WO2012070476A1 - 硬化性組成物 - Google Patents

硬化性組成物 Download PDF

Info

Publication number
WO2012070476A1
WO2012070476A1 PCT/JP2011/076618 JP2011076618W WO2012070476A1 WO 2012070476 A1 WO2012070476 A1 WO 2012070476A1 JP 2011076618 W JP2011076618 W JP 2011076618W WO 2012070476 A1 WO2012070476 A1 WO 2012070476A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
weight
polymer
reactive silicon
parts
Prior art date
Application number
PCT/JP2011/076618
Other languages
English (en)
French (fr)
Inventor
聖 宮藤
矢野 理子
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US13/989,116 priority Critical patent/US8907024B2/en
Priority to CN201180056179.7A priority patent/CN103228736B/zh
Priority to EP11842755.8A priority patent/EP2644657B1/en
Priority to JP2012545712A priority patent/JP5850851B2/ja
Publication of WO2012070476A1 publication Critical patent/WO2012070476A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/10Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/16Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • an organic heavy group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and having a silicon group capable of forming a crosslink by forming a siloxane bond hereinafter also referred to as “reactive silicon group”.
  • the present invention relates to a curable composition comprising a coalescence and an organic polymer thereof.
  • An organic polymer having at least one reactive silicon in the molecule is crosslinked at room temperature by forming a siloxane bond accompanied by a hydrolysis reaction of a silyl group due to moisture or the like, thereby obtaining a rubber-like cured product. It is known to have
  • organic polymers having a reactive silicon group organic polymers whose main chain skeleton is a polyoxyalkylene polymer or a polyisobutylene polymer have already been industrially produced, such as sealing materials, adhesives, paints, etc. Widely used in applications (Patent Document 1) and (Patent Document 2).
  • organic polymers having a reactive silicon group have been used high molecular weight polymers in order to develop excellent tensile properties.
  • the curable composition having a high molecular weight polymer has to be added with a plasticizer in order to ensure workability.
  • a plasticizer in order to ensure workability.
  • high hardness is required, and improvement has been desired.
  • An object of the present invention is to provide a curable composition that gives a cured product having a high hardness that cannot be solved by an organic polymer used as a conventional sealant composition for general buildings.
  • the present invention (1).
  • the curable composition as described in (1) or (2), wherein the main chain structure of the reactive silicon group-containing organic polymer as component (A) has at least one or more branched chains object, (4).
  • an adhesive comprising as a component the curable composition according to any one of (9).
  • (1) to (7) a floor adhesive comprising as a component the curable composition according to any one of the above, (10).
  • (1) to (5) a tile bonding adhesive comprising as a component the curable composition according to any one of (11).
  • (6) to (7) a tile bonding adhesive comprising as a component the curable composition according to any one of (12).
  • the curable composition has a high thixotropy and gives a cured product having high hardness. It also improves the cracking strength of brittle materials such as tiles.
  • the main chain skeleton of the organic polymer (A) having a reactive silicon group used in the present invention is not particularly limited, and those having various main chain skeletons can be used. Since it is excellent in adhesiveness, it is preferably composed of one or more selected from a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom.
  • polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc.
  • Saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers have a relatively low glass transition temperature, and the resulting cured product Is more preferable because of its excellent cold resistance.
  • the glass transition temperature of the organic polymer as the component (A) is not particularly limited, but is preferably 20 ° C. or less, more preferably 0 ° C. or less, and particularly preferably ⁇ 20 ° C. or less. . If the glass transition temperature exceeds 20 ° C., the viscosity in winter or in a cold region may increase and workability may deteriorate, and the flexibility of the cured product may decrease and elongation may decrease.
  • the glass transition temperature is a value obtained by DSC measurement.
  • polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferable because they have high moisture permeability and are excellent in deep-part curability when made into a one-component composition, and also in excellent adhesiveness. A polyoxyalkylene polymer is most preferred. Among the polyoxyalkylene polymers, polyoxypropylene polymers are particularly preferable.
  • the reactive silicon group contained in the organic polymer of the present invention has a hydroxy group or hydrolyzable group bonded to a silicon atom, and is crosslinked by forming a siloxane bond by a reaction accelerated by a silanol condensation catalyst. Is a possible group.
  • the reactive silicon group As the reactive silicon group, the general formula (1): -SiR 1 3-a X a (1)
  • R 1 is independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or —OSi (R ′) 3
  • R ′ Are each independently a triorganosiloxy group having 1 to 20 carbon atoms
  • X is each independently a hydroxy group or a hydrolyzable group.
  • the hydrolyzable group is not particularly limited as long as it is a conventionally known hydrolyzable group.
  • Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
  • a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable. From the viewpoint that hydrolysis is mild and easy to handle.
  • the group is particularly preferred.
  • the hydrolyzable group or hydroxy group can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxy groups are bonded to the reactive silicon group, they may be the same or different.
  • a is preferably 2 or 3 from the viewpoint of curability, and is particularly preferably 3 when quick curability is required, and when stability during storage is required. Is preferably 2.
  • R 1 in the general formula (1) include, for example, an alkyl group such as a methyl group and an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, Examples thereof include a triorganosiloxy group represented by —OSi (R ′) 3 in which R ′ is a methyl group, a phenyl group or the like. Of these, a methyl group is particularly preferred.
  • the reactive silicon group include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a diisopropoxymethylsilyl group.
  • a trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group are more preferable, and a trimethoxysilyl group is particularly preferable because of high activity and good curability.
  • a dimethoxymethylsilyl group and a triethoxysilyl group are particularly preferable.
  • triethoxysilyl group and diethoxymethylsilyl group are particularly preferable because the alcohol produced by the hydrolysis reaction of the reactive silicon group is ethanol and has higher safety.
  • the introduction of the reactive silicon group may be performed by a known method. That is, for example, the following method is mentioned.
  • An organic polymer having an unsaturated group by reacting an organic polymer having a functional group such as a hydroxy group in the molecule with an organic compound having an active group and an unsaturated group that are reactive with the functional group.
  • a polymer is obtained.
  • an unsaturated group-containing organic polymer is obtained by copolymerization with an unsaturated group-containing epoxy compound.
  • the resulting reaction product is hydrosilylated by the action of a hydrosilane having a reactive silicon group.
  • the method (I) or the method (III) in which the polymer having a hydroxyl group at the terminal is reacted with the compound having an isocyanate group and a reactive silicon group has a relatively short reaction time. It is preferable because a high conversion rate can be obtained. Furthermore, the organic polymer having a reactive silicon group obtained by the method (I) becomes a curable composition having a lower viscosity and better workability than the organic polymer obtained by the method (III).
  • the organic polymer obtained by the method (II) has a strong odor based on mercaptosilane, and therefore the method (I) is particularly preferred.
  • hydrosilane compound used in the method (I) include halogenated silanes such as trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane; trimethoxysilane, triethoxysilane, and methyldiethoxysilane.
  • Alkoxysilanes such as methyldimethoxysilane, phenyldimethoxysilane, 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane; methyldiacetoxysilane, phenyldiacetoxysilane Examples thereof include, but are not limited to, acyloxysilanes such as: ketoximate silanes such as bis (dimethylketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane.
  • halogenated silanes and alkoxysilanes are particularly preferable, and alkoxysilanes are particularly preferable because the hydrolyzability of the resulting curable composition is gentle and easy to handle.
  • alkoxysilanes methyldimethoxysilane is preferred because it is easily available and the curable composition containing the resulting organic polymer has high curability, storage stability, elongation characteristics, and tensile strength. Trimethoxysilane is particularly preferable from the viewpoints of curability and restorability of the resulting curable composition.
  • a compound having a mercapto group and a reactive silicon group is converted into an unsaturated bond site of an organic polymer by a radical addition reaction in the presence of a radical initiator and / or a radical generation source.
  • a radical addition reaction in the presence of a radical initiator and / or a radical generation source.
  • transducing etc. is mentioned, it does not specifically limit.
  • Specific examples of the compound having a mercapto group and a reactive silicon group include, for example, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, and ⁇ -mercaptopropylmethyldiethoxy. Examples include, but are not limited to, silane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, and the like.
  • the method described in JP-A-3-47825 can be mentioned.
  • the compound having an isocyanate group and a reactive silicon group include, for example, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, and ⁇ -isocyanatopropylmethyldiethoxy.
  • Examples include, but are not limited to, silane, isocyanate methyltrimethoxysilane, isocyanatemethyltriethoxysilane, isocyanatemethyldimethoxymethylsilane, and isocyanatemethyldiethoxymethylsilane.
  • a silane compound in which three hydrolyzable groups are bonded to one silicon atom such as trimethoxysilane may cause a disproportionation reaction.
  • an unstable compound such as dimethoxysilane is produced, which may make handling difficult.
  • disproportionation reaction does not proceed with ⁇ -mercaptopropyltrimethoxysilane or ⁇ -isocyanatopropyltrimethoxysilane.
  • the synthesis method (II) or (III) may be used. preferable.
  • the general formula (2) H— (SiR 2 2 O) m SiR 2 2 —R 3 —SiX 3 (2) (X is the same as above.
  • 2m + 2 R 2 s are each independently a hydrocarbon group, and from the viewpoint of availability and cost, a hydrocarbon group having 1 to 20 carbon atoms is preferred, and 1 to 8 carbon atoms are preferred.
  • the hydrocarbon group is more preferably a hydrocarbon group having 1 to 4 carbon atoms, and R 3 is a divalent organic group, and is divalent having 1 to 12 carbon atoms from the viewpoint of availability and cost.
  • a divalent hydrocarbon group having 2 to 8 carbon atoms is more preferable, and a divalent hydrocarbon group having 2 carbon atoms is particularly preferable, and m is an integer of 0 to 19. In terms of availability and cost, 1 is preferable), and the disproportionation reaction does not proceed. Therefore, when introducing a group in which three hydrolyzable groups are bonded to one silicon atom in the synthesis method (I), use the silane compound represented by the general formula (2). Is preferred.
  • silane compound represented by the general formula (2) examples include 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane, 1- [2- (trimethoxy Silyl) propyl] -1,1,3,3-tetramethyldisiloxane, 1- [2- (trimethoxysilyl) hexyl] -1,1,3,3-tetramethyldisiloxane.
  • the organic polymer (A) having a reactive silicon group may be linear or branched, and the number average molecular weight thereof is about 2,000 to 6,000 in terms of polystyrene in GPC, more preferably 2, 000 to 5,500, particularly preferably 2,000 to 5,000. If the number average molecular weight is less than 2,000, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 6,000, the hardness tends to be low.
  • the number average molecular weight of the reactive silicon group-containing organic polymer (A) is directly determined by titration analysis based on the principle of the hydroxyl value measurement method of JIS K 1557 and the iodine value measurement method defined in JIS K 0070.
  • polystyrene-reduced number average molecular weight determined by general GPC measurement of the organic polymer precursor and the above-mentioned end group molecular weight. This is possible by preparing a calibration curve and converting the GPC molecular weight of the reactive silicon group-containing organic polymer (P) to a terminal group molecular weight.
  • the average number of reactive silicon groups contained in the organic polymer (A) is preferably 1.3 to 5 per molecule of the polymer, Three is more preferable, and 2.1 to 3 is particularly preferable.
  • the reactive silicon group may be at the end of the main chain or the side chain of the organic polymer molecular chain, or at both ends. In particular, when the reactive silicon group is only at the end of the main chain of the molecular chain, the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that high strength and high elongation are achieved. It becomes easy to obtain the rubbery cured product shown.
  • the number of reactive silicon groups is defined by determining the ratio with respect to the molecular chain end by 1 H-NMR and considering the structure of the organic polymer (branching degree determined by the polymerization initiator used).
  • the main chain structure of the reactive silicon group-containing organic polymer as the component (A) preferably has at least one branched chain because a hardened product can be obtained.
  • the polyoxyalkylene polymer essentially has the general formula (3): -R 4 -O- (3)
  • R 4 is a polymer having a repeating unit represented by a linear or branched alkylene group having 1 to 14 carbon atoms
  • R 4 in the general formula (3) is 1 to 14 carbon atoms.
  • 2 to 4 linear or branched alkylene groups are preferred.
  • Specific examples of the repeating unit represented by the general formula (3) include -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3) 2 O-, —CH 2 CH 2 CH 2 CH 2 O— Etc.
  • the main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
  • a polymer comprising a propylene oxide polymer as a main component is preferred because it is amorphous or has a relatively low viscosity.
  • Examples of the method for synthesizing a polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH, and a complex obtained by reacting an organoaluminum compound with porphyrin as disclosed in JP-A-61-215623.
  • Polymerization method using transition metal compound-porphyrin complex catalyst Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, US Pat.
  • Polymerization method using double metal cyanide complex catalyst as shown in US Pat. No.
  • Polyoxy having a number average molecular weight of 6,000 or more, a high molecular weight of Mw / Mn of 1.6 or less, and a narrow molecular weight distribution Alkylene polymer can be exemplified, but not particularly limited thereto.
  • the above polyoxyalkylene polymers having a reactive silicon group may be used alone or in combination of two or more.
  • the saturated hydrocarbon polymer is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring, and the polymer constituting the skeleton thereof is (1) ethylene, propylene, 1-butene, isobutylene, etc.
  • the main monomer is an olefin compound having 2 to 6 carbon atoms, or (2) a diene compound such as butadiene or isoprene is homopolymerized, or is copolymerized with the olefin compound. After that, it can be obtained by a method such as hydrogenation.
  • the isobutylene polymer and the hydrogenated polybutadiene polymer can easily introduce a functional group at the terminal, easily control the molecular weight, The number can be increased, and an isobutylene polymer is particularly preferable.
  • Those whose main chain skeleton is a saturated hydrocarbon polymer have characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
  • all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers, but the repeating unit derived from isobutylene is 50 from the viewpoint of rubber properties.
  • Those containing not less than wt% are preferred, those containing not less than 80 wt% are more preferred, and those containing 90 to 99 wt% are particularly preferred.
  • Examples of the method for producing a saturated hydrocarbon polymer having a reactive silicon group include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-64-22904, Although described in each specification of Kaihei 1-197509, Japanese Patent Publication No. 2539445, Japanese Patent Publication No. 2873395, and Japanese Patent Application Laid-Open No. 7-53882, it is not particularly limited thereto.
  • the saturated hydrocarbon polymer having a reactive silicon group may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used. Examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, N-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth)
  • the following vinyl monomers can be copolymerized together with the (meth) acrylic acid ester monomer.
  • the vinyl monomer include styrene monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, chlorostyrene, styrene sulfonic acid and salts thereof; silicon-containing vinyl monomers such as vinyl trimethoxysilane and vinyl triethoxysilane; Maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl and dialkyl esters of fumaric acid; maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, Maleimide monomers such as dodecylmaleimide, stearylmaleimide, pheny
  • the polymer which consists of a styrene-type monomer and a (meth) acrylic-acid type monomer from the physical property of a product etc. is preferable. More preferred is a (meth) acrylic polymer comprising an acrylate monomer and a methacrylic acid ester monomer, and particularly preferred is an acrylic polymer comprising an acrylate monomer.
  • a butyl acrylate monomer is more preferred from the viewpoint that physical properties such as low viscosity of the blend, low modulus of the cured product, high elongation, weather resistance, and heat resistance are required.
  • copolymers based on ethyl acrylate are more preferred.
  • This polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low temperature characteristics (cold resistance). Therefore, in order to improve the low temperature characteristics, a part of ethyl acrylate is converted into butyl acrylate. It is also possible to replace it.
  • the ratio of butyl acrylate is increased, its good oil resistance is impaired. Therefore, for applications requiring oil resistance, the ratio is preferably 40% or less, and more preferably 30% or less. More preferably.
  • the ratio is preferably 40% or less. In accordance with various uses and required purposes, it is possible to obtain suitable polymers by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance and low temperature characteristics.
  • examples of excellent balance of physical properties such as oil resistance, heat resistance, and low temperature characteristics include ethyl acrylate / butyl acrylate / 2-methoxyethyl acrylate (by weight ratio of 40-50 / 20- 30/30 to 20).
  • these preferred monomers may be copolymerized with other monomers, and further block copolymerized, and in that case, these preferred monomers are preferably contained in a weight ratio of 40% or more.
  • (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
  • the method for synthesizing the (meth) acrylic acid ester-based polymer is not particularly limited, and may be performed by a known method.
  • a polymer obtained by a normal free radical polymerization method using an azo compound or a peroxide as a polymerization initiator has a problem that the molecular weight distribution is generally as large as 2 or more and the viscosity is increased. Yes. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and a low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high ratio. It is preferable to use a living radical polymerization method.
  • the “atom transfer radical polymerization method” for polymerizing a (meth) acrylate monomer using an organic halide or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst In addition to the characteristics of the “living radical polymerization method”, it has a halogen or the like that is relatively advantageous for functional group conversion reaction, and has a specific functional group because it has a large degree of freedom in designing initiators and catalysts ( The method for producing a (meth) acrylic acid ester polymer is more preferable. Examples of this atom transfer radical polymerization method include Matyjazewski et al., Journal of American Chemical Society (J. Am. Chem. Soc.) 1995, 117, 5614.
  • Examples of the method for producing a (meth) acrylic acid ester-based polymer having a reactive silicon group include chain transfer described in JP-B-3-14068, JP-B-4-55444, JP-A-6-211922, and the like.
  • a production method using a free radical polymerization method using an agent is disclosed.
  • Japanese Patent Application Laid-Open No. 9-272714 discloses a production method using an atom transfer radical polymerization method, but is not particularly limited thereto.
  • the (meth) acrylic acid ester-based polymer having a reactive silicon group may be used alone or in combination of two or more.
  • organic polymers having a reactive silicon group may be used alone or in combination of two or more.
  • a group consisting of a polyoxyalkylene polymer having a reactive silicon group, a saturated hydrocarbon polymer having a reactive silicon group, and a (meth) acrylic acid ester polymer having a reactive silicon group An organic polymer obtained by blending two or more selected from the above can also be used.
  • a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a reactive silicon group and a (meth) acrylic acid ester polymer having a reactive silicon group is disclosed in JP-A-59-122541.
  • Japanese Laid-Open Patent Publication No. 63-112642 Japanese Laid-Open Patent Publication No. 6-172631, and Japanese Laid-Open Patent Publication No. 11-116763, the invention is not particularly limited thereto.
  • a preferred specific example has a reactive silicon group and a molecular chain substantially having the following general formula (4): —CH 2 —C (R 5 ) (COOR 6 ) — (4) (Meth) acrylate monomer unit having an alkyl group having 1 to 8 carbon atoms represented by (R 5 is a hydrogen atom or a methyl group, R 6 is an alkyl group having 1 to 8 carbon atoms) And the following general formula (5): —CH 2 —C (R 5 ) (COOR 7 ) — (5) (R 5 is the same as above, R 7 represents an alkyl group having 9 or more carbon atoms) and is a copolymer consisting of a (meth) acrylic acid ester monomer unit having an alkyl group having 9 or more carbon atoms In this method, a polyoxyalkylene polymer having a reactive silicon group is blended with the polymer.
  • R 6 in the general formula (4) is, for example, from 1 to 8, preferably 1 from carbon atoms such as methyl, ethyl, propyl, n-butyl, t-butyl, 2-ethylhexyl and the like. 4, more preferably 1 or 2 alkyl groups.
  • the alkyl group of R 6 may alone, or may be a mixture of two or more.
  • R 7 in the general formula (5) is, for example, 9 or more carbon atoms such as a nonyl group, a decyl group, a lauryl group, a tridecyl group, a cetyl group, a stearyl group, a behenyl group, usually 10 to 30, preferably Examples include 10 to 20 long-chain alkyl groups.
  • the alkyl group of R 7 is similar to the case of R 6, alone may or may be a mixture of two or more.
  • the molecular chain of the (meth) acrylic acid ester-based polymer is substantially composed of monomer units of the general formula (4) and the general formula (5). It means that the total of the monomer units of the general formula (4) and the general formula (5) present in the coal exceeds 50% by weight. The total of the monomer units of the general formula (4) and the general formula (5) is preferably 70% by weight or more.
  • the abundance ratio of the monomer unit of the general formula (4) and the monomer unit of the general formula (5) is preferably 95: 5 to 40:60, more preferably 90:10 to 60:40. preferable.
  • Examples of monomer units other than the general formula (4) and general formula (5) that may be contained in the copolymer include acrylic acid such as acrylic acid and methacrylic acid; acrylamide, methacrylamide, N- Monomers containing amide groups such as methylol acrylamide and N-methylol methacrylamide, epoxy groups such as glycidyl acrylate and glycidyl methacrylate, and amino groups such as diethylaminoethyl acrylate, diethylaminoethyl methacrylate and aminoethyl vinyl ether; other acrylonitrile, styrene, ⁇ -Monomer units derived from methyl styrene, alkyl vinyl ether, vinyl chloride, vinyl acetate, vinyl propionate, ethylene and the like.
  • a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based polymer having a reactive silicon functional group, in the presence of an organic polymer having a reactive silicon group (A method of polymerizing a meth) acrylate monomer can be used. This production method is specifically disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, etc. It is not limited to these.
  • the main chain skeleton of the organic polymer may contain other components such as a urethane bond component as long as the effects of the present invention are not significantly impaired.
  • the urethane bond component is not particularly limited, and examples thereof include a group (hereinafter also referred to as an amide segment) generated by a reaction between an isocyanate group and an active hydrogen group.
  • the amide segment has the general formula (6): —NR 8 —C ( ⁇ O) — (6) (R 8 represents an organic group or a hydrogen atom).
  • the amide segment is a urethane group formed by a reaction between an isocyanate group and a hydroxy group; a urea group formed by a reaction between an isocyanate group and an amino group; and formed by a reaction between an isocyanate group and a mercapto group.
  • a thiourethane group etc. can be mentioned.
  • groups generated by the reaction of the active hydrogen in the urethane group, urea group, and thiourethane group with an isocyanate group are also included in the group of the general formula (6).
  • An example of an industrially easy production method of an organic polymer having an amide segment and a reactive silicon group is as follows.
  • An organic polymer having an active hydrogen-containing group at the terminal is reacted with an excess polyisocyanate compound to produce a polyurethane-based main polymer.
  • all or a part of the isocyanate group has the general formula (7): W—R 9 —SiR 1 3-a X a (7) (R 1 , X and a are the same as above.
  • R 9 is a divalent organic group, more preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • W is a hydroxy group, a carboxy group, a mercapto group and Examples thereof include those produced by a method in which a W group of a silicon compound represented by an amino group (an active hydrogen-containing group selected from primary or secondary) is reacted.
  • Examples of known production methods for organic polymers related to this production method include Japanese Patent Publication No. 46-12154 (US Pat. No. 3,632,557), Japanese Patent Application Laid-Open No. 58-109529 (US Pat. No. 4,374,237), Japanese Patent Application Laid-Open No. Sho 62. No. 13430 (US Pat. No.
  • JP-A-8-53528 EP0676403
  • JP-A-10-204144 EP0831108
  • JP-T 2003-508561 US Pat. No. 6,1979,912
  • JP-A-6-2111879 US) No. 5364955
  • JP-A-10-53637 US Pat. No. 5,757,751
  • JP-A-11-100197 JP-A-2000-169544
  • JP-A-2000-169545 JP-A-2002-212415
  • JP-A-3313360 JP-3313360.
  • Examples of known production methods for organic polymers related to this production method include JP-A-11-279249 (US Pat. No. 5,990,257), JP-A 2000-119365 (US Pat. No. 6,046,270), JP-A 58- No. 29818 (US Pat. No. 4,345,053), JP-A-3-47825 (US Pat. No. 5,068,304), JP-A-11-60724, JP-A-2002-155138, JP-A-2002-249538, WO03 / 018658, WO03 / 059981 Etc.
  • organic polymer having an active hydrogen-containing group at the terminal examples include an oxyalkylene polymer having a hydroxy group at the terminal (polyether polyol), a polyacryl polyol, a polyester polyol, and a saturated hydrocarbon polymer having a hydroxy group at the terminal (Polyolefin polyol), polythiol compounds, polyamine compounds and the like.
  • polyether polyol, polyacryl polyol, and polyolefin polyol are preferable because the obtained organic polymer has a relatively low glass transition temperature and the resulting cured product is excellent in cold resistance.
  • polyether polyols are particularly preferred because the resulting organic polymer has a low viscosity, good workability, and good deep part curability and adhesiveness.
  • Polyacryl polyols and saturated hydrocarbon polymers are more preferred because the resulting cured organic polymer has good weather resistance and heat resistance.
  • polyether polyol those produced by any production method can be used, but those having at least 0.7 hydroxy groups per molecular terminal in terms of the total molecular average are preferable.
  • an oxyalkylene polymer produced using a conventional alkali metal catalyst, an initiator such as a polyhydroxy compound having at least two hydroxy groups in the presence of a double metal cyanide complex or cesium an alkylene Examples include oxyalkylene polymers produced by reacting oxides.
  • a polymerization method using a double metal cyanide complex has a lower degree of unsaturation, a smaller Mw / Mn, a lower viscosity, a high acid resistance, and a high weather resistance oxyalkylene heavy. It is preferable because a coalescence can be obtained.
  • polyacrylic polyol examples include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and a hydroxy group in the molecule.
  • the polymer synthesis method is preferably a living radical polymerization method and more preferably an atom transfer radical polymerization method because the molecular weight distribution is narrow and viscosity can be lowered.
  • Specific examples include Alfon UH-2000 manufactured by Toagosei Co., Ltd.
  • polyisocyanate compound examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate. .
  • the silicon compound of the general formula (7) is not particularly limited, but specific examples include ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, (N— Amino such as phenyl) - ⁇ -aminopropyltrimethoxysilane, N-ethylaminoisobutyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxysilane Group-containing silanes; hydroxy group-containing silanes such as ⁇ -hydroxypropyltrimethoxysilane; mercapto group-containing silanes such as ⁇ -mercaptopropyltrimethoxysilane; and the like.
  • JP-A-6-2111879 (US Pat. No. 5,364,955), JP-A-10-53637 (US Pat. No. 5,757,751), JP-A-10-204144 (EP0831108), JP-A 2000-169544, JP-A 2000-169545.
  • Michael addition reaction products of various ⁇ , ⁇ -unsaturated carbonyl compounds and primary amino group-containing silanes, or various (meth) acryloyl group-containing silanes and primary amino group-containing compounds can also be used as the silicon compound of general formula (7).
  • the reactive silicon group-containing isocyanate compound of the general formula (8) is not particularly limited, but specific examples include ⁇ -trimethoxysilylpropyl isocyanate, ⁇ -triethoxysilylpropyl isocyanate, ⁇ -methyldimethoxysilylpropyl isocyanate. ⁇ -methyldiethoxysilylpropyl isocyanate, trimethoxysilylmethyl isocyanate, triethoxymethylsilylmethyl isocyanate, dimethoxymethylsilylmethyl isocyanate, diethoxymethylsilylmethyl isocyanate and the like. Further, as described in JP-A No. 2000-119365 (US Pat. No. 6,046,270), a compound obtained by reacting a silicon compound of the general formula (7) with an excess of the polyisocyanate compound is also represented by the general formula: It can be used as the reactive silicon group-containing isocyanate compound (8).
  • the organic polymer obtained by the above method has the general formula (9) in the main chain skeleton: —NR 10 —C ( ⁇ O) — (9) (R 10 represents a hydrogen atom or a substituted or unsubstituted organic group). Since this structure has a relatively high polarity, it tends to increase the strength of the cured product and the adhesion to the substrate, which is desirable.
  • a plasticizer may be used as the component (C).
  • a plasticizer By adding a plasticizer, the viscosity, slump property of the curable composition, and mechanical properties such as hardness, tensile strength, and elongation of the cured product obtained by curing the curable composition can be adjusted.
  • plasticizer examples include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), butyl benzyl phthalate, and the like; bis (2-ethylhexyl) ) Terephthalic acid ester compounds such as 1,4-benzenedicarboxylate (specifically, trade name: EASTMAN 168 (manufactured by EASTMAN CHEMICAL)); non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester ( Specifically, trade name: Hexamol DINCH (manufactured by BASF)); dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, tributy acetyl citrate Aliphatic
  • a polymeric plasticizer can be used.
  • the initial physical properties can be maintained over a long period of time compared to the case where a low-molecular plasticizer that is a plasticizer that does not contain a polymer component in the molecule is used.
  • the drying property (paintability) when an alkyd paint is applied to the cured product can be improved.
  • polymer plasticizer examples include vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester; Polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; number average molecular weight of 500 or more Furthermore, more than 1,000 polyether polyols such as polyethylene glycol polypropylene glycol and polytetramethylene glycol, or the hydroxy group of these polyether polyols are esterified And polyethers such as derivatives converted into ether groups; polystyrenes such as polystyrene and poly- ⁇ -methylstyrene; polybutadiene, polybutene, polyisobutylene,
  • polyethers and vinyl polymers are preferable.
  • polyethers are used as a plasticizer, the surface curability and deep part curability are improved, and the curing delay after storage does not occur.
  • Polypropylene glycol is more preferred.
  • a vinyl polymer is preferable from the viewpoint of compatibility, weather resistance, and heat resistance.
  • acrylic polymers and / or methacrylic polymers are preferred, and acrylic polymers such as polyacrylic acid alkyl esters are more preferred.
  • the polymer synthesis method is preferably a living radical polymerization method and more preferably an atom transfer radical polymerization method because the molecular weight distribution is narrow and viscosity can be lowered. Further, it is preferable to use a polymer obtained by so-called SGO process obtained by continuous bulk polymerization of an alkyl acrylate monomer described in JP-A-2001-207157 at high temperature and high pressure.
  • the number average molecular weight of the polymer plasticizer is preferably 500 to 15,000, more preferably 800 to 10,000, still more preferably 1,000 to 8,000, and particularly preferably 1,000. 5,000, most preferably 1,000 to 3,000. If the molecular weight is too low, the plasticizer will flow out over time due to heat and rain, and the initial physical properties cannot be maintained over a long period of time. Moreover, when molecular weight is too high, a viscosity will become high and workability
  • the molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow and preferably less than 1.80. 1.70 or less is more preferable, 1.60 or less is more preferable, 1.50 or less is more preferable, 1.40 or less is particularly preferable, and 1.30 or less is most preferable.
  • the number average molecular weight of the polymer plasticizer is measured by a GPC method in the case of a vinyl polymer and by a terminal group analysis method in the case of a polyether polymer. Moreover, molecular weight distribution (Mw / Mn) is measured by GPC method (polystyrene conversion).
  • the polymer plasticizer may or may not have a reactive silicon group. When it has a reactive silicon group, it acts as a reactive plasticizer and can prevent migration of the plasticizer from the cured product. When it has a reactive silicon group, it is preferably 1 or less, more preferably 0.8 or less on average per molecule.
  • the plasticizer is used in an amount of 0 to 40 parts by weight based on 100 parts by weight of the total of the reactive silicon group-containing organic polymer as the component (A) and the reactive silicon group-containing organic polymer as the component (B). Preferably 0 to 30 parts by weight, more preferably no plasticizer. If it exceeds 40 parts by weight, the hardness of the cured product may be insufficient, which causes a problem.
  • a plasticizer may be used independently and may use 2 or more types together. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be blended at the time of polymer production.
  • a reactive silicon group-containing organic polymer having a number average molecular weight of 8,000 to 50,000 may be used as the component (B).
  • the main chain skeleton of the reactive silicon group-containing organic polymer (B) used in the present invention is not particularly limited, and those having various main chain skeletons can be used.
  • the same main chain skeleton as exemplified in the combination (A) can be used.
  • the organic polymer (B) having a reactive silicon group may be linear or branched, and its number average molecular weight is about 8,000 to 50,000, more preferably 9,000 in terms of polystyrene in GPC. 000 to 40,000, particularly preferably 10,000 to 35,000. If the number average molecular weight is less than 8,000, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 50,000, the viscosity tends to increase. In the present invention, the number average molecular weight of the polymer contained in the curable composition is determined for each peak of the GPC chart.
  • multiple types of polymers can be obtained by a single polymerization operation, but in that case, instead of calculating the number average molecular weight collectively, for each polymer, that is, for each peak The number average molecular weight is determined.
  • the reactive silicon group of the organic polymer (B) having a reactive silicon group the same reactive silicon group as exemplified in the reactive silicon group-containing organic polymer (A) can be used.
  • the average number of reactive silicon groups contained in the organic polymer is at least 1, preferably 1.3 to 5, more preferably, in one molecule of the polymer. It should be 1.3-3.
  • the reactive silicon group may be at the end of the main chain or the side chain of the organic polymer molecular chain, or at both ends. In particular, when the reactive silicon group is only at the end of the main chain of the molecular chain, the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that high strength and high elongation are achieved. It becomes easy to obtain the rubbery cured product shown.
  • the number of reactive silicon groups is defined by determining the ratio with respect to the molecular chain end by 1 H-NMR and considering the structure of the organic polymer (branching degree determined by the polymerization initiator used).
  • the mixing ratio of the reactive silicon group-containing organic polymer (B) is not particularly limited, but is preferably 1 to 1,000 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing organic polymer (A). More preferred are parts by weight, and particularly preferred are 10 to 800 parts by weight and 50 to 200 parts by weight.
  • a curing catalyst is used as the silanol condensation catalyst of the component (A) and the component (B).
  • the curing catalyst include titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, titanium tetrakis (acetylacetonate), bis (acetylacetonato) diisopropoxytitanium, diisopropoxytitanium bis (ethylacetocetate); Dimethyltin diacetate, dimethyltin bis (acetylacetonate), dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctanoate, dibutyltin bis (2-ethylhexanoate), dibutyltin bis (methylmaleate) , Dibutyltin bis (ethyl maleate), dibutyltin bis (butyl maleate), dibutyltin bis (butyl male
  • carboxylic acid and / or carboxylic acid metal salt can also be used as a curing catalyst.
  • an amidine compound as described in WO2008 / 078654 can also be used.
  • amidine compounds include 1- (o-tolyl) biguanide, 1-phenylguanidine, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1,5,7-triazabicyclo [4.4. .0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, and the like, but are not limited thereto.
  • the amount of the condensation catalyst used is 0.01 to 20 parts by weight based on 100 parts by weight of the total of the reactive silicon group-containing organic polymer (A) and the reactive silicon group-containing organic polymer (B).
  • the degree is preferable, and 0.1 to 10 parts by weight is more preferable.
  • Aminosilane can be added to the curable composition of the present invention.
  • Aminosilane is a compound having a reactive silicon group and amino group in the molecule, and is usually referred to as an adhesion-imparting agent.
  • various adherends that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, and organic substrates such as vinyl chloride, acrylic, polyester, polyethylene, polypropylene, polycarbonate, etc. When used, it exhibits a significant adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable.
  • it is a compound that can function as a physical property modifier, an inorganic filler dispersibility improver, and the like.
  • the reactive silicon group of aminosilane include the groups already exemplified, but methoxy group, ethoxy group and the like are preferable from the viewpoint of hydrolysis rate.
  • the number of hydrolyzable groups is preferably 2 or more, particularly 3 or more.
  • aminosilane examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) amino Propylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriisopropoxysilane, ⁇ - (2- (2-aminoethyl) aminoethyl) aminopropyltrimethoxysilane,
  • ⁇ -aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane are used. preferable. Only one type of aminosilane may be used, or two or more types may be used in combination. It has been pointed out that ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane is irritating compared to other aminosilanes, and instead of reducing this aminosilane, ⁇ -aminopropyltrimethoxysilane should be used in combination. Can alleviate irritation.
  • the compounding amount of aminosilane is preferably about 1 to 20 parts by weight, more preferably 2 to 10 parts by weight, based on 100 parts by weight of the total of the organic polymer of component (A) and the organic polymer of component (B). If the blending amount is less than 1 part by weight, sufficient adhesion may not be obtained. On the other hand, if the blending amount exceeds 20 parts by weight, the cured product becomes brittle and sufficient strength cannot be obtained, and the curing rate may be slow.
  • an adhesion-imparting agent other than aminosilane can be used.
  • adhesion-imparting agents other than aminosilane include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ - (3,4-epoxy Epoxy group-containing silanes such as cyclohexyl) ethyltrimethoxysilane and ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyl Isocyanate group-containing silanes such as diethoxysilane, ⁇ -isocyanatopropylmethyldime
  • the condensate which condensed the said silane partially can also be used.
  • amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, etc., which are derivatives of these, can also be used as silane coupling agents.
  • the silane coupling agent used in the present invention is usually used in a range of 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the organic polymers (A) and (B) having a reactive silicon group. . In particular, it is preferably used in the range of 0.5 to 10 parts by weight.
  • the effects of the silane coupling agent added to the curable composition of the present invention include various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, vinyl chloride, acrylic, and polyester. When used on organic substrates such as polyethylene, polypropylene, polycarbonate, etc., it exhibits a remarkable adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable.
  • Specific examples other than the silane coupling agent are not particularly limited, and examples thereof include epoxy resins, phenol resins, sulfur, alkyl titanates, and aromatic polyisocyanates.
  • the adhesiveness-imparting agent may be used alone or in combination of two or more. By adding these adhesion-imparting agents, the adhesion to the adherend can be improved.
  • ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -glycidoxypropylmethyldimethoxysilane are preferred in order to ensure good adhesion.
  • the amount of the adhesion-imparting agent used is about 0.01 to 20 parts by weight with respect to a total of 100 parts by weight of the organic polymer (A) and the reactive silicon group-containing organic polymer (B).
  • the amount is preferably about 0.1 to 10 parts by weight, more preferably about 1 to 7 parts by weight. If the blending amount of the adhesiveness-imparting agent is below this range, sufficient adhesion may not be obtained. On the other hand, if the blending amount of the adhesion-imparting agent exceeds this range, practical deep curability may not be obtained.
  • the adhesiveness imparting agent in addition to the adhesiveness imparting agent, is not particularly limited.
  • epoxy resin, phenol resin, sulfur, alkyl titanates, aromatic polyisocyanate and the like can be used.
  • the adhesiveness-imparting agent may be used alone or in combination of two or more.
  • the epoxy resin may lower the catalytic activity depending on the addition amount, it is preferable that the addition amount of the epoxy resin is small in the curable composition of the present invention.
  • the amount of the epoxy resin used is preferably 5 parts by weight or less, more preferably 0.5 parts by weight or less, and substantially contains 100 parts by weight of the total of component (A) and component (B). It is particularly preferred not to.
  • antioxidant antioxidant
  • antioxidant antioxidant
  • cured material can be improved.
  • antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred.
  • Tinuvin 622LD, Tinuvin 144, CHIMASSORB 944LD, CHIMASSORB 119FL (all of which are manufactured by Ciba Japan Co., Ltd.); MARK LA-57, MARK LA-62, MARK LA-67, MARK LA-63, MARK LA-68 (and above) All are manufactured by ADEKA Corporation); Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of which are manufactured by Sankyo Corporation) A hindered amine light stabilizer can also be used.
  • the amount of the antioxidant used is preferably in the range of 0.1 to 10 parts by weight, more preferably 100 parts by weight in total of the organic polymer (A) and (B) components having a reactive silicon group. Is 0.2 to 5 parts by weight.
  • a light stabilizer can be used in the composition obtained in the present invention.
  • Use of a light stabilizer can prevent photooxidation degradation of the cured product.
  • the light stabilizer include benzotriazole, hindered amine, and benzoate compounds, with hindered amines being particularly preferred.
  • the light stabilizer is preferably used in an amount of 0.1 to 10 parts by weight, more preferably 100 parts by weight in total of the organic polymers (A) and (B) having a reactive silicon group. Is 0.2 to 5 parts by weight. Specific examples of the light stabilizer are also described in JP-A-9-194731.
  • a tertiary amine is used as a hindered amine light stabilizer as described in JP-A-5-70531. It is preferable to use a contained hindered amine light stabilizer for improving the storage stability of the composition.
  • Tinuvin 622LD Tinuvin 144, CHIMASSORB 119FL (all manufactured by Ciba Japan Co., Ltd.); MARK LA-57, LA-62, LA-67, LA-63 (all above)
  • Examples include light stabilizers such as SANOL LS-765, LS-292, LS-2626, LS-1114, and LS-744 (all of which are manufactured by Ciba Japan Co., Ltd.).
  • an ultraviolet absorber can be used.
  • the surface weather resistance of the cured product can be enhanced.
  • ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds, and benzotriazole-based compounds are particularly preferable.
  • the amount of the ultraviolet absorber used is 0.1 to 10 parts by weight relative to 100 parts by weight of the total of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer as the component (B).
  • the amount is preferably in the range of 0.2 to 5 parts by weight. It is preferable to use a phenolic or hindered phenolic antioxidant, a hindered amine light stabilizer and a benzotriazole ultraviolet absorber in combination.
  • a filler can be added to the composition of the present invention.
  • Fillers include reinforcing silica such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate Diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass microballoon, phenolic resin and vinylidene chloride Examples thereof include fillers such as resin powders such as resin organic microballoons, PVC powder, and PMMA powders; and fibrous fillers such as glass fibers and filaments.
  • the amount used is 1 to 1,000 parts by weight, preferably 10 to 700 parts by weight, based on 100 parts by weight of the total of the polymer of component (A) and the polymer of component (B). More preferably 50 to 500 parts by weight.
  • fillers mainly fume silica, precipitated silica, crystalline silica, fused silica, dolomite, silicic anhydride, hydrous silicic acid and carbon black, surface treatment fine
  • a filler selected from calcium carbonate, calcined clay, clay, activated zinc white and the like is preferable, and 1 to 250 parts by weight with respect to 100 parts by weight of the total of the organic polymers (A) and (B) having reactive silicon groups. If it is used preferably in the range of 10 to 200 parts by weight, preferable results can be obtained.
  • calcium carbonate such as titanium oxide and heavy calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide, and shirasu balloon
  • the organic polymers (A) and (B) having a reactive silicon group In the range of 5 to 1,000 parts by weight, preferably 20 to 700 parts by weight, based on a total of 100 parts by weight of the organic polymers (A) and (B) having a reactive silicon group. Preferred results are obtained when used.
  • calcium carbonate has a greater effect of improving the breaking strength, breaking elongation, and adhesiveness of the cured product as the value of the specific surface area increases.
  • these fillers may be used alone or in combination of two or more.
  • the particle diameter of the surface-treated fine calcium carbonate is preferably 0.5 ⁇ m or less, and the surface treatment is preferably treated with a fatty acid or a fatty acid salt. Moreover, the particle size of calcium carbonate having a large particle size is preferably 1 ⁇ m or more, and an untreated surface can be used.
  • an organic balloon or an inorganic balloon In order to improve the workability (such as sharpness) of the composition and to make the surface of the cured product matt, it is preferable to add an organic balloon or an inorganic balloon. These fillers can be surface-treated, and may be used alone or in combination of two or more. In order to improve workability (such as sharpness), the balloon particle size is preferably 0.1 mm or less. In order to make the surface of the cured product matt, 5 to 300 ⁇ m is preferable.
  • the balloon is a spherical filler with a hollow interior.
  • the balloon material include inorganic materials such as glass, shirasu, and silica, and organic materials such as phenol resin, urea resin, polystyrene, and saran, but are not limited thereto.
  • an inorganic material and an organic material can be combined, or a plurality of layers can be formed by stacking.
  • An inorganic or organic balloon or a combination of these can be used.
  • the balloons used may be the same balloon or a mixture of different types of balloons.
  • the balloon can be used by processing or coating the surface thereof, or can be used by treating the surface with various surface treatment agents.
  • an organic balloon may be coated with calcium carbonate, talc, titanium oxide or the like, or an inorganic balloon may be surface-treated with an adhesion-imparting agent.
  • balloons are disclosed in JP-A-2-129262, JP-A-4-8788, JP-A-4-173867, JP-A-5-1225, JP-A-7-113033, JP-A-9-53063, JP-A-10-10. -251618, JP-A No. 2000-154368, JP-A No. 2001-164237, WO 97/05201, and the like.
  • a silicate can be used for the composition of this invention.
  • This silicate acts as a cross-linking agent and has a function of improving the resilience, durability, and creep resistance of the organic polymer which is the component (A) of the present invention. Furthermore, it has the effect of improving adhesiveness, water-resistant adhesiveness, and adhesive durability under high temperature and high humidity conditions.
  • As the silicate tetraalkoxysilane or a partial hydrolysis condensate thereof can be used.
  • the amount used is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight based on 100 parts by weight of the total of the organic polymer (A) and the polymer (B). Part.
  • silicate examples include, for example, tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n- Examples thereof include tetraalkoxysilanes (tetraalkyl silicates) such as butoxysilane, tetra-i-butoxysilane, and tetra-t-butoxysilane, and partial hydrolysis condensates thereof.
  • the partial hydrolysis-condensation product of tetraalkoxysilane is more preferable because the restoring effect, durability, and creep resistance of the present invention are greater than those of tetraalkoxysilane.
  • Examples of the partially hydrolyzed condensate of tetraalkoxysilane include those obtained by adding water to tetraalkoxysilane and condensing it by partial hydrolysis according to an ordinary method.
  • a commercially available product can be used as the partially hydrolyzed condensate of the organosilicate compound.
  • Examples of such condensates include methyl silicate 51 and ethyl silicate 40 (both manufactured by Colcoat Co., Ltd.).
  • a tackifier can be added to the composition of the present invention.
  • tackifying resin What is normally used regardless of solid and liquid at normal temperature can be used.
  • Specific examples include styrene block copolymers, hydrogenated products thereof, phenol resins, modified phenol resins (for example, cashew oil modified phenol resin, tall oil modified phenol resin, etc.), terpene phenol resins, xylene-phenol resins, cyclohexane Pentadiene-phenol resin, coumarone indene resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, xylene resin, low molecular weight polystyrene resin, styrene copolymer resin, petroleum resin (for example, C5 hydrocarbon resin, C9) Hydrocarbon resin, C5C9 hydrocarbon copolymer resin, etc.), hydrogenated petroleum resin, terpene resin, DCPD resin petroleum resin and the like.
  • Styrene block copolymers and their hydrogenated products include styrene-butadiene-styrene block copolymers (SBS), styrene-isoprene-styrene block copolymers (SIS), and styrene-ethylenebutylene-styrene block copolymers.
  • SBS styrene-butadiene-styrene block copolymers
  • SIS styrene-isoprene-styrene block copolymers
  • SEBS styrene-ethylenebutylene-styrene block copolymer
  • SEPS styrene-ethylenepropylene-styrene block copolymer
  • SIBS styrene-isobutylene-styrene block copolymer
  • the tackifying resins may be used alone or in combination of two or more.
  • the tackifier resin is used in the range of 5 to 1,000 parts by weight, preferably 10 to 100 parts by weight, with respect to 100 parts by weight of the total of the components (A) and (B).
  • a physical property modifier that adjusts the tensile properties of the cured product to be produced may be added as necessary.
  • the physical property modifier is not particularly limited, but examples thereof include alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropenoxy Silanes, alkylisopropenoxysilanes such as ⁇ -glycidoxypropylmethyldiisopropenoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethylmethoxy Silane, ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) amino
  • a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of reducing the modulus of the cured product without deteriorating the stickiness of the surface of the cured product.
  • Particularly preferred are compounds that produce trimethylsilanol.
  • Examples of the compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis include compounds described in JP-A-5-117521.
  • derivatives of alkyl alcohols such as hexanol, octanol, decanol, and the like, which generate a silicon compound that generates R 3 SiOH such as trimethylsilanol by hydrolysis, and trimethylol described in JP-A-11-241029
  • examples thereof include a compound of a polyhydric alcohol having 3 or more hydroxy groups such as propane, glycerin, pentaerythritol or sorbitol, which generates a silicon compound that generates R 3 SiOH such as trimethylsilanol by hydrolysis.
  • the physical property modifier is used in the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total of the organic polymers (A) and (B) having a reactive silicon group. Is done.
  • a thixotropic agent (anti-sagging agent) may be added as necessary to prevent sagging and improve workability.
  • the anti-sagging agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate.
  • rubber powder having a particle diameter of 10 to 500 ⁇ m as described in JP-A-11-349916 or organic fiber as described in JP-A-2003-155389 is used, thixotropy is high. A composition having good workability can be obtained.
  • These thixotropic agents may be used alone or in combination of two or more.
  • the thixotropic agent is used in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the total of component (A) and (B).
  • a compound containing an epoxy group in one molecule can be used.
  • the restorability of the cured product can be improved.
  • the compound having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof.
  • epoxidized soybean oil epoxidized linseed oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxy octyl stearate, Examples thereof include epoxy butyl stearate. Of these, E-PS is particularly preferred.
  • the epoxy compound is preferably used in the range of 0.5 to 50 parts by weight based on 100 parts by weight of the total of the organic polymers (A) and (B) having a reactive silicon group.
  • a photocurable material can be used in the composition of the present invention.
  • a photocurable material is used, a film of the photocurable material is formed on the surface of the cured product, and the stickiness and weather resistance of the cured product can be improved.
  • a photocurable substance is a substance that undergoes a chemical change in its molecular structure in a very short time due to the action of light, resulting in a change in physical properties such as curing. Many compounds such as organic monomers, oligomers, resins or compositions containing them are known as this type of compound, and any commercially available compound can be adopted. Representative examples include unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, and the like.
  • Unsaturated acrylic compounds include monomers, oligomers or mixtures thereof having one or several acrylic or methacrylic unsaturated groups, including propylene (or butylene, ethylene) glycol di (meth) acrylate, neopentyl Examples thereof include monomers such as glycol di (meth) acrylate or oligoesters having a molecular weight of 10,000 or less.
  • Aronix M-210 special acrylate (bifunctional) Aronix M-210, Aronix M-215, Aronix M-220, Aronix M-233, Aronix M-240, Aronix M-245; (Trifunctional) Aronix M -305, Aronix M-309, Aronix M-310, Aronix M-315, Aronix M-320, Aronix M-325, and (Multifunctional) Aronix M-400, etc., but especially contain acrylic functional groups
  • a compound containing an average of 3 or more functional groups per molecule is preferable (all Aronix is a product of Toa Gosei Co., Ltd.).
  • polyvinyl cinnamates examples include a photosensitive resin having a cinnamoyl group as a photosensitive group, in which polyvinyl alcohol is esterified with cinnamic acid, and many polyvinyl cinnamate derivatives are exemplified.
  • the azide resin is known as a photosensitive resin having an azide group as a photosensitive group.
  • a photosensitive resin in addition to a rubber photosensitive solution in which a diazide compound is added as a photosensitive agent, a “photosensitive resin” (March 17, 1972).
  • a “photosensitive resin” March 17, 1972.
  • the photocurable substance is used in the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total of the organic polymers (A) and (B) having a reactive silicon group. If it is 0.1 parts by weight or less, there is no effect of improving the weather resistance, and if it is 20 parts by weight or more, the cured product tends to be too hard and tends to crack.
  • an oxygen curable substance can be used.
  • the oxygen curable substance include unsaturated compounds that can react with oxygen in the air.
  • the oxygen curable substance reacts with oxygen in the air to form a cured film near the surface of the cured product. And prevents dust from adhering.
  • oxygen curable substance examples include drying oils typified by drill oil and linseed oil, various alkyd resins obtained by modifying the compounds; acrylic polymers and epoxy resins modified with drying oils , Silicone resins; 1,2-polybutadiene, 1,4-polybutadiene, polymers of C5 to C8 diene obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • drying oils typified by drill oil and linseed oil, various alkyd resins obtained by modifying the compounds
  • acrylic polymers and epoxy resins modified with drying oils Silicone resins
  • 1,2-polybutadiene, 1,4-polybutadiene polymers of C5 to C8 diene obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • Liquid polymers liquid copolymers such as NBR and SBR obtained by copolymerizing monomers such as acrylonitrile and styrene copolymerizable with these diene compounds so that the main component is a diene compound
  • various modified products thereof maleinized modified products, boiled oil modified products, etc.
  • drill oil and liquid diene polymers are particularly preferable.
  • the effect may be enhanced if a catalyst for promoting the oxidative curing reaction or a metal dryer is used in combination.
  • Examples of these catalysts and metal dryers include metal salts such as cobalt naphthenate, lead naphthenate, zirconium naphthenate, cobalt octylate, zirconium octylate, and amine compounds.
  • the amount of the oxygen curable substance used is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the total of the organic polymers (A) and (B) having a reactive silicon group. The amount is preferably 0.5 to 10 parts by weight. If the amount used is less than 0.1 parts by weight, the improvement of the contamination is not sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired.
  • an oxygen curable substance is preferably used in combination with a photocurable substance.
  • a flame retardant such as a phosphorus plasticizer such as ammonium polyphosphate and tricresyl phosphate, aluminum hydroxide, magnesium hydroxide, and thermally expandable graphite can be added to the curable composition of the present invention.
  • the said flame retardant may be used independently and may be used together 2 or more types.
  • the flame retardant is used in the range of 5 to 200 parts by weight, preferably 10 to 100 parts by weight, with respect to 100 parts by weight of the total of component (A) and component (B).
  • various additives may be added as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product.
  • additives include, for example, curability regulators, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
  • curability regulators include, for example, curability regulators, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
  • These various additives may be used alone or in combination of two or more.
  • Specific examples other than the specific examples of the additives listed in this specification include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-62-2904, It is described in Japanese Laid-Open Patent Publication No. 2001
  • the curable composition of the present invention can also be prepared as a one-component type in which all the blended components are pre-blended and sealed and cured by moisture in the air after construction. It is also possible to prepare a two-component type in which components such as a plasticizer and water are blended and the compounding material and the polymer composition are mixed before use. From the viewpoint of workability, a one-component type is preferable.
  • the curable composition When the curable composition is of a one-component type, all the blending components are blended in advance, so that the blending components containing moisture are used after being dehydrated and dried in advance, or dehydrated by decompression during blending and kneading. Is preferred.
  • the curable composition When the curable composition is a two-component type, it is not necessary to add a curing catalyst to the main component containing a polymer having a reactive silicon group, so gelation is possible even if some moisture is contained in the compounding agent. However, when long-term storage stability is required, dehydration and drying are preferable.
  • heat drying method or vacuum dehydration method for solid materials such as powders, dehydration method using vacuum zeolite or activated zeolite, silica gel, quick lime, magnesium oxide for liquid materials
  • the method is preferred.
  • An alkoxysilane compound such as glycidoxypropyltrimethoxysilane may be added and reacted with water for dehydration.
  • an oxazolidine compound such as 3-ethyl-2-methyl-2- (3-methylbutyl) -1,3-oxazolidine may be blended and reacted with water for dehydration.
  • a small amount of an isocyanate compound may be blended to react with an isocyanate group and water for dehydration. Addition of an alkoxysilane compound, an oxazolidine compound, and an isocyanate compound improves storage stability.
  • the amount of silicon compound capable of reacting with water such as dehydrating agent, especially vinyltrimethoxysilane, is from 0.1 to 100 parts by weight of the total of the organic polymers (A) and (B) having reactive silicon groups.
  • a range of 20 parts by weight, preferably 0.5 to 10 parts by weight is preferred.
  • the method for preparing the curable composition of the present invention is not particularly limited.
  • the above-described components are blended and kneaded using a mixer, roll, kneader or the like at room temperature or under heating, or a small amount of a suitable solvent is used. Ordinary methods such as dissolving and mixing the components may be employed.
  • the curable composition of the present invention When the curable composition of the present invention is exposed to the atmosphere, it forms a three-dimensional network structure by the action of moisture, and is cured into a solid having rubbery elasticity.
  • the curable composition of the present invention comprises an adhesive, a floor adhesive, a tile adhesive, a coating agent, a pressure-sensitive adhesive, a mold preparation, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, a paint, and a spray. Can be used for materials.
  • the cured product obtained by curing the curable composition of the present invention is more preferably used as an adhesive for wooden floors or an adhesive for tiling, which is an application that requires particularly high hardness.
  • the hardness of the cured product is preferably 60 or more, more preferably 65 or more, as measured by a type A durometer.
  • the composition of the present invention is used to bond tiles, glass, decorative boards, wood, and the like, the tiles and the like are preferably difficult to break. It is also suitable as a cracking repair agent for concrete.
  • Electrical and electronic component materials such as solar cell backside sealing materials, electrical insulation materials such as insulation coating materials for electric wires and cables, elastic adhesives, contact-type adhesives, spray-type sealing materials, crack repair materials, tile-adhesives , Powder coating materials, casting materials, medical rubber materials, medical adhesives, medical device sealing materials, food packaging materials, sealing materials for joints such as sizing boards, primers, conductive materials for shielding electromagnetic waves, heat Conductive materials, hot-melt materials, potting agents for electrical and electronic use, films, gaskets, various molding materials, and rust-proof / water-proof sealing materials for meshed glass and laminated glass end faces (cut parts), automotive parts, electrical parts It can be used for various applications such as liquid sealants used in various machine parts.
  • the curable composition of the present invention includes an adhesive for interior panels, an adhesive for exterior panels, an adhesive for stone finishing, an adhesive for ceiling finishing, an adhesive for floor finishing, an adhesive for wall finishing, and a vehicle panel. It can also be used as an adhesive and an adhesive for electrical / electronic / precision equipment assembly.
  • a branched reactive silicon group-containing polyoxypropylene polymer (A-2) having a number average molecular weight of 4,100 was obtained.
  • Example 1 Fatty acid-treated calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., trade name: Shiraka Hana CCR), 120 parts by weight of the polymer (A-1), pigment (Ishihara Sangyo Co., Ltd., trade name: Taipei R820) ) 20 parts by weight, thixotropy imparting agent (manufactured by Enomoto Kasei Co., Ltd., trade name: Disparon 6500), 2 parts by weight are mixed and sufficiently kneaded, and then dispersed once through three paint rolls. Was made.
  • A-1 polymer
  • pigment Ishihara Sangyo Co., Ltd., trade name: Taipei R820
  • thixotropy imparting agent manufactured by Enomoto Kasei Co., Ltd., trade name: Disparon 6500
  • the mixture was filled in a mold having a thickness of about 8 mm using a spatula, the surface was flattened, and after 3 days, the cured product was measured for hardness using a type A durometer in accordance with JIS K 6253. The results are shown in Tables 1 and 2. (Glass plate crack strength test) Under an atmosphere of 23 ° C.
  • composition prepared above was applied onto a 70 mm ⁇ 150 mm ⁇ 4 mm slate plate in a comb shape using a comb iron, and a 70 mm ⁇ 150 mm ⁇ 1.8 mm glass plate (manufactured by TP Giken Co., Ltd., float) Sheet glass) was bonded together (hereinafter referred to as a specimen).
  • the formulation was cured by curing for 3 days at 23 ° C. and 50% relative humidity and for 4 days at 50 ° C.
  • the test body was subjected to a bending test using a bending tester described in JIS K 7171 (distance between supporting points 10 mm, indenter radius 5 mm), and the force required to break the glass plate was measured. The results are shown in Tables 1 and 2.
  • Example 2-5 Comparative Example 1-6
  • a formulation was prepared and evaluated in the same manner as in Example 1 except that the formulation was used in the proportions shown in Tables 1 and 2.
  • the present invention has a specific molecular weight and the number of reactive silicon groups in one molecule is 1.3 or more.
  • the curable composition containing the polymers (A-1), (A-2) and (A-3) of the invention and a specific amount of plasticizer is a cured product having a higher hardness than the curable composition of the comparative example.
  • Example 6 20 parts by weight of isodecyl phthalate (trade name: DIDP, manufactured by Jay Plus Co., Ltd.) with respect to 50 parts by weight of polymer (A-1) and 50 parts by weight of polymer (B-4) , Fatty acid-treated precipitated calcium carbonate (Shiraishi Kogyo Co., Ltd., trade name: Shiraka Hana CCR) 50 parts by weight, Heavy calcium carbonate (Shiraishi Calcium Co., Ltd., trade name: Whiten SB red) 200 parts by weight, thixotropic 2 parts by weight of an imparting agent (manufactured by Enomoto Kasei Co., Ltd., trade name: Disparon 6500) was mixed and sufficiently kneaded, and then dispersed once by passing through three paint rolls to prepare a blend.
  • an imparting agent manufactured by Enomoto Kasei Co., Ltd., trade name: Disparon 6500
  • the viscosity ratio, hardness, and tensile physical properties of the prepared compound were prepared by the following methods.
  • (Viscosity ratio) An index of thixotropy by measuring the viscosity at a rotation speed of 2 rpm and 10 rpm using a BS viscometer and rotor No. 7 (manufactured by Toki Sangyo Co., Ltd.) in an atmosphere of 23 ° C. and 50% relative humidity. As a result, the viscosity ratio when the rotation speed was 2 rpm and 10 rpm was measured. The results are shown in Table 3. (hardness) Under an atmosphere of 23 ° C.
  • dumbbell was punched in accordance with JIS K 6251, a tensile test (tensile speed 200 mm / min, 23 ° C., relative humidity 50%) was performed, and elongation at break was measured. The results are shown in Table 3.
  • Example 7-8 Comparative Example 7-8
  • a formulation was prepared and evaluated in the same manner as in Example 6 except that the formulation was used at the ratio shown in Table 3.
  • Example 6-8 In the results of Table 3, it can be seen from the comparison between Example 6-8 and Comparative Example 7-8 that the weight of the present invention having a specific molecular weight and having 1.3 or more reactive silicon groups in one molecule is shown. It can be seen that the curable composition containing the coalescence gives a cured product having higher hardness and higher strength than the curable composition of the comparative example. Moreover, the thixotropic property of the curable composition is also high.
  • the curable composition of the present invention comprises an adhesive, a floor adhesive, a tile adhesive, a coating agent, a pressure-sensitive adhesive, a mold preparation, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, a paint, and a spray. Can be used for materials.
  • the cured product obtained by curing the curable composition of the present invention is more preferably used as an adhesive for wooden floors or an adhesive for tiling, which is an application that requires particularly high hardness.
  • the hardness of the cured product is preferably 60 or more, more preferably 65 or more, as measured by a type A durometer.
  • the composition of the present invention is used to bond tiles, glass, decorative boards, wood, and the like, the tiles and the like are preferably difficult to break. It is also suitable as a cracking repair agent for concrete.
  • Electrical and electronic component materials such as solar cell backside sealing materials, electrical insulation materials such as insulation coating materials for electric wires and cables, elastic adhesives, contact-type adhesives, spray-type sealing materials, crack repair materials, tile-adhesives , Powder coating materials, casting materials, medical rubber materials, medical adhesives, medical device sealing materials, food packaging materials, sealing materials for joints such as sizing boards, primers, conductive materials for shielding electromagnetic waves, heat Conductive materials, hot-melt materials, potting agents for electrical and electronic use, films, gaskets, various molding materials, and rust-proof / water-proof sealing materials for meshed glass and laminated glass end faces (cut parts), automotive parts, electrical parts It can be used for various applications such as liquid sealants used in various machine parts.
  • the curable composition of the present invention includes an adhesive for interior panels, an adhesive for exterior panels, an adhesive for stone finishing, an adhesive for ceiling finishing, an adhesive for floor finishing, an adhesive for wall finishing, and a vehicle panel. It can also be used as an adhesive and an adhesive for electrical / electronic / precision equipment assembly.

Abstract

  本発明の課題は、接着剤やコーティング剤として使用可能で、高硬度の硬化性組成物を提供することにある。(A)数平均分子量が2,000~6,000、1分子中に反応性ケイ素基を1.3~5個含有する反応性ケイ素基含有有機重合体100重量部、及び、(C)可塑剤0~40重量部を含有する硬化性組成物を用いることにより上記課題を解決できる。当該硬化性組成物は高硬度が求められる床用接着剤やタイル張り用接着剤に好適である。

Description

硬化性組成物
 本発明は、ケイ素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することにより架橋を形成し得るケイ素基(以下、「反応性ケイ素基」ともいう。)を有する有機重合体、およびその有機重合体を含む硬化性組成物に関する。
 分子中に少なくとも1個の反応性ケイ素を有する有機重合体は、室温においても湿分等によるシリル基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、ゴム状硬化物が得られるという性質を有することが知られている。
 これらの反応性ケイ素基を有する有機重合体として、主鎖骨格がポリオキシアルキレン重合体やポリイソブチレン重合体である有機重合体は、既に工業的に生産され、シーリング材、接着剤、塗料などの用途に広く使用されている(特許文献1)、(特許文献2)。
 また、これらの反応性ケイ素基を有する有機重合体は、優れた引張り物性を発現させるため、高分子量の重合体が用いられてきた。高分子量重合体を有する硬化性組成物は、作業性を確保するため、可塑剤を添加する必要があった。一方で用途によっては、高硬度が求められるものもあり、改善が望まれていた。
特開昭52-73998号公報 特開昭63-6041号公報
 本発明の目的は、従来の一般建築用シーリング材組成物として用いられる有機重合体では解決することができなかった高硬度の硬化物を与える硬化性組成物を提供することにある。
 本発明者は、前記の問題を解決するために鋭意検討した結果、特定の構造を有する反応性ケイ素基含有有機重合体を用いることにより、高硬度の硬化物が得られることを見いだし、本発明を完成するに至った。
 すなわち本発明は、
(1).(A)数平均分子量が2,000~6,000であり、1分子中に反応性ケイ素基を1.3~5個含有する反応性ケイ素基含有有機重合体100重量部、及び、(C)可塑剤0~40重量部を含有する硬化性組成物、
(2).(A)成分である反応性ケイ素基含有有機重合体の主鎖骨格がポリオキシアルキレン系重合体であることを特徴とする(1)に記載の硬化性組成物、
(3).(A)成分である反応性ケイ素基含有有機重合体の主鎖構造が、少なくとも1つ以上の分岐鎖を有していることを特徴とする(1)または(2)に記載の硬化性組成物、
(4).(A)成分である反応性ケイ素基含有有機重合体が、1分子中に反応性ケイ素基を2~5個含有することを特徴とする請求項1~3のいずれか1項に記載の硬化性組成物、
(5).(C)成分である可塑剤を含有しないことを特徴とする(1)~(4)のいずれか1項に記載の硬化性組成物、
(6).組成物中に、数平均分子量が8,000~50,000であり1分子中に反応性ケイ素基を1.3~5個含有する反応性ケイ素基含有有機重合体(B)が含有されていることを特徴とする(1)~(5)のいずれか1項に記載の硬化性組成物、
(7).(B)成分である反応性ケイ素基含有有機重合体の主鎖骨格がポリオキシアルキレン系重合体であることを特徴とする(6)に記載の硬化性組成物、
(8).(1)~(7)のいずれか1項に記載の硬化性組成物を成分として含む接着剤、
(9).(1)~(7)のいずれか1項に記載の硬化性組成物を成分として含む床用接着剤、
(10).(1)~(5)のいずれか1項に記載の硬化性組成物を成分として含むタイル張り用接着剤、
(11).(6)~(7)のいずれか1項に記載の硬化性組成物を成分として含むタイル張り用接着剤、
(12).(1)~(7)のいずれか1項に記載の硬化性組成物を硬化させて得られるコーティング剤、
(13).(1)~(7)のいずれか1項に記載の硬化性組成物を硬化させて得られる硬化物、
に関する。
 本発明の反応性ケイ素基含有有機重合体を用いることにより、硬化性組成物のチクソ性が高く、高硬度の硬化物を与える。また、タイル等の脆性材料の割れ強度を改善する。
 以下、本発明について詳細に説明する。
本発明に用いる反応性ケイ素基を有する有機重合体(A)の主鎖骨格は特に制限はなく、各種の主鎖骨格を持つものを使用することができるが、得られる組成物の硬化性や接着性に優れることから、水素原子、炭素原子、窒素原子、酸素原子、硫黄原子から選択される1つ以上からなることが好ましい。
 具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε-カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε-アミノウンデカン酸の縮重合によるナイロン11、ε-アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;例えばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。
 ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることからより好ましい。
 (A)成分である有機重合体のガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、-20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり作業性が悪くなる場合があり、また、硬化物の柔軟性が低下し、伸びが低下する場合がある。前記ガラス転移温度はDSC測定による値を示す。
また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れ、更に接着性にも優れることから特に好ましく、ポリオキシアルキレン系重合体は最も好ましい。ポリオキシアルキレン系重合体の中でも、ポリオキシプロピレン系重合体が特に好ましい。
 本発明の有機重合体中に含有される反応性ケイ素基は、ケイ素原子に結合したヒドロキシ基または加水分解性基を有し、シラノール縮合触媒によって加速される反応によりシロキサン結合を形成することにより架橋しうる基である。反応性ケイ素基としては、一般式(1):
-SiR1 3-aa  (1)
(R1は、それぞれ独立に炭素原子数1から20のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSi(R’)3(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは、それぞれ独立にヒドロキシ基または加水分解性基である。更に、aは1から3の整数である)で表される基があげられる。
 加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、および、アルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が特に好ましい。
 加水分解性基やヒドロキシ基は、1個のケイ素原子に1から3個の範囲で結合することができる。加水分解性基やヒドロキシ基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
 上記一般式(1)におけるaは、硬化性の点から、2または3であることが好ましく、特に速硬化性を求める場合には3であることが好ましく、貯蔵中の安定性を求める場合には2であることが好ましい。
 また上記一般式(1)におけるR1の具体例としては、例えばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である-OSi(R’)3で示されるトリオルガノシロキシ基等があげられる。これらの中ではメチル基が特に好ましい。
 反応性ケイ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基が挙げられる。活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基がより好ましく、トリメトキシシリル基が特に好ましい。また、貯蔵安定性の点からはジメトキシメチルシリル基、トリエトキシシリル基が特に好ましい。また、トリエトキシシリル基およびジエトキシメチルシリル基は、反応性ケイ素基の加水分解反応に伴って生成するアルコールが、エタノールであり、より高い安全性を有することから特に好ましい。
 反応性ケイ素基の導入は公知の方法で行えばよい。すなわち、例えば以下の方法が挙げられる。
 (I)分子中にヒドロキシ基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有する有機重合体を得る。もしくは、不飽和基含有エポキシ化合物との共重合により不飽和基含有有機重合体を得る。次いで得られた反応生成物に反応性ケイ素基を有するヒドロシランを作用させてヒドロシリル化する。
 (II)(I)法と同様にして得られた不飽和基を含有する有機重合体にメルカプト基および反応性ケイ素基を有する化合物を反応させる。
 (III)分子中にヒドロキシ基、エポキシ基やイソシアネート基等の官能基を有する有機重合体に、この官能基に対して反応性を示す官能基および反応性ケイ素基を有する化合物を反応させる。
 以上の方法のなかで、(I)の方法、または(III)のうち末端にヒドロキシ基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法は、比較的短い反応時間で高い転化率が得られる為に好ましい。更に、(I)の方法で得られた反応性ケイ素基を有する有機重合体は、(III)の方法で得られる有機重合体よりも低粘度で作業性の良い硬化性組成物となること、また、(II)の方法で得られる有機重合体は、メルカプトシランに基づく臭気が強いことから、(I)の方法が特に好ましい。
 (I)の方法において用いるヒドロシラン化合物の具体例としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシランのようなハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシラン、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサンのようなアルコキシシラン類;メチルジアセトキシシラン、フェニルジアセトキシシランのようなアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランのようなケトキシメートシラン類などがあげられるが、これらに限定されるものではない。これらのうちでは特にハロゲン化シラン類、アルコキシシラン類が好ましく、特にアルコキシシラン類は、得られる硬化性組成物の加水分解性が穏やかで取り扱いやすいために最も好ましい。アルコキシシラン類の中で、メチルジメトキシシランは、入手し易く、得られる有機重合体を含有する硬化性組成物の硬化性、貯蔵安定性、伸び特性、引張強度が高い為に好ましい。また、トリメトキシシランは、得られる硬化性組成物の硬化性および復元性の点から特に好ましい。
 (II)の合成法としては、例えば、メルカプト基および反応性ケイ素基を有する化合物を、ラジカル開始剤および/またはラジカル発生源存在下でのラジカル付加反応によって、有機重合体の不飽和結合部位に導入する方法等が挙げられるが、特に限定されるものではない。前記メルカプト基および反応性ケイ素基を有する化合物の具体例としては、例えば、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシランなどがあげられるが、これらに限定されるものではない。
 (III)の合成法のうち末端にヒドロキシ基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法としては、例えば、特開平3-47825号公報に示される方法等が挙げられるが、特に限定されるものではない。前記イソシアネート基および反応性ケイ素基を有する化合物の具体例としては、例えば、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシラン、イソシアネートメチルジエトキシメチルシランなどがあげられるが、これらに限定されるものではない。
 トリメトキシシラン等の一つのケイ素原子に3個の加水分解性基が結合しているシラン化合物は不均化反応が進行する場合がある。不均化反応が進むと、ジメトキシシランのような不安定な化合物が生じ、取り扱いが困難となることがある。しかし、γ-メルカプトプロピルトリメトキシシランやγ-イソシアネートプロピルトリメトキシシランでは、このような不均化反応は進行しない。このため、ケイ素含有基としてトリメトキシシリル基など3個の加水分解性基が一つのケイ素原子に結合している基を用いる場合には、(II)または(III)の合成法を用いることが好ましい。
 一方、一般式(2):
H-(SiR2 2O)mSiR2 2-R3-SiX3  (2)
(Xは前記に同じ。2m+2個のR2は、それぞれ独立に炭化水素基であり、入手性およびコストの点から、炭素原子数1から20の炭化水素基が好ましく、炭素原子数1から8の炭化水素基がより好ましく、炭素原子数1から4の炭化水素基が特に好ましい。R3は2価の有機基であり、入手性およびコストの点から、炭素原子数1から12の2価の炭化水素基が好ましく、炭素原子数2から8の2価の炭化水素基がより好ましく、炭素原子数2の2価の炭化水素基が特に好ましい。また、mは0から19の整数であり、入手性およびコストの点から、1が好ましい)で表されるシラン化合物は、不均化反応が進まない。この為、(I)の合成法で、3個の加水分解性基が1つのケイ素原子に結合している基を導入する場合には、一般式(2)で表されるシラン化合物を用いることが好ましい。一般式(2)で示されるシラン化合物の具体例としては、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)プロピル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)ヘキシル]-1,1,3,3-テトラメチルジシロキサンが挙げられる。
 反応性ケイ素基を有する有機重合体(A)は直鎖状、または分岐を有してもよく、その数平均分子量はGPCにおけるポリスチレン換算において2,000から6,000程度、より好ましくは2,000から5,500であり、特に好ましくは2,000から5,000である。数平均分子量が2,000未満では、硬化物の伸び特性の点で不都合な傾向があり、6,000を越えると、硬度が低くなる傾向がある。
 反応性ケイ素基含有有機重合体(A)の数平均分子量は、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたヨウ素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた数平均分子量に相当する分子量(末端分子量)と定義している。
 反応性ケイ素基含有有機重合体(A)の数平均分子量の相対測定法としては、有機重合体前駆体の一般的なGPC測定により求めたポリスチレン換算数平均分子量(GPC分子量)と上記末端基分子量の検量線を作成し、反応性ケイ素基含有有機重合体(P)のGPC分子量を末端基分子量に換算して求めることで可能である。
 高硬度のゴム状硬化物を得るためには、有機重合体(A)に含有される反応性ケイ素基は重合体1分子中に平均して1.3~5個が好ましく、1.3~3個がより好ましく、2.1~3個が特に好ましい。分子中に含まれる反応性ケイ素基の数が平均して1.3個未満になると、硬化性が不充分になり、低硬度の硬化物となる。反応性ケイ素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、反応性ケイ素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びを示すゴム状硬化物が得られやすくなる。
 反応性ケイ素基数は1H-NMRにより分子鎖末端に対する比率を求め、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮することにより定義している。
 (A)成分である反応性ケイ素基含有有機重合体の主鎖構造は、少なくとも1つ以上の分岐鎖を有している方が、高硬度の硬化物が得られるため好ましい。
 前記ポリオキシアルキレン系重合体は、本質的に一般式(3):
-R4-O-  (3)
(R4は、炭素原子数1から14の直鎖状もしくは分岐アルキレン基である)で示される繰り返し単位を有する重合体であり、一般式(3)におけるR4は、炭素原子数1から14の、更には2から4の、直鎖状もしくは分岐アルキレン基が好ましい。一般式(3)で示される繰り返し単位の具体例としては、
-CH2O-、-CH2CH2O-、-CH2CH(CH3)O-、-CH2CH(C25)O-、-CH2C(CH32O-、-CH2CH2CH2CH2O-
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーラント等に使用される場合には、プロピレンオキシド重合体を主成分とする重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。
 ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、特開昭61-215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物-ポルフィリン錯体触媒による重合法、特公昭46-27250号、特公昭59-15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号等に示される複合金属シアン化物錯体触媒による重合法、特開平10-273512号に例示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11-060722号に例示されるホスファゼン化合物からなる触媒を用いる重合法等があげられるが、特に限定されるものではない。
 反応性ケイ素基を有するポリオキシアルキレン系重合体の製造方法は、特公昭45-36319号、同46-12154号、特開昭50-156599号、同54-6096号、同55-13767号、同55-13468号、同57-164123号、特公平3-2450号、米国特許3632557、米国特許4345053、米国特許4366307、米国特許4960844等の各公報に提案されているもの、また特開昭61-197631号、同61-215622号、同61-215623号、同61-218632号、特開平3-72527号、特開平3-47825号、特開平8-231707号の各公報に提案されている数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体が例示できるが、特にこれらに限定されるものではない。
 上記の反応性ケイ素基を有するポリオキシアルキレン系重合体は、単独で使用してもよいし2種以上併用してもよい。
 前記飽和炭化水素系重合体は芳香環以外の炭素-炭素不飽和結合を実質的に含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、1-ブテン、イソブチレンなどのような炭素原子数2から6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、上記オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。
 主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、および、湿気遮断性に優れる特徴を有する。
 イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよいが、ゴム特性の面からイソブチレンに由来する繰り返し単位を50重量%以上含有するものが好ましく、80重量%以上含有するものがより好ましく、90から99重量%含有するものが特に好ましい。
 飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されているが、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J.P.Kennedyら、J.Polymer Sci., Polymer Chem. Ed. 1997年、15巻、2843頁)を用いることにより容易に製造することが可能であり、分子量500から100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。
 反応性ケイ素基を有する飽和炭化水素系重合体の製法としては、例えば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、特開平1-197509号、特許公報第2539445号、特許公報第2873395号、特開平7-53882号の各明細書などに記載されているが、特にこれらに限定されるものではない。
 上記の反応性ケイ素基を有する飽和炭化水素系重合体は、単独で使用してもよいし2種以上併用してもよい。
 前記(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、γ-(メタクリロイルオキシ)プロピルトリメトキシシラン、γ-(メタクリロイルオキシ)プロピルジメトキシメチルシラン、メタクリロイルオキシメチルトリメトキシシラン、メタクリロイルオキシメチルトリエトキシシラン、メタクリロイルオキシメチルジメトキシメチルシラン、メタクリロイルオキシメチルジエトキシメチルシラン、(メタ)アクリル酸のエチレンオキサイド付加物等の(メタ)アクリル酸系モノマーが挙げられる。
 前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸およびその塩等のスチレン系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステルおよびジアルキルエステル;フマル酸、フマル酸のモノアルキルエステルおよびジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。
 これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、スチレン系モノマーおよび(メタ)アクリル酸系モノマーからなる重合体が好ましい。より好ましくは、アクリル酸エステルモノマーおよびメタクリル酸エステルモノマーからなる(メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマーからなるアクリル系重合体である。一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途にはその比率は40%以下にするのが好ましく、更には30%以下にするのがより好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2-メトキシエチルやアクリル酸2-エトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は40%以下にするのが好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸2-メトキシエチル(重量比で40~50/20~30/30~20)の共重合体が挙げられる。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
 (メタ)アクリル酸エステル系重合体の合成法としては、特に限定されず、公知の方法で行えばよい。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、リビングラジカル重合法を用いることが好ましい。
 「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒として(メタ)アクリル酸エステル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有する(メタ)アクリル酸エステル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁などが挙げられる。
 反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体の製法としては、例えば、特公平3-14068号公報、特公平4-55444号公報、特開平6-211922号公報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている。また、特開平9-272714号公報等に、原子移動ラジカル重合法を用いた製法が開示されているが、特にこれらに限定されるものではない。上記の反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。
 これらの反応性ケイ素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、反応性ケイ素基を有するポリオキシアルキレン系重合体、反応性ケイ素基を有する飽和炭化水素系重合体、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体、からなる群から選択される2種以上をブレンドしてなる有機重合体も使用できる。
 反応性ケイ素基を有するポリオキシアルキレン系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59-122541号、特開昭63-112642号、特開平6-172631号、特開平11-116763号公報等に提案されているが、特にこれらに限定されるものではない。好ましい具体例は、反応性ケイ素基を有し分子鎖が実質的に、下記一般式(4):
-CH2-C(R5)(COOR6)-  (4)
(R5は水素原子またはメチル基、R6は炭素原子数1から8のアルキル基を示す)で表される炭素原子数1から8のアルキル基を有する(メタ)アクリル酸エステル単量体単位と、下記一般式(5):
-CH2-C(R5)(COOR7)-  (5)
(R5は前記に同じ、R7は炭素原子数9以上のアルキル基を示す)で表される炭素原子数9以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位からなる共重合体に、反応性ケイ素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
 前記一般式(4)のR6としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、t-ブチル基、2-エチルヘキシル基等の炭素原子数1から8、好ましくは1から4、さらに好ましくは1または2のアルキル基があげられる。なお、R6のアルキル基は単独でもよく、2種以上混合していてもよい。
 前記一般式(5)のR7としては、例えば、ノニル基、デシル基、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素原子数9以上、通常は10から30、好ましくは10から20の長鎖のアルキル基があげられる。なお、R7のアルキル基はR6の場合と同様、単独でもよく、2種以上混合したものであってもよい。
 該(メタ)アクリル酸エステル系重合体の分子鎖は実質的に一般式(4)および一般式(5)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する一般式(4)および一般式(5)の単量体単位の合計が50重量%をこえることを意味する。一般式(4)および一般式(5)の単量体単位の合計は好ましくは70重量%以上である。
 また、一般式(4)の単量体単位と一般式(5)の単量体単位の存在比は、重量比で95:5から40:60が好ましく、90:10から60:40がさらに好ましい。
 該共重合体に含有されていてもよい一般式(4)および一般式(5)以外の単量体単位としては、例えば、アクリル酸、メタクリル酸等のアクリル酸;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α-メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。
 反応性ケイ素基を有する飽和炭化水素系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体は、特開平1-168764号、特開2000-186176号公報等に提案されているが、特にこれらに限定されるものではない。
 更に、反応性ケイ素官能基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法としては、他にも、反応性ケイ素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59-78223号、特開昭59-168014号、特開昭60-228516号、特開昭60-228517号等の各公報に具体的に開示されているが、これらに限定されるものではない。
 一方、有機重合体の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレタン結合成分等の他の成分を含んでいてもよい。
 前記ウレタン結合成分としては特に限定されないが、イソシアネート基と活性水素基との反応により生成する基(以下、アミドセグメントともいう)を挙げることができる。
 前記アミドセグメントは一般式(6):
-NR8-C(=O)-  (6)
(R8は有機基または水素原子を表す)で表される基である。
 前記アミドセグメントとしては、具体的には、イソシアネート基とヒドロキシ基との反応により生成するウレタン基;イソシアネート基とアミノ基との反応により生成する尿素基;イソシアネート基とメルカプト基との反応により生成するチオウレタン基などを挙げることができる。また、本発明では、上記ウレタン基、尿素基、および、チオウレタン基中の活性水素が、更にイソシアネート基と反応して生成する基も、一般式(6)の基に含まれる。
 アミドセグメントと反応性ケイ素基を有する有機重合体の工業的に容易な製造方法を例示すると、末端に活性水素含有基を有する有機重合体に、過剰のポリイソシアネート化合物を反応させて、ポリウレタン系主鎖の末端にイソシアネート基を有する重合体とした後、あるいは同時に、該イソシアネート基の全部または一部に一般式(7):
W-R9-SiR1 3-aa  (7)
(R1、X、aは前記と同じ。R9は2価の有機基であり、より好ましくは炭素原子数1から20の炭化水素基である。Wはヒドロキシ基、カルボキシ基、メルカプト基およびアミノ基(1級または2級)から選ばれた活性水素含有基である)で表されるケイ素化合物のW基を反応させる方法により製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特公昭46-12154号(米国特許3632557号)、特開昭58-109529号(米国特許4374237号)、特開昭62-13430号(米国特許4645816号)、特開平8-53528号(EP0676403)、特開平10-204144号(EP0831108)、特表2003-508561(米国特許6197912号)、特開平6-211879号(米国特許5364955号)、特開平10-53637号(米国特許5756751号)、特開平11-100427号、特開2000-169544号、特開2000-169545号、特開2002-212415号、特許第3313360号、米国特許4067844号、米国特許3711445号、特開2001-323040号等が挙げられる。
 また、末端に活性水素含有基を有する有機重合体に一般式(8):
O=C=N-R9-SiR1 3-aa  (8)
(R9、R1、X、aは前記に同じ)で示される反応性ケイ素基含有イソシアネート化合物とを反応させることにより製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特開平11-279249号(米国特許5990257号)、特開2000-119365号(米国特許6046270号)、特開昭58-29818号(米国特許4345053号)、特開平3-47825号(米国特許5068304号)、特開平11-60724号、特開2002-155145号、特開2002-249538号、WO03/018658、WO03/059981等が挙げられる。
 末端に活性水素含有基を有する有機重合体としては、末端にヒドロキシ基を有するオキシアルキレン重合体(ポリエーテルポリオール)、ポリアクリルポリオール、ポリエステルポリオール、末端にヒドロキシ基を有する飽和炭化水素系重合体(ポリオレフィンポリオール)、ポリチオール化合物、ポリアミン化合物等が挙げられる。これらの中でも、ポリエーテルポリオール、ポリアクリルポリオール、および、ポリオレフィンポリオールは、得られる有機重合体のガラス転移温度が比較的低く、得られる硬化物が耐寒性に優れることから好ましい。特に、ポリエーテルポリオールは、得られる有機重合体の粘度が低く作業性が良好であり、深部硬化性および接着性が良好である為に特に好ましい。また、ポリアクリルポリオールおよび飽和炭化水素系重合体は、得られる有機重合体の硬化物の耐候性、耐熱性が良好である為により好ましい。
 ポリエーテルポリオールとしては、いかなる製造方法において製造されたものでも使用することが出来るが、全分子平均で分子末端当り少なくとも0.7個のヒドロキシ基を末端に有するものが好ましい。具体的には、従来のアルカリ金属触媒を使用して製造したオキシアルキレン重合体や、複合金属シアン化物錯体やセシウムの存在下、少なくとも2つのヒドロキシ基を有するポリヒドロキシ化合物などの開始剤に、アルキレンオキシドを反応させて製造されるオキシアルキレン重合体などが挙げられる。
 上記の各重合法の中でも、複合金属シアン化物錯体を使用する重合法は、より低不飽和度で、Mw/Mnが狭く、より低粘度でかつ、高耐酸性、高耐候性のオキシアルキレン重合体を得ることが可能であるため好ましい。
 前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体を骨格とし、かつ、分子内にヒドロキシ基を有するポリオールを挙げることができる。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法がさらに好ましい。また、特開2001-207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。具体的には、東亞合成(株)製のアルフォンUH-2000等が挙げられる。
 前記ポリイソシアネート化合物の具体例としては、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートなどを挙げることができる。
 一般式(7)のケイ素化合物としては特に限定はないが、具体的に例示すると、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、(N-フェニル)-γ-アミノプロピルトリメトキシシラン、N-エチルアミノイソブチルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン等のアミノ基含有シラン類;γ-ヒドロキシプロピルトリメトキシシラン等のヒドロキシ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン等のメルカプト基含有シラン類;等が挙げられる。また、特開平6-211879号(米国特許5364955号)、特開平10-53637号(米国特許5756751号)、特開平10-204144号(EP0831108)、特開2000-169544号、特開2000-169545号に記載されている様に、各種のα,β-不飽和カルボニル化合物と一級アミノ基含有シランとのMichael付加反応物、または、各種の(メタ)アクリロイル基含有シランと一級アミノ基含有化合物とのMichael付加反応物もまた、一般式(7)のケイ素化合物として用いることができる。
 一般式(8)の反応性ケイ素基含有イソシアネート化合物としては特に限定はないが、具体的に例示すると、γ-トリメトキシシリルプロピルイソシアネート、γ-トリエトキシシリルプロピルイソシアネート、γ-メチルジメトキシシリルプロピルイソシアネート、γ-メチルジエトキシシリルプロピルイソシアネート、トリメトキシシリルメチルイソシアネート、トリエトキシメチルシリルメチルイソシアネート、ジメトキシメチルシリルメチルイソシアネート、ジエトキシメチルシリルメチルイソシアネート等が挙げられる。また、特開2000-119365号(米国特許6046270号)に記載されている様に、一般式(7)のケイ素化合物と、過剰の前記ポリイソシアネート化合物を反応させて得られる化合物もまた、一般式(8)の反応性ケイ素基含有イソシアネート化合物として用いることができる。
 上記の方法で得られる有機重合体は、主鎖骨格中に一般式(9):
-NR10-C(=O)-  (9)
(R10は水素原子または置換あるいは非置換の有機基を表す)で表される基を有する。この構造は極性が比較的高いため、硬化物の強度や基材への接着性が高くなる傾向にあり望ましい。
 本発明では(C)成分として可塑剤を使用することもある。
可塑剤の添加により、硬化性組成物の粘度やスランプ性および硬化性組成物を硬化して得られる硬化物の硬度、引張り強度、伸びなどの機械特性が調整できる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物(具体的には、商品名:EASTMAN168(EASTMAN CHEMICAL製));1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物(具体的には、商品名:Hexamoll DINCH(BASF製));アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル(具体的には、商品名:Mesamoll(LANXESS製));トリクレジルホスフェート、トリブチルホスフェートなどのリン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジルなどのエポキシ可塑剤、などをあげることができる。
 また、高分子可塑剤を使用することができる。高分子可塑剤を使用すると重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持することができる。更に、該硬化物にアルキド塗料を塗付した場合の乾燥性(塗装性)を改良できる。高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;数平均分子量500以上、更には1,000以上のポリエチレングリコールポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいは
これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレンやポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等があげられるが、これらに限定されるものではない。
 これらの高分子可塑剤の中では、反応性ケイ素基含有有機重合体と相溶するものが好ましい。この点から、ポリエーテル類やビニル系重合体が好ましい。また、ポリエーテル類を可塑剤として使用すると、表面硬化性および深部硬化性が改善され、貯蔵後の硬化遅延も起こらないことから好ましく、中でもポリプロピレングリコールがより好ましい。また、相溶性および耐候性、耐熱性の点からビニル系重合体が好ましい。ビニル系重合体の中でもアクリル系重合体および/またはメタクリル系重合体が好ましく、ポリアクリル酸アルキルエステルなどアクリル系重合体が更に好ましい。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法が更に好ましい。また、特開2001-207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温・高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。
 高分子可塑剤の数平均分子量は、好ましくは500から15,000であるが、より好ましくは800から10,000であり、更に好ましくは1,000から8,000、特に好ましくは1,000から5,000、最も好ましくは1,000から3,000である。分子量が低すぎると熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できなくなる。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。
 高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.80未満が好ましい。1.70以下がより好ましく、1.60以下がなお好ましく、1.50以下が更に好ましく、1.40以下が特に好ましく、1.30以下が最も好ましい。
 高分子可塑剤の数平均分子量は、ビニル系重合体の場合はGPC法で、ポリエーテル系重合体の場合は末端基分析法で測定される。また、分子量分布(Mw/Mn)はGPC法(ポリスチレン換算)で測定される。
 また、高分子可塑剤は、反応性ケイ素基を有していても、有していなくてもよい。反応性ケイ素基を有する場合、反応性可塑剤として作用し、硬化物からの可塑剤の移行を防止できる。反応性ケイ素基有する場合、1分子に対し平均して1個以下、更には0.8個以下が好ましい。
 可塑剤の使用量は、(A)成分である反応性ケイ素基含有有機重合体と(B)成分である反応性ケイ素基含有有機重合体の合計100重量部に対して0~40重量部、好ましくは0~30重量部、更に好ましくは可塑剤を含有しないことである。40重量部を超えると、硬化物の硬度が不足する場合があり問題となる。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なお、これら可塑剤は重合体製造時に配合することも可能である。
 本発明では硬化物に柔軟性を付与するために、(B)成分として数平均分子量が8,000~50,000の反応性ケイ素基含有有機重合体を使用することもある。
 本発明に用いる反応性ケイ素基含有有機重合体(B)の主鎖骨格は特に制限はなく、各種の主鎖骨格を持つものを使用することができ、基本的に反応性ケイ素基含有有機重合体(A)で例示した主鎖骨格と同じものを使用することができる。
 反応性ケイ素基を有する有機重合体(B)は直鎖状、または分岐を有してもよく、その数平均分子量はGPCにおけるポリスチレン換算において8,000から50,000程度、より好ましくは9,000から40,000であり、特に好ましくは10,000から35,000である。数平均分子量が8,000未満では、硬化物の伸び特性の点で不都合な傾向があり、50,000を越えると、粘度が高くなる傾向がある。
本発明では、硬化性組成物が含有する重合体の数平均分子量を、GPCチャートのピークごとに求めることとする。開始剤を複数種用いることによって、1度の重合操作で複数種の重合体を得ることができるが、その場合は纏めて数平均分子量を計算するのではなく、重合体ごと、つまりピークごとに数平均分子量を求めることとする。
反応性ケイ素基を有する有機重合体(B)の反応性ケイ素基は、反応性ケイ素基含有有機重合体(A)で例示した反応性ケイ素基と同じものを使用することができる。
 高硬度のゴム状硬化物を得るためには、有機重合体に含有される反応性ケイ素基は重合体1分子中に平均して少なくとも1個、好ましくは1.3から5個、さらに好ましくは1.3~3個存在するのがよい。分子中に含まれる反応性ケイ素基の数が平均して1個未満になると、硬化性が不充分になり、低硬度の硬化物となる。反応性ケイ素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、反応性ケイ素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びを示すゴム状硬化物が得られやすくなる。
 反応性ケイ素基数は1H-NMRにより分子鎖末端に対する比率を求め、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮することにより定義している。
 反応性ケイ素基含有有機重合体(B)の混合割合は特に限定されないが、反応性ケイ素基含有有機重合体(A)100重量部に対して1~1,000重量部が好ましく、5~900重量部がより好ましく、10~800重量部、50~200重量部が特に好ましい。
 本発明では、(A)成分、及び、(B)成分のシラノール縮合触媒として硬化触媒を使用する。硬化触媒の具体例としては、テトラブチルチタネート、テトラプロピルチタネート、チタンテトラキス(アセチルアセトナート)、ビス(アセチルアセトナート)ジイソプロポキシチタン、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物;ジメチル錫ジアセテート、ジメチル錫ビス(アセチルアセトナート)、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2-エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジオクチル錫ビス(アセチルアセトナート)等の4価の有機錫化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどの有機アルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。また、カルボン酸および/またはカルボン酸金属塩を硬化触媒として使用することもできる。また、WO2008/078654号公報に記載されているようなアミジン化合物も使用できる。アミジン化合物の例として、1-(o-トリル)ビグアニド、1-フェニルグアニジン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン等を挙げることができるが、これらに限られるものではない。
 縮合触媒の使用量は(A)成分である反応性ケイ素基含有有機重合体と(B)成分である反応性ケイ素基含有有機重合体の合計100重量部に対して0.01~20重量部程度が好ましく、0.1~10重量部がより好ましい。
 本発明の硬化性組成物には、アミノシランを添加することができる。アミノシランとは、分子中に反応性ケイ素基とアミノ基を有する化合物であり、通常、接着付与剤と称される。これを使用することで、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。他にも物性調整剤、無機充填材の分散性改良剤等として機能し得る化合物である。
 アミノシランの反応性ケイ素基の具体的な例としては、既に例示した基を挙げることができるが、メトキシ基、エトキシ基等が加水分解速度の点から好ましい。加水分解性基の個数は、2個以上、特に3個以上が好ましい。アミノシランの具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(2-(2-アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のケチミン型シラン類を挙げることができる。
 これらのうち良好な接着性を確保するためには、γ-アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシランが好ましい。アミノシランは1種類のみ使用してもよいし、2種類以上を併用してもよい。γ-(2-アミノエチル)アミノプロピルトリメトキシシランは他のアミノシランに比べて刺激性があることが指摘されており、このアミノシランを減量する代わりに、γ-アミノプロピルトリメトキシシランを併用することで刺激性を緩和させることができる。
 アミノシランの配合量は、(A)成分の有機重合体と(B)成分の有機重合体の合計100重量部に対して1~20重量部程度が好ましく、更に2~10重量部がより好ましい。配合量が1重量部未満であると十分な接着性が得られない場合がある。一方、配合量が20重量部を越えると、硬化物がもろくなって十分な強度が得られなくなり、また硬化速度が遅くなる場合がある。
 本発明の組成物には、アミノシラン以外の接着付与剤を使用することができる。
アミノシラン以外の接着付与剤の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ-クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。また、上記シラン類を部分的に縮合した縮合体も使用できる。さらに、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等もシランカップリング剤として用いることができる。本発明に用いるシランカップリング剤は、通常、反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対して、0.1~20重量部の範囲で使用される。特に、0.5~10重量部の範囲で使用するのが好ましい。
 本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。シランカップリング剤以外の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。
 これらのうち、良好な接着性を確保するためには、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランが好ましい。
 接着性付与剤の使用量としては、(A)成分の有機重合体と(B)成分である反応性ケイ素基含有有機重合体の合計100重量部に対し、0.01から20重量部程度が好ましく、0.1から10重量部程度がより好ましく、1から7重量部程度が特に好ましい。接着性付与剤の配合量がこの範囲を下回ると、接着性が十分に得られない場合がある。一方、接着性付与剤の配合量がこの範囲を上回ると実用的な深部硬化性が得られない場合がある。
 接着性付与剤として、上記の接着性付与剤以外にも、接着性付与剤として、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が使用できる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。しかしながら、エポキシ樹脂は添加量に応じて触媒活性を低下させる場合があるため、本発明の硬化性組成物には、エポキシ樹脂の添加量は少ないことが好ましい。エポキシ樹脂の使用量としては、(A)成分と(B)成分の合計100重量部に対して、5重量部以下が好ましく、0.5重量部以下がより好ましく、実質的に、含有していないことが特に好ましい。
 本発明で得られる組成物には酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐熱性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、チヌビン622LD,チヌビン144,CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもチバ・ジャパン株式会社製);MARK LA-57,MARK LA-62,MARK LA-67,MARK LA-63,MARK LA-68(以上いずれも株式会社ADEKA製);サノールLS-770,サノールLS-765,サノールLS-292,サノールLS-2626,サノールLS-1114,サノールLS-744(以上いずれも三共株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。酸化防止剤の使用量は、反応性ケイ素基を有する有機重合体(A)(B)成分の合計100重量部に対して0.1~10重量部の範囲で使用するのがよく、さらに好ましくは0.2~5重量部である。
 本発明で得られる組成物には光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。光安定剤の使用量は、反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対して0.1~10重量部の範囲で使用するのがよく、さらに好ましくは0.2~5重量部である。光安定剤の具体例は特開平9-194731号公報にも記載されている。
 本発明で得られる組成物に光硬化性物質を併用する場合、特に不飽和アクリル系化合物を用いる場合、特開平5-70531号公報に記載されているようにヒンダードアミン系光安定剤として3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン622LD,チヌビン144,CHIMASSORB119FL(以上いずれもチバ・ジャパン株式会社製);MARK LA-57,LA-62,LA-67,LA-63(以上いずれも株式会社ADEKA製);サノールLS-765,LS-292,LS-2626,LS-1114,LS-744(以上いずれもチバ・ジャパン株式会社製)などの光安定剤が例示できる。
 本発明で得られる組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。紫外線吸収剤の使用量は、反応性ケイ素基を有する有機重合体(A)と(B)成分である反応性ケイ素基含有有機重合体の合計100重量部に対して0.1~10重量部の範囲で使用するのがよく、さらに好ましくは0.2~5重量部である。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。
 本発明の組成物には充填剤を添加することができる。充填剤としては、フュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックの如き補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末の如き充填剤;ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。充填剤を使用する場合、その使用量は(A)成分の重合体と(B)成分の重合体の合計100重量部に対して1から1,000重量部、好ましくは10から700重量部であり、さらに好ましくは50~500重量部である。
 これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤が好ましく、反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対し、1から250重量部、好ましくは10~200重量部の範囲で使用すれば好ましい結果が得られる。また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対して5から1,000重量部、好ましくは20~700重量部の範囲で使用すれば好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。炭酸カルシウムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径が大きい炭酸カルシウムを併用することが望ましい。表面処理微細炭酸カルシウムの粒径は0.5μm以下が好ましく、表面処理は脂肪酸や脂肪酸塩で処理されていることが好ましい。また、粒径が大きい炭酸カルシウムの粒径は1μm以上が好ましく表面処理されていないものを用いることができる。
 組成物の作業性(キレなど)向上や硬化物表面を艶消し状にするために、有機バルーン、無機バルーンの添加が好ましい。これらの充填剤は表面処理することもでき、1種類のみで使用しても良いし、2種類以上混合使用することもできる。作業性(キレなど)向上には、バルーンの粒径は0.1mm以下が好ましい。硬化物表面を艶消し状にするためには、5から300μmが好ましい。
 バルーンは、球状体充填剤で内部が中空のものである。このバルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料があげられるが、これらのみに限定されるものではなく、無機系の材料と有機系の材料とを複合させたり、また、積層して複数層を形成させたりすることもできる。無機系の、あるいは有機系の、またはこれらを複合させるなどしたバルーンを使用することができる。また、使用するバルーンは、同一のバルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用しても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたものを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使用することもできる。例えば、有機系のバルーンを炭酸カルシウム、タルク、酸化チタンなどでコーティングしたり、無機系のバルーンを接着性付与剤で表面処理することなどが挙げられる。
 バルーンの具体例は特開平2-129262号、特開平4-8788号、特開平4-173867号、特開平5-1225号、特開平7-113073号、特開平9-53063号、特開平10-251618号、特開2000-154368号、特開2001-164237号、WO97/05201号などの各公報に記載されている。
 また、本発明の組成物には、シリケートを用いることができる。このシリケートは、架橋剤として作用し、本発明の(A)成分である有機重合体の復元性、耐久性、および、耐クリープ性を改善する機能を有する。また更に、接着性および耐水接着性、高温高湿条件での接着耐久性を改善する効果も有する。シリケートとしてはテトラアルコキシシランまたはその部分加水分解縮合物が使用できる。シリケートを使用する場合、その使用量は(A)成分の有機重合体と(B)成分の重合体の合計100重量部に対して0.1から20重量部、好ましくは0.5から10重量部である。
 シリケートの具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物があげられる。
 テトラアルコキシシランの部分加水分解縮合物は、本発明の復元性、耐久性、および、耐クリープ性の改善効果がテトラアルコキシシランよりも大きい為により好ましい。
 前記テトラアルコキシシランの部分加水分解縮合物としては、例えば、通常の方法でテトラアルコキシシランに水を添加し、部分加水分解させて縮合させたものがあげられる。また、オルガノシリケート化合物の部分加水分解縮合物は、市販のものを用いることができる。このような縮合物としては、例えば、メチルシリケート51、エチルシリケート40(いずれもコルコート(株)製)等が挙げられる。
 本発明の組成物には粘着性付与剤を添加することができる。粘着性付与樹脂としては、特に限定されないが、常温で固体、液体を問わず通常使用されるものを使用することができる。具体例としては、スチレン系ブロック共重合体、その水素添加物、フェノール樹脂、変性フェノール樹脂(例えば、カシューオイル変性フェノール樹脂、トール油変性フェノール樹脂等)、テルペンフェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、テルペン系樹脂、DCPD樹脂石油樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。スチレン系ブロック共重合体およびその水素添加物としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレンブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレンプロピレン-スチレンブロック共重合体(SEPS)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)等が挙げられる。上記粘着性付与樹脂は単独で用いてもよく、2種以上併用してもよい。
 粘着性付与樹脂は(A)成分と(B)成分の合計100重量部に対して、5から1,000重量部、好ましくは10から100重量部の範囲で使用される。
 本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
 特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、特開平5-117521号公報に記載されている化合物をあげることができる。また、ヘキサノール、オクタノール、デカノール等のアルキルアルコールの誘導体であって加水分解によりトリメチルシラノール等のR3SiOHを生成するシリコン化合物を生成する化合物、特開平11-241029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリトールあるいはソルビトール等のヒドロキシ基数が3以上の多価アルコールの誘導体であって加水分解によりトリメチルシラノールなどのR3SiOHを生成するシリコン化合物を生成する化合物をあげることができる。
 また、特開平7-258534号公報に記載されているようなオキシプロピレン重合体の誘導体であって加水分解によりトリメチルシラノールなどのR3SiOHを生成するシリコン化合物を生成する化合物もあげることができる。更に特開平6-279693号公報に記載されている架橋可能な反応性ケイ素含有基と加水分解によりモノシラノール含有化合物となりうるケイ素含有基を有する重合体を使用することもできる。
 物性調整剤は反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対して、0.1から20重量部、好ましくは0.5から10重量部の範囲で使用される。
 本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。また、特開平11-349916号公報に記載されているような粒子径10から500μmのゴム粉末や、特開2003-155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な組成物が得られる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。チクソ性付与剤は(A)成分と(B)の合計100重量部に対して、0.1から20重量部の範囲で使用される。
 本発明の組成物においては1分子中にエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環式エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物およびそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化アマニ油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-ト等があげられる。これらのなかではE-PSが特に好ましい。エポキシ化合物は反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対して0.5から50重量部の範囲で使用するのがよい。
 本発明の組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや耐候性を改善できる。光硬化性物質とは、光の作用によってかなり短時間に分子構造が化学変化をおこし、硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、市販の任意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。不飽和アクリル系化合物としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物であって、プロピレン(またはブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の単量体または分子量10,000以下のオリゴエステルが例示される。具体的には、例えば特殊アクリレート(2官能)のアロニックスM-210,アロニックスM-215,アロニックスM-220,アロニックスM-233,アロニックスM-240,アロニックスM-245;(3官能)のアロニックスM-305,アロニックスM-309,アロニックスM-310,アロニックスM-315,アロニックスM-320,アロニックスM-325,および(多官能)のアロニックスM-400などが例示できるが、特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい(以上アロニックスはいずれも東亜合成株式会社の製品である。)。
 ポリケイ皮酸ビニル類としては、シンナモイル基を感光基とする感光性樹脂でありポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル誘導体が例示される。アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁から、第106頁から、第117頁から)に詳細な例示があり、これらを単独または混合し、必要に応じて増感剤を加えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤やアミン類などの促進剤を添加すると、効果が高められる場合がある。光硬化性物質は反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対して0.1から20重量部、好ましくは0.5から10重量部の範囲で使用するのがよく、0.1重量部以下では耐候性を高める効果はなく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。
 本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2-ポリブタジエン、1,4-ポリブタジエン、C5からC8ジエンの重合体などの液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させてえられるNBR、SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。これらのうちではキリ油や液状ジエン系重合体がとくに好ましい。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩や、アミン化合物等が例示される。酸素硬化性物質の使用量は、反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対して0.1から20重量部の範囲で使用するのがよく、さらに好ましくは0.5から10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
 本発明の硬化性組成物には、ポリリン酸アンモニウム、トリクレジルホスフェートなどのリン系可塑剤、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛などの難燃剤を添加することができる。上記難燃剤は単独で用いてもよく、2種以上併用してもよい。
 難燃剤は(A)成分と(B)成分の合計100重量部に対して、5から200重量部、好ましくは10から100重量部の範囲で使用される。
 本発明の硬化性組成物には、硬化性組成物または硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防蟻剤、防かび剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書にあげた添加物の具体例以外の具体例は、たとえば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、特開2001-72854号の各公報などに記載されている。
 本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
 前記硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。前記硬化性組成物が2成分型の場合、反応性ケイ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので配合剤中には若干の水分が含有されていてもゲル化の心配は少ないが、長期間の貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水、乾燥方法としては粉状などの固状物の場合は加熱乾燥法または減圧脱水法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸化マグネシウムなどを使用した脱水法が好適である。かかる脱水乾燥法に加えて、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチルシリケート、エチルシリケート、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加し、水と反応させて脱水してもよい。また、3-エチル-2-メチル-2-(3-メチルブチル)-1,3-オキサゾリジンなどのオキサゾリジン化合物を配合して水と反応させて脱水してもよい。また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。アルコキシシラン化合物やオキサゾリジン化合物、および、イソシアネート化合物の添加により、貯蔵安定性が向上する。
 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は反応性ケイ素基を有する有機重合体(A)と(B)の合計100重量部に対して、0.1から20重量部、好ましくは0.5から10重量部の範囲が好ましい。
 本発明の硬化性組成物の調製法には特に限定はなく、例えば上記した成分を配合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混練したり、適した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用されうる。
 本発明の硬化性組成物は、大気中に暴露されると水分の作用により、三次元的に網状組織を形成し、ゴム状弾性を有する固体へと硬化する。
 本発明の硬化性組成物は、接着剤、床用接着剤、タイル張り用接着剤、コーティング剤、粘着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、特に高硬度が求められる用途である木床用接着剤またはタイル張り用接着剤として用いることがより好ましい。硬化物の硬度は、タイプAデュロメーターで測定した値で60以上が好ましく、65以上が更に好ましい。本発明の組成物を用いタイル、ガラス、化粧板、木等を接着すると、タイル等が割れ難く好ましい。また、コンクリートのひび割れ補修剤としても好適である。
 太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイジングボード等の外装材の目地用シーリング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤等の様々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤としても使用可能である。
 以下に、具体的な実施例を挙げて本発明をより詳細に説明するが、本発明は、下記実施例に限定されるものではない。
 (合成例1)
 数平均分子量が約4,800(送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)のポリプロピレングリコールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え撹拌しながら、ジメトキシメチルシラン5.99重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去することにより、末端がジメトキシメチルシリル基であり、1分子あたりのケイ素基が平均1.5個、数平均分子量が4,800である、直鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-1)を得た。
 (合成例2)
 数平均分子量が約4,100(合成例1と同様の方法で算出)のポリオキシプロピレントリオール100重量部に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え撹拌しながら、ジメトキシメチルシラン8.14重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去することにより、末端がジメトキシメチルシリル基であり、1分子あたりのケイ素基が平均2.2個、数平均分子量4,100である、分岐状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-2)を得た。
 (合成例3)
 数平均分子量が約4,100(合成例1と同様の方法で算出)のポリオキシプロピレントリオール100重量部に対してジブチル錫ジラウレート30ppmを加え攪拌しながら、3-イソシアネートプロピルトリメトキシシラン19.3重量部をゆっくり滴下した。その混合溶液を90℃で3時間反応させた後2時間脱気を行い、末端がトリメトキシシリル基であり、1分子あたりのケイ素基が平均2.8個、数平均分子量が4,100である、分岐状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-3)を得た。
 (合成例4)
 数平均分子量が約4,100(合成例1と同様の方法で算出)のポリプロピレングリコールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え撹拌しながら、ジメトキシメチルシラン3.80重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去することにより、末端がジメトキシメチルシリル基であり、1分子あたりのケイ素基が平均1.0個、数平均分子量が4,100である、直鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(B-1)を得た。
 (合成例5)
 数平均分子量が約3,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が14,600(合成例1と同様の方法で算出)のポリオキシプロピレングリコールを得た。続いてこの水酸基末端ポリオキシプロピレンジオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え撹拌しながら、ジメトキシメチルシラン1.77重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去することにより、末端がジメトキシメチルシリル基であり、1分子あたりのケイ素基が平均1.5個、数平均分子量14,600である、直鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(B-2)を得た。
 (合成例6)
 数平均分子量が約3,000のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量26,200(合成例1と同様の方法で算出)のポリオキシプロピレントリオールを得た。続いてこの水酸基末端ポリオキシプロピレントリオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、ジメトキシメチルシラン1.28重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端がジメトキシメチルシシリル基であり1分子あたりのケイ素基が平均2.2個、数平均分子量が26,200である反応性ケイ素基含有ポリオキシプロピレン重合体(B-3)を得た。
 (合成例7)
 数平均分子量が約3,000のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量16,400(合成例1と同様の方法で算出)のポリオキシプロピレントリオールを得た。続いてこの水酸基末端ポリオキシプロピレントリオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、ジメトキシメチルシラン1.78重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端がジメトキシメチルシシリル基であり1分子あたりのケイ素基が平均2.2個、数平均分子量が16,400である反応性ケイ素基含有ポリオキシプロピレン重合体(B-4)を得た。
 (実施例1)
 重合体(A-1)100重量部に対して、脂肪酸処理炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)120重量部、顔料(石原産業(株)製、商品名:タイペークR820)20重量部、チクソ性付与剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部を混合して充分混練りした後、3本ペイントロールに1回通して分散させ、配合物を作製した。
 (評価)
作製した配合物の粘比、硬度およびガラス板割れ強度を下記に示す方法にて測定した。
(粘比)
 23℃、相対湿度50%の雰囲気下にて、BS型粘度計、ローターNo.7(東機産業社製)を用い、回転数が2rpm、10rpmの時の粘度を測定し、チクソトロピー性の指標として、回転数が2rpmと10rpmの時の粘比を測定した。その結果を表1、及び、表2に示した。
(硬度)
23℃、相対湿度50%の雰囲気下にて、配合物に重合体(A-1)100重量部に対して、ビニルトリメトキシシラン(Momentive(株)製、商品名:A-171)2重量部、N-(2-アミノエチル)-3- アミノプロピルトリメトキシシラン(Momentive(株)製、商品名:A-1122)3重量部、縮合触媒としてジブチルスズビス(アセチルアセトネート)(日東化成(株))2重量部を加え十分混合した。混合物を厚さ約8mmの型枠にスパチュラを用いて充填し、表面を平面状に整え、3日後に硬化物をJIS K 6253に準拠して、タイプAデュロメーターを用いて、硬度を測定した。その結果を表1、及び、表2に示した。
(ガラス板の割れ強度試験)
23℃、相対湿度50%の雰囲気下にて、配合物に重合体(A-1)100重量部に対して、ビニルトリメトキシシラン(Momentive(株)製、商品名:A-171)2重量部、N-(2-アミノエチル)-3- アミノプロピルトリメトキシシラン(Momentive(株)製、商品名:A-1122)3重量部、縮合触媒としてジブチルスズビス(アセチルアセトネート)(日東化成(株))2重量部を加え十分混合した。
70mm×150mm×4mmのスレート板上に上記で作製した配合物をくし目ごてを用いてくし目状に塗布し、70mm×150mm×1.8mmのガラス板(TP技研(株)製、フロート板ガラス)を張り合わせた(以後、試験体と呼ぶ)。23℃、相対湿度50%で3日間、さらに50℃で4日間養生することにより配合物を硬化させた。試験体をJIS K 7171に記載の曲げ試験機(支点間距離10mm、圧子半径5mm)を用いて、曲げ試験を行い、ガラス板が割れるのに要する力を測定した。その結果を表1、及び、表2に示した。
 (実施例2-5、比較例1-6)、
 表1及び表2に示す割合で配合物を用いた以外は、実施例1と同様にして配合物を作製し、評価を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果において、実施例1~5と比較例1~6の比較から、特定の分子量を有し、1分子中の反応性ケイ素基の数が1.3個以上である本発明の重合体(A-1)、(A-2)及び(A-3)と特定量の可塑剤を含有する硬化性組成物は、比較例の硬化性組成物よりも高硬度の硬化物を与えることが分かる。また、硬化性組成物のチクソ性も高いことが分かる。さらにガラス板のような脆性材料の割れ性を改善できることが分かる。
 (実施例6)
 重合体(A-1)50重量部、重合体(B-4)50重量部の合計100重量部に対して、フタル酸イソデシル(ジェイ・プラス(株)製、商品名:DIDP)20重量部、脂肪酸処理沈降炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)50重量部、重質炭酸カルシウム(白石カルシウム(株)製、商品名:ホワイトンSB赤)200重量部、チクソ性付与剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部を混合して充分混練りした後、3本ペイントロールに1回通して分散させ、配合物を作製した。
 (評価)
作製した配合物の粘比、硬度及び引張り物性を下記に示す方法にて作製した。
(粘比)
 23℃、相対湿度50%の雰囲気下にて、BS型粘度計、ローターNo.7(東機産業社製)を用い、回転数が2rpm、10rpmの時の粘度を測定し、チクソトロピー性の指標として、回転数が2rpmと10rpmの時の粘比を測定した。その結果を表3に示した。
(硬度)
23℃、相対湿度50%の雰囲気下にて、配合物に重合体(A-1)及び、重合体(B-4)の合計100重量部に対して、ビニルトリメトキシシラン(Momentive(株)製、商品名:A-171)2重量部、N-(2-アミノエチル)-3- アミノプロピルトリメトキシシラン(Momentive(株)製、商品名:A-1122)3重量部、縮合触媒としてジブチルスズビス(アセチルアセトネート)(日東化成(株))2重量部を加え十分混合した。混合物を厚さ約8mmの型枠にスパチュラを用いて充填し、表面を平面状に整え、3日後に硬化物をJIS K 6253に準拠して、タイプAデュロメーターを用いて、硬度を測定した。その結果を表3に示した。
(引張り物性)
23℃、相対湿度50%の雰囲気下にて、配合物に重合体(A-1)及び、重合体(B-4)の合計100重量部に対して、ビニルトリメトキシシラン(Momentive(株)製、商品名:A-171)2重量部、N-(2-アミノエチル)-3- アミノプロピルトリメトキシシラン(Momentive(株)製、商品名:A-1122)3重量部、縮合触媒としてジブチルスズビス(アセチルアセトネート)(日東化成(株))2重量部を加え十分混合した。混合物を厚み3mmのポリエチレン製の型枠に気泡が入らないよう充填し、23℃、相対湿度50%で3日間、さらに50℃で4日間養生することにより硬化物を得た。得られた硬化物から、JIS K 6251に準拠して3号ダンベルを打ち抜き、引張り試験(引張り速度200mm/分、23℃、相対湿度50%)を行い、破断時伸びを測定した。その結果を表3に示した。
 (実施例7-8、比較例7-8)
 表3に示す割合で配合物を用いた以外は、実施例6と同様にして配合物を作製し、評価を行った。
Figure JPOXMLDOC01-appb-T000003
 表3の結果において、実施例6-8と比較例7-8の比較から、特定の分子量を有し、1分子中の反応性ケイ素基の数が1.3個以上である本発明の重合体を含有する硬化性組成物は、比較例の硬化性組成物よりも高硬度、かつ、高強度の硬化物を与えることが分かる。また、硬化性組成物のチクソ性も高い。
 本発明の硬化性組成物は、接着剤、床用接着剤、タイル張り用接着剤、コーティング剤、粘着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、特に高硬度が求められる用途である木床用接着剤またはタイル張り用接着剤として用いることがより好ましい。硬化物の硬度は、タイプAデュロメーターで測定した値で60以上が好ましく、65以上が更に好ましい。本発明の組成物を用いタイル、ガラス、化粧板、木等を接着すると、タイル等が割れ難く好ましい。また、コンクリートのひび割れ補修剤としても好適である。
 太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイジングボード等の外装材の目地用シーリング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤等の様々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤としても使用可能である。

Claims (13)

  1. (A)数平均分子量が2,000~6,000であり、1分子中に反応性ケイ素基を1.3~5個含有する反応性ケイ素基含有有機重合体100重量部、及び、(C)可塑剤0~40重量部を含有する硬化性組成物。
  2. (A)成分である反応性ケイ素基含有有機重合体の主鎖骨格がポリオキシアルキレン系重合体であることを特徴とする請求項1に記載の硬化性組成物。
  3. (A)成分である反応性ケイ素基含有有機重合体の主鎖構造が、少なくとも1つ以上の分岐鎖を有していることを特徴とする請求項1または2に記載の硬化性組成物。
  4. (A)成分である反応性ケイ素基含有有機重合体が、1分子中に反応性ケイ素基を2~5個含有することを特徴とする請求項1~3のいずれか1項に記載の硬化性組成物。
  5. (C)成分である可塑剤を含有しないことを特徴とする請求項1~4のいずれか1項に記載の硬化性組成物。
  6. 組成物中に、数平均分子量が8,000~50,000であり1分子中に反応性ケイ素基を1.3~5個含有する反応性ケイ素基含有有機重合体(B)が含有されていることを特徴とする請求項1~5のいずれか1項に記載の硬化性組成物。
  7. (B)成分である反応性ケイ素基含有有機重合体の主鎖骨格がポリオキシアルキレン系重合体であることを特徴とする請求項6に記載の硬化性組成物。
  8. 請求項1~7のいずれか1項に記載の硬化性組成物を成分として含む接着剤。
  9. 請求項1~7のいずれか1項に記載の硬化性組成物を成分として含む床用接着剤。
  10. 請求項1~5のいずれか1項に記載の硬化性組成物を成分として含むタイル張り用接着剤。
  11. 請求項6~7のいずれか1項に記載の硬化性組成物を成分として含むタイル張り用接着剤。
  12. 請求項1~7のいずれか1項に記載の硬化性組成物を硬化させて得られるコーティング剤。
  13. 請求項1~7のいずれか1項に記載の硬化性組成物を硬化させて得られる硬化物。
     
PCT/JP2011/076618 2010-11-24 2011-11-18 硬化性組成物 WO2012070476A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/989,116 US8907024B2 (en) 2010-11-24 2011-11-18 Curable composition
CN201180056179.7A CN103228736B (zh) 2010-11-24 2011-11-18 固化性组合物
EP11842755.8A EP2644657B1 (en) 2010-11-24 2011-11-18 Curable composition
JP2012545712A JP5850851B2 (ja) 2010-11-24 2011-11-18 硬化性組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010261730 2010-11-24
JP2010-261730 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012070476A1 true WO2012070476A1 (ja) 2012-05-31

Family

ID=46145820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076618 WO2012070476A1 (ja) 2010-11-24 2011-11-18 硬化性組成物

Country Status (5)

Country Link
US (1) US8907024B2 (ja)
EP (1) EP2644657B1 (ja)
JP (2) JP2012126881A (ja)
CN (1) CN103228736B (ja)
WO (1) WO2012070476A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038656A1 (ja) * 2012-09-10 2014-03-13 株式会社カネカ 硬化性組成物
WO2017111121A1 (ja) * 2015-12-24 2017-06-29 株式会社カネカ 積層体の製造方法、および積層体
JP2019218466A (ja) * 2018-06-19 2019-12-26 積水フーラー株式会社 硬化性組成物
JP2021176958A (ja) * 2020-05-08 2021-11-11 四川省威盾匠心建設有限公司Sichuan Weidun Jiangxin Construction Co., Ltd. 高耐水性、低弾性率の1成分msシーラント、製造方法及びその応用
WO2023282298A1 (ja) 2021-07-07 2023-01-12 Agc株式会社 硬化性組成物、硬化物、接着剤、及びシーリング材

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901255B2 (en) * 2010-08-10 2014-12-02 Kaneka Corporation Curable composition
JP6218661B2 (ja) * 2013-10-31 2017-10-25 積水フーラー株式会社 硬化性組成物
US10072132B2 (en) 2014-03-05 2018-09-11 Kaneka Corporation Curable composition
CN106255603B (zh) * 2014-04-30 2019-06-18 米其林集团总公司 包括降噪泡沫条带的轮胎
CA2981607A1 (en) * 2014-04-30 2015-11-05 The Sherwin-Williams Company Kit and method for sealing roof penetrations
EP2952533A1 (de) * 2014-06-04 2015-12-09 Sika Technology AG Zinn- und Phthalat-freier Dichtstoff auf Basis von silanterminierten Polymeren
TWI639661B (zh) * 2015-06-30 2018-11-01 奇美實業股份有限公司 防濕絕緣塗料及其應用
FR3043020B1 (fr) * 2015-10-28 2017-11-03 Michelin & Cie Pneumatique avec un organe fixe a sa surface et procede de fixation d'un organe a la surface d'un pneumatique
JP6870226B2 (ja) * 2015-12-21 2021-05-12 Agc株式会社 硬化性組成物およびその製造方法、ならびに硬化物およびシーリング材
CN109804010B (zh) * 2016-10-17 2021-11-12 科思创德国股份有限公司 用于粘合剂-、密封剂-和涂料组合物的稳定剂
WO2018187250A1 (en) 2017-04-03 2018-10-11 Continental Reifen Deutschland Gmbh Modified resins and uses thereof
KR102635199B1 (ko) 2017-04-10 2024-02-08 신쏘머 어드히시브 테크놀로지스 엘엘씨 극성 링커를 갖는 작용화된 수지
US10894847B2 (en) 2017-04-10 2021-01-19 Eastman Chemical Company Functionalized resin having a polar linker
EP3609936B1 (en) 2017-04-10 2023-10-11 Continental Reifen Deutschland GmbH Functionalized resin having a polar linker
NL2019121B1 (en) * 2017-06-26 2019-01-07 Champion Link Int Corp Panel suitable for forming a floor covering, process for producing a panel, use of an adhesive precursor
EA201992222A1 (ru) 2017-09-28 2020-02-10 Юнилин, Бвба Плита и способ изготовления плиты
JP6977747B2 (ja) * 2018-03-07 2021-12-08 Agc株式会社 床用接着剤用硬化性組成物、及び硬化物
CN109777305A (zh) * 2018-12-05 2019-05-21 珠海凯利得新材料有限公司 石墨耐火粘结剂及制备方法
CN110229570A (zh) * 2019-06-18 2019-09-13 袁振鹏 一种防止铜雕像生成铜绿的保护蜡及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129446A (en) * 1979-03-28 1980-10-07 Shin Etsu Chem Co Ltd Cold curable composition
JP2000086881A (ja) * 1998-09-16 2000-03-28 Ge Toshiba Silicones Co Ltd 室温で硬化しうるケイ素官能性ポリエーテル組成物
JP2004224985A (ja) * 2003-01-24 2004-08-12 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2005082750A (ja) * 2003-09-10 2005-03-31 Cemedine Co Ltd 接着性に優れた硬化性組成物
JP2005213446A (ja) * 2004-01-30 2005-08-11 Kaneka Corp 硬化性組成物
WO2005073322A1 (ja) * 2004-01-30 2005-08-11 Kaneka Corporation 硬化性組成物
JP2011063669A (ja) * 2009-09-16 2011-03-31 Kaneka Corp 硬化性組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273998A (en) 1975-12-16 1977-06-21 Kanegafuchi Chem Ind Co Ltd Room temperature curing compositions
JPS636041A (ja) 1986-06-25 1988-01-12 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
CA1274647A (en) 1986-06-25 1990-09-25 Takahisa Iwahara Curable isobutylene polymer
JPH0742376B2 (ja) * 1986-10-29 1995-05-10 鐘淵化学工業株式会社 硬化性組成物
JP2995568B2 (ja) * 1989-05-09 1999-12-27 旭硝子株式会社 ポリアルキレンオキシド誘導体の製造法
US5464888A (en) * 1994-03-31 1995-11-07 Minnesota Mining And Manufacturing Company Curable sealer and/or adhesive composition, and a method for coating same in a wet state with a base coat paint, and coated substrates formed thereby
US5821314A (en) * 1994-06-17 1998-10-13 Kansai Paint Company, Limited Thermosetting compositions and methods of forming a finish coat
JP2001026765A (ja) * 1999-07-13 2001-01-30 Toagosei Co Ltd シーリング材組成物
CN1590457A (zh) * 2000-07-25 2005-03-09 三井化学株式会社 可固化组合物及其用途
US7781525B2 (en) 2004-12-28 2010-08-24 Kaneka Corporation Curable composition
EP1873208B1 (en) 2005-04-15 2017-12-06 Kaneka Corporation Curable composition and cured article excellent in transparency
WO2007037483A1 (ja) 2005-09-30 2007-04-05 Kaneka Corporation 硬化性組成物
DK1973208T3 (da) * 2007-03-17 2011-06-27 Aizo Ag Fremgangsmåde til at aktivere og programmere afbrydere, især lysarbrydere
WO2009133811A1 (ja) * 2008-05-02 2009-11-05 株式会社カネカ 室温硬化性組成物およびその硬化物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129446A (en) * 1979-03-28 1980-10-07 Shin Etsu Chem Co Ltd Cold curable composition
JP2000086881A (ja) * 1998-09-16 2000-03-28 Ge Toshiba Silicones Co Ltd 室温で硬化しうるケイ素官能性ポリエーテル組成物
JP2004224985A (ja) * 2003-01-24 2004-08-12 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2005082750A (ja) * 2003-09-10 2005-03-31 Cemedine Co Ltd 接着性に優れた硬化性組成物
JP2005213446A (ja) * 2004-01-30 2005-08-11 Kaneka Corp 硬化性組成物
WO2005073322A1 (ja) * 2004-01-30 2005-08-11 Kaneka Corporation 硬化性組成物
JP2011063669A (ja) * 2009-09-16 2011-03-31 Kaneka Corp 硬化性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2644657A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038656A1 (ja) * 2012-09-10 2014-03-13 株式会社カネカ 硬化性組成物
US9328272B2 (en) 2012-09-10 2016-05-03 Kaneka Corporation Curable composition
JPWO2014038656A1 (ja) * 2012-09-10 2016-08-12 株式会社カネカ 硬化性組成物
WO2017111121A1 (ja) * 2015-12-24 2017-06-29 株式会社カネカ 積層体の製造方法、および積層体
JPWO2017111121A1 (ja) * 2015-12-24 2018-08-30 株式会社カネカ 積層体の製造方法、および積層体
JP2019218466A (ja) * 2018-06-19 2019-12-26 積水フーラー株式会社 硬化性組成物
JP7179279B2 (ja) 2018-06-19 2022-11-29 積水フーラー株式会社 硬化性組成物
JP2021176958A (ja) * 2020-05-08 2021-11-11 四川省威盾匠心建設有限公司Sichuan Weidun Jiangxin Construction Co., Ltd. 高耐水性、低弾性率の1成分msシーラント、製造方法及びその応用
JP7169698B2 (ja) 2020-05-08 2022-11-11 四川省威盾匠心建設有限公司 高耐水性、低弾性率の1成分msシーラント、製造方法及びその応用
WO2023282298A1 (ja) 2021-07-07 2023-01-12 Agc株式会社 硬化性組成物、硬化物、接着剤、及びシーリング材

Also Published As

Publication number Publication date
US20130274410A1 (en) 2013-10-17
EP2644657B1 (en) 2020-06-10
CN103228736A (zh) 2013-07-31
JP5850851B2 (ja) 2016-02-03
EP2644657A1 (en) 2013-10-02
CN103228736B (zh) 2017-05-03
EP2644657A4 (en) 2014-04-30
JP2012126881A (ja) 2012-07-05
JPWO2012070476A1 (ja) 2014-05-19
US8907024B2 (en) 2014-12-09

Similar Documents

Publication Publication Date Title
JP5850851B2 (ja) 硬化性組成物
JP5449508B2 (ja) 硬化性組成物
JP5226315B2 (ja) 硬化性組成物
JP5378684B2 (ja) 硬化性組成物
JP5081448B2 (ja) 硬化性組成物
US8846822B2 (en) Curable composition
JP5785954B2 (ja) 反応性可塑剤、およびこれを含む硬化性組成物
JP5907708B2 (ja) 硬化性組成物
JPWO2015098998A1 (ja) 硬化性組成物およびその硬化物
WO2016035718A1 (ja) 硬化性組成物
JP5340815B2 (ja) 一液型接着剤
JP5210685B2 (ja) 反応性ケイ素基含有有機重合体組成物の製造方法および流動性調整方法および該有機重合体組成物を用いた目地構造体
JP5028139B2 (ja) 硬化性組成物
JP5639442B2 (ja) 硬化性組成物
JP2010132727A (ja) 硬化性組成物と硬化物
JP2020164607A (ja) 反応性シリル基含有(メタ)アクリル酸エステル系重合体およびこれを含有する硬化性組成物
JP6383163B2 (ja) 硬化性組成物およびその硬化物
JP4954843B2 (ja) 触媒組成物および硬化性組成物
JP2020164606A (ja) 反応性シリル基含有(メタ)アクリル酸エステル系共重合体およびこれを含有する硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011842755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13989116

Country of ref document: US