WO2012072006A1 - 一种水溶性药物的脂质体冻干组合物及其制备方法 - Google Patents

一种水溶性药物的脂质体冻干组合物及其制备方法 Download PDF

Info

Publication number
WO2012072006A1
WO2012072006A1 PCT/CN2011/082958 CN2011082958W WO2012072006A1 WO 2012072006 A1 WO2012072006 A1 WO 2012072006A1 CN 2011082958 W CN2011082958 W CN 2011082958W WO 2012072006 A1 WO2012072006 A1 WO 2012072006A1
Authority
WO
WIPO (PCT)
Prior art keywords
liposome
cyclodextrin
water
lyophilized composition
soluble drug
Prior art date
Application number
PCT/CN2011/082958
Other languages
English (en)
French (fr)
Inventor
卢智俊
Original Assignee
广州朗圣药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州朗圣药业有限公司 filed Critical 广州朗圣药业有限公司
Priority to US13/990,354 priority Critical patent/US20130315987A1/en
Publication of WO2012072006A1 publication Critical patent/WO2012072006A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system

Definitions

  • the invention relates to the field of medicine, in particular to a water-soluble pharmaceutical liposome lyophilized composition and a preparation method thereof.
  • Liposomes are bilayer vesicles composed of phospholipid molecules. It can be divided into single layer liposomes and multilayer liposomes. Its structure is described in many literatures and monographs. As a drug carrier, liposome can meet many requirements for the treatment of pharmaceutical preparations. It has many advantages. Liposomes can encapsulate drugs and bring drugs to the lesions. By liposome administration, drugs can be controlled in tissues. The distribution reduces the amount of the drug in the blood and reduces toxicity.
  • Liposome preparation methods are also numerous, and are described in many literatures and monographs, such as Szoka and apahadjopoulos, Ann. Re. Biophysics Bioeng. 9 : 467-508 (1980) , Liposome Technology, Preparation of Liposome, Vol I , Gregor iadis (Ed), CRC Press, Inc. (1984), "New Drugs New Formulations and New Technologies", etc. Liposomal encapsulation techniques are also described in some patents, such as U.S. Patents 4,235,871 and US 4,016,100.
  • liposome technology has been successfully applied to the package of several drugs in the table and industrialized (the products in the table below are currently approved liposome products).
  • a liposome composition is described in U.S. Patent No. 5,213,804, which is successfully applied to an anthracycline-like drug such as doxorubicin hydrochloride.
  • doxorubicin hydrochloride liposome injection (doxi l) prepared by the technology has been successfully marketed, mainly for the treatment of AIDS, tumors, etc., because the liposome has a targeting property, thereby significantly improving Efficacy, reduced toxicity.
  • U.S. Patent No. 4,317,172 discloses a lyophilized liposome consisting of an amphiphilic phospholipid and at least one fat-soluble drug that is soluble in an organic solution.
  • the encapsulation efficiency of the lyophilized product prepared according to the specification of the patent after reconstitution is only about 80%.
  • One of the objects of the present invention is to provide a lyoprotectant composition for the preparation of a pharmaceutical liposome comprising a saccharide lyoprotectant and a cyclodextrin or cyclodextrin derivative lyophilized Protecting agent, the lyoprotectant composition is especially suitable for the preparation of water-soluble pharmaceutical liposomes.
  • the weight ratio of the saccharide to the cyclodextrin or the cyclodextrin derivative in the lyoprotectant composition of the present invention is 50-90: 5-35, preferably 70-80: 5-15.
  • the lyoprotectant composition of the present invention can be prepared by mixing a saccharide with a cyclodextrin or a cyclodextrin derivative.
  • Another object of the present invention is to provide a liposome lyophilized composition of a water-soluble drug, which overcomes the long-term stable preservation of a liposome dispersion of a water-soluble drug in the prior art, and is easy to be lyophilized.
  • the problem of water-soluble drug leakage, aggregation between particles and low encapsulation rate provides a water-soluble drug freeze-dried liposome with good stability, effective period > 24 months, and encapsulation efficiency > 90%.
  • the present invention also provides a method of preparing such a lyophilized liposome.
  • the liposome lyophilized composition of the present invention is achieved by the following technical scheme, a water-soluble pharmaceutical liposome lyophilized composition comprising the following raw materials: a water-soluble drug, a phospholipid, a polyethylene glycol-derived phosphorus, A cholesterol, saccharide lyoprotectant, and a cyclodextrin or cyclodextrin derivative lyoprotectant.
  • the weight percentage of each of the raw materials contained in the liposome lyophilized composition is The contents are as follows: water soluble drug 0.5 ⁇ 10%, phospholipid 1 ⁇ 10%, polyethylene glycol derivatized phospholipid 1 ⁇ 12%, cholesterol 1 ⁇ 15%, sugar freeze-drying protective agent 50 ⁇ 90%, and cyclodextrin Or cyclodextrin derivative lyoprotectant 5 ⁇ 35%.
  • the weight percentage of each raw material in the liposome lyophilized composition is as follows: water soluble drug 0.5 ⁇ 10%, monument 1 ⁇ 10%, PEG derivatized lyophilized 1 ⁇ 12%, cholesterol 1 ⁇ 15%, sugar lyoprotectant 70 ⁇ 80%, and cyclodextrin or cyclodextrin derivative lyoprotectant 5 ⁇ 15 %.
  • the saccharide lyoprotectants which can be used in the present invention include, but are not limited to, trehalose, xylitol, glucose, galactose, mannitol, maltose, sucrose, lactose, fructose, preferably selected from D-glucose, lactose, One or more of D-mannitol, maltose, and sucrose.
  • the saccharide lyoprotectant is added to the outer liposome dispersion of the liposome or the liposome coated with the water-soluble drug, thereby functioning as a lyophilization protection. .
  • saccharide lyoprotectant is preferably lactose and sucrose.
  • the cyclodextrin or cyclodextrin derivative is added to the outer phase dispersion of the liposome which has been encapsulated with the water-soluble drug to function as a lyophilization protection.
  • cyclodextrin or cyclodextrin derivative described above is preferably selected from the group consisting of hydroxypropyl-a-cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin, 2-hydroxypropyl- ⁇ -cyclodextrin, and hydroxy One or more of propyl-hydrazine-cyclodextrin.
  • cyclodextrin or cyclodextrin derivative is more preferably derived from hydroxypropyl- ⁇ -cyclodextrin or 2-hydroxypropyl- ⁇ -cyclodextrin.
  • the phospholipids which can be used in the present invention are selected from the group consisting of egg yolk lecithin, soy lecithin, dipalmitoylphosphatidylglycerol (DSPG), and hydrogenated Soya Phosphatidyl Choline (HSPC).
  • Dioleoylphosphatidylcholine D0PC
  • di-soft ester cholesteryl lipid D0PG
  • DPPG di-soft ester cholesteryl lipid
  • DSPE phosphatidylethanolamine pegol
  • the phospholipid moiety in the structure of the polyethylene glycol-derivatized phospholipid which can be used in the present invention is selected from the group consisting of soy lecithin, distearyl glyceryl glycerol, hydrogenated soybean phosphatidylcholine, dioleoyl cholesteryl And one of bis-esteroyl cholesteryl ester and distearyl phenolic acid ethanolamine.
  • polyethylene glycol used in the polyethylene glycol-derivatized phospholipid preferably has a molecular weight of 200 to 4000. More preferably, the polyethylene glycol used in the polyethylene glycol-derivatized phospholipid has a molecular weight of 2,000.
  • DSPE-mPEG2000 distearyl epoxide ethanolamine-polyethylene glycol 2000
  • DPPG-mPEG2000 di-soft ester cholesteryl-polyethylene glycol 2000
  • HSPC-mPEG2000 hydrogenated soybean phosphatidylcholine-polyethyl Glycol 2000
  • D0PC-mPEG2000 dioleoylphosphatidylcholine-polyethylene glycol 2000
  • the water-soluble drug which can be used in the present invention is selected from an antitumor drug, an anti-infective drug or a hormonal drug.
  • the water-soluble drug is an antitumor drug, one or more selected from the group consisting of doxorubicin, daunorubicin, pirarubicin, epirubicin, and salts of these drugs.
  • the water-soluble pharmaceutical liposome lyophilized composition of the present invention may also optionally contain an amount of other adjuvant such as histidine, glycine, glutamic acid or the like.
  • a preferred water-soluble pharmaceutical liposome lyophilized composition comprising 1-3% by weight of doxorubicin hydrochloride, 5-8% hydrogenated soybean phospholipid (HSPC), 2-7% by weight of the present invention
  • the polyethylene glycol-derivatized phospholipids are DSPE-mPEG2000, 1-7% cholesterol, 70-80% sucrose, and 5-15% hydroxypropyl- ⁇ -cyclodextrin.
  • Another water-soluble pharmaceutical liposome lyophilized composition preferred according to the present invention, which comprises a weight ratio of
  • HSPC hydrogenated soybean phospholipid
  • 2-7% polyethylene glycol derivatized monument is DSPE-mPEG2000, 1-7% cholesterol, 70- 80% sucrose and 5-15% hydroxypropyl- ⁇ -cyclodextrin.
  • the invention also provides a preparation method of the water-soluble drug lyophilized composition of the invention, comprising the steps of: dissolving phospholipids, polyethylene glycol-derivatized phospholipids, cholesterol, and dissolving in an organic solvent to obtain a transparent solution; Under a water bath condition of 80 ° C, the first buffer solution was added to the transparent solution A while stirring, and the obtained product was extruded to obtain a blank liposome D having an average particle diameter of about 10 to 500 nm; Adding a second buffer to D to displace the first buffer to obtain a blank liposome E; dissolving the water-soluble drug and the saccharide lyoprotectant in a second buffer to obtain a solution B; Body E and Solution B Mixing, after encapsulation at 40-120 ° C for 5 to 60 minutes, let cool at room temperature, preferably at an encapsulation temperature of 40-100 ° C, preferably for 8-15 minutes, and after cooling, a water-soluble drug is obtained.
  • Liposomal F added cyclodextrin or cyclodextrin derivative lyophilized protectant to liposome F, and dispensed; lyophilized in a lyophilizer to obtain lyophilized liposome of water-soluble drug combination.
  • the water-soluble drug lyophilized composition of the present invention can also be prepared by the following method: dissolving phospholipid, polyethylene glycol-derivatized phospholipid, cholesterol, in an organic solvent to obtain a transparent solution A; stirring under a 50-8 CTC water bath condition While adding the first buffer to the transparent solution A, the obtained product is extruded to obtain a blank liposome D having an average particle diameter of about 10 to 500; and a second buffer is added to the blank liposome D.
  • external phase of liposome is defined as: In the dispersion, all the spaces between the liposome and the liposome are called the outer phase of the liposome.
  • the water-soluble drug in the present invention means
  • Blank liposome A liposome that has not been coated with a drug.
  • a saccharide lyoprotectant and a cyclodextrin or cyclodextrin derivative lyoprotectant in particular, a lyophilized lyoprotectant and a cyclodextrin or cyclodextrin derivative are lyophilized.
  • the compatibility ratio of the agents makes them synergistic and achieves remarkable results.
  • the inventors have determined through long-term experiments that in the above preparation method, after the blank liposome E is obtained, the saccharide lyoprotectant and the cyclodextrin or cyclodextrin derivative lyophilized protective agent are added.
  • the saccharide lyoprotectant and the cyclodextrin or cyclodextrin derivative lyoprotectant are in the outer phase of the liposome F encapsulating the water-soluble drug, thereby ensuring the lyoprotectant and the saccharide
  • the cyclodextrin lyoprotectant acts as a protective agent in the finally obtained liposome structure, and achieves the effects described in the present invention.
  • the encapsulation efficiency and the granules of the finally obtained water-soluble drug liposome lyophilized composition before and after lyophilization are achieved by using a saccharide and a cyclodextrin or a cyclodextrin derivative as a lyoprotectant for the liposome.
  • the diameter change is minimal and can be stored stably for more than 24 months.
  • the above organic solvent is one or more selected from the group consisting of chloroform, ethanol, isopropanol, and decyl alcohol.
  • the first buffer in the above preparation method is an ammonium salt solution selected from one or more of ammonium phosphate, ammonium carbonate, ammonium chloride, ammonium sulfate, and ammonium acetate.
  • the second buffer solution is one or more of a phosphate, a citrate, and a histidine solution, wherein the phosphate is selected from the group consisting of dipotassium hydrogen phosphate, potassium dihydrogen phosphate, and disodium hydrogen phosphate.
  • the phosphate is selected from the group consisting of dipotassium hydrogen phosphate, potassium dihydrogen phosphate, and disodium hydrogen phosphate.
  • sodium dihydrogen phosphate One or more of sodium dihydrogen phosphate.
  • the liposome dispersion delivery system is a drug with significant clinical advantages, which can control the distribution of the drug in the body tissue, reduce the content of the drug in the blood, and reduce the toxicity.
  • its effective period is short, and it is not conducive to the circulation and use of drugs.
  • the inventors of the present invention have conducted extensive research on liposome freeze-drying protective agents and freeze-drying preparation methods.
  • the combination of a saccharide and a cyclodextrin or a cyclodextrin derivative as a lyoprotectant for a liposome dispersion can prevent the liposome dispersion from being damaged during lyophilization, thereby obtaining a lyophilized composition prepared by using a liposome having a high encapsulation ratio and a small change in particle diameter, and using a saccharide and a cyclodextrin derivative or a cyclodextrin derivative as a lyoprotectant for a liposome dispersion, After reconstitution after storage for 0 months, 6 months, 9 months, 12 months, 18 months, and 24 months, there was no significant change in the particle size and encapsulation efficiency of the liposomes. A long-term stable and effective preservation of the water-soluble drug lyophilized liposome composition is achieved.
  • the beneficial effects produced by the present invention are as follows:
  • the water-soluble pharmaceutical liposome lyophilized composition of the present invention is used as a lyoprotectant for a water-soluble pharmaceutical liposome dispersion in combination with a saccharide and a cyclodextrin or a cyclodextrin derivative.
  • the technical solution can avoid drug leakage caused by liposome deformation and rupture of the water-soluble drug liposome dispersion during lyophilization, and improve the stability of the lyophilized composition on the basis of ensuring the quality of the water-soluble drug. Sex, and expiration date.
  • the water-soluble pharmaceutical liposome lyophilized composition of the invention has an encapsulation efficiency of 90%, a particle diameter of l (T500nm, and all the indexes meet the requirements of the quality standard, and the expiration date is 24 months.
  • the water-soluble medicine provided by the invention The liposome lyophilized composition is more advantageous for liposome dosage forms with obvious therapeutic advantages, and provides a better basis for the promotion of water-soluble pharmaceutical liposomes.
  • the original drug is 0.2g of doxorubicin hydrochloride, the phosphoric acid ester is HSPCO.9g, the polyethylene glycol derivatized tablet is DSPE-mPEG2000 0.4g, the cholesterol is 0.25g, and the sugar freeze-drying protectant is sucrose. 14.0 g, cyclodextrin or cyclodextrin derivative lyophilized protectant was 1.25 g of hydroxypropyl- ⁇ -cyclodextrin.
  • the preparation method is as follows:
  • first buffer ammonium sulfate solution 250 mM
  • Example 2 Three batches of the product were prepared, and the obtained products were respectively Example 1-1, Example 1-2, and Example 1-3.
  • Example 2 Three batches of the product were prepared, and the obtained products were respectively Example 1-1, Example 1-2, and Example 1-3.
  • Example 2 Three batches of the product were prepared, and the obtained products were respectively Example 1-1, Example 1-2, and Example 1-3.
  • Example 2 Three batches of the product were prepared, and the obtained products were respectively Example 1-1, Example 1-2, and Example 1-3.
  • Example 2 Three batches of the product were prepared, and the obtained products were respectively Example 1-1, Example 1-2, and Example 1-3.
  • Example 2 Three batches of the product were prepared, and the obtained products were respectively Example 1-1, Example 1-2, and Example 1-3.
  • Example 2 Three batches of the product were prepared, and the obtained products were respectively Example 1-1, Example 1-2, and Example 1-3.
  • Example 2 Three batches of the product were prepared, and the obtained products were respectively Example 1-1, Example 1-2, and Example 1-3.
  • Example 2 Three batches of the
  • the main auxiliary drug daunorubicin hydrochloride 0.2g, HSPC1.2g, DSPE-mPEG2000 0.6g, cholesterol 1.0g, sucrose 13. Og, hydroxypropyl_ ⁇ -cyclodextrin 2.5g preparation method: same as the first embodiment, Among them, the water bath temperature is 76 °C, and the encapsulation temperature is 105 °C.
  • Example 3 Three batches of the product were prepared, and the obtained products were respectively Example 2-1, Example 2-2, and Example 2-3.
  • Example 3 Three batches of the product were prepared, and the obtained products were respectively Example 2-1, Example 2-2, and Example 2-3.
  • Example 3 Three batches of the product were prepared, and the obtained products were respectively Example 2-1, Example 2-2, and Example 2-3.
  • Example 3 Three batches of the product were prepared, and the obtained products were respectively Example 2-1, Example 2-2, and Example 2-3.
  • Example 3 Three batches of the product were prepared, and the obtained products were respectively Example 2-1, Example 2-2, and Example 2-3.
  • the original adjuvant doxorubicin hydrochloride 0.2g, HSPC O.32g, DSPE- mPEG20000.18g, cholesterol 200g, sucrose 13.9g, hydroxypropyl- ⁇ -cyclodextrin 0.78g.
  • the original adjuvant doxorubicin hydrochloride 0.2g, HSPC O.7g, DSPE-mPEG20000.8g, cholesterol 0.4g, D-galactose 6.7g, 2-hydroxypropyl- ⁇ -cyclodextrin 4.6g.
  • Preparation method same as in Example 1, the organic solvent was replaced with 99.5% isopropanol 500 ml, the first buffer was replaced with ammonium acetate (400 mM) 300 ml; the other ingredients were unchanged; the water bath temperature was 55 ° C, and the encapsulation temperature was 100 ° C:.
  • Example 5 Three batches of the product were prepared, and the obtained products were respectively Example 4-1, Example 4-2, and Example 4-3.
  • Example 5 Three batches of the product were prepared, and the obtained products were respectively Example 4-1, Example 4-2, and Example 4-3.
  • Example 5 Three batches of the product were prepared, and the obtained products were respectively Example 4-1, Example 4-2, and Example 4-3.
  • Example 5 Three batches of the product were prepared, and the obtained products were respectively Example 4-1, Example 4-2, and Example 4-3.
  • the original adjuvant daunorubicin hydrochloride 0.16g, DSPG 1.5g, DPPG-mPEG2000 0.18g, cholesterol 0.36g, D-glucose 10. Og, 2-hydroxypropyl- ⁇ -cyclodextrin 3.0g.
  • Example 5 The same as in Example 1, wherein the water bath temperature was 57 ° C and the encapsulation temperature was 115 ° C. Three batches of the product were prepared, and the obtained products were respectively Example 5-1, Example 5-2, and Example 5-3.
  • Example 6 The same as in Example 1, wherein the water bath temperature was 57 ° C and the encapsulation temperature was 115 ° C. Three batches of the product were prepared, and the obtained products were respectively Example 5-1, Example 5-2, and Example 5-3.
  • Example 6 The same as in Example 1, wherein the water bath temperature was 57 ° C and the encapsulation temperature was 115 ° C. Three batches of the product were prepared, and the obtained products were respectively Example 5-1, Example 5-2, and Example 5-3.
  • Example 6 The same as in Example 1, wherein the water bath temperature was 57 ° C and the encapsulation temperature was 115 ° C. Three batches of the product were prepared, and the obtained products were respectively Example 5-1, Example 5-2, and Example 5-3.
  • Example 6
  • the organic solvent is 1000 ml of sterol
  • the first buffer is replaced by ammonium acetate 350 mM, 200 ml
  • the second buffer is potassium citrate 5 mM, 350 ml
  • the other ingredients are unchanged
  • the temperature is 52 ° C and the encapsulation temperature is 90 ° C:.
  • Example 7 Three batches of the product were prepared, and the obtained products were respectively Example 6-1, Example 6-2, and Example 6-3.
  • Example 7 Three batches of the product were prepared, and the obtained products were respectively Example 6-1, Example 6-2, and Example 6-3.
  • Example 7 Three batches of the product were prepared, and the obtained products were respectively Example 6-1, Example 6-2, and Example 6-3.
  • Example 7 Three batches of the product were prepared, and the obtained products were respectively Example 6-1, Example 6-2, and Example 6-3.
  • Example 7 Three batches of the product were prepared, and the obtained products were respectively Example 6-1, Example 6-2, and Example 6-3.
  • the original adjuvant epirubicin hydrochloride 0.08g, DPPGO.2g, D0PC-mPEG2000 total 0.18g, cholesterol 200g, maltose 10. Og, 2-hydroxypropyl- ⁇ -cyclodextrin 4.0g.
  • Preparation method same as in Example 1, the organic solvent was replaced with 99.7% isopropanol 600 ml, the second buffer was replaced with citrate 8 mM, 250 ml; the other ingredients were unchanged; while the water bath temperature was 63 ° C, the encapsulation temperature was 112 ° C.
  • Example 7-1 Three batches of the product were prepared, and the obtained products were respectively Example 7-1, Example 7-2, and Example 7-3.
  • the original adjuvant doxorubicin hydrochloride 0.2g, HSPC O.9g, DSPE- mPEG20000.4g, cholesterol 0.25g, D-mannitol 9. Og, hydroxypropyl-Y-cyclodextrin 2.0g.
  • Preparation method same as in Example 1, the organic solvent was replaced with 99.0% chloroform (100 ml), the first buffer was replaced with ammonium acetate (300 mM), and the second buffer was replaced with sodium phosphate (10 mM) 230 ml; At the same time, the water bath temperature is 50 ° C, and the encapsulation temperature is 60 ° C:
  • Example 8-1 Three batches of the product were prepared, and the obtained products were respectively Example 8-1, Example 8-2, and Example 8-3.
  • pirarubicin hydrochloride 0. lg, HSPCO.5g, HSPC-mPEG2000 0.9g, cholesterol 1.0g, D-mannitol 10. Og, hydroxypropyl _ ⁇ -cyclodextrin 3.0g.
  • Preparation method same as in Example 1, wherein the organic solvent was replaced by 99.0% chloroform 180 ml, the first buffer was replaced with ammonium acetate 200 mM, 300 ml; the other ingredients were unchanged; the water bath temperature was 75 ° C, and the encapsulation temperature was 98. °C.
  • Example 9-1 Three batches of the product were prepared, and the obtained products were respectively Example 9-1, Example 9-2, and Example 9-3.
  • the original adjuvant doxorubicin hydrochloride 0. lg, D0PC0.7g, DSPE- mPEG20001.36g, cholesterol 1.09g, sucrose 8.65g, hydroxypropyl-Y-cyclodextrin 1.75g.
  • the preparation method was the same as in Example 1, wherein the water bath temperature was 68 ° C and the encapsulation temperature was 90 ° C:.
  • Example 10-1 Three batches were prepared in the same manner as in Example 1, and the obtained products were respectively Example 10-1, Example 10-2, and Example 10-3.
  • the original adjuvant pirarubicin hydrochloride 1.0g, HSPCO.9g, DSPE-mPEG2000 0.5g, cholesterol 0.25g, D-glucose 11.5g, a-cyclodextrin 2g.
  • Preparation method The same as in Example 1; the other ingredients were unchanged; the water bath temperature was 63 ° C, and the encapsulation temperature was 80 ° C.
  • Example 12 Three batches of the product were prepared in the same manner as in Example 1, and the obtained products were respectively Example 11-1, Example 11-2, and Example 11-3.
  • Example 12 Three batches of the product were prepared in the same manner as in Example 1, and the obtained products were respectively Example 11-1, Example 11-2, and Example 11-3.
  • Example 12 Three batches of the product were prepared in the same manner as in Example 1, and the obtained products were respectively Example 11-1, Example 11-2, and Example 11-3.
  • Example 12 Three batches of the product were prepared in the same manner as in Example 1, and the obtained products were respectively Example 11-1, Example 11-2, and Example 11-3.
  • Example 12 Three batches of the product were prepared in the same manner as in Example 1, and the obtained products were respectively Example 11-1, Example 11-2, and Example 11-3.
  • Example 12 Three batches of the product were prepared in the same manner as in Example 1, and the obtained products were respectively Example 11-1, Example 11-2, and Example 11-3.
  • Preparation method phospholipid, polyethylene glycol derivatized phospholipid, cholesterol, dissolved in an organic solvent isopropanol to obtain a transparent solution A; in a water bath at 50 ° C, while stirring, add the first slow to the transparent solution A The ammonium sulfate was flushed, and the obtained product was extruded to obtain a blank liposome D having an average particle diameter of about 10 to 500 nm; and a second buffer liquid histidine was added to the blank liposome D to displace the first buffer.
  • Liquid ammonium sulfate to obtain a blank liposome E; dissolving the water-soluble drug in the second buffer histidine to obtain a solution B; mixing the blank liposome E with the solution B, and encapsulating at 40 ° C for 15 minutes Cooling at room temperature, obtaining liposome F coated with water-soluble drug, adding saccharide and cyclodextrin lyoprotectant to liposome F, and dispensing into 10 bottles; lyophilized, that is, water-soluble drug Liposomal lyophilized composition.
  • Example 14 The same as in Example 1, wherein the encapsulation temperature was 60 ° C and the encapsulation time was 40 minutes. Three batches of the product were prepared, and the obtained products were respectively Example 13-1, Example 13-2, and Example 13-3.
  • Example 14 The same as in Example 1, wherein the encapsulation temperature was 60 ° C and the encapsulation time was 40 minutes. Three batches of the product were prepared, and the obtained products were respectively Example 13-1, Example 13-2, and Example 13-3.
  • Example 14 The same as in Example 1, wherein the encapsulation temperature was 60 ° C and the encapsulation time was 40 minutes. Three batches of the product were prepared, and the obtained products were respectively Example 13-1, Example 13-2, and Example 13-3.
  • Example 14 The same as in Example 1, wherein the encapsulation temperature was 60 ° C and the encapsulation time was 40 minutes. Three batches of the product were prepared, and the obtained products were respectively Example 13-1, Example 13-2, and Example 13-3.
  • Example 14 The same as in Example 1, wherein
  • Example 14-1 Three batches of the product were prepared, and the obtained products were respectively Example 14-1, Example 14-2, and Example 14-3.
  • Example 15 Example 15
  • Raw materials The components and amounts of the same components and amounts were the same except that no cyclodextrin or cyclodextrin derivative was added to the outer phase dispersion of the liposome coated with the water-soluble drug.
  • the preparation method was the same as in Example 1 except that hydroxypropyl- ⁇ -cyclodextrin was not added to liposome F.
  • the obtained product was Comparative Example 2.
  • the lyophilized composition prepared by the inventive examples 1 to 16 and the lyophilized composition prepared from the comparative example 1 to the comparative example 3 were tested for quality, stability and expiration date, and the test method was the field. Routine test methods used by technicians.
  • Example 1-1 97. 6 78. 5 96. 5 81. 0
  • the liposome lyophilized compositions prepared in Examples 1 to 16 of the present invention have substantially the same encapsulation efficiency and particle size after lyophilization and reconstitution as before lyophilization.
  • the encapsulation efficiency of the lyophilized liposome was only 60.5%, much lower than the lyophilized protective agent of the lyophilized lyoprotectant. 80% of the requirements for liposome drugs, and lower than the encapsulation efficiency of liposomes before lyophilization (95.6%).
  • the encapsulation efficiency before lyophilization is 88.4%, and the encapsulation efficiency is 8.8%, and the encapsulation efficiency before lyophilization is 88.4%. 2 ⁇ The granules also changed from 84.3 to 163. 2nm.
  • the present invention can prevent the liposome from deforming or rupturing during lyophilization by combining a saccharide with a cyclodextrin or a cyclodextrin derivative as a lyoprotectant, thereby preventing the core material.
  • the liposome lyophilized composition provided by the invention has a liposome encapsulation rate of >90% before and after lyophilization, a particle size of 50-500 nm, and more importantly, no significant change in encapsulation efficiency and particle size before and after lyophilization. .
  • the water-soluble J content showed less change after 6 months of storage at 25 ° C, and the related substances increased significantly.
  • the water solubility prepared according to the inventive examples 1 to 16 The content of the water-soluble drug and the content of the related substance in the lyophilized composition of the drug liposome are small, and meet the quality requirements. It is presumed that the long-term stability of the water-soluble pharmaceutical liposome lyophilized composition provided by the present invention is significantly better than that of the product provided in Comparative Example 1.
  • Table 4 shows the products prepared in Examples 1 to 16 of the present invention did not significantly change in particle size after long-term storage at a low temperature in Comparative Example 1.
  • Table 5 shows the content of the samples prepared in Examples 1 to 16 of the present invention and the products of Comparative Example 1 after long-term stability at 2-10 ° C, and the changes of related substances.
  • Example 16 The content after storage and the change of related substances are not obvious, but in comparison, the embodiment 1 to the present invention
  • the product prepared in Example 16 was more stable than the product prepared in Comparative Example 1, and the product quality was more uniform.
  • the water-soluble drug liposome of the present invention is lyophilized in combination with a saccharide and a cyclodextrin or a cyclodextrin derivative as a lyoprotectant.
  • the saccharide is added to the blank liposome or encapsulated.
  • the external phase of the liposome of the water-soluble drug, the cyclodextrin is added to the outer phase of the drug-coated liposome, and the lyophilized protective agent of the saccharide and the cyclodextrin or the cyclodextrin derivative can be successfully realized.
  • the liposome dispersion containing water-soluble drug was lyophilized.
  • the encapsulation efficiency and particle size did not change significantly before and after lyophilization. After 24 months of low temperature storage, the quality indexes did not change significantly and met the quality standard requirements.
  • the water-soluble pharmaceutical liposome lyophilized composition provided by the invention can be stably stored for more than 24 months, and has significant progress and clinical significance compared with the existing water-soluble pharmaceutical liposome products, such as the effective period of 18-18 months. significance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)

Description

一种水溶性药物的脂盾体冻干组合物及其制备方法
技术领域
本发明涉及医药领域, 特别涉及一种水溶性药物脂质体冻干组合物及其 制备方法。
背景技术
脂质体是由磷脂分子构成的双分子层嚢泡。 可分为单层脂质体和多层脂 质体。 它的结构在很多文献及专著中均有所描述。 脂质体作为药物载体, 能 够满足药物制剂治疗上的许多要求, 具有许多优点, 脂质体能够包封药物, 并将药物带至病灶; 通过脂质体给药, 能够控制药物在体内组织中的分布, 降低药物在血液中的含量, 降低毒性。
脂质体的制备方法也很多, 在很多文献以及专著中均有所介绍, 如 Szoka and apahadjopoulos, Ann. Re. Biophysics Bioeng. 9 : 467-508 (1980) 、 Liposome Technology, Preparation of Liposome, Vol I, Gregor iadis (Ed) , CRC Press, Inc. (1984)、 《现代药物新剂型与新技术》等。 在一些专利中 也描述了脂质体包裹技术, 如美国专利 US4, 235, 871和 US4, 016, 100。
如下表所示, 脂质体技术已经成功运用到表中的几个药物的包裹, 并实 现工业化生产(下表中产品为目前已经批准上市的脂质体产品)。 具体来说, 在美国专利 US5213804描述了一种脂质体组合物,成功应用于包裹蒽环类药物 如盐酸多柔比星等。且用该技术所制备的盐酸多柔比星脂质体注射液(doxi l) 已成功上市, 主要用于治疗艾滋病、 以及肿瘤等, 由于, 脂质体具有靶向性, 从而显著地提高了疗效, 降低了毒性。
表. 目前已经批准上市的脂质体产品介绍 活性成 S家
有效
生产厂商 适应症 (或地区)及 备注 份
Figure imgf000002_0001
上市情况 1 水溶生药 盐酸多 20个
I Doxil Sequus 艾滋病、 癌症 欧美 1995 物 , 液体 柔比星 月
制剂
1 柠檬酸 水溶生药
Dauno 18个 \ 柔红霉 Nexstar 艾滋病、 癌症 欧美 1996 物 , 液体 xome
1 月
素 制剂 水溶生药
; 阿糖胞 Depo 急性粒细胞 1999年上 18个
Depotech 物 , 液体
1 苷 cyt 白血病 市 月
制剂
NeXstar 水不溶性 两性霉 Ambio 1990年上 36个
Pharma 抗真菌感染 药物, 冻 素 B some
ceuticals 市 月
干制剂 目前上市的各种脂质体产品中, 大多为液体制剂。 然而, 脂质体在水性 介质中易发生聚集、 融合、 磷脂水解及药物渗漏等一系列问题, 导致储存期 缩短。 尤其是, 水溶性药物与脂质体膜之间的相互作用较弱, 这便使得药品 的长期稳定性问题更为突出。 如上表所示, 目前大多数脂质体制剂的有效期 仅为 18-20个月。 而在实际应用中, 如果药品的有效期短于 2年, 将给流通和 使用环节带来很多不便。 正因如此, 关于脂质体液体制剂的研究非常多, 但 是真正上市并且广泛应用的只有上述几个药物。 为了提高脂质体的有效期, 使得脂质体能够得到更为广泛的应用, 研发 人员作了 艮多尝试。 1978年 Van 1 eb er ghe (药物冻干制剂技术的设计及应用) 首次报道了釆用冷冻干燥法提高脂质体的贮存稳定性。 1990研发人员发现可 以通过冻干技术使如两性霉素 B等水不溶性药物的脂质体制剂稳定性得到提 高, 该技术已经成功应用并且实现工业化生产于 1990年成功上市 (商品名: Ambiosome ) , 该品的有丈期能够长达三年。
自此, 研发人员开始尝试对其它药物用脂质体包裹进行冻干保护。 然而, 发现脂质体在冷冻过程中, 水晶的形成、 渗透压的改变、 相分离及相转变等 因素均可导致脂质膜折叠、 融合、 破裂及药物渗漏, 水溶性药物由于其与脂 质体膜之间的相互作用较弱, 冻干过程中更容易渗漏, 因此从技术上更难实 现冻干, 目前尚未有任何水溶性药物能够制成冻干脂质体并长期保存(有效 期> 18个月) 。 为了解决脂质体混悬液长期稳定性差, 而冻干过程中容易造成脂质体渗 漏, 包封率降低的难题, 研发人员发现在冻干前加入适当的冻干保护剂, 可 以防止脂质体在冷冻干燥过程中芯材的渗漏及粒子间的相互聚集融合, 这便 实现了单层脂质体转变为多层脂质体这一改变。 近二十年来, 寻找合适的冻 干保护剂, 实现脂质体以冻干形式的长期稳定保存(有效期> 20个月 ) , 成 为脂质体领域的研究热点之一。 研发人员为解决脂质体冻干, 以及寻找适合 的冻干保护剂进行着不断的努力与研究。 美国专利 US431172公开了一种冻干 脂质体, 该冻干脂质体由两亲性磷脂和至少一种能溶解于有机溶中的脂溶性 药物组成。 按照该专利的说明书所制备的冻干品在复溶后药物的包封率仅约 为 80%。
但是, 目前并没有研究表明通过釆用现有的这些冻干保护剂能够制备包 封率 > 90%, 有效期 > 20个月以上的水溶性药物冻干脂质体。
发明内容
本发明目的之一是提供一种用于药物脂质体制备的冻干保护剂组合物, 该冻干保护剂组合物含有糖类冻干保护剂以及环糊精或环糊精衍生物冻干保 护剂, 该冻干保护剂组合物尤其适用于水溶性药物脂质体的制备。 本发明冻 干保护剂组合物中糖类与环糊精或环糊精衍生物的重量比为 50-90: 5-35 , 优 选为 70-80 : 5-15。 本发明冻干保护剂组合物可通过将糖类与环糊精或环糊精 衍生物混合制备。
本发明的另一目的是提供一种水溶性药物的脂质体冻干组合物, 克服现 有技术中水溶性药物的脂质体分散液不能长期稳定保存, 而在对其冻干过程 中容易造成水溶性药物渗漏、 粒子间聚集融合以及包封率低的难题, 提供了 一种稳定性好、有效期 > 24个月, 包封率 > 90%的水溶性药物冻干脂质体。 本 发明还提供了这种冻干脂质体的制备方法。
本发明脂质体冻干组合物是通过以下技术方案实现, 一种水溶性药物脂 质体冻干组合物, 包含如下原辅料: 水溶性药物、 磷脂、 聚乙二醇衍生化磷 月旨、 胆固醇、 糖类冻干保护剂以及环糊精或环糊精衍生物冻干保护剂。
进一步地, 优选上述脂质体冻干组合物中所包含的各原辅料的重量百分 含量如下: 水溶性药物 0.5 ~ 10%、磷脂 1 ~ 10%、 聚乙二醇衍生化磷脂 1 ~ 12%、 胆固醇 1 ~ 15%、糖类冻干保护剂 50 ~ 90%, 以及环糊精或环糊精衍生物冻干保 护剂 5 ~ 35%。 在本发明脂质体冻干组合物的一种优选的实施方式中, 该脂质体冻干组 合物中各原辅料的重量百分含量如下: 水溶性药物 0.5 ~ 10%、 碑脂 1~ 10%、 聚乙二醇衍生化碑脂 1 ~ 12%、胆固醇 1 ~ 15%、糖类冻干保护剂 70 ~ 80%, 以及 环糊精或环糊精衍生物冻干保护剂 5 ~ 15%。
在本发明中可以使用的糖类冻干保护剂包括但不限于海藻糖、 木醇糖、 葡萄糖、 半乳糖、 甘露醇、 麦芽糖、 蔗糖、 乳糖、 果糖, 其中优选选自 D- 葡萄糖、 乳糖、 D-甘露醇、 麦芽糖、 蔗糖中的一种或多种。 优选地, 在脂质 体冻干组合物制备过程中, 糖类冻干保护剂添加在空白脂质体或者包裹了水 溶性药物的脂质体的外相分散液中, 起到冻干保护的作用。
进一步地, 上述糖类冻干保护剂优选乳糖和蔗糖。
环糊精、 Y-环糊精、 羟丙基 -α-环糊精、 羟丙基 -β-环糊精、 2-羟丙基 -β- 环糊精、 羟丙基 -Υ-环糊精、 羟乙基 -α-环糊精、 羟乙基 -β-环糊精、 2-羟 乙基 -β-环糊精、 羟乙基 -Υ-环糊精, 其中优选选自羟丙基 -α-环糊精、 羟 丙基 -β-环糊精、 2-羟丙基 -β-环糊精、羟丙基 -Υ-环糊精中的一种或多种。 优选地, 在脂质体冻干组合物制备过程中, 环糊精或环糊精衍生物添加在已 经包裹了水溶性药物的脂质体的外相分散液中, 起到冻干保护的作用。
进一步地, 上述的环糊精或环糊精衍生物优选自羟丙基 -a-环糊精、 羟 丙基 -β-环糊精、 2-羟丙基 -β-环糊精、 和羟丙基 -Υ-环糊精中的一种或多 种。
进一步地, 上述的环糊精或环糊精衍生物更优选自羟丙基- β -环糊精或 2-羟丙基 -β-环糊精。 在本发明中可以使用的磷脂选自蛋黄卵磷脂、 大豆卵磷脂、 二硬酯酰碑 脂酰甘油( dipalmitoylphosphatidylglycerol, 简称 DSPG)、 氢化大豆碑脂 酰胆碱 ( Hydrogenated Soya Phosphatidyl Choline , 简称 HSPC) 、 二油酰 碑脂酰胆碱(dioleoylphosphatidylcholine , 简称 D0PC)、 二软酯酰胆碑脂 (dipalmitoylphosphatidylglycerol , 简称 DPPG)、 二硬脂酰碑脂酰乙醇胺 ( phosphatidylethanolamine pegol , 简称 DSPE)中的一种。 在本发明中可以使用的聚乙二醇衍生化磷脂的结构中的磷脂部分选自大 豆卵磷脂、二硬酯酰碑脂酰甘油、 氢化大豆磷脂酰胆碱、二油酰碑脂酰胆碱、 二软酯酰胆碑脂、 二硬脂酰碑脂酰乙醇胺中的一种。 其中优选聚乙二醇衍生 化磷脂中所使用的聚乙二醇的分子量为 200-4000。 更为优选地, 聚乙二醇衍 生化磷脂中所使用的聚乙二醇的分子量为 2000。 例如: 二硬脂酰碑脂酰乙醇 胺-聚乙二醇 2000 ( DSPE-mPEG2000 ) 、 二软酯酰胆碑脂-聚乙二醇 2000 ( DPPG-mPEG2000 )、氢化大豆磷脂酰胆碱-聚乙二醇 2000 ( HSPC -mPEG2000 )、 二油酰磷脂酰胆碱-聚乙二醇 2000 ( D0PC-mPEG2000 ) 。
在本发明中可以使用的所述的水溶性药物选自抗肿瘤药物、 抗感染药物 或激素类药物。 优选地, 水溶性药物为抗肿瘤药物时, 优选自多柔比星、 柔 红霉素、 吡柔比星、 表柔比星及这些药物的盐中的一种或多种。 本发明的水溶性药物脂质体冻干组合物还可选择性包含一定量的其它辅 料如组氨酸、 甘氨酸、 谷氨酸等。
本发明优选的一种水溶性药物脂质体冻干组合物, 其包含重量比为 1-3% 的盐酸多柔比星、 5-8%的氢化大豆磷脂(HSPC)、 2-7%的聚乙二醇衍生化磷脂 为 DSPE-mPEG2000、 1-7%的胆固醇、 70-80%的蔗糖和 5-15%的羟丙基- β -环糊 精。
本发明优选的另一种水溶性药物脂质体冻干组合物, 其包含重量比为
1-3%的盐酸柔红霉素、 5-8%的氢化大豆磷脂(HSPC)、 2-7%的聚乙二醇衍生化 碑脂为 DSPE-mPEG2000、 1-7%的胆固醇、 70-80%的蔗糖和 5-15%的羟丙基- β - 环糊精。
同时本发明还提供了本发明水溶性药物冻干组合物的制备方法, 包括如 下步骤: 将磷脂、 聚乙二醇衍生化磷脂、 胆固醇, 溶解于有机溶剂中, 得到 透明溶液 Α;在 50-80 °C水浴条件下,边搅拌边向透明溶液 A中加入第一緩冲液, 将制得物挤压, 得到平均粒径为 10-500nm左右的空白脂质体 D ; 向空白脂质 体 D中加入第二緩冲液置换出第一緩冲液,得到空白脂质体 E;将水溶性药物 和糖类冻干保护剂用第二緩冲液溶解, 得到溶液 B; 将空白脂质体 E与溶液 B 混合,在 40-120°C包封 5-60分钟后在常温下放冷,优选包封温度为 40-100 °C , 优选包封时间为 8-15分钟,放冷后得到包裹了水溶性药物的脂质体 F,在脂质 体 F中加入环糊精或环糊精衍生物冻干保护剂, 进行分装; 放入冻干机冻干, 即得水溶性药物的脂质体冻干组合物。 本发明水溶性药物冻干组合物还可以用以下方法制备: 将磷脂、 聚乙二 醇衍生化磷脂、 胆固醇, 溶解于有机溶剂中, 得到透明溶液 A; 在 50-8CTC水 浴条件下, 边搅拌边向透明溶液 A中加入第一緩冲液, 将制得物挤压,得到平 均粒径为 10-500讓左右的空白脂质体 D; 向空白脂质体 D中加入第二緩冲液 置换出第一緩冲液, 得到空白脂质体 E; 将水溶性药物用第二緩冲液溶解, 得 到溶液 B;将空白脂质体 E与溶液^'昆合,在 40-12CTC包封 5-60分钟后在常温下 放冷, 优选包封温度为 40-100 °C , 优选包封时间为 8-15分钟, 放冷后得到包 裹了水溶性药物的脂质体 F, 在脂质体 F中加入糖类和环糊精或环糊精衍生物 冻干保护剂, 进行分装; 放入冻干机冻干, 即得水溶性药物的脂质体冻干组 合物。
在本发明中提到的名词, "脂质体的外相" 定义为: 在分散液中, 脂质 体与脂质体之间的所有空间称为脂质体的外相。 本发明中的水溶性药物是指
25 °C下, 1克溶质能在不到 1000ml水中溶解的药物, 优选的水溶性药物为抗 肿瘤药物。 空白脂质体: 指尚未包裹药物的脂质体。
本发明中由于联合使用糖类冻干保护剂以及环糊精或环糊精衍生物冻干 保护剂, 尤其是限定了糖类冻干保护剂以及环糊精或环糊精衍生物冻干保护 剂的配伍比例, 使得其产生相互协同作用, 达到了显著效果。
另外, 本发明人经过长期试验, 最终确定在上述的制备方法中, 在得到 了空白脂质体 E之后 ,将糖类冻干保护剂和环糊精或环糊精衍生物冻干保护剂 加入到体系中, 使糖类冻干保护剂和环糊精或环糊精衍生物冻干保护剂都处 于包裹了水溶性药物的脂质体 F的外相 ,从而保证了糖类冻干保护剂和环糊精 冻干保护剂在最终得到的脂质体结构中发挥保护剂的作用 , 达到了本发明所 述的效果。 本发明由于釆用糖类和环糊精或环糊精衍生物作为脂质体的冻干 保护剂, 使最终得到的水溶性药物脂质体冻干组合物冻干前后的包封率及粒 径变化最小, 并且能够稳定保存 24个月以上。 进一步地, 上述的有机溶剂选自氯仿、 乙醇、 异丙醇、 曱醇中的一种或 多种。
进一步地, 优选上述制备方法中的第一緩冲液为铵盐溶液, 铵盐选自磷 酸铵、 碳酸铵、 氯化铵、 硫酸铵、 乙酸铵中的一种或多种。
进一步地, 优选上述的第二緩冲液为磷酸盐、 柠檬酸盐、 组氨酸溶液中 的一种或多种, 其中磷酸盐选自磷酸氢二钾、 磷酸二氢钾、 磷酸氢二钠、 磷 酸二氢钠中的一种或多种。
脂质体分散液给药系统作为一种具有显著的临床治疗优势的药物, 其能 够控制药物在体内组织中的分布, 降低药物在血液中的含量, 降低毒性。 然 而其有效期较短, 并不利于药物的流通和使用, 为了能够将脂质体技术更广 泛地推广应用, 本申请发明人对脂质体冻干保护剂以及冻干制备方法进行了 大量的研究, 惊奇地发现将糖类和环糊精或环糊精衍生物联合用作脂质体分 散液的冻干保护剂, 能够防止脂质体分散液在冻干过程中脂质受到破坏, 从 而得到包封率高、 粒径变化小的脂质体, 且釆用糖类和环糊精或环糊精衍生 物联合用作脂质体分散液的冻干保护剂所制备的冻干组合物, 在储存 0月、 6 月、 9月、 12月、 18月、 24个月后复溶,脂质体的粒径和包封率无显著性变化。 实现了水溶性药物冻干脂质体组合物的长期稳定有效保存。
本发明产生的有益效果如下: 本发明水溶性药物脂质体冻干组合物釆用 糖类和环糊精或环糊精衍生物联合作为水溶性药物脂质体分散液的冻干保护 剂, 通过这样的技术方案能避免水溶性药物脂质体分散液在冻干过程中脂质 体变形与破裂所导致的药物泄漏, 在保证水溶性药物的质量的基础上, 提高 冻干组合物的稳定性、 以及有效期。 本发明水溶性药物脂质体冻干组合物的 包封率 90%, 粒径在 l(T500nm之间, 各项指标均符合质量标准要求, 有效 期 24个月。 本发明所提供的水溶性药物脂质体冻干组合物更有利于具有明 显治疗优势的脂质体剂型得到更好的应用, 为水溶性药物脂质体的推广提供 了更好的基础。
具体实施方式:
以下结合具体实施例对本发明进行详细说明, 本发明所提供的实施例仅 用于帮助理解本发明所提供的技术方案,而不构成对本发明保护范围的限制; 本发明可以由权利要求限定和覆盖的多种不同方式实施。
实施例 1
原辅药: 水溶性药物为盐酸多柔比星 0.2g、 磷酯为 HSPCO.9g、 聚乙二醇 衍生化碑脂为 DSPE-mPEG2000 0.4g、 胆固醇 0.25g、 糖类冻干保护剂为蔗糖 14.0g, 环糊精或环糊精衍生物冻干保护剂为羟丙基- β -环糊精 1.25g。
制备方法如下:
将磷脂、 聚乙二醇衍生化磷脂、 胆固醇, 溶解于 500ml有机溶剂 99.5%乙 醇中, 得到透明液 A; 将透明液 A放入 60°C水浴中, 将 250ml第一緩冲液硫酸铵 溶液( 250mM ) 边搅拌边加入到透明液 A中, 将制得物用高压勾质机挤压得到 平均粒径为 90nm左右的空白脂质体 D; 在所得到的空白脂质体 D中加入第二 緩冲液组氨酸(10mM) 5000ml置换空白脂质体 D外相的第一緩冲液硫酸铵, 得到空白脂质体 E; 将水溶性药物和蔗糖用 200ml第二緩冲液组氨酸(10mM) 200ml溶解, 得到溶液 B; 将溶液 B和空白脂质体 E混合, 在 40°C包封 12分钟后 在常温下放冷,得到包裹了水溶性药物的脂质体 F; 在脂质体 F中加入羟丙基- β-环糊精,分装成 10瓶,冻干,即得本发明的水溶性药物脂质体冻干组合物。
制备三批产品, 得到产品分别为实施例 1-1, 实施例 1-2, 实施例 1-3。 实施例 2
原辅药: 盐酸柔红霉素 0.2g、 HSPC1.2g、 DSPE-mPEG2000 0.6g、 胆固醇 1.0g、 蔗糖 13. Og, 羟丙基 _β-环糊精 2.5g制备方法: 同实施例 1, 其中, 水 浴温度为 76 °C , 包封温度为 105 °C。
制备三批产品, 得到产品分别为实施例 2-1, 实施例 2-2, 实施例 2-3。 实施例 3
原辅药: 盐酸多柔比星 0.2g、 HSPC O.32g、 DSPE- mPEG20000.18g、 胆固 醇 0.2g、 蔗糖 13.9g, 羟丙基 -α-环糊精 0.78g。
制备方法: 同实施例 1, 有机溶剂替换为 99.5%曱醇(1000ml), 第二緩冲 液替换为柠檬酸盐( 10mM) 250ml; 其它成分不变; 同时水浴温度为 65°C, 包 封温度为 80°C:。 制备三批产品, 得到产品分别为实施例 3-1, 实施例 3-2, 实施例 3-3。 实施例 4
原辅药: 盐酸多柔比星 0.2g、 HSPC O.7g、 DSPE- mPEG20000.8g、 胆固醇 0.4g、 D-半乳糖 6.7g, 2-羟丙基 -β-环糊精 4.6g。
制备方法: 同实施例 1, 有机溶剂替换为 99.5%异丙醇 500ml, 第一緩冲液 替换为醋酸铵(400mM) 300ml; 其它成分不变; 同时水浴温度为 55°C, 包封温 度为 100°C:。
制备三批产品, 得到产品分别为实施例 4-1, 实施例 4-2, 实施例 4-3。 实施例 5
原辅药: 盐酸柔红霉素 0.16g、 DSPG 1.5g、 DPPG -mPEG2000 0.18g、 胆 固醇 0.36g、 D-葡萄糖 10. Og, 2-羟丙基 -β-环糊精 3.0g。
制备方法: 同实施例 1, 其中, 水浴温度为 57°C, 包封温度为 115°C。 制备三批产品, 得到产品分别为实施例 5-1, 实施例 5-2, 实施例 5-3。 实施例 6
原辅药: 盐酸吡柔比星 1.5g、 D0PC0.9g、 HSPC -mPEG20000.4g、 胆固醇
0.60g、 麦芽糖 9.6g, 2-羟丙基 -β-环糊精 2.0g。
制备方法: 同实施例 1, 有机溶剂为曱醇 1000ml, 第一緩冲液替换为醋酸 铵 350mM、 200ml, 第二緩冲液为碑酸二氢钾 5mM、 350ml; 其它成分不变; 同 时水浴温度为 52 °C, 包封温度为 90°C:。
制备三批产品, 得到产品分别为实施例 6-1, 实施例 6-2, 实施例 6-3。 实施例 7
原辅药: 盐酸表柔比星 0.08g、 DPPGO.2g、 D0PC-mPEG2000共 0.18g、 胆固 醇 0.2g、 麦芽糖 10. Og, 2-羟丙基 -β-环糊精 4.0g。
制备方法: 同实施例 1, 有机溶剂替换为 99.7%异丙醇 600ml, 第二緩冲液 替换为柠檬酸盐 8mM、 250ml; 其它成分不变; 同时水浴温度为 63°C, 包封温 度为 112°C。
制备三批产品, 得到产品分别为实施例 7-1, 实施例 7-2, 实施例 7-3。 实施例 8
原辅药: 盐酸多柔比星 0.2g、 HSPC O.9g、 DSPE- mPEG20000.4g、 胆固醇 0.25g、 D-甘露醇 9. Og, 羟丙基 -Y-环糊精 2.0g。
制备方法: 同实施例 1, 有机溶剂替换为 99.0%氯仿(100ml) , 第一緩冲 液替换为醋酸铵( 300mM ) , 第二緩冲液替换为磷酸钠(10mM) 230ml; 其它成 分不变; 同时水浴温度为 50°C, 包封温度为 60°C:。
制备三批产品, 得到产品分别为实施例 8-1, 实施例 8-2, 实施例 8-3。 实施例 9
原辅药: 盐酸吡柔比星 0. lg、 HSPCO.5g、 HSPC-mPEG2000 0.9g、 胆固醇 1.0g、 D-甘露醇 10. Og, 羟丙基 _β-环糊精 3.0g。
制备方法: 同实施例 1, 其中, 有机溶剂替换为 99.0%氯仿 180ml, 第一緩 冲液替换为醋酸铵 200mM、 300ml; 其它成分不变; 同时水浴温度为 75°C, 包 封温度为 98°C。
制备三批产品, 得到产品分别为实施例 9-1, 实施例 9-2, 实施例 9-3。 实施例 10
原辅药: 盐酸多柔比星 0. lg、 D0PC0.7g、 DSPE- mPEG20001.36g、 胆固醇 1.09g、 蔗糖 8.65g, 羟丙基 - Y-环糊精 1.75g。
制备方法同实施例 1, 其中水浴温度为 68°C, 包封温度为 90°C:。
按实施例 1的方法制备三批, 得到产品分别为实施例 10-1 , 实施例 10-2, 实施例 10-3。
实施例 11
原辅药: 盐酸吡柔比星 1.0g、 HSPCO.9g、 DSPE- mPEG2000 0.5g、 胆固醇 0.25g、 D-葡萄糖 11.5g, a-环糊精 2g。
制备方法: 同实施例 1; 其它成分不变; 同时水浴温度为 63°C, 包封温度 为 80°C。
按实施例 1的方法制备三批产品, 得到产品分别为实施例 11-1, 实施例 11-2, 实施例 11-3。 实施例 12
原辅料: 组分和重量同实施例 1
制备方法: 将磷脂、 聚乙二醇衍生化磷脂、 胆固醇, 溶解于有机溶剂异 丙醇中, 得到透明溶液 A; 在 50°C水浴条件下, 边搅拌边向透明溶液 A中加入 第一緩冲液硫酸铵, 将制得物挤压, 得到平均粒径为 10-500nm左右的空白脂 质体 D;向空白脂质体 D中加入第二緩冲液组氨酸置换出第一緩冲液硫酸铵, 得到空白脂质体 E; 将水溶性药物用第二緩冲液组氨酸溶解, 得到溶液 B; 将 空白脂质体 E与溶液 B混合,在 40°C包封 15分钟后在常温下放冷 ,得到包裹了 水溶性药物的脂质体 F, 在脂质体 F中加入糖类和环糊精冻干保护剂, 分装成 10瓶; 冻干, 即得水溶性药物的脂质体冻干组合物。
制备三批产品, 得到产品分别为实施例 12-1, 实施例 12-2, 实施例 12-3。 实施例 13
原辅药: 组份和重量同实施例 1。
制备方法: 同实施例 1, 其中, 包封温度为 60°C, 包封时间为 40分钟。 制备三批产品, 得到产品分别为实施例 13-1, 实施例 13-2, 实施例 13-3。 实施例 14
原辅药: 组份和重量同实施例 1。
制备方法: 同实施例 1, 其中, 包封时间为 60分钟。
制备三批产品, 得到产品分别为实施例 14-1, 实施例 14-2, 实施例 14-3。 实施例 15
原辅药: 组份和重量同实施例 1。
制备方法: 同实施例 1, 其中, 包封温度为 80°C, 包封时间为 8分钟。 制备三批产品, 得到产品分别为实施例 15-1, 实施例 15-2, 实施例 15-3。 实施例 16
原辅药: 组份和重量同实施例 1。
制备方法: 同实施例 1, 其中, 包封温度为 70°C, 包封时间为 45分钟。 制备三批产品, 得到产品分别为实施例 16-1 , 实施例 16-2 , 实施例 16-3。 对比例 1
市售产品盐酸多柔比星脂质体注射液(doxil , 生产厂家 Ben Venue Laboratories, Inc. , 批号 071844224, 有效期 20个月)。
对比例 2
原辅料: 除包裹了水溶性药物的脂质体的外相分散液中不加入环糊精或 环糊精衍生物外, 其余组份和量同实施例 1 。
制备方法:除不在脂质体 F中加入羟丙基- β环糊精外,其余同实施例 1 . 所制得的产品为对比例 2 。
对比例 3
原辅料: 除空白脂质体外相分散液中不加入蔗糖外, 其余组份和量同实 施例 1 。
制备方法: 除不将蔗糖用第二緩冲液组氨酸溶解外, 其余同实施例 1,所 制得的产品为对比例 2.
将由本发明实施例 1至实施例 16所制备的冻干组合物以及由对比例 1至对 比例 3所制备的冻干组合物, 进行质量、 稳定性、 有效期限进行测试, 测试 方法为本领域技术人员所使用的常规测试方法。
一、 对根据本发明实施例 1至实施例 16所制备的产品以及对比产品 2所制 备的产品冻干前与冻干后复溶得到的冻干脂质体进行包封率及粒径变化的进 行检测, 结果如表 1。 表 1 本发明实施例 1至实施例 16产品与对比例 2冻千前与冻千后复溶后的 包封率(%)及平均粒径 (nm )
冻干前 冻干复溶后 0小时
样品 平均粒径 包封率 平均粒径
包封率 (%)
( nm) ( % ) ( nm)
实施例 1-1 97. 6 78. 5 96. 5 81. 0
实施例 1-2 97. 8 78. 9 96. 3 82. 2
实施例 1-3 98. 5 78. 0 96. 9 81. 8
实施例 2-1 96. 9 82. 5 95. 4 85. 0
Figure imgf000014_0001
如 1所示, 由本发明实施例 1至实施例 16所制备的脂质体冻干组合物, 冻干复溶后包封率及粒径与冻干前相比基本相同。
对比例 2在加入糖类冻干保护剂而不加环糊精或环糊精衍生物冻干保护 剂情况下, 冻干后脂质体的包封率仅为 60. 5%,远低于脂质体药物要求的 80%, 更低于冻干前脂质体的包封率 (95. 6% ) 。
对比例 3在加入环糊精冻干保护剂而不加糖类冻干保护剂的情况下, 包封 率和粒径均发生显著变化, 冻干前的包封率为 88. 4% , 而冻干后即下降为 50. 6%, 粒径也由 84. 3变为 163. 2nm。
通过对比研究可知, 本发明通过将糖类和环糊精或环糊精衍生物联合作 为冻干保护剂, 可以防止脂质体药物在冻干过程中脂质体变形或破裂, 进而 防止芯材从脂质体大量泄漏。 本发明提供的脂质体冻干组合物冻干前后脂质 体包封率均 > 90%, 粒径在 50-500nm,更重要的是, 包封率和粒径冻干前后均 无明显变化。
二、 稳定性分析 将根据本发明实施例 1至实施例 16所制备的脂质体冻干组合物与对比例 1 所提供的产品进行稳定性加速试验。 因为对比例 2及 3的产品在冻干后已不能 满足脂质体的质量要求, 因此未再进行稳定性分析。
( 1 ) 25 °C环境下稳定性测试: 将根据实施例 1至实施例 16所制备的样品 以及市购的对比例 1产品在 25 °C环境下储存 0、 1、 2、 3、 6月, 并测试样品在 0、 1、 2、 3、 6月时水溶性药物的含量(%)及有关物质 (%) 的变化情况, 结果 列人表 2。 表 2 本发明实施例 1至实施例 16所制备的样品与对比例 1产品 25 °C环境下 稳定性加速试验结果
'
Figure imgf000016_0001
由表 2所示, 对比 25°C保存 6个月后 水溶 J含量 弓显变 少,且有关物质明显增加。而根据本发明实施例 1至实施例 16所制备的水溶性 药物脂质体冻干组合物中水溶性药物的含量以及有关物质的含量物的变化幅 度较小, 符合质量要求。 由此推测, 本发明所提供的水溶性药物脂质体冻干 组合物的长期稳定性明显好于对比例 1中所提供的产品。
(2)低温 2-10°C环境下稳定性测试: 将根据实施例 1至实施例 16所制备 的样品以及市购的对比例 1产品在低温 2-10°C环境下储存 0、 6、 9、 12、 20、 24个月, 并进行如下测试:
1)测试样品在 0、 6、 9、 12、 20、 24月后冻干复溶后的包封率(%) , 结 果列入表 3。
2) 测试样品在 0、 6、 9、 12、 20、 24月后冻干复溶后的粒径( nm ) 变化 情况, 结果列入表 4。
3)测试样品在 0、 6、 9、 12、 20、 24月后冻干复溶后的含量(%)及有关 物质 (%) 变化情况, 将结果列入表 5。
4)测试样品在 0、 6、 9、 12、 20、 24月后脂质体冻干组合物释放度 变化情况, 结果列入表 6。 表 3本发明实施例 1至实施例 16所制备的产品与对比例 1产品在 2-10°C低 温保存后长期稳定性考察包封率 (%) 变化情况
0月 6月 9月 12月 20月 24月 对比例 1 98.0 97.8 98.0 97.5 97.0 96.5 实施例 1-1 96.5 96.5 96.6 96.5 96.8 95.8 实施例 1-2 96.3 96.8 96.8 96.5 96.6 96.8 实施例 1-3 96.9 97.0 97.2 96.1 96.5 97.1 实施例 2-1 95.4 95.7 95.5 95.5 95.3 95.5 实施例 2-2 96.1 96.5 96.3 96.2 96.4 96.5 实施例 2-3 95.5 95.4 95.5 95.3 95.5 95.5 实施例 3-1 92.2 92.5 92.4 92.4 92.4 92.3 实施例 4-1 94.2 94.4 94.6 94.6 94.2 94.4 实施例 5-1 90.8 90.0 90.3 90.9 90.5 90.1 实施例 6-1 91.5 91.6 91.7 91.7 91.7 91.7 实施例 7-1 90.1 90.8 90.9 90.9 90.9 90.9 实施例 8-1 92.5 92.7 92.8 92.8 92.8 92.8 实施例 9-1 94, 3 94, 1 94, 2 94, 2 94, 2 94, 2 实施例 10-1 93.0 93.0 93.1 93.1 93.1 93.1 实施例 11-1 90. 6 90. 8 90. 9 90. 9 90. 9 90. 9 实施例 12-1 96. 4 96. 5 96. 6 96. 5 96. 8 95. 8 实施例 13-1 97. 5 97. 5 97. 4 97. 2 97. 2 97. 1 实施例 14-1 97. 1 97. 0 97. 1 96. 9 96. 7 96. 5 实施例 15-1 94. 7 94. 7 94. 5 94. 2 94. 1 93. 8 实施例 16-1 98. 3 98. 4 98. 3 98. 0 98. 1 97. 8
由表 3所示,对比产品 1及本发明实施例 1至实施例 16所制备的样品长期低 温保存后包封率均无显著变化。 表 4本发明实施例 1至实施例 16所制备的产品与对比例 1产品在 2-10°C低 温保存后长期稳定性考察粒径变化 (nm) 变化情况
Figure imgf000018_0001
由表 4所示,本发明实施例 1至实施例 16所制备的产品与对比例 1低温 长期保存后粒径均无显著变化。 表 5本发明实施例 1至实施例 16所制备的样品与对比例 1产品在 2-10°C低 温保存后长期稳定性考察含量及有关物质变化情况。
Figure imgf000019_0001
储存后含量及有关物质变化均不明显, 但是, 相比而言, 本发明实施例 1至实 施例 16所制备的产品与对比例 1所制备的产品的稳定性更好,产品质量更力 定均一。
表 6本发明实施例产品与对比产品 2- 10 °C低温保存后长期释放度 (%) 变化 情况
Figure imgf000020_0001
由表 6所示: 对比例 1所提供的产品在 24月时释放度不满足质量标准中关 于释放度的要求,质量标准中要求为药物 0. 5h内释放度不得大于 70%,推测这 是对比例 1有效期仅为 20个月的重要原因。而本发明产品储存 24个月后释放度 无显著变化, 始终满足质量标准的要求。
综上所述, 本发明水溶性药物脂质体冻干组合使用糖类和环糊精或环糊 精衍生物共同作为冻干保护剂, 优选地, 糖类添加在空白脂质体或者包裹了 水溶性药物的脂质体的的外相, 环糊精添加在包裹了药物的脂质体的外相, 糖类和环糊精或环糊精衍生物共同组成药物的冻干保护剂, 能够成功实现将 含水溶性药物的脂质体分散液冻干, 冻干前后包封率和粒径没有显著变化, 低温储存 24个月后各项质量指标均无显著变化, 满足质量标准要求。 本发明 提供的水溶性药物脂质体冻干组合物能够稳定储存 24个月以上, 相对现有水 溶性药物脂质体产品如对比例 1 18-20个月的有效期,具有显著的进步及临床 意义。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种用于药物脂质体制备的冻干保护剂组合物,含有糖类冻干保护剂 以及环糊精或环糊精衍生物冻干保护剂。
2. 权利要求 1所述的组合物, 用于水溶性药物脂质体的制备, 其中糖类 与环糊精或环糊精衍生物的重量比为 50-90:5-35。
3. 一种水溶性药物脂质体冻干组合物, 其特征在于包含如下原辅料: 水 溶性药物、 磷脂、 聚乙二醇衍生化磷脂、 胆固醇、 糖类冻干保护剂以及环糊 精或环糊精衍生物冻干保护剂。
4. 根据权利要求 3所述的脂质体冻干组合物, 其特征在于所述脂质体冻 干组合物中所包含的各原辅料的重量百分含量如下: 水溶性药物 0.5 ~ 10%、 磷脂 1 ~ 10%、 聚乙二醇衍生化磷脂 1 ~ 12%、 胆固醇 1 ~ 15%、 糖类冻干保护 剂 50 ~ 90%, 以及环糊精或环糊精衍生物冻干保护剂 5~35%。
5. 根据权利要求 4所述的脂质体冻干组合物, 其特征在于所述脂质体冻 干组合物中各原辅料的重量百分含量如下: 水溶性药物 0.5 ~ 10%、 磷脂 1 ~ 10%、 聚乙二醇衍生化磷脂 1 ~ 12%、 胆固醇 1 ~ 15%、 糖类冻干保护剂 70 ~ 80%, 以及环糊精或环糊精衍生物冻干保护剂 5~15%。
6. 根据权利要求 1-4任一所述的组合物, 其特征在于,
所述的糖类选自 D -葡萄糖、 D -半乳糖、 D -甘露醇、 麦芽糖、 蔗糖、 海 藻糖、 木醇糖中的一种或多种;
所述的环糊精或环糊精衍生物选自羟丙基- α -环糊精、 羟丙基- β -环糊 精、 2-羟丙基 - β -环糊精、 和羟丙基 - Υ -环糊精中的一种或多种。
7. 根据权利要求 3或 4所述的脂质体冻干组合物, 其特征在于, 所述碑脂选自蛋黄卵磷脂、 大豆卵磷脂、 二硬酯酰碑脂酰甘油、 氢化大 豆磷脂酰胆碱、 二油酰碑脂酰胆碱、 二软酯酰胆磷脂、 二硬脂酰碑脂酰乙醇 胺中的一种;
所述聚乙二醇衍生化磷脂的结构中的磷脂部分选自二硬酯酰碑脂酰甘 油、 氢化大豆磷脂酰胆碱、 二油酰磚脂酰胆碱、 二软酯酰胆磚脂、 二硬脂酰 磷脂酰乙醇胺中的一种。
8. 根据权利要求 7所述的脂质体冻干组合物,其特征在于所述聚乙二醇 衍生化磷脂中所使用的聚乙二醇的分子量为 200-4000。
9. 根据权利要求 8所述的脂质体冻干组合物, 其特征在于, 所述聚乙二 醇衍生化磷脂中所使用的聚乙二醇的分子量为 2000。
10. 根据权利要求 3或 4所述的脂质体冻干组合物, 其特征在于, 所述水 溶性药物选自多柔比星、 柔红霉素、 表柔比星、 吡柔比星及这些药物的盐中 的一种或多种。
11. 根据权利要求 4所述的脂质体冻干组合物, 其特征在于所述脂质体 冻干组合物中各原辅料的重量百分含量如下: 1-3%的盐酸多柔比星、 5-8% 的氢化大豆碑脂 (HSPC)、 2-7%的聚乙二醇衍生化磷脂为 DSPE-mPEG2000、 1-7%的胆固醇、 70-80%的蔗糖和 5-15%的羟丙基- β -环糊精。
12. 根据权利要求 4所述的脂质体冻干组合物,其特征在于所述脂质体冻 干组合物中各原辅料的重量百分含量如下: 1-3%的盐酸柔红霉素、 5-8%的氢 化大豆磷脂 (HSPC)、 2-7%的聚乙二醇衍生化磷脂为 DSPE-mPEG2000、 1-7% 的胆固醇、 70-80%的蔗糖和 5-15%的羟丙基 - β -环糊精。
13. 一种权利要求 3-10中任一项所述的脂质体冻干组合物的制备方法, 其特征在于, 包括如下步骤: 将磷脂、 聚乙二醇衍生化磷脂、 胆固醇, 溶解于有机溶剂中, 得到透明 溶液 Α;
在 50-80°C水浴条件下, 边搅拌边向透明溶液 A中加入第一緩冲液, 将制 得物挤压, 得到平均粒径为 10-500nm左右的空白脂质体 D;
向空白脂质体 D中加入第二緩冲液置换出第一緩冲液, 得到空白脂质体
E;
将水溶性药物和糖类冻干保护剂用第二緩冲液溶解, 得到溶液 B; 将空白脂质体 E与溶液 B混合, 在 40-100°C包封 5-60分钟后在常温下放 冷 , 得到内相包裹了水溶性药物的脂质体 F; 在脂质体 F中加入环糊精或环糊精衍生物冻干保护剂, 进行分装; 冻干, 即得水溶性药物的脂质体冻干组合物。
14. 一种权利要求 3-10中任一项所述的脂质体冻干组合物的制备方法, 其特征在于, 包括如下步骤: 将磷脂、 聚乙二醇衍生化磷脂、 胆固醇, 溶解于有机溶剂中, 得到透明 溶液 A;
在 50-80°C水浴条件下, 边搅拌边向透明溶液 A中加入第一緩冲液, 将制 得物挤压, 得到平均粒径为 10-500nm左右的空白脂质体 D;
向空白脂质体 D中加入第二緩冲液置换出第一緩冲液, 得到空白脂质体
E; 将水溶性药物用第二緩冲液溶解, 得到溶液 B;
将空白脂质体 E与溶液 B混合,在 40-100 °C包封 5-60分钟后在常温下放冷, 得到内相包裹了水溶性药物的脂质体 F;
在脂质体 F中加入糖类冻干保护剂和环糊精或环糊精衍生物冻干保护 剂, 进行分装; 冻干, 即得水溶性药物的脂质体冻干组合物。
15. 根据权利要求 12或 13所述的制备方法, 其特征在于, 所述的有机溶 剂选自氯仿、 乙醇、 异丙醇、 曱醇中的一种。
16. 根据权利要求 12或 13所述的制备方法, 其特征在于,
所述的第一緩冲液为铵盐溶液, 铵盐选自磷酸铵、 碳酸铵、 氯化铵、 硫 酸铵、 乙酸铵中的一种或多种;
所述的第二緩冲液为磷酸盐、 柠檬酸钠、 柠檬酸、 组氨酸溶液中的一种 或多种, 其中磷酸盐选自磷酸氢二钾、 磷酸二氢钾、 磷酸氢二钠、 磷酸二氢 钠中的一种或多种。
PCT/CN2011/082958 2010-11-29 2011-11-25 一种水溶性药物的脂质体冻干组合物及其制备方法 WO2012072006A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/990,354 US20130315987A1 (en) 2010-11-29 2011-11-25 Lyophilized liposome composition encapsulating a water-soluble drug and preparation process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105623072A CN102018672B (zh) 2010-11-29 2010-11-29 一种水溶性药物的脂质体冻干组合物及其制备方法
CN201010562307.2 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012072006A1 true WO2012072006A1 (zh) 2012-06-07

Family

ID=43860727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082958 WO2012072006A1 (zh) 2010-11-29 2011-11-25 一种水溶性药物的脂质体冻干组合物及其制备方法

Country Status (3)

Country Link
US (1) US20130315987A1 (zh)
CN (1) CN102018672B (zh)
WO (1) WO2012072006A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201219137D0 (en) * 2012-10-24 2012-12-05 Ge Healthcare Uk Ltd Direct nucleic acid amplification kit, reagent and method
CN104306336B (zh) * 2014-11-18 2016-08-24 河北天成药业股份有限公司 枸橼酸柔红霉素脂质体注射液的制备工艺
LT3324932T (lt) * 2015-07-22 2021-04-26 Nitto Denko Corporation Kompozicijos ir būdai, skirti liofilinėms nanodalelių formoms
CN108159401B (zh) * 2018-03-16 2021-05-07 昆明积大制药股份有限公司 Apelin脂质体及其制备方法
KR102649069B1 (ko) 2018-05-31 2024-03-19 주식회사 엑소코바이오 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 안면 홍조 개선용 조성물
KR102058961B1 (ko) * 2018-07-28 2019-12-24 주식회사 엑소코바이오 엑소좀의 동결건조 방법
KR102163806B1 (ko) 2018-07-30 2020-10-07 주식회사 엑소코바이오 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 피지분비 감소용 조성물
WO2020028916A1 (en) * 2018-08-03 2020-02-06 University Of Mississippi Amphotericin loaded pegylated lipid nanoparticles and methods of use
CN113925956A (zh) * 2020-07-13 2022-01-14 正定仁运诚医药科技有限责任公司 一种用纳米脂质体技术制备水溶性环孢素a眼药水的方法
WO2023168125A1 (en) * 2022-03-04 2023-09-07 The Regents Of The University Of California Compositions and methods for targeted delivery of chemicals and biomolecules to plants and fungi
CN116803393B (zh) * 2023-08-24 2023-11-21 成都金瑞基业生物科技有限公司 一种pan-HER抑制剂的药物组合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478540A (zh) * 2003-03-20 2004-03-03 蔡海德 一种治疗糠尿病及其并发症和病毒性肝炎的组合药物及其制备方法
CN1813679A (zh) * 2005-11-30 2006-08-09 上海医药(集团)有限公司 一种紫杉烷脂质体冻干组合物及其制备方法
CN101548994A (zh) * 2009-05-06 2009-10-07 中国药科大学 一种银杏酮酯口服前体脂质体及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1256372A (en) * 1985-04-11 1989-06-27 Koichiro Miyazima Process for producing liposome composition
US20080138399A1 (en) * 1999-07-16 2008-06-12 Aradigm Corporation Dual release nicotine formulations, and systems and methods for their use
US20080213350A1 (en) * 2007-02-20 2008-09-04 Texas Tech University System Encapsulation of nucleic acids in liposomes
CN101244038B (zh) * 2007-10-26 2010-12-08 吴念 稳定型阿霉素类脂质体及其制备方法
CN104622809B (zh) * 2008-05-23 2019-04-19 英属哥伦比亚大学 用于脂质体纳米颗粒的修饰的药物
WO2010114768A1 (en) * 2009-03-30 2010-10-07 Cerulean Pharma Inc. Polymer-epothilone conjugates, particles, compositions, and related methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478540A (zh) * 2003-03-20 2004-03-03 蔡海德 一种治疗糠尿病及其并发症和病毒性肝炎的组合药物及其制备方法
CN1813679A (zh) * 2005-11-30 2006-08-09 上海医药(集团)有限公司 一种紫杉烷脂质体冻干组合物及其制备方法
CN101548994A (zh) * 2009-05-06 2009-10-07 中国药科大学 一种银杏酮酯口服前体脂质体及其制备方法

Also Published As

Publication number Publication date
US20130315987A1 (en) 2013-11-28
CN102018672A (zh) 2011-04-20
CN102018672B (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2012072006A1 (zh) 一种水溶性药物的脂质体冻干组合物及其制备方法
KR100889139B1 (ko) 이리노테칸 제제
Heiati et al. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization
DK168982B1 (da) Fremgangsmåde til dannelse af små vesikler, der omfatter et phospholipid og indkapsler et antifungalt polyen-antibiotikum, og præparat dannet ved denne fremgangsmåde til anvendelse ved en fremgangsmåde til behandling af systemiske fungale infektioner
US20060159736A1 (en) Liposome formulations of boronic acid compounds
JP2008534525A (ja) リン脂質のポリエチレングリコール誘導体に包み込まれたアンスラサイクリン系抗腫瘍抗生物質のナノミセル製剤
WO2014101356A1 (zh) 一种蟾毒灵脂质体及其制备方法和应用
JP2014506922A (ja) 難水溶性物質の高度なアクティブリポソームローディング
EP1731172B1 (en) Liposome preparation
AU2010232347A1 (en) Liposome composition
JP2017502985A (ja) 修飾シクロデキストリン複合体をカプセル化するリポソーム組成物およびその使用
US20230338288A1 (en) Asymmetric charged vesicles and methods of preparing and use thereof
JP2006510674A (ja) 脂質:エモジン製剤に関する組成物および方法
TWI388344B (zh) 儲存奈米微粒調合物之方法
WO2022242762A1 (zh) 一种特定药脂比的药物组合物在抗肿瘤中的应用
CN102188378A (zh) 包载水溶性药物脂质体的制备方法
WO2007014150A2 (en) Method of administering liposomes containing oligonucleotides
JP2020521004A (ja) c(RGD−ACP−K)修飾血中滞留型リポソーム
CN115444822B (zh) 一种人参皂苷表阿霉素脂质体、其制备方法和应用
JPH1029930A (ja) 閉鎖小胞の製造方法
WO2022003443A1 (ko) 양이온성 리포좀을 포함하는 사포닌의 용혈 억제용 조성물
TW202143955A (zh) 含有乙二胺四乙酸或其鹽的艾日布林或其可藥用鹽脂質體
TW202320803A (zh) 製備脂質體調配物之方法
KR100768265B1 (ko) 혈액내 순환시간을 향상시키기 위한 헤파린이 수식된리포솜 및 이의 제조방법
Desu Targeted delivery of surface modified nanoparticles: modulation of inflammation for acute lung injury

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13990354

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11845052

Country of ref document: EP

Kind code of ref document: A1