透光カバー4の厚さを前面領域で厚く、側面あるいは背面側で徐々に薄くすることにより、前面側の透光カバー4の輝度が低く背面側で高くなるムラを生じるが、透光カバー4の形状で達成できる配光分布よりも、一層、背面側の光度を上げることができる。
 なお、第2の実施形態のように透光カバー4の透過率が部分的に異なる場合でも、第1の実施形態で説明した配光角拡大効果により、光源に対向する透光カバー4の透過率は60%以下であることが望ましい。
 (第3の実施形態)
 図14は、第3の実施形態に係る電球型の照明装置としてLED電球1を示し、図15は、第4の実施形態に係る蛍光灯型の照明装置としてLED蛍光灯11の断面を示している。LED電球1は、中心軸に対して回転対象の形状を有し、LED蛍光灯11は直線状に引き伸ばした棒状の立体形状、あるいは、円環状を有している。
 第3の実施形態によれば、透光カバー4は、開口端4aよりも径あるいは幅の大きい最大径部4bあるいは最大幅部4bを有する膨らんだ形状に形成されている。また、透光カバー4は、最大径部4bあるいは最大幅部4bを境に、前面側と背面側の上下2つに分割され、前面側部分8aおよび背面側部分8bの2つの部分で構成されている。これら前面側部分8aおよび背面側部分8bは、最大径部4bあるいは最大幅部4bで互いに連結されているが、それぞれに同じ厚さで透過率の異なる材料で形成されている。背面側部分8bの透過率は、前面側部分8aの透過率よりも高く設定されている。例えば、透光カバー4の前面側部分8aは透過率53%、背面側部分8bは透過率86%に形成されている。
 このような構成においても、前述した第2の実施形態と同様の効果を得ることができる。上記構成の場合、透光カバー4を構成する2部分8a,8bの境界で透光カバーの輝度ムラが生じる。このような輝度ムラを緩和するために、図16に示すように、前面側部分8aと背面側部分8bと境界9を、LED電球1の中心軸に対して斜めに形成し、2部分8a,8bをクサビ状に組み合わせてもよい。この場合、境界9において、前面側部分8aおよび背面側部分8bが透光カバー4の径方向に重なって位置している。これにより、境界部分での見た目の輝度差を緩和し、輝度ムラを低減することが可能となる。
 図17は、図14に示したLED電球1において、透光カバー4の背面側部分8bの透過率を各種変えたときの電球1の配光分布をそれぞれ示し、縦軸は光度、横軸は前面平坦部2aの法線方向を0度とする方位角度である。この図から、配光分布としては、図1に示した均一透過率の透光カバー4(上53%、下53%)が最良であるが、側面方向に強い光度を出す特定用途では、第2および第3の実施形態で示した構成(上53%、下86%)(上53%、下89%)も有効であることがわかる。透光カバー4の上下部分で透過率を変えてもLED電球1の配光分布を変えることができ、用途にあわせた配光分布を提供することができる。
 (第4の実施形態) 
 図18は、第4の実施形態に係る電球型の照明装置としてLED電球1を示している。LED電球1は、中心軸に対して回転対象の形状を有している。第4の実施形態に係るLED電球1では、透光カバー4の上半部分(前面側部分)8aを厚さ2.4mmの半球形状とし、半球の下端円形部分から背面側に略円筒状で高さ約20mmの下半部分(背面側部分)8bを設けている。透光カバー4の下半部分8bは、その上端部は厚さ2.4mmであるが、下方に向かって徐々に厚さが薄くなり、下端の開口端4aでは厚さ0.8mmに形成されている。
 透光カバー4の内面は、開口端4a側に向けて拡径するテーパ状に形成され、カバーの開口端4aが最大内径を有している。LED電球1のその他の構成は前述した種々の実施形態と同一である。 
 このような構成によれば、透光カバー4を射出成型プロセスにて1部品で形成することができ、製造コストを低減することができる。
 図19は、透光カバー4を構成する乳白樹脂材の透過率を変えたときの光度分布をレーダーチャートに示したものである。LED電球1の前面を上方向として各方位に向かう光度を示している。透過率は、透光カバー4の前面領域の厚さ2.4mmの場合の透過率で示している。
 この図から、前面透過率で60%以下の低透過率とすることで、急激に背面側への光度が強くなることが判る。本実施形態では、透光カバー4の形状が球から歪むため、側面方向の光度が強くなる分布となるが、射出成型によりグ透光カバー4を1部品として形成することができ、広配光と低コストを両立することができる。
 (第5の実施形態)
 図20は、第5の実施形態に係るLED蛍光灯11を示している。前述した種々の実施形態に係る照明装置において、第8の実施形態に係る照明装置のように、LED基板5を基材2と兼用し、部品点数を削減してもよい。透光カバー4の最厚部が3mm以上になると、照明装置としての強度を透光カバー4で確保することが出来るため、強度的に透光カバーを基材として活用することができ、部品数削減が可能となる。
 前述した第1の実施形態ではLED電球1あるいはLED蛍光灯11の構成を具体的に示したが、配光分布の効果は、膨らんだ形状、かつ、適切な範囲の透過率に設定された透光カバー4により発揮されるものであり、その他の構成は適時変形してもよい。
 (第6の実施形態) 
 図21および図22は、第6の実施形態に係る電球型の照明装置としてLED電球1を示している。LED電球1は、中心軸に対して回転対象の形状を有している。第6の実施形態に係るLED電球1の基本構成は第1の実施形態と同じであり、第1の実施形態との違いは光源6が中心軸Cからr=14mmだけ偏芯した周辺領域に配置されているところである。
 図21、図22に示すように、電球1は、例えば、LEDからなる複数の光源6を備え、これらの光源は、基材2の前面平坦部2a上において、中心軸Cを中心とする半径r=14mmの円上に互いに等間隔離間して配置されている。
 透光カバー4は、60mmの最大径部4aをもつ膨らんだ形状で、厚さは1.5mm、透過率は50%である。透光カバー4の最大径部4bと光源6が実装された前面平坦部2aとの高さ方向(前面平坦部2aに垂直な方向)の間隔は20mm、前面平坦部2aは48mmの最大径で、周辺で透光カバー4を支持している。
 このような構成とすることで、第1の実施形態のように光源6を基材2の中心に配置した構成に対して、効率は同等としつつ半値配光角を17度拡大することができる。図21の光線矢印は、光源6を周辺配置することによる半値配光角の拡大作用を模式的に説明したものである。光源6は、実装面である前面平坦部2aの法線方向に最も強く光を放出するが、この最も強い法線方向の光は、光源6が偏芯しているために透光カバー4の傾斜した面に角度α(実施例では29度)で入射する。透光カバー4は、入射した光を十分に反射散乱するように透過率60%以下に設定されているため、透光カバー4から内外に反射散乱される2次光線(破線矢印)は、主方向がαだけ傾斜し、結果として配光を拡げる作用を発揮する。
 図23は、図21に示すLED電球1において、光源6の偏芯量rを0~21mmに変えて、対向する透光カバー4と入射光との角度αを0~47度に変動させたときの、半値配光角2θ・1/2、および効率の変動を示したものである。この図から、角度αが16度を超えるあたりから急激に配光が拡がり、かつ、効率に殆ど影響しないことが判る。
 図24は、光源6を中心軸Cから7mm(角度αで14度)偏心した位置に配置したときの配光拡大作用と透光カバー4の透過率の関係を示したものである。縦軸のΔ2θ・1/2とΔ効率は、光源6をr=7mm偏芯させたときの2θ・1/2および効率から、光源6を中央配置させたときの2θ・1/2および効率を差し引いたものである。
 図より、光源偏芯による2θ・1/2増大効果は、透光カバー4の透過率が60%以下で顕著となることがわかる。これは、透過率が高いと光源6から出た光がそのまま透光カバー4をすり抜けてしまう割合が多くなるためである。よって、光源6は、極力透光カバー4に近くなるように配置して、光源6から出射された光が透光カバー4に斜めに入射するようにするとともに、透光カバー4は60%以下の透過率として、光源6からの光を十分に反射拡散させることが望ましい。
 第6の実施形態では、光源6の配置と透光カバー4の透過率を設計的に変えているだけであり、簡単な構成で、生産上のコスト上昇を招くことなく配光分布を拡げることができる。第6の実施形態では、LED電球1としての見栄えを考慮して、透過カバー4を均一透過率で球状に構成しているが、本電球1は、光源6から出射され強い指向性を有する光を、対向する透光カバーの傾斜面に入射させることで側面方向へ偏向させるものであり、詳細な光源実装構造、透光カバー形状、材質、基材形状はこの形態に限定されるものではなく、適宜変更可能である。
 図25、図26は、第2の実施形態に係る蛍光灯型の照明装置としてLED蛍光灯11を示している。LED蛍光灯11の基本的な構成は第1の実施形態のLED蛍光灯と同じであるが、光源6を2列に配置し、透光カバー4に近づけた位置に配置している。すなわち、板状の基材2は、透光カバー4の中心から7.75mm外側に設置されている。光源6は、中心軸Cから偏芯した周辺領域に配置しており、その配置は幅16mmの前面平坦部2aに対して中心軸Cからr=6.5mm離れた位置に2列に並べている。透光カバー4は、Φ25で厚さ1.0mmの球状の乳白樹脂で形成され、その透過率は50%と低く設定されている。
  このような構成によれば、半値配光角を241度に拡げることができ、第1の実施形態のように1列の光源配置に対して相対的に14度拡げることができる。図27は、図25に示したLED蛍光灯11において、光源6の偏芯量rを変えて、対向する透光カバー4と入射光との角度αを0~34度に変動させたときの、光度が半減する角度範囲:2θ・1/2、および効率の変動を検証したものである。
 図より、αが16度を超えるあたりから急激に2θ・1/2が増大し(光源6を中央配置した場合と比べて5度以上向上)、かつ、効率に殆ど影響しないことが判る。 
 以上詳述した各実施形態によれば、側面あるいは背面方向まで光を照射させることができるとともに安価に製造することが可能な照明装置を提供することができる。 
 本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 1…LED電球、2…基材、2a…前面平坦部、3…口金、4…透光カバー、
 4a…開口端(背面側端部)、4b…最大径部、最大幅部、5…LED基板、
 6…光源、7…駆動回路、8a…前面側部分(上半部分)、
 8b…背面側部分(下半部分)、9…境界

Claims (11)

  1.  基材と、可視光線を放出する光源と、前記光源の少なくとも前面を覆い、前記光源から放出された光を外部に放出する透光領域を有する透光カバーと、を備え、
     前記光源は、前記基材の前面平坦部に配置され、前記光源から放出される光の光度は、前記前面平坦部の法線方向で強く、背面側で零となる指向性を有し、
     前記透光カバーは、前記光源の配置された高さより高い位置に最大径をもつ膨らんだ形状であり、前記光源と対向する領域の透過率が60%以下である照明装置。
  2.  前記透光カバーの平均した透過率が40%以上である請求項1に記載の照明装置。
  3.  前記光源の法線方向と、前記光源の法線が交差する前記透光カバーの面法線方向がなす角度をαとするとき、角度αが16度以上となるように前記光源が中心軸から偏芯して配置されている請求項2に記載の照明装置。
  4.  前記透光領域は、背面側から見た前記透光領域の面積が背面側から見た照明装置の面積に対して20%以上である請求項1に記載の照明装置。
  5.  前記光源の法線方向と、前記光源の法線が交差する前記透光カバーの面法線方向がなす角度をαとするとき、角度αが16度以上となるように前記光源が中心軸から偏芯して配置されている請求項1に記載の照明装置。
  6.  前記透光カバーは、前記透光領域の前記光源に対向する部分の透過率よりも、前記透光領域の背面側端部分の透過率のほうが高い請求項1に記載の照明装置。
  7.  前記透光カバーは略一定の透過率の材料で形成され、前記透光領域の前記光源に対向する部分の前記透光カバーの厚さよりも、前記透光領域の背面側端部分の前記透光カバーの厚さの方が薄く形成されている請求項6に記載の照明装置。
  8.  前記透光カバーが透過率の異なる複数の材料で形成され、前記透光領域の前記光源に対向する部分の材料透過率よりも、前記透光領域の背面側端部分の材料透過率の方が高くなっている請求項6に記載の照明装置。
  9.  前記透光カバーは、最大径部から背面側に延びる背面側領域を有し、前記背面側領域の内径は、前記透孔カバーの開口端で最大となる電球型である請求項1に記載の照明装置。
  10.  白熱電球を模擬したLED光源を有する電球型の照明装置である請求項1ないし8のいずれか1項に記載の照明装置。
  11.  蛍光灯を模擬したLED光源を有する蛍光灯型の照明装置である請求項1ないし8のいずれか1項に記載の照明装置。
PCT/JP2011/068175 2010-11-30 2011-08-09 照明装置 WO2012073556A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137004333A KR101490065B1 (ko) 2010-11-30 2011-08-09 조명 장치
US13/231,245 US20120134161A1 (en) 2010-11-30 2011-09-13 Lighting apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-267581 2010-11-30
JP2010267581 2010-11-30
JP2011042697A JP4945690B1 (ja) 2010-11-30 2011-02-28 照明装置
JP2011-042697 2011-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/231,245 Continuation US20120134161A1 (en) 2010-11-30 2011-09-13 Lighting apparatus

Publications (1)

Publication Number Publication Date
WO2012073556A1 true WO2012073556A1 (ja) 2012-06-07

Family

ID=46171512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068175 WO2012073556A1 (ja) 2010-11-30 2011-08-09 照明装置

Country Status (3)

Country Link
JP (1) JP4945690B1 (ja)
KR (1) KR101490065B1 (ja)
WO (1) WO2012073556A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238993A (ja) * 2013-06-10 2014-12-18 アイリスオーヤマ株式会社 照明装置
ITUA20161589A1 (it) * 2016-03-11 2017-09-11 Artemide Spa Dispositivo di illuminazione a led

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084347A (ja) * 2011-10-06 2013-05-09 Hitachi Appliances Inc 電球型照明装置
TWI506228B (zh) * 2012-06-22 2015-11-01 聚積科技股份有限公司 發光二極體之燈具
KR101686868B1 (ko) 2014-05-30 2016-12-21 에비뉴 주식회사 색온도 제어가 가능한 led 조명장치
CN105517646B (zh) 2014-07-07 2018-05-08 深圳市大疆灵眸科技有限公司 云台快速插接装置及飞行器
WO2017051553A1 (ja) * 2015-09-24 2017-03-30 東芝ライテック株式会社 照明環境の評価方法
JP6693138B2 (ja) * 2015-11-17 2020-05-13 東芝ライテック株式会社 照明システム及び照明環境の評価方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218184A (ja) * 2007-03-05 2008-09-18 Toshiba Lighting & Technology Corp 光源ユニット
JP2010073438A (ja) * 2008-09-17 2010-04-02 Panasonic Corp ランプ
JP2010086677A (ja) * 2008-09-29 2010-04-15 3S Optech:Kk Led照明装置
JP2010198808A (ja) * 2009-02-23 2010-09-09 Sharp Corp 照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218184A (ja) * 2007-03-05 2008-09-18 Toshiba Lighting & Technology Corp 光源ユニット
JP2010073438A (ja) * 2008-09-17 2010-04-02 Panasonic Corp ランプ
JP2010086677A (ja) * 2008-09-29 2010-04-15 3S Optech:Kk Led照明装置
JP2010198808A (ja) * 2009-02-23 2010-09-09 Sharp Corp 照明装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238993A (ja) * 2013-06-10 2014-12-18 アイリスオーヤマ株式会社 照明装置
ITUA20161589A1 (it) * 2016-03-11 2017-09-11 Artemide Spa Dispositivo di illuminazione a led
EP3217077A1 (en) * 2016-03-11 2017-09-13 ARTEMIDE S.p.A. Led lighting device
US10234097B2 (en) 2016-03-11 2019-03-19 Artemide S.P.A. LED lighting device

Also Published As

Publication number Publication date
KR20130056291A (ko) 2013-05-29
KR101490065B1 (ko) 2015-02-04
JP4945690B1 (ja) 2012-06-06
JP2012134115A (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
JP4945690B1 (ja) 照明装置
JP5178930B1 (ja) 照明装置
TWI412706B (zh) 光源模組
WO2012124572A1 (ja) 照明装置
US8702270B2 (en) Tube type LED lighting assembly
WO2013190979A1 (ja) 照明装置
JP6222445B2 (ja) 照明装置
WO2013018902A1 (ja) 発光体を用いた面照明光源装置
JP2013016463A (ja) 光学デバイスおよびそれを備える発光装置
US20130182430A1 (en) Planar LED Lighting Apparatus
JP2012226892A (ja) 照明装置および照明器具
JP2012182117A (ja) 管型照明器具、管型照明器具用筐体及び両面内照式看板装置
US20120134161A1 (en) Lighting apparatus
JP2012119152A (ja) 照明装置
JP6067246B2 (ja) 照明装置
JP2014102973A (ja) 照明装置
JP2010123344A (ja) 照明器具
CN101566309A (zh) 发光二极管照明装置
JP2011129405A (ja) 照明装置
JP2014102995A (ja) 照明装置
JP2013251080A (ja) 照明装置
KR101064760B1 (ko) 가로등용 조명장치
WO2012128013A1 (ja) 照明装置
WO2013179687A1 (ja) 照明装置
JP2013069430A (ja) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137004333

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846022

Country of ref document: EP

Kind code of ref document: A1