WO2012070563A1 - 接合体 - Google Patents

接合体 Download PDF

Info

Publication number
WO2012070563A1
WO2012070563A1 PCT/JP2011/076888 JP2011076888W WO2012070563A1 WO 2012070563 A1 WO2012070563 A1 WO 2012070563A1 JP 2011076888 W JP2011076888 W JP 2011076888W WO 2012070563 A1 WO2012070563 A1 WO 2012070563A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
joined
thickness
bonded
sintered body
Prior art date
Application number
PCT/JP2011/076888
Other languages
English (en)
French (fr)
Inventor
友幸 石田
森口 秀樹
猛 中島
久木野 暁
伸一郎 万木
晃宏 榎並
克己 岡村
松田 裕介
佐野 浩司
小林 慶三
尾崎 公洋
Original Assignee
住友電気工業株式会社
住友電工ハードメタル株式会社
独立行政法人 産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ハードメタル株式会社, 独立行政法人 産業技術総合研究所 filed Critical 住友電気工業株式会社
Priority to KR1020137014576A priority Critical patent/KR101425330B1/ko
Priority to CN201180056763.2A priority patent/CN103228393B/zh
Priority to US13/989,703 priority patent/US9308707B2/en
Priority to EP11843305.1A priority patent/EP2644307B1/en
Priority to JP2012545760A priority patent/JP5552543B2/ja
Publication of WO2012070563A1 publication Critical patent/WO2012070563A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0004Resistance soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/025Connecting cutting edges or the like to tools; Attaching reinforcements to workpieces, e.g. wear-resisting zones to tableware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/88Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/36Titanium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2240/00Details of connections of tools or workpieces
    • B23B2240/08Brazed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/20Tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Definitions

  • the present invention relates to a joined body, and particularly to a joined body suitable for a cutting tool.
  • a cutting tool in which a high-hardness material is joined to the tip by brazing has been manufactured, and is used for special steel materials and other various cutting processes.
  • Non-Patent Document 1 tools in which cemented carbide and cBN are joined by brazing are manufactured and sold (for example, “Sumitomo Electric Hardmetal Co., Ltd., Igetaroy cutting tools ('07 -'08 general catalog)). October 2006, p.L4, Coated Sumiboron Series "(Non-Patent Document 1)).
  • a joined body in which PCD (sintered diamond) or cBN and ceramics, cermet, or cemented carbide are joined by brazing (for example, Japanese Patent Laid-Open No. 2002-036008 (Patent Document 1), Patent) No. 3549424 (Japanese Patent Laid-Open No. 11-320218 (Patent Document 2)).
  • a cutting tool has also been proposed in which a cemented carbide or cermet and high-speed steel or the like are joined by brazing using a Cu brazing material (for example, Japanese Patent Laid-Open No. 11-294058 (Patent Document 3)). .
  • Japanese Patent Laid-Open No. 2002-036008 Japanese Patent No. 3549424 Japanese Patent Laid-Open No. 11-3202178 Japanese Patent Laid-Open No. 11-294058
  • the present inventor conducted various experiments and intensively studied.
  • Ti which is generally used as a binder component of cemented carbide sintered bodies and cBN sintered bodies is contained in the bonding material.
  • bonding it was found that Ti diffused into the cemented carbide sintered body and the cBN sintered body, and both were firmly joined, that is, a joined body having a large joining strength could be obtained. .
  • a TiN compound layer that is a reaction product of Ti and the nitrogen component of the cBN sintered body is formed at the interface between the bonding material and the cBN sintered body. It turns out that it is related.
  • the TiN compound layer becomes thicker as the heating time and the amount of Ti increase, and accordingly, the joint strength increases with the excellent wettability of the TiN compound layer to the cBN sintered body.
  • the TiN compound layer exceeds a certain thickness, the brittleness of the TiN compound layer has a great influence on the bonding strength.
  • the TiN compound layer is formed too thick, specifically, TiN having a thickness exceeding 300 nm (nanometer).
  • the compound layer is formed, the formed TiN compound layer is easily broken, and on the other hand, a large bonding strength cannot be obtained. If it is 100 nm or less, it is more preferable to obtain a large bonding strength.
  • the TiN compound may be in any crystalline state such as granular crystals, columnar crystals, and amorphous.
  • the TiN compound layer may contain a small amount of components other than Ti and N. Examples of such components include elements constituting cBN and cemented carbide, and elements constituting a bonding material.
  • a cemented body comprising a cemented carbide sintered body as a first material to be joined and a cBN sintered body as a second material to be joined, wherein the first material to be joined and the second material to be joined are Are bonded via a bonding material containing titanium (Ti) disposed between them, and titanium nitride (TiN) having a thickness of 10 to 300 nm is formed at the interface between the second bonded material and the bonding material.
  • Ti titanium nitride
  • a bonded body having a large bonding strength can be obtained between the cemented carbide sintered body and the cBN sintered body, a cutting tool or the like bonded with high strength can be obtained. Can be provided.
  • the titanium nitride (TiN) compound layer in the present invention includes a compound containing a small amount of elements other than Ti and N within a range not departing from the gist of the present invention.
  • Bonding is performed by heating, but cBN sintered bodies are vulnerable to heat and are easily decomposed at high temperatures, so that they are susceptible to thermal degradation in a short time. For this reason, it is preferable that heating is performed in a short time.
  • energization heating within an energization time of 1 minute or less is preferable, and within 30 seconds is particularly preferable.
  • the temperature of the cemented carbide sintered body as the first bonded material at that time is 1000 to About 1300 degreeC is preferable.
  • the melting point of the bonding material is 1000 ° C. or lower, it is preferable to prevent the quality deterioration of the cBN sintered body and to easily control the TiN compound layer thickness within a predetermined range.
  • the melting point of the bonding material is 1000 ° C. or more
  • the heating time is increased, the quality of cBN deteriorates.
  • the heating temperature is increased, the TiN compound layer becomes too thick, and there is a possibility that problems such as deformation of the cemented carbide sintered body may occur.
  • the cBN sintered body In heating, it is preferable to heat while applying pressure from both the vertical and horizontal directions.
  • the cBN sintered body can be bonded to the cemented carbide substrate at a constant position and accurately positioned.
  • the amount of grinding of the cBN sintered body can be made smaller, the amount of movement of the cBN sintered body and the grinding amount can be designed to the minimum necessary size, the cBN sintered body can be made smaller, and the expensive cBN sintered body The amount used can be suppressed.
  • the thickness of the bonding layer on the bottom surface and the back surface can be easily controlled to a predetermined thickness ratio by controlling the applied pressure in the vertical and horizontal directions. Furthermore, since the contact area between the material to be joined and the joining material can be expanded without relying only on wettability, the joining area can be widened even in a short time, which is preferable. When pressure is not applied from the lateral direction or when the lateral pressure is not appropriate, a gap is likely to be formed mainly on the back side, and particularly when a gap having a width of 0.5 mm or more is generated, the bonding strength is likely to be reduced.
  • a preferable pressure when conducting the electric heating is 0.1 to 200 MPa.
  • the difference in thermal expansion coefficient between cBN and metal binder is very large, so that the volume expansion of the metal binder increases when heated at 1000 ° C. or higher, and cracks are generated in the cBN sintered body, or the cBN content is 70%. It is considered that the cBN sintered body exceeding this has a large difference in thermal expansion coefficient from the cemented carbide as the base material, and the cBN sintered body is cracked in the cooling process after joining. Moreover, it is also considered that the metal binder of the cBN sintered body generates a liquid phase at a temperature of 1000 ° C. or higher, and cracks are generated in the cBN sintered body.
  • the cBN sintered body and the bonding material are heated so that the cemented carbide sintered body preferentially generates heat over the cBN sintered body during energization heating. It is preferable to devise the arrangement and energization method.
  • the materials of the electrode in contact with the cBN sintered body and the electrode in contact with the cemented carbide sintered body can be changed.
  • the material of the electrode By changing the material of the electrode, the amount of current flowing through each of the cemented carbide sintered body and the cBN sintered body is different, so that each heat generation can be controlled.
  • the cemented carbide sintered body may be heated more intensively than the cBN sintered body to indirectly heat the cBN sintered body.
  • the cemented carbide sintered body can be preferentially heated over the cBN sintered body by devising the energization path.
  • the energization path it is possible to heat the vicinity of the bonding material at a high temperature in a short time without heating the cBN sintered body at an unnecessarily high temperature, and it becomes possible to perform strong bonding and to reduce the quality of the cBN sintered body (thermal
  • the characteristics such as the high hardness of the cBN sintered body can be fully utilized without causing deterioration, decomposition, crack generation, or the like.
  • the present invention also provides The bonding material preferably contains one or more selected from zirconium (Zr), cobalt (Co), nickel (Ni), silver (Ag), and copper (Cu).
  • Co, Ni, or cBN sintered bodies generally used as binder phase components of cemented carbide sintered bodies and cBN sintered bodies have excellent wettability.
  • a bonding material made of an alloy containing at least one of Ag, Cu, and Zr is used, a bonded body with higher bonding strength can be obtained.
  • Examples of such a bonding material include an Ag—Ti alloy, a Cu—Ti alloy, a Ni—Ti alloy, a Co—Ti alloy, and solid solutions thereof such as a Cu—Ti—Zr alloy and an Ag—Cu—Ti alloy.
  • trace amounts of other components contained in the cemented carbide substrate or cBN, such as W, Cr, Ta, and Nb may be included.
  • a Cu—Cr—Al—Ti alloy can be used.
  • the intermetallic compound may be contained in the bonding material from the beginning. Moreover, the element which comprises an intermetallic compound is contained in another state in the bonding
  • the present invention also provides The bonding material is made of titanium (Ti), zirconium (Zr), copper (Cu), nickel (Ni),
  • the total content ratio of Ti, Zr, and Cu is xvol%, When the content ratio of Ni is (100 ⁇ x) vol%, Ti content ratio is (0.1 to 0.4) x vol%, The content ratio of Zr is (0.1 to 0.4) x vol%, Cu content ratio is (0.3-0.7) xvol% It is preferable that
  • Ni is used as a binder phase component of cemented carbide sintered bodies and cBN sintered bodies
  • Cu and Zr are materials showing excellent wettability with cBN sintered bodies.
  • the total content of Ti, Zr, and Cu was xvol%, the content ratio of Ni was (100 ⁇ x) vol%, and further, Cu, Zr, and Ti It was found that when each content ratio is the above ratio, the melting point and wettability of the bonding material are likely to be good, and a stronger bond can be obtained.
  • the notation “(0.1 to 0.4) x vol%” indicates that the content ratio (vol%) is in the range of 0.1 x to 0.4 x. .
  • the present invention also provides The content ratio of nickel (Ni) contained in the bonding material is preferably 70 vol% or less.
  • the bonding material containing Ni used as the binder component of the cemented carbide sintered body or the cBN sintered body can obtain a bonded body with higher bonding strength.
  • the ratio of Ni exceeds 70 vol%, the Ti content contained in the bonding material is relatively reduced, and it becomes difficult to form a TiN compound layer having an appropriate thickness as described above.
  • the present invention also provides The first bonded material and the second bonded material are bonded at the bottom surface and the back surface of the second bonded material, and the thickness of the bonding layer on the back surface is equal to the bonding of the bottom surface. It is preferably thicker than the thickness of the layer.
  • the bonding material which is a relatively soft layer, has the effect of reducing the impact.
  • the bottom side is likely to be plastically deformed by the load and heat generated by cutting, and there is a problem that the chipping resistance and processing accuracy are likely to be lowered.
  • the present inventor can obtain a bonded body with high fracture resistance while maintaining the processing accuracy by making the thickness of the bottom surface bonding layer thinner than the thickness of the back surface bonding layer by appropriately performing vertical and horizontal pressure. I found.
  • the first material to be bonded that is, the cemented carbide sintered body
  • an inclined taper taper is provided on the surface facing the back surface of the second material to be bonded. ing.
  • the thickness of the bonding layer on the back surface is made larger than the thickness of the bonding layer on the bottom surface, and formation of voids (gap) is suppressed, so that sufficient bonding strength can be obtained.
  • the present invention also provides when the thickness of the bonding layer on the back surface is a and the thickness of the bonding layer on the bottom surface is b, b is preferably 1 to 50 ⁇ m and 1 ⁇ a / b ⁇ 20.
  • the inventor of the present invention keeps the thickness of the bonding layer on the bottom of the bonded body from 1 to 50 ⁇ m, more preferably from 1 to 20 ⁇ m, which is thinner than that of a general vacuum brazed bonded body. It was found that it is hard to occur and it is easy to keep the processing accuracy high. Furthermore, by controlling the ratio a / b of the thickness a of the bonding layer on the back surface to the thickness b of the bonding layer on the bottom surface within a predetermined range, a bonded body excellent in fracture resistance can be obtained while maintaining high processing accuracy. I found that I can do things.
  • the bottom surface bonding layer is easily plastically deformed during the cutting test.
  • a / b is too small, that is, when the thickness of the bonding layer on the back surface is too thin with respect to the thickness of the bonding layer on the bottom surface, the impact cannot be reduced in the bonding layer and the fracture resistance is improved. It is difficult to obtain an effect.
  • the thickness of the bonding layer on the back surface is too large relative to the thickness of the bonding layer on the bottom surface, there may be voids in the bonding layer even when there appears to be no gap in appearance. It has been found that the properties are increased and the bonding strength tends to be lowered.
  • the thickness of the bonding layer on the back surface is 5 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, because voids inside the bonding layer are hardly generated. As in the present invention, it is difficult to control the thickness of the bonding layer between the back surface and the bottom surface by the conventional brazing method.
  • the quality of the cBN sintered body which is a high-pressure stable material, is not deteriorated (thermal degradation, decomposition, crack generation, etc.), and the high hardness of the cBN sintered body with high bonding strength.
  • a tool capable of fully utilizing the characteristics can be provided.
  • it can be suitably provided as a tool such as a wear-resistant tool, a mining / civil engineering tool, a cutting tool, and the like.
  • the present invention it is possible to provide a bonded body having higher bonding strength than a bonded body obtained by a conventional method, and it is possible to provide a cutting tool or the like bonded with high strength.
  • FIG. 1 is a diagram schematically showing a joined body in the present embodiment, where (a) is a side view and (b) is a plan view.
  • the joined body includes a first joined material 1 formed of a cemented carbide sintered body, a second joined material 2 formed of a cBN sintered body, and a first joined material 1.
  • FIG. 2 is a conceptual diagram illustrating an embodiment of energization in energization / pressure bonding.
  • FIG. 2 includes an electrode 34, a split electrode 35, and a horizontal pressure material 36 formed of alumina or the like.
  • the divided electrode 35 is in contact with the second material 2 and the electrode 34 is in contact with the first material 1.
  • the electric conductivity and the thermal conductivity can be changed, and different currents are given to the first bonded material 1 and the second bonded material 2, respectively. It becomes possible to change each temperature extremely.
  • the 2nd to-be-joined material 2 which is weak to a heat
  • the pressure applied to the first material to be bonded 1 and the second material to be bonded 2 can be controlled with high accuracy by pressurizing each electrode independently. For this reason, in order that the 1st to-be-joined material 1 may become optimal contact resistance, it pressurizes by the horizontal direction pressurization material 36 of the 2nd to-be-joined material 2 with the horizontal direction pressurization material 36, and optimal joining, 3 (bonding layer) thickness can be set to an optimum thickness.
  • the energization conditions are appropriately determined depending on the materials to be joined 1 and 2 and the joining material 3 used, but other than the vicinity of the joining material 3, deformation and melting of the materials of the materials to be joined 1 and 2 In order not to cause coarsening, it is preferably within 1 minute, particularly within 30 seconds.
  • Non-ding material form As a form of the bonding material 3 for performing the electric pressure bonding, in addition to a method of applying the powder, foil, or paste on the surface of the first bonded material 1 or the second bonded material 2, a plating method, A method of coating by physical vapor deposition can be employed.
  • the method of coating by plating or physical vapor deposition is easy to handle the bonded materials 1 and 2 after the bonding material 3 is coated, and is advantageous for automation of the bonding process, and it is also easy to control the coating film thickness. Particularly preferable for stabilizing the bonding strength.
  • the bonding material 3 By applying current and heating while applying pressure, the bonding material 3 is easily deformed, the adhesion between the bonding material 3 and the bonded materials 1 and 2 is increased, and element diffusion is facilitated. As a result, the bonding strength can be dramatically increased.
  • the joining surfaces of the first material to be joined 1 and the second material to be joined 2 are 2 in the vertical and horizontal directions. It is necessary to firmly bond the first material to be bonded 1 and the second material to be bonded 2 in both directions. In such a case, it is preferable to pressurize from two directions as described above.
  • the bonding atmosphere is preferably performed in a vacuum, in an inert gas, or in a reducing atmosphere because all of the materials to be bonded 1 and 2 and the bonding material 3 contain metal.
  • the degree of vacuum is not particularly limited, but is preferably higher than 13.3 Pa (0.1 Torr).
  • the inert gas include argon, helium, nitrogen, or a mixed gas thereof.
  • the reducing atmosphere include a gas atmosphere in which hydrogen gas is mixed in a certain proportion with the inert gas, and a method in which heated graphite is installed in the vicinity of the bonding material 3.
  • any direct current or alternating current can be used as long as a current for allowing the materials 1 and 2 and the bonding material 3 to be heated to an appropriate temperature can flow.
  • the DC pulse current can change the peak current value and the ON / OFF ratio of the pulse, the instantaneous heating of the bonding interface and the overall temperature control range of the materials 1 and 2 can be expanded. It is effective for joining.
  • the thickness of the bonding material 3 is high in fracture resistance by setting the thickness a on the back surface 2b side to be larger than the thickness b on the bottom surface 2a side, preferably 1 ⁇ a / b ⁇ 20. Accuracy can be maintained, and generation of voids on the back side where voids are likely to be generated is suppressed, and high bonding strength can be obtained stably.
  • This composition was consistent with the composition of the bonding material 3 as the starting material. .
  • the second bonded material is set and bonded to the counterbore of the first bonded material so that the second bonded material is in contact with the bottom surface in a range of 1 mm ⁇ 1 mm and also in contact with the back surface.
  • the column of the bonding material state in Table 1 indicates the state of the bonding material. “Powder” indicates that the bonding material is used as a powder, and “physical vapor deposition” indicates that the bonding material is the bonding material.
  • “physical vapor deposition + plating” means that the bonding material is physically vapor-deposited on either the first or second bonded material and plated on the other bonded material.
  • the “powder + plating” indicates a state where the bonding material is used while being plated on the material to be bonded and a powder bonding material is also used.
  • “energization” is an energization pressure bonding method.
  • “heating time” indicates the time during which a DC pulse current is applied in the “current” column
  • “Pressure” indicates the pressure applied to the first material to be bonded
  • “cBN applied pressure” indicates the pressure applied to the second material to be bonded
  • “lateral pressure” indicates the horizontal pressure in FIG. Indicates the pressure applied by the material.
  • the “vacuum furnace” is a heating method using a vacuum furnace, which is heated at the substrate temperature shown in Table 1.
  • “high frequency” is heated by a high frequency induction heating device.
  • FIG. 3 is a schematic diagram for explaining a method for measuring a substrate temperature.
  • zygote is shown.
  • the temperature near the counterbore of the first material to be bonded 1 was measured using a radiation thermometer. Specifically, as shown in FIG. 3, the center of the laser spot 44 (diameter 1 mm) is positioned 1 mm from the upper surface of the first material to be bonded 1 (13 mm square ⁇ thickness 5 mm) and the back surface of the counterbore. The temperature of the laser spot 44 was measured with a radiation thermometer. The measurement results are shown in Table 1.
  • FIG. 4 shows a method for measuring bonding strength.
  • a shear force is applied to the bonding material 3 by applying a force perpendicular to the paper surface to the portion of the second bonded material 2 that protrudes from the first bonded material in a state where the bonded body is pressed from above and below.
  • the strength at break was defined as the bonding strength.
  • the measurement results are shown in Table 1.
  • Example 3 According to the SEM image, EDX image, TEM image observation and EELS analysis of the fracture surface of Example 3, the B-rich layer, that is, not the TiN compound layer considered to be brittle, was fractured in cBN, and the large bonding strength It was found that was obtained. In contrast, in Comparative Example 7, it was found that the thickness of the TiN compound layer was excessive, and the TiN compound layer was broken, so that a large bonding strength could not be obtained. Other examples and comparative examples were observed in the same manner.
  • Evaluation Table 1 shows that the bonding strength varies depending on the thickness of the TiN compound layer, and a high bonding strength can be obtained when it is within the range of 10 to 300 nm.
  • the bonding material is composed of titanium (Ti), zirconium (Zr), copper (Cu), nickel (Ni), and the total content of Ti, Zr, and Cu is calculated.
  • Ni content ratio is (100-x) vol%
  • Ti content ratio is (0.1-0.4) xvol%
  • Zr content ratio is (0.1-0.4) This is an example that satisfies the conditions that xvol% and the Cu content ratio are (0.3 to 0.7) x vol%.
  • the heating time is 10 to 60 seconds as in Examples 2 to 4, a TiN compound layer having an appropriate thickness is formed, and thermal degradation of cBN is not observed, and the heating time is as in Example 3. In the case of 20 seconds, it was found that particularly high bonding strength can be obtained.
  • Example 12 in which the bottom surface thickness was too thick compared to the back surface thickness and the bottom back surface thickness ratio was less than 1, the joining layer was softened during the cutting, resulting in defects. Further, in Example 10, no large chipping occurred, but when the cutting edge after cutting was observed in detail, a lot of minute chipping was observed as compared with Examples 7-9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 本発明の接合体は、超硬合金焼結体を第1の被接合材(1)とし、cBN焼結体を第2の被接合材(2)とする接合体であって、第1の被接合材(1)および第2の被接合材(2)は、両者の間に設置されたチタン(Ti)を含有する接合材(3)を介して接合されており、第2の被接合材(2)と接合材(3)との界面に、厚み10~300nmの窒化チタン(TiN)化合物層が形成されていることを特徴とする。

Description

接合体
 本発明は、接合体に関するものであり、特に、切削工具に好適な接合体に関する。
 従来より、cBN(立方晶窒化硼素)切削工具に代表されるように、先端に高硬度材料をロウ付けにより接合した切削工具が製造されており、特殊鋼材その他各種の切削加工に利用されている。
 具体的には、例えば、超硬合金とcBNをロウ付けにより接合した工具が製造・販売されている(例えば、「住友電工ハードメタル株式会社発行、イゲタロイ 切削工具(’07-’08総合カタログ)、2006年10月、p.L4、コーティドスミボロンシリーズ」(非特許文献1))。あるいは、PCD(焼結ダイヤモンド)またはcBNと、セラミックス、サーメットまたは超硬合金とをロウ付けにより接合した接合体が提案されている(例えば、特開2002-036008号公報(特許文献1)、特許第3549424号公報(特開平11-320218号公報(特許文献2)))。また、超硬合金またはサーメットと、高速度鋼等とを、Cuロウ材を用いたロウ付けにより接合した切削工具も提案されている(例えば、特開平11-294058号公報(特許文献3))。
 そして、近年、これらの内でも、特に、超硬合金とcBNが接合された切削工具が注目されている。
特開2002-036008号公報 特許第3549424号公報(特開平11-320218号公報) 特開平11-294058号公報
住友電工ハードメタル株式会社発行、イゲタロイ 切削工具(’07-’08総合カタログ)、2006年10月、p.L4、コーティドスミボロンシリーズ
 しかしながら、上記した従来の方法により得られた接合体においては、接合強度が未だ充分大きいとは言えず、接合強度がより大きな接合体、特に、超硬合金とcBNが強固に接合された接合体が望まれていた。
 本発明者は、上記課題を解決するにあたって、種々の実験を行い、鋭意検討した結果、一般的に超硬合金焼結体やcBN焼結体の結合相成分に用いられるTiを接合材に含有させた場合、接合に際して、Tiが超硬合金焼結体やcBN焼結体に元素拡散して、両者が強固に接合された、即ち、大きな接合強度の接合体を得ることができることが分かった。
 そして、この接合においては、接合材とcBN焼結体との界面に、TiとcBN焼結体の窒素成分との反応生成物であるTiN化合物層が形成されており、その厚みが接合強度に関係していることが分かった。
 具体的には、加熱時間やTi量の増加によってTiN化合物層が厚くなり、これに伴って、TiN化合物層のcBN焼結体に対する優れた濡れ性とも相俟って、接合強度が大きくなる。しかし、TiN化合物層が一定の厚みを超えると、TiN化合物層の脆さが接合強度に大きな影響を与え、あまりに厚く形成された場合、具体的には、300nm(ナノメートル)を超える厚みのTiN化合物層が形成された場合、この形成されたTiN化合物層が容易に破断されて、却って大きな接合強度を得られない。100nm以下であれば大きな接合強度を得やすくより好ましい。また、前記TiN化合物は粒状晶、柱状晶、アモルファスなど、どのような結晶状態でも良い。
 一方、加熱時間が短い、あるいはTi量が少なく、TiN化合物層が薄すぎる場合、具体的には、10nm未満のTiN化合物層が形成されるに留まった場合は、Tiの被接合材への元素拡散が充分に行われないことや、TiN化合物層が接合面全面に生成されずTiN化合物が生成する面積が小さくなりやすいため、大きな接合強度を得られないことが分かった。なお、上記TiN化合物層には、Ti、N以外の成分が少量含まれていてもよい。そのような成分としては、cBNや超硬合金を構成する元素、接合材を構成する元素を挙げることができる。
 本発明は、上記の知見に基づく発明であり、
 超硬合金焼結体を第1の被接合材とし、cBN焼結体を第2の被接合材とする接合体であって、該第1の被接合材および該第2の被接合材は、両者の間に設置されたチタン(Ti)を含有する接合材を介して接合されており、該第2の被接合材と該接合材との界面に、厚み10~300nmの窒化チタン(TiN)化合物層が形成されていることを特徴とする接合体である。
 本発明によれば、上記したように、超硬合金焼結体とcBN焼結体との間に、大きな接合強度を有する接合体を得ることができるため、高強度に接合された切削工具等を提供することができる。
 上記の通り、本発明における窒化チタン(TiN)化合物層には、本発明の趣旨を逸脱しない範囲の少量のTi、N以外の元素を含有する化合物も含まれる。
 接合は加熱により行われるが、cBN焼結体は、熱に弱く、高温で分解されやすいため、短時間で熱劣化しやすい。このため、加熱は短時間に行われることが好ましい。
 具体的な加熱手段としては、通電時間1分以内の通電加熱が好ましく、30秒以内が特に好ましく、その際の第1の被接合材である超硬合金焼結体の温度としては、1000~1300℃程度が好ましい。
 接合材の融点が1000℃以下であると、cBN焼結体の品質劣化を防ぎ、かつTiN化合物層厚みを所定の範囲に制御しやすく好ましい。
 接合材の融点が1000℃以上である場合、所定のTiN化合物層厚みを得るために、加熱時間を長くするか、あるいは加熱温度を高くする必要があるが、加熱時間を長くするとcBNの品質劣化が生じやすく、加熱温度を高くするとTiN化合物層が厚くなりすぎ、また超硬合金焼結体が変形するなどの問題が生じる恐れがある。
 加熱に際しては、縦方向、横方向の両方向から加圧しながら加熱することが好ましい。
 縦方向、横方向の両方向から加圧することにより、cBN焼結体の接合位置を超硬基材に対して一定とし、正確に位置決めすることができるため、片方向から加圧する場合よりも接合後の研削加工量をより小さくできるほか、cBN焼結体の移動量、研削量を必要最小限の大きさに設計することができ、cBN焼結体をより小さくでき、高価なcBN焼結体の使用量を抑制することができる。
 また、縦方向と横方向の加圧力を制御することにより、底面および背面の接合層の厚みを所定の厚み比に制御しやすく好ましい。さらに、濡れ性のみに頼ることなく被接合材と接合材との接触面積を広げられるため、短時間でも接合面積を広くでき、好ましい。横方向から加圧しない、あるいは横方向の加圧力が適切でない場合、主に背面側に隙間が生じやすく、特に幅0.5mm以上の隙間が生じた場合に接合強度が低下しやすい。また、隙間が無い場合でも、加圧していない場合には、接合層内の気泡が残留しやすく、加圧による元素拡散の活性化が期待できない。さらに、短時間で加熱した場合には、濡れ性不足により被接合材間に接合材が広がりきらないため、接合面積が小さくなりやすく、接合強度が低下しやすい。
 また、通電加熱を行う場合、超硬基材への加圧力が小さすぎると、超硬合金焼結体と電極との間の接触抵抗が多くなり、電流が流れない、あるいは放電する等の問題が発生する恐れがある。通電加熱を行う場合の好ましい圧力は、0.1~200MPaである。
 なお、コバルト(Co)などのメタルバインダーを含むcBN焼結体やcBN含有率が70%を超えるcBN含有率が大きい焼結体を被接合材として超硬合金に接合した工具では、1000℃以上の温度で長時間加熱による接合を行うと、cBN焼結体に亀裂が生成し良好な接合を行うことが難しい問題点があった。
 これはcBNとメタルバインダーの熱膨張係数差が非常に大きいため、1000℃以上の加熱でメタルバインダーの体積膨張が大きくなってcBN焼結体に亀裂が生成したり、cBN含有率が70%を超えるcBN焼結体では基材となる超硬合金との熱膨張係数差が大きく、接合後の冷却過程でcBN焼結体に亀裂が生じてしまうことが原因と考えられる。また、1000℃以上の温度でcBN焼結体のメタルバインダーが液相を生成し、cBN焼結体に亀裂が生成することが原因とも考えられる。
 このようなcBN焼結体の品質劣化の発生を防ぐためには、通電加熱時、cBN焼結体よりも超硬合金焼結体が優先的に発熱するように、cBN焼結体と接合材の配置、通電方法を工夫することが好ましい。
 具体的には、例えば、cBN焼結体に接する電極と超硬合金焼結体に接する電極の材質を変えることが挙げられる。電極の材質を変えることにより、超硬合金焼結体とcBN焼結体の各々に流れる電流の量が異なるため、それぞれの発熱を制御することができる。また、cBN焼結体よりも超硬合金焼結体を集中的に通電加熱して、間接的にcBN焼結体を加熱してもよい。
 このように、通電経路を工夫することにより、超硬合金焼結体をcBN焼結体よりも優先的に加熱することができ好ましい。これにより、cBN焼結体を必要以上に高温加熱することなく、短時間で接合材近傍を高温加熱することができ、強固な接合が可能になると共に、cBN焼結体の品質劣化(熱的劣化、分解、亀裂生成等)を招くことなく、cBN焼結体の高硬度等の特徴を十分に生かすことができる。
 また本発明は、
 上記接合材が、ジルコニウム(Zr)、コバルト(Co)、ニッケル(Ni)、銀(Ag)、銅(Cu)から選ばれた1種または2種以上を含むことが好ましい。
 本発明においては、接合材として、上記したTiに加えて、一般に超硬合金焼結体やcBN焼結体の結合相成分として用いられるCo、Ni、あるいはcBN焼結体と優れた濡れ性を示すAg、Cu、Zrの少なくともいずれかを含む合金からなる接合材を用いると、接合強度のより高い接合体を得ることができる。
 このような接合材としては、例えば、Ag-Ti合金、Cu-Ti合金、Ni-Ti合金、Co-Ti合金、およびこれらの固溶体、例えば、Cu-Ti―Zr合金、Ag-Cu-Ti合金、Cu-Ni-Ti合金、Cu-Ni-Zr-Ti合金等、さらには、これらの金属間化合物等を挙げることができる。なお、超硬合金基材やcBNに含まれる他の成分、例えばW、Cr、Ta、Nbなどが微量含まれていてもよい。例えば、Cu-Cr-Al-Ti合金等を挙げることができる。
 金属間化合物は、接合材に最初から含まれていても良い。また、金属間化合物を構成する元素が、接合材には別の状態で含まれており、接合完了後に反応生成されても良い。金属間化合物が反応生成される場合は、接合に反応熱を利用することができるため、接合にとってより有効である。
 また本発明は、
 上記接合材が、チタン(Ti)、ジルコニウム(Zr)、銅(Cu)、ニッケル(Ni)から構成されており、
 Ti、Zr、Cuの各含有比率の合計をxvol%、
 Niの含有比率を(100-x)vol%としたとき、
 Tiの含有比率が(0.1~0.4)xvol%、
 Zrの含有比率が(0.1~0.4)xvol%、
 Cuの含有比率が(0.3~0.7)xvol%
であることが好ましい。
 上記した通り、Niは、超硬合金焼結体やcBN焼結体の結合相成分として用いられ、CuやZrは、cBN焼結体と優れた濡れ性を示す材料であるため、これらの材料を含有する接合材を用いた場合、接合強度のより高い接合体を得ることができる。
 本発明者が、種々の実験を行ったところ、Ti、Zr、Cuの各含有比率の合計をxvol%、Niの含有比率を(100-x)vol%とし、さらに、Cu、Zr、Tiの各含有比率が上記の比率の場合、接合材の融点、濡れ性が良好となりやすく、より強固な接合を得ることができることが分かった。なお、上記の記載において、例えば「(0.1~0.4)xvol%」との表記は、当該含有比率(vol%)が0.1x~0.4xの範囲となることを示している。
 また本発明は、
 上記接合材に含まれるニッケル(Ni)の含有比率が、70vol%以下であることが好ましい。
 上記したように、超硬合金焼結体やcBN焼結体の結合相成分として用いられるNiを含む接合材は、接合強度のより高い接合体を得ることができる。しかし、Niの比率が70vol%を超えると、接合材中に含まれるTi含有量が相対的に減少し、前記した適切な厚みのTiN化合物層を形成することが困難となるため、好ましくない。
 また本発明は、
 上記第2の被接合材の底面と背面とで、上記第1の被接合材と上記第2の被接合材とが、接合されており、上記背面の接合層の厚みが、上記底面の接合層の厚みよりも厚いことが好ましい。
 切削時、特に断続切削においては、ワークと接する際、刃先に衝撃がかかるため、比較的軟質層である接合材が衝撃を緩和する効果がある。しかし、底面側は切削による負荷と熱により塑性変形が生じやすく、このため、耐欠損性や加工精度が低下しやすい問題があった。本発明者は、縦横加圧を適切に行うことにより、底面接合層の厚みを背面接合層の厚みよりも薄くすることにより、加工精度を保ちつつ、耐欠損性の高い接合体が得られることを見出した。
 第1の被接合材、即ち、超硬合金焼結体は、一般的に、プレス成形により形成されるため、第2の被接合材の背面と対向する面には傾斜した抜きテーパが設けられている。
 このため、第1の被接合材と第2の被接合材を突き合わせた場合、背面側に隙間ができやすく、接合材(インサート材)が底面側から回り込むだけでは、ボイド(隙間)を形成して、充分な接合が得られない恐れがある。このため、背面との接合にも接合材を用いることが好ましい。
 本発明においては、背面の接合層の厚みが、底面の接合層の厚みよりも厚くされており、ボイド(隙間)の形成が抑制されているため、充分な接合強度を得ることができる。
 また本発明は、
 上記背面の接合層の厚みをa、上記底面の接合層の厚みをbとした時、bは1~50μmであり、かつ1<a/b<20であることが好ましい。
 本発明者は、上記接合体の内、底面の接合層の厚みを1~50μm、より好ましくは1~20μmと、一般的な真空ロウ付け接合体の場合よりも薄く保つことにより、塑性変形が生じにくく、加工精度を高く保ちやすいことを見出した。さらに、底面の接合層の厚みbに対する背面の接合層の厚みaの比a/bを、所定の範囲に制御することにより、加工精度を高く保ちつつ、耐欠損性に優れた接合体を得る事ができることを見出した。
 即ち、底面の接合層の厚みが厚すぎる場合には、切削試験中に底面接合層が塑性変形しやすくなる。また、上記のa/bが小さすぎる、即ち、底面の接合層の厚みに対して背面の接合層の厚みが薄すぎる場合には、接合層内で衝撃を緩和できず、耐欠損性の向上効果を得にくい。一方、大きすぎる、即ち、底面の接合層の厚みに対して背面の接合層の厚みが厚すぎる場合には、外観上隙間が無いように見えた場合でも接合層の内部に空隙が存在する可能性が高くなり、接合強度が低下しやすくなることを見出した。1<a/b<20であると好ましく、2<a/b<15であるとより好ましい。このとき、背面の接合層の厚みが5~200μm、より好ましくは5~100μmであると、接合層内部の空隙が生じにくく、より好ましい。本発明のように背面と底面の接合層厚みを制御することは従来のロウ付け法では難しかった。
 以上、本発明においては、高圧安定型の材料であるcBN焼結体の品質劣化(熱的劣化、分解、亀裂生成等)を招くことなく、高接合強度でcBN焼結体の高硬度等の特徴を十分に生かすことができる工具を提供することができる。特に、耐摩工具、鉱山・土木工具、切削工具等の工具として好適に提供することができ好ましい。
 本発明によれば、従来の方法により得られた接合体に比べて、接合強度がより大きな接合体を提供することができ、高強度に接合された切削工具等を提供することができる。
本発明の実施の形態における接合体を模式的に示す図であって、(a)は側面図、(b)は平面図である。 通電加圧接合における通電の一形態を説明する概念図である。 温度測定を説明するための側面図である。 強度測定を説明するための側面図である。
 以下、本発明を実施の形態に基づき、図を用いて説明する。
 1.接合体の構成
 図1は、本実施の形態における接合体を模式的に示す図であって、(a)は側面図、(b)は平面図である。図1において、接合体は、超硬合金焼結体により形成される第1の被接合材1、cBN焼結体により形成される第2の被接合材2、および第1の被接合材1と第2の被接合材2との間に介在するTiを含有する接合材3を含み、第2の被接合材2と接合材3との界面には、厚み10~300nmのTiN化合物層(図示省略)が形成されている。
 (通電加圧接合法)
 次に、通電加圧接合法について、図2を用いて説明する。図2は、通電加圧接合における通電の一形態を説明する概念図である。図2は、電極34、分割電極35、およびアルミナ等で形成された水平方向加圧材36を含む。
 図2において、分割電極35は第2の被接合材2に接しており、電極34は第1の被接合材1に接している。電極34と分割電極35の材質を変えることで、それぞれの電気伝導度と熱伝導度を変えることができ、第1の被接合材1と第2の被接合材2にそれぞれ異なった電流を与えることが可能となり、それぞれの温度を極端に変えることが可能となる。
 これにより、第2の被接合材2よりも第1の被接合材1を優先的に発熱させることが可能になるため、熱に弱く、短時間で熱劣化しやすい第2の被接合材2(cBN焼結体)の熱劣化を防ぐことができる。
 さらに、それぞれの電極を独立して加圧することにより、第1の被接合材1と第2の被接合材2に与える圧力を高精度に制御することができる。このため、第1の被接合材1が最適な接触抵抗となるように、第2の被接合材2の水平方向加圧材36による横方向加圧力と最適なバランスで加圧して、接合材3(接合層)厚みを最適な厚みにすることができる。
 (通電条件)
 通電条件は、使用される被接合材1、2および接合材3の材質等により、適宜決定されるが、接合材3近傍以外で、被接合材1、2の材料の変形・溶融や、粒子の粗大化を招かないためには、1分以内、特に30秒以内程度が好ましい。
 (接合材の形態)
 通電加圧接合を行う接合材3の形態としては、第1の被接合材1や第2の被接合材2の表面に粉末、箔、もしくはペースト状にして塗布する方法の他、めっき法や物理蒸着法で被覆する方法を採用することができる。めっき法や物理蒸着法で被覆する方法は、接合材3を被覆した後に被接合材1、2をハンドリングしやすく、接合工程の自動化に有利である他、被覆膜厚の制御も行いやすいため、接合強度を安定化させる上で特に好ましい。
 (加圧)
 加圧しながら通電加熱することで、接合材3は変形しやすくなり、接合材3と被接合材1、2の密着性は高まり、元素拡散しやすくなる。この結果、接合強度を飛躍的に高めることができる。特に、本発明の接合体を切削工具、例えば切削チップに適用する場合、基材である第1の被接合材1と第2の被接合材2の接合面は、上下方向と水平方向の2方向となり、両方向で第1の被接合材1と第2の被接合材2がしっかりと接合されることが必要となる。このような場合では、上記した通り2方向からの加圧を行うことが好ましい。
 加圧力は小さすぎると電極と被接合材1、2の接触抵抗が多くなり、電流を流せなくなる、あるいは放電してしまうこと等があり、不適当である。また、大きすぎると超硬合金焼結体が変形するため、不適当である。本発明の場合、被接合材1では0.1MPa~200MPa、被接合材2では0.01~50MPaが適当である。
 (雰囲気)
 接合中の雰囲気は、被接合材1、2および接合材3のいずれとも金属を含むため、真空中あるいは不活性ガス中あるいは還元雰囲気中で行うことが望ましい。真空度は特に限定されないが、13.3Pa(0.1Torr)より高真空であることが望ましい。不活性ガスとしては、アルゴン、ヘリウム、窒素、あるいはこれらの混合ガスを挙げることができる。還元雰囲気としては、上記不活性ガスに水素ガスを若干割合混合したガス雰囲気や、接合材3近傍に加熱した黒鉛を設置する方法を挙げることができる。
 (電流の形態)
 通電する電流の形態は、被接合材1、2および接合材3を適切な温度に加熱できるための電流を流すことができるのであれば直流電流、交流電流とも使用できる。特に、直流パルス電流はピーク電流値とパルスのON、OFF比を変えることができるため、接合界面の瞬間的な加熱と被接合材1、2の全体的な温度制御範囲を広げることができ、接合には有効である。
 (接合材の厚みの設定)
 次に、接合材3の厚みについて、図1を用いて説明する。接合材3の厚みは、底面2a側の厚みbに比べて背面2b側の厚みaを厚く、好ましくは1<a/b<20と厚く設定することにより、耐欠損性が高く、かつ高加工精度を保つことができ、さらにボイドが生成し易い背面側にボイドが生成することが抑制され、安定して高い接合強度が得られる。
 1.接合体の作製
 表1に示す各接合材3を用いて、各接合条件に従って、実施例1~23および比較例1~7の接合体を作製した。
 (1)TiN化合物層の厚み
 表1による(「化合物層厚み」の欄参照)。
 (2)第1の被接合材1(実施例および比較例に共通)
 材質:1箇所にザグリを入れた超硬合金焼結体(台金)
 形状:先端角90°、内接円12.7mm、厚み4.76mm、R0.8mm(JIS:SNGN120408)
 (3)第2の被接合材2(実施例および比較例に共通)
 材質:cBN(チップ)(cBN含有率90%)
 形状:2mm×1mm、厚み1.2mm
 (4)接合材(組成、状態)、加熱法、接合条件
 表1の通りである。表1の接合材組成の欄は、接合された状態における接合材3の組成を示しており、EPMA法により調べた結果であり、この組成は出発材の接合材3の組成と一致していた。第1の被接合材のザグリに対して、第2の被接合材が底面1mm×1mmの範囲で接触し、かつ背面でも接触するようにセットし接合する。表1の接合材状態の欄は、接合材の状態を示しており、「粉末」とは接合材が粉末で用いられていることを示し、「物理蒸着」とは接合材が被接合材に物理蒸着された状態で用いられることを示し、「物理蒸着+めっき」とは接合材が第1または第2の被接合材のいずれかに対し物理蒸着され、もう一方の被接合材に対しめっきされた状態で用いられることを示し、「粉末+めっき」とは接合材が被接合材にめっきされた状態で用いられるとともに粉末の接合材も併用される状態を示す。
 なお、加熱法において、「通電」とは通電加圧接合法であり、その接合条件において、「加熱時間」は、「電流」欄の直流パルス電流を通電した時間を示し、「超硬基材加圧力」とは第1の被接合材に加えられる圧力を示し、「cBN加圧力」とは第2の被接合材に加えられる圧力を示し、「横加圧力」とは図2の水平方向加圧材により加えられる圧力を示す。また、加熱法において、「真空炉」とは、真空炉を用いた加熱方法であり、表1記載の基材温度で加熱したものである。また、加熱法において、「高周波」とは、高周波誘導加熱装置により加熱したものである。
 2.測定方法
 (1)接合材の厚み
 研磨を行った後、顕微鏡観察により底面接合材厚み(第2の被接合材2の底面側の接合材3(接合層)の露出面での平均厚み)、背面接合材厚み(第2の被接合材2の背面側の接合材3(接合層)の露出面での平均厚み)を測定した。結果を表1に示す。「底/背面厚み比」とは、底面接合材厚みに対する背面接合材厚みの比(背面接合材厚み/底面接合材厚み)を示す。
 (2)TiN化合物層の厚み
 接合界面をFIB加工した後、TEMによる観察およびEDX、EELSによる組成分析を行うことによりTiN化合物層の厚みを測定した。観察する倍率は、TiN化合物層の厚みにより適宜調整し、1視野内における厚みの平均値を求めた。結果を表1に示す(「化合物層厚み」の欄参照)。
 (3)基材温度の測定
 図3は、基材温度の測定方法を説明する模式図である。図3において、接合体の第1の被接合材1に照射されるレーザーのレーザースポット44を示す。
 第1の被接合材1(超硬合金焼結体)のザグリ付近の温度を、放射温度計を用いて測定した。具体的には、図3に示すように、第1の被接合材1(13mm角×厚み5mm)の上面およびザグリの背面から1mmの位置に、レーザースポット44(直径1mm)の中心を位置させ、レーザースポット44の温度を放射温度計により測定した。測定結果を表1に示す。
 (4)接合強度の測定
 図4に接合強度の測定方法を示す。接合体を紙面の上下から加圧した状態で、紙面に垂直な力を第2の被接合材2の第1の被接合材から出っ張った部分に加えることにより、接合材3にせん断力を与え、破断時の強度を接合強度とした。測定結果を表1に示す。
 なお、表1において底面接合材厚みの欄や接合強度の欄が空欄であるものは、被接合材が接合材により接合されなかったことを示す。
 3.観察
 接合強度測定後の実施例および比較例の破断面をSEM・EDXにより観察した。また、接合面をTEMにより観察した。
 実施例3の破断面のSEM像、EDX像および接合面のTEM像観察、EELS分析により、Bリッチ層、即ち脆いとされるTiN化合物層ではなく、cBN内で破断しており、大きな接合強度が得られていることが分かった。これに対して、比較例7は、TiN化合物層の厚みが過大となり、TiN化合物層で破断しており、大きな接合強度が得られないことが分かった。他の実施例および比較例についても、同様にして観察した。
 4.評価
 表1より、TiN化合物層の厚みにより、接合強度は変動し、10~300nmの範囲内にある場合には、高い接合強度が得られることが分かった。なお、実施例6については、a/b>20となっているため、背面にボイド(隙間)が発生しており、接合強度が低下している。また、実施例18~21は、接合材が、チタン(Ti)、ジルコニウム(Zr)、銅(Cu)、ニッケル(Ni)から構成されており、Ti、Zr、Cuの各含有比率の合計をxvol%、Niの含有比率を(100-x)vol%としたとき、Tiの含有比率が(0.1~0.4)xvol%、Zrの含有比率が(0.1~0.4)xvol%、Cuの含有比率が(0.3~0.7)xvol%であるという条件を満足する実施例である。
 また、実施例2~4のように加熱時間が10~60秒の場合には適切な厚みのTiN化合物層が形成され、cBNの熱劣化が認められず、実施例3のように加熱時間が20秒の場合には特に高い接合強度が得られることが分かった。
Figure JPOXMLDOC01-appb-T000001
 なお、表1において接合材組成の欄のCu、Zr、Co、Niに付記されている数値は、各金属のvol%を表す数値である。なお、Tiには数字が付されていないが残部がTiであることを示している。
 5.切削試験
 次に、実施例6~12で得られた条件で作製した接合体を用いて切削試験を行った。切削条件は以下の通りである。
  工具形状:CNGA120408
  切削速度:150m/min
  切り込み:0.1mm
  送り速さ:0.1mm/rev
  切削時間:60min
  被削材:軸方向に沿って4つの溝を有するSCM415(乾式)
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、底面厚みが1~50μmでかつ底背面厚み比(背面厚み/底面厚み)が1を超え20未満である実施例7~10の場合、摩耗量は0.28mm以下であり、耐摩耗性に優れていることが分かった。これに対して、底背面厚み比が20を超えている実施例6の場合、背面厚みが厚すぎるため、接合強度が不足して、接合外れが生じていた。そして、底面厚みに比べて背面厚みが薄すぎ、底背面厚み比が1を下回っている実施例11の場合、切削負荷により欠損が生じていた。また、背面厚みに比べて底面厚みが厚すぎ、底背面厚み比が1を下回っている実施例12の場合、切削中に接合層が軟化して、欠損が生じていた。また、実施例10では、大きな欠損は生じていないものの、切削後の刃先を詳細に観察したところ、実施例7~9と比較して微小なチッピングが多く見られた。
 以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。
 1 第1の被接合材、2 第2の被接合材、2a 底面、2b 背面、3 接合材、34 電極、35 分割電極、36 水平方向加圧材、44 レーザースポット、a 背面の接合層の厚み、b 底面の接合層の厚み。

Claims (6)

  1.  超硬合金焼結体を第1の被接合材(1)とし、cBN焼結体を第2の被接合材(2)とする接合体であって、前記第1の被接合材(1)および前記第2の被接合材(2)は、両者の間に設置されたチタン(Ti)を含有する接合材(3)を介して接合されており、前記第2の被接合材(2)と前記接合材(3)との界面に、厚み10~300nmの窒化チタン(TiN)化合物層が形成されていることを特徴とする接合体。
  2.  前記接合材(3)が、ジルコニウム(Zr)、コバルト(Co)、ニッケル(Ni)、銀(Ag)、銅(Cu)から選ばれた1種または2種以上を含むことを特徴とする請求項1に記載の接合体。
  3.  前記接合材(3)が、チタン(Ti)、ジルコニウム(Zr)、銅(Cu)、ニッケル(Ni)から構成されており、
     Ti、Zr、Cuの各含有比率の合計をxvol%、
     Niの含有比率を(100-x)vol%としたとき、
     Tiの含有比率が(0.1~0.4)xvol%、
     Zrの含有比率が(0.1~0.4)xvol%、
     Cuの含有比率が(0.3~0.7)xvol%
    であることを特徴とする請求項2に記載の接合体。
  4.  前記接合材(3)に含まれるニッケル(Ni)の含有比率が、70vol%以下であることを特徴とする請求項2に記載の接合体。
  5.  前記第2の被接合材(2)の底面(2a)と背面(2b)とで、前記第1の被接合材(1)と前記第2の被接合材(2)とが、接合されており、前記背面(2b)の接合層の厚みが、前記底面(2a)の接合層の厚みよりも厚いことを特徴とする請求項1に記載の接合体。
  6.  前記背面(2b)の接合層の厚みをa、前記底面(2a)の接合層の厚みをbとした時、bは1~50μmであり、かつ1<a/b<20であることを特徴とする請求項5に記載の接合体。
PCT/JP2011/076888 2010-11-26 2011-11-22 接合体 WO2012070563A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137014576A KR101425330B1 (ko) 2010-11-26 2011-11-22 접합체
CN201180056763.2A CN103228393B (zh) 2010-11-26 2011-11-22 接合体
US13/989,703 US9308707B2 (en) 2010-11-26 2011-11-22 Joined product
EP11843305.1A EP2644307B1 (en) 2010-11-26 2011-11-22 Joined product
JP2012545760A JP5552543B2 (ja) 2010-11-26 2011-11-22 接合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010263758 2010-11-26
JP2010-263758 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070563A1 true WO2012070563A1 (ja) 2012-05-31

Family

ID=46145905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076888 WO2012070563A1 (ja) 2010-11-26 2011-11-22 接合体

Country Status (6)

Country Link
US (1) US9308707B2 (ja)
EP (1) EP2644307B1 (ja)
JP (1) JP5552543B2 (ja)
KR (1) KR101425330B1 (ja)
CN (1) CN103228393B (ja)
WO (1) WO2012070563A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098819A1 (ja) * 2013-12-25 2015-07-02 三菱マテリアル株式会社 接合用ろう材およびそれを用いた複合部材、切削工具
WO2017199752A1 (ja) * 2016-05-16 2017-11-23 株式会社タンガロイ 工具

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109782A1 (de) * 2012-10-15 2014-04-17 Karlsruher Institut für Technologie Schichtverbund
JP6245520B2 (ja) * 2014-03-24 2017-12-13 三菱マテリアル株式会社 複合部材及び切削工具
CN103990907A (zh) * 2014-04-14 2014-08-20 河源普益硬质合金厂有限公司 一种高温、真空硬质合金焊接方法
CN105499729B (zh) * 2016-01-11 2017-08-25 苏州科技大学 一种聚晶立方氮化硼的真空钎焊方法
CN110551918B (zh) * 2019-09-20 2020-09-04 安泰天龙钨钼科技有限公司 一种钛合金高温钎料及其制备方法
CN111889715A (zh) * 2020-07-31 2020-11-06 开封贝斯科超硬材料有限公司 一种超硬复合刀具及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294058A (ja) 1998-04-08 1999-10-26 Mitsubishi Materials Corp 接合強度に優れたろう付け切削工具
JPH11320218A (ja) 1998-03-02 1999-11-24 Sumitomo Electric Ind Ltd 硬質焼結体工具及びその製造方法
JP2002036008A (ja) 2000-07-24 2002-02-05 Ngk Spark Plug Co Ltd スローアウェイチップ及び切削工具
WO2009123065A1 (ja) * 2008-03-31 2009-10-08 独立行政法人 産業技術総合研究所 接合体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505789B2 (ja) * 1987-01-29 1996-06-12 住友電気工業株式会社 高硬度焼結体工具
JPH07156003A (ja) 1993-12-07 1995-06-20 Sumitomo Electric Ind Ltd 多結晶ダイヤモンド工具及びその製造方法
JPH08206902A (ja) 1994-12-01 1996-08-13 Sumitomo Electric Ind Ltd 切削用焼結体チップおよびその製造方法
DE69831219T2 (de) * 1997-11-06 2006-03-30 Sumitomo Electric Industries, Ltd. Werkzeug beschichtet mit sinterkarbid
US6155755A (en) 1998-03-02 2000-12-05 Sumitomo Electric Industries, Ltd. Hard sintered body tool
US7592077B2 (en) * 2003-06-17 2009-09-22 Kennametal Inc. Coated cutting tool with brazed-in superhard blank
EP1870185A4 (en) 2005-04-14 2010-04-07 Sumitomo Elec Hardmetal Corp FRITTE cBN COMPACT TOOL AND CUTTING TOOL USING THE SAME
JP5485117B2 (ja) * 2010-11-26 2014-05-07 住友電気工業株式会社 接合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320218A (ja) 1998-03-02 1999-11-24 Sumitomo Electric Ind Ltd 硬質焼結体工具及びその製造方法
JP3549424B2 (ja) 1998-03-02 2004-08-04 住友電気工業株式会社 硬質焼結体工具及びその製造方法
JPH11294058A (ja) 1998-04-08 1999-10-26 Mitsubishi Materials Corp 接合強度に優れたろう付け切削工具
JP2002036008A (ja) 2000-07-24 2002-02-05 Ngk Spark Plug Co Ltd スローアウェイチップ及び切削工具
WO2009123065A1 (ja) * 2008-03-31 2009-10-08 独立行政法人 産業技術総合研究所 接合体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"IGETALLOY Cutting Tool", October 2006, SUMITOMO ELECTRIC HARDMETAL CO., pages: L4
POBOL I.L. ET AL.: "Investigation of contact phenomenaat cubic boron nitride-filler metal interface during electron beam brazing", DIAMOND AND RELATED MATERIALS, vol. 6, no. 8, May 1997 (1997-05-01), pages 1067 - 1070, XP004083764 *
See also references of EP2644307A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098819A1 (ja) * 2013-12-25 2015-07-02 三菱マテリアル株式会社 接合用ろう材およびそれを用いた複合部材、切削工具
JP2015142941A (ja) * 2013-12-25 2015-08-06 三菱マテリアル株式会社 接合用ろう材およびそれを用いた複合部材、切削工具
US10252379B2 (en) 2013-12-25 2019-04-09 Mitsubishi Materials Corporation Brazing material for bonding; and composite part and cutting tool using same
WO2017199752A1 (ja) * 2016-05-16 2017-11-23 株式会社タンガロイ 工具
JP6304615B1 (ja) * 2016-05-16 2018-04-04 株式会社タンガロイ 工具

Also Published As

Publication number Publication date
JP5552543B2 (ja) 2014-07-16
JPWO2012070563A1 (ja) 2014-05-19
CN103228393B (zh) 2016-06-08
EP2644307A4 (en) 2017-12-20
CN103228393A (zh) 2013-07-31
KR101425330B1 (ko) 2014-08-01
US20130236240A1 (en) 2013-09-12
EP2644307A1 (en) 2013-10-02
KR20140002663A (ko) 2014-01-08
US9308707B2 (en) 2016-04-12
EP2644307B1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP5552543B2 (ja) 接合体
JP5464442B2 (ja) 接合方法
JP4647016B2 (ja) 接合体
EP2656958A1 (en) Rotary tool
CN109822094A (zh) 一种Al-Ti合金异种金属焊接方法
JP5485117B2 (ja) 接合体
JP6024739B2 (ja) 被覆回転ツールおよびその製造方法
JP2008290130A (ja) 接合体
JP5225729B2 (ja) 接合体の接合方法
KR102532558B1 (ko) 고체 다이아몬드 재료의 코팅 방법
Ma et al. Resistance welding of large-size CBN grits
JP2011025333A (ja) 接合体
Huang et al. Comparative study on the joining performance of TiH2 and ZrH2 modified AgCu28 brazing alloys with pulsed laser welding-brazing
JP6193651B2 (ja) 抵抗溶接用電極
TWM449059U (zh) 單晶鑽石工具
JP5613293B2 (ja) 接合体
WANG et al. TIG-MIG indirect arc welding process
JP2012152827A (ja) 接合体
GAO et al. Microstructure and mechanical property of ultrasonic soldered joint of AZ31B magnesium alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545760

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011843305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13989703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137014576

Country of ref document: KR

Kind code of ref document: A