WO2016035718A1 - 硬化性組成物 - Google Patents

硬化性組成物 Download PDF

Info

Publication number
WO2016035718A1
WO2016035718A1 PCT/JP2015/074516 JP2015074516W WO2016035718A1 WO 2016035718 A1 WO2016035718 A1 WO 2016035718A1 JP 2015074516 W JP2015074516 W JP 2015074516W WO 2016035718 A1 WO2016035718 A1 WO 2016035718A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
meth
weight
acrylic acid
Prior art date
Application number
PCT/JP2015/074516
Other languages
English (en)
French (fr)
Inventor
隆博 齋藤
定生 行本
安藤 克浩
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55439781&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016035718(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2016546622A priority Critical patent/JP6561062B2/ja
Publication of WO2016035718A1 publication Critical patent/WO2016035718A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/02Polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes

Definitions

  • the present invention has a silicon-containing group having a hydroxyl group or a hydrolyzable group on a silicon atom and capable of forming a siloxane bond (hereinafter also referred to as “crosslinkable silyl group” or “reactive silicon group”) (
  • the present invention relates to a curable composition containing a (meth) acrylic acid ester-based polymer and an organic polymer having a reactive silicon group.
  • the oxypropylene polymer containing a reactive silicon group can be a liquid polymer and is cured at room temperature with moisture or the like to produce a rubber-like cured product. For this reason, it is used for the elastic sealant of a building, an adhesive agent, etc.
  • the sealing material is used by being extruded from a cartridge-like container.
  • it is usually desirable that the viscosity of the composition is small. Even in the case of an adhesive, if the viscosity is low, the coating operation becomes easy. In addition, there is a growing need to maintain performance over a long period of time, and weather resistance is also important.
  • Patent Document 1 describes a curable resin composition containing an oxypropylene polymer and an epoxy resin having a narrow molecular weight distribution. Since the molecular weight distribution of the oxypropylene polymer is narrow, the viscosity of the composition is lowered and further cured. It describes that the chemical resistance of objects is improved.
  • Patent Document 2 discloses a curable composition containing a polymer of a vinyl monomer such as an oxypropylene polymer having a reactive silicon group and an alkyl acrylate, and the cured product has excellent adhesion. It has been described that it has properties and weather resistance.
  • Patent Document 3 describes a curable composition containing an oxypropylene polymer having a reactive silicon group with a narrow molecular weight distribution and a polymer of a vinyl monomer such as an alkyl acrylate ester. Low viscosity and good workability.
  • Patent Documents 4 and 5 describe curable compositions containing an oxypropylene polymer having a reactive silicon group and a polymer of a vinyl monomer such as an acrylic ester having a low molecular weight and low viscosity, It is described that the composition has low viscosity and good workability, and the cured product has excellent weather resistance.
  • Patent Documents 9 to 19 describe compositions containing a hydrolyzable silyl group-containing vinyl polymer and / or a hydrolyzable silyl group-containing oxyalkylene polymer.
  • a monomer having a long-chain hydrocarbon group such as stearyl acrylate or stearyl methacrylate having a melting point of 20 ° C. or higher has high crystallinity and becomes a solid in winter, which makes it difficult to take out from the container. .
  • the present invention was obtained by using a non-nitrile azo polymerization initiator or an organic peroxide polymerization initiator as a radical polymerization initiator without using a monomer having a long-chain hydrocarbon group ( A meth) acrylate polymer and an organic polymer having a reactive silicon group are compatible, the composition has low viscosity and good workability, the cured product has high elongation, high weather resistance, and high heat resistance.
  • An object is to provide a curable composition.
  • the present invention (1). Hydrolyzable silicon group-containing (meth) acrylic acid ester-based polymer (A) having a repeating unit derived from a (meth) acrylic acid ester containing a crosslinkable silyl group and a (meth) acrylic acid alkyl ester, and a molecular chain A curable composition containing an organic polymer (B) having a crosslinkable silyl group only at the terminal or molecular chain terminal site, wherein the (meth) acrylate polymer (A) is a non-nitrile azo polymer A curable composition having a group derived from an initiator, (2).
  • the curable composition according to (1) obtained by copolymerizing the (meth) acrylic acid ester polymer (A) at 60 ° C. to 140 ° C., (3).
  • the main chain of the organic polymer (B) is at least one selected from the group consisting of polyoxyalkylene polymers, (meth) acrylic acid ester polymers, and saturated hydrocarbon polymers (1) to (3) the curable composition according to any one of (5).
  • the curable composition according to any one of (1) to (4), wherein the (meth) acrylic acid ester polymer (A) has a weight average molecular weight of 7000 to 14000, (6).
  • the (meth) acrylic acid ester polymer (A) has the general formula (1): -SiX 3 (1) (Wherein X is a hydroxy group or a hydrolyzable group, and three Xs may be the same or different) and / or general formula (2): -SiR 1 X 2 (2) (R 1 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or —OSiR ′ 3 (R ′ is Each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X is the same as described above, and two Xs may be the same or different.
  • the average number of silicon-containing functional groups represented by formula (1) is 0.5 to 2.5 per molecule, and the silicon-containing functional groups represented by the general formula (1) are averaged per molecule.
  • the (meth) acrylic acid ester polymer (A) is a linear, branched or alicyclic alkyl group methacrylate having 0 to 15 parts by weight of an alcohol component constituting the ester.
  • the alcohol component constituting is a linear, branched or alicyclic alkyl group 55-90 parts by weight of an acrylic acid ester having 1 to 4 carbon atoms, the alcohol component constituting the ester is a straight chain having 8 or more carbon atoms,
  • the (meth) acrylate polymer (A) has repeating units derived from 0 to 15 parts by weight of methyl methacrylate, 55 to 90 parts by weight of butyl acrylate, and 5 to 30 parts by weight of 2-ethylhexyl acrylate (1) -The curable composition according to any one of (7), (9).
  • Metal acrylic acid ester type having a repeating unit derived from 5 to 30 parts by weight of a linear, branched or alicyclic alkyl group (meth) acrylic acid ester and having a weight average molecular weight of 7000 to 14000
  • the curable composition as described, (11).
  • the (meth) acrylic acid ester polymer (A) has an average of 0 to 2.0 silicon-containing functional groups represented by the general formula (1) in one molecule, and the silicon-containing functional group represented by the general formula (2).
  • the (meth) acrylic ester polymer (A) has repeating units derived from 0 to 15 parts by weight of methyl methacrylate, 55 to 90 parts by weight of butyl acrylate, and 5 to 30 parts by weight of 2-ethylhexyl acrylate (9) -The curable composition according to any one of (11), (13).
  • the (meth) acrylate polymer (A) has an E-type viscosity of 15 to 200 Pa ⁇ s as measured at 23 ° C. and 3 ° ⁇ R14, according to any one of (1) to (12) Curable composition, (14).
  • the number of crosslinkable silyl groups contained in the organic polymer (B) is 0.5 or more on average in one molecule of the polymer, and the number average molecular weight is 800 to 50,000 in terms of polystyrene in GPC.
  • R 2 is independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or —OSiR ′ 3
  • R ′ each independently represents a hydrocarbon group having 1 to 20 carbon atoms
  • each X independently represents a hydroxy group or a hydrolyzable group.
  • a is an integer of 1 to 3, and the curable composition according to any one of (1) to (13), About.
  • the obtained (meth) acrylic acid ester polymer and an organic polymer having a reactive silicon group are obtained. It is possible to obtain a curable composition that is compatible, has good workability of the composition, and has a cured product having high weather resistance and high heat resistance.
  • silicon-containing group crosslinkable silyl group
  • reactive silicon group have the same meaning.
  • the polymer in the present invention conforms to the following definition.
  • a polymer contains all the polymer components obtained by the manufacturing process of the polymer, and includes components having different molecular weight, structure, number of substituents, and the like.
  • the average molecular weight, the molecular weight distribution, and the amount of substituents introduced on average per molecule are used.
  • representative molecular structures may be described for convenience.
  • the present invention relates to a hydrolyzable silicon group-containing (meth) acrylic acid ester-based polymer (A) having a repeating unit derived from a (meth) acrylic acid ester containing a crosslinkable silyl group and an alkyl (meth) acrylate. Is used as an essential ingredient.
  • the reaction is usually started using an oil-soluble radical initiator.
  • oil-soluble radical initiators include azo compounds and organic peroxides.
  • azo compound a non-nitrile azo polymerization initiator having no cyano group in the compound is used.
  • the non-nitrile azo polymerization initiator is not particularly limited.
  • 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2′-azobis (N-butyl- 2-methylpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide), 1,1′-azobis (1-acetoxy-1-phenylethane), dimethyl-2,2′-azobis (2-methylpropionate), dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis (2,4,4-trimethylpentane) and the like, and dimethyl-2,2′- Azobis (2-methylpropionate) or dimethyl-2,2′-azobisisobutyrate is preferred, and dimethyl-2,2′-azobis (2-methyl) is more preferred. It is a Ropioneto).
  • the organic peroxide is not particularly limited.
  • acetyl peroxide, propionyl peroxide, isobutyroyl peroxide, octanoyl peroxide, decanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 3, 5, 5 -Diacyl peroxides such as trimethylhexanoyl peroxide, benzoyl peroxide, 4-methylbenzoyl peroxide, diisopropyl peroxydicarbonate, succinic peroxide, di-2-ethylhexyl peroxydicarbonate; cumylperoxyneodeca Noate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynoedecanoate, t-hexylpa Oxyneodecanoate, t-butylperoxyneodecanoate,
  • Peroxyesters are preferred, more preferred t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyneohepta
  • an organic peroxide as the radical polymerization initiator, it may be used as a redox polymerization initiator in combination with a reducing agent such as sodium ascorbate or sodium formaldehyde sulfonate.
  • polymerization initiators may be used alone or in combination of two or more at any ratio.
  • the (meth) acrylic acid ester polymer (A) has a group derived from a non-nitrile azo polymerization initiator, or the (meth) acrylic acid ester polymer (A) starts organic peroxide polymerization. Having a group derived from an agent means that a radical generated by decomposition of a polymerization initiator is added to a part of the (meth) acrylic acid ester polymer (A).
  • the (meth) acrylic acid alkyl ester monomer constituting the main chain of the (meth) acrylic acid ester polymer (A) is not particularly limited, and various types can be used.
  • Methods acrylic acid esters in which the alcohol component constituting the ester such as tert-butyl (meth) acrylate is a linear, branched or alicyclic alkyl group having 1 to 4 carbon atoms;
  • (meth) acrylic acid n -Linear, branched or fatty acids having 5 to 7 carbon atoms in the alcohol component constituting esters such as pentyl, n-hexyl (meth) acrylate, cyclohexyl (meth)
  • the (meth) acrylic acid ester containing a crosslinkable silyl group constituting the (meth) acrylic acid ester-based polymer (A) is not particularly limited, and is represented by the following general formula (1) and / or general formula (2). As long as it is a (meth) acrylic acid ester having a silicon group-containing functional group shown in FIG.
  • These monomers may be used alone or a plurality of monomers may be copolymerized.
  • the (meth) acrylic acid ester polymer (A) has 0 to 15 parts by weight of a methacrylic acid ester in which the alcohol component constituting the ester is a linear, branched or alicyclic alkyl group having 1 to 4 carbon atoms ( More preferably 0.5 to 10 parts by weight, still more preferably 1 to 5 parts by weight), and the acrylate ester in which the alcohol component constituting the ester is a linear, branched or alicyclic alkyl group having 1 to 4 carbon atoms 55 to 90 parts by weight (more preferably 60 to 85 parts by weight, still more preferably 67 to 80 parts by weight), and the alcohol component constituting the ester is a linear, branched or alicyclic alkyl group having 8 or more carbon atoms.
  • It is a polymer having a repeating unit derived from 5 to 30 parts by weight (more preferably 10 to 25 parts by weight, still more preferably 13 to 22 parts by weight) of (meth) acrylic acid ester.
  • the (meth) acrylic acid ester polymer (A) is more preferably 0 to 15 parts by weight (more preferably 0.5 to 10 parts by weight, still more preferably 1 to 5 parts by weight) of methyl methacrylate, 55 to 90 parts by weight (more preferably 60 to 85 parts by weight, still more preferably 67 to 80 parts by weight), and 5 to 30 parts by weight of 2-ethylhexyl acrylate (more preferably 10 to 25 parts by weight, still more preferably 13 to 22 parts by weight) It is desirable that the polymer has a repeating unit derived from (part).
  • the (meth) acrylic acid ester containing a crosslinkable silyl group is preferably 1.2% by weight or more, more preferably 100% by weight or more, more preferably 100% by weight or more of the total monomer constituting the (meth) acrylic acid ester polymer (A). 2.0% by weight or more, more preferably 3.0% by weight or more, preferably less than 12% by weight, more preferably 10% by weight or less, still more preferably 8% by weight or less, and even more preferably 5% by weight or less. It is.
  • the total amount of (meth) acrylic acid alkyl ester monomers is preferably 1 to 100 times mol, more preferably 20 to 60 times mol, based on the total amount of (meth) acrylic acid ester containing a crosslinkable silyl group.
  • the amount is preferably 30 to 50 times mol.
  • the method for synthesizing the (meth) acrylic acid ester polymer (A) is not particularly limited, and examples thereof include known methods. Specifically, a free radical polymerization method can be used. As the free radical polymerization method, a polymerization initiator, a chain transfer agent, a solvent, and the like are added, a solution polymerization method in which polymerization is performed at 50 to 150 ° C., an alkyl acrylate ester-based monomer described in JP-A No. 2001-207157. Examples thereof include a continuous bulk polymerization method in which a polymer is synthesized at high temperature and high pressure.
  • the polymerization temperature of the (meth) acrylic acid ester polymer (A) is preferably 60 ° C. to 140 ° C., more preferably 80 ° C. to 130 ° C., further preferably 90 ° C. to 110 ° C. .
  • the polymerization temperature of the component (A) is lower than 60 ° C., the molecular weight may increase and the viscosity may become high.
  • the polymerization temperature is higher than 140 ° C., it is necessary to use a solvent having a high boiling point. It becomes difficult to devolatilize.
  • the chain transfer agent examples include mercapto group-containing compounds such as n-dodecyl mercaptan, tert-dodecyl mercaptan, and lauryl mercaptan.
  • a reactive silicon group is to be introduced at the molecular chain end of the (meth) acrylic acid ester polymer, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylchloro Examples include methyldimethoxysilane, 3-mercaptopropylmethoxymethyldimethoxysilane, mercaptomethyltrimethoxysilane, (mercaptomethyl) dimethoxymethylsilane, and the like. These may be used alone or in combination of two or more. Since the chain transfer agent may adversely affect the weather resistance, the amount used is preferably 2% or less of the total amount of monomers, particularly preferably not used.
  • the solvent examples include aromatic compounds such as toluene, xylene, styrene, ethylbenzene, paradichlorobenzene, di-2-ethylhexyl phthalate, di-n-butyl phthalate; hexane, heptane, octane, cyclohexane, methylcyclohexane, etc.
  • aromatic compounds such as toluene, xylene, styrene, ethylbenzene, paradichlorobenzene, di-2-ethylhexyl phthalate, di-n-butyl phthalate; hexane, heptane, octane, cyclohexane, methylcyclohexane, etc.
  • Hydrocarbon compounds carboxylic acid ester compounds such as butyl acetate, n-propyl acetate and isopropyl acetate; ketone compounds such as methyl isobutyl ketone and methyl ethyl ketone; dialkyl carbonate compounds such as dimethyl carbonate and diethyl carbonate; 1-propanol, 2-propanol And alcohol compounds such as 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and amyl alcohol.
  • at least one selected from a dialkyl carbonate compound and an alcohol compound is preferable from the viewpoints of not being a guideline formulating substance for the Ministry of Health, Labor and Welfare, odor, and environmental load.
  • GEV Gateshaft Emission Control Reelte Ferry Gewerkstoffe Ave
  • GEV GEV Specification and Classification Criteria
  • dimethyl carbonate, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, and tert-butyl alcohol are more preferred.
  • 2-Propanol and isobutyl alcohol are particularly preferable.
  • the (meth) acrylic acid ester polymer (A) is a (meth) acrylic acid ester containing a (meth) acrylic acid ester crosslinkable silyl group and a (meth) acrylic acid alkyl ester containing a crosslinkable silyl group.
  • the (meth) acrylate polymer (A) contains a crosslinkable silyl group in the molecular chain side chain.
  • the weight average molecular weight of the (meth) acrylic acid ester polymer (A) is preferably 7,000 to 14,000, more preferably 7,500 to 12,000 in terms of polystyrene in GPC. Preferably, it is 8,000 to 10,000. When the weight average molecular weight of the component (A) exceeds 14,000, compatibility with the organic polymer (B) may be lowered, or workability may be lowered due to high viscosity.
  • the number average molecular weight of the (meth) acrylic acid ester polymer (A) is preferably 3,500 to 5,800, more preferably 3,800 to 5,600, still more preferably 4,000. ⁇ 5,000.
  • the molecular weight distribution (Mw / Mn) of the (meth) acrylic acid ester polymer (A) is not particularly limited, but is preferably less than 3.0, more preferably 2.5 or less, and even more preferably 2.3 or less. .2 or less is particularly preferable. Although a minimum is not specifically limited, 1 or more are preferable and 1.9 or more may be sufficient.
  • the (meth) acrylic acid ester polymer (A) has a silicon group-containing functional group represented by the general formula (1) and / or the general formula (2), and the silicon-containing functional group represented by the general formula (1).
  • An average of 0 to 2.0 groups per molecule, and an average of 0 to 2.0 silicon-containing functional groups represented by the general formula (2) are contained in (A).
  • the total number of reactive silicon groups is preferably 0.5 to 2.5, more preferably 0.5 to 2.3, and still more preferably 0.00 on average per polymer molecule. It is 5 to 2.0, more preferably 0.6 to 1.5. If it is less than 0.5, the weather resistance of the cured product tends to decrease. On the other hand, when the number exceeds 2.5, the strength of the cured product is lowered and may become brittle.
  • -SiX 3 (1) (In the formula, X is a hydroxy group or a hydrolyzable group, and three Xs may be the same or different.)
  • -SiR 1 X 2 (2) (R 1 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or —OSiR ′ 3 (R ′ is Each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X is the same as described above, and two Xs may be the same or different.
  • the number of silicon-containing functional groups in one molecule is determined as the product of the number-average molecular weight in terms of polystyrene by GPC and the concentration (mol / g) of silicon-containing functional groups.
  • the hydrolyzable group will be described in detail later.
  • the E-type viscosity of the (meth) acrylic acid ester polymer (A) measured under the conditions of 23 ° C. and 3 ° ⁇ R14 is 15 to 200 Pa ⁇ s, preferably 22 to 100 Pa ⁇ s, more preferably 25 to 50 Pa ⁇ s, more preferably 26 to 40 Pa ⁇ s.
  • an organic polymer (B) having a reactive silicon group is used.
  • the reactive silicon group of the organic polymer (B) has the general formula (3): -SiR 2 3-a X a (3)
  • R 2 is independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or —OSiR ′ 3
  • R ′ each independently represents a hydrocarbon group having 1 to 20 carbon atoms
  • each X independently represents a hydroxy group or a hydrolyzable group.
  • a is an integer of 1 to 3.
  • the hydrolyzable group is not particularly limited, and specifically, for example, hydrogen atom, halogen atom, alkoxy group, alkenyloxy group, aryloxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group , Aminooxy group, mercapto group and the like.
  • halogen, alkoxy group, alkenyloxy group, and acyloxy group are preferable because of their high activity
  • alkoxy groups such as methoxy group and ethoxy group are more preferable because they are mildly hydrolyzable and easy to handle.
  • the group is particularly preferred.
  • the ethoxy group and the isopropenoxy group are preferably removed from the reaction by ethanol and acetone, respectively, from the viewpoint of safety.
  • the hydrolyzable group or hydroxy group can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxy groups are bonded to the reactive silicon group, they may be the same or different.
  • a is preferably 2 or 3 from the viewpoint of curability, and is particularly preferably 3 when quick curability is required, and when stability during storage is required. Is preferably 2.
  • R 2 in the general formula (3) include, for example, an alkyl group such as a methyl group and an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, Examples thereof include a trimethylsiloxy group, a chloromethyl group, and a methoxymethyl group. Of these, a methyl group is particularly preferred.
  • the reactive silicon group include trimethoxysilyl group, triethoxysilyl group, triisopropoxysilyl group, dimethoxymethylsilyl group, diethoxymethylsilyl group, diisopropoxymethylsilyl group, tris (2 -Propenyloxy) silyl group, (chloromethyl) dimethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group, (ethoxymethyl) dimethoxysilyl group.
  • a trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group are more preferable, and a dimethoxymethylsilyl group is particularly preferable because it is general-purpose and has high activity and good curability. Further, from the viewpoint of storage stability, a dimethoxymethylsilyl group and a triethoxysilyl group are particularly preferable.
  • a chloromethyldimethoxysilyl group and a methoxymethyldimethoxysilyl group are preferable because they exhibit particularly high curability.
  • a cured product obtained from an organic polymer having a trifunctional silyl group such as a trimethoxysilyl group or a triethoxysilyl group tends to be highly recoverable, and is preferable.
  • the introduction of the reactive silicon group may be performed by a known method. That is, for example, the following method can be mentioned.
  • an unsaturated bond is introduced into a polymer (also referred to as a precursor polymer) that is a raw material of the organic polymer (B), and the hydrosilane compound is hydrosilylated with respect to the unsaturated bond. It is a method of adding by reaction. Any method can be used for introducing the unsaturated bond. For example, a precursor polymer having a functional group such as a hydroxyl group is allowed to react with a compound having reactivity with this functional group and a compound having an unsaturated group. There are a method for obtaining an unsaturated group-containing polymer and a method for copolymerizing a polymerizable monomer having an unsaturated bond.
  • reaction between a reactive group-containing polymer (precursor polymer) and a silane coupling agent reacting with the precursor polymer having a reactive group such as a hydroxyl group, an amino group, or an unsaturated bond, and the reactive group.
  • a compound having both a group capable of forming a bond and a reactive silicon group also called a silane coupling agent.
  • a hydroxyl group and an isocyanate group As a combination of the reactive group of the precursor polymer and the reactive group of the silane coupling agent, a hydroxyl group and an isocyanate group, a hydroxyl group and an epoxy group, an amino group and an isocyanate group, an amino group and a thioisocyanate group, an amino group and an epoxy group, Examples include, but are not limited to, Michael addition of amino group and acrylic structure, carboxylic acid group and epoxy group, unsaturated bond and mercapto group.
  • the method (I) is preferable because the reaction is simple, the amount of the reactive silicon group introduced is adjusted, and the physical properties of the resulting reactive silicon group-containing polymer are stable.
  • the method (II) has many reaction options, and it is easy and preferable to increase the rate of introduction of reactive silicon groups.
  • hydrosilane compound used in the method (I) include halogenated silanes such as trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane; trimethoxysilane, triethoxysilane, and methyldiethoxysilane.
  • silane coupling agent examples include the following compounds.
  • mercaptosilanes such as 3-mercaptopropyl (methoxymethyl) (methoxy) methylsilane that react with an unsaturated bond
  • isocyanate silanes such as 3-isocyanatopropyl (methoxymethyl) (methoxy) methylsilane that react with a hydroxyl group
  • Epoxy silanes such as 3-glycidoxypropyl (methoxymethyl) (methoxy) methylsilane that react with hydroxyl groups, amino groups, and carboxylic acid groups; 3-aminopropyl (methoxymethyl) that reacts with isocyanate groups and thioisocyanate groups
  • Aminosilanes such as (methoxy) methylsilane; hydroxyalkylsilanes and the like.
  • the above silane coupling agent is an example, and a silyl group can be introduced by utilizing or applying a silyl group can be introduced by
  • the average number of reactive silicon groups contained in the reactive silicon group-containing organic polymer (B) per molecule of the polymer is at least 0.5, preferably 1 to 5, more preferably 1.3. From 4 to 4, more preferably from 1.4 to 3.5, and even more preferably from 1.5 to 3, particularly from the viewpoint of high elongation and high strength, preferably from 2 to 5, 2 to 4 are more preferable, and 2 to 3.5 are more preferable.
  • the number of reactive silicon groups contained in the molecule is less than 0.5 on average, curability becomes insufficient, and good rubber elasticity behavior is hardly exhibited.
  • the number of reactive silicon groups contained in the molecule exceeds 5 on average, the cured product tends to be hard, and the elongation physical properties tend to decrease.
  • the reactive silicon group may be at the end of the main chain or the side chain of the organic polymer molecular chain, or at both ends.
  • the reactive silicon group is only at the end of the main chain of the molecular chain, so that high strength and high elongation are achieved. It becomes easy to obtain the rubber-like hardened
  • the number average molecular weight of the reactive silicon group-containing organic polymer (B) is about 800 to 50,000, more preferably 1,500 to 40,000, and particularly preferably 2,000 to 30 in terms of polystyrene in GPC. 20,000, more preferably 20,000 to 30,000. If the number average molecular weight of the component (B) is small, the amount of reactive silicon groups introduced increases, which may be inconvenient in terms of production costs. On the other hand, if the molecular weight is large, the viscosity tends to be inconvenient because of high viscosity.
  • the molecular weight distribution (Mw / Mn) of the organic polymer (B) is not particularly limited, but is preferably narrow, preferably less than 2.0, more preferably 1.6 or less, even more preferably 1.5 or less. 4 or less is particularly preferable. Although a minimum is not specifically limited, 1 or more are preferable and 1.05 or more may be sufficient.
  • the main chain skeleton of the reactive silicon group-containing organic polymer (B) used in the present invention is not particularly limited, and those having various main chain skeletons can be used.
  • polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc.
  • Saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers have a relatively low glass transition temperature, and the resulting cured product Is more preferable because of its excellent cold resistance.
  • the glass transition temperature of the organic polymer as the component (B) is not particularly limited, but is preferably 20 ° C. or lower, more preferably 0 ° C. or lower, and particularly preferably ⁇ 20 ° C. or lower. . If the glass transition temperature exceeds 20 ° C., the viscosity in winter or in a cold region may increase and workability may deteriorate, and the flexibility of the cured product may decrease and elongation may decrease.
  • the glass transition temperature can be determined by DSC measurement.
  • Organic polymers such as saturated hydrocarbon polymers, polyoxyalkylene polymers, and (meth) acrylic ester polymers are used as adhesive groups for low molecular weight components when used as a base polymer for adhesives and sealants. It is preferable because there is little contamination due to transfer to materials.
  • polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferable because they have high moisture permeability and are excellent in deep-part curability when made into a one-component composition, and also in excellent adhesiveness.
  • a polyoxyalkylene polymer is most preferred.
  • polyoxypropylene polymers are particularly preferable.
  • the polyoxyalkylene polymer essentially has the general formula (4): -R 3 -O- (4) (R 3 is a linear or branched alkylene group having 1 to 14 carbon atoms) and is represented by the general formula (4) in all the repeating units of the polymer. It is preferable that 50% by weight or more of repeating units are present.
  • R 3 in the general formula (4) is preferably a linear or branched alkylene group having 1 to 14, more preferably 2 to 4 carbon atoms.
  • repeating unit represented by the general formula (4) examples include -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3) 2 O-, —CH 2 CH 2 CH 2 CH 2 O— Etc.
  • the main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
  • a polymer comprising a propylene oxide polymer as a main component is preferable because it is amorphous or has a relatively low viscosity.
  • Examples of the method for synthesizing a polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH, and a complex obtained by reacting an organoaluminum compound with porphyrin as disclosed in JP-A-61-215623.
  • Polymerization method using transition metal compound-porphyrin complex catalyst Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, US Pat. No. 3,427,334, Polymerization method using double metal cyanide complex catalyst as shown in US Pat. No.
  • Polyoxy having a number average molecular weight of 6,000 or more, a high molecular weight of Mw / Mn of 1.6 or less, and a narrow molecular weight distribution Alkylene polymer can be exemplified, but not particularly limited thereto.
  • the above polyoxyalkylene polymers having a reactive silicon group may be used alone or in combination of two or more.
  • the saturated hydrocarbon polymer is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring, and the polymer constituting the skeleton thereof is (1) ethylene, propylene, 1-butene, isobutylene, etc.
  • the main monomer is an olefin compound having 2 to 6 carbon atoms, or (2) a diene compound such as butadiene or isoprene is homopolymerized, or is copolymerized with the olefin compound. After that, it can be obtained by a method such as hydrogenation.
  • isobutylene-based polymers and hydrogenated polybutadiene-based polymers can easily introduce functional groups at the terminals, easily control the molecular weight, The number can be increased, and an isobutylene polymer is particularly preferable.
  • Those whose main chain skeleton is a saturated hydrocarbon polymer have characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
  • all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers, but the repeating unit derived from isobutylene is 50 from the viewpoint of rubber properties.
  • Those containing not less than wt% are preferred, those containing not less than 80 wt% are more preferred, and those containing from 90 wt% to 99 wt% are particularly preferred.
  • Examples of the method for producing a saturated hydrocarbon polymer having a reactive silicon group include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-64-22904, Although described in each specification of Kaihei 1-197509, Japanese Patent Publication No. 2539445, Japanese Patent Publication No. 2873395, and Japanese Patent Application Laid-Open No. 7-53882, it is not particularly limited thereto.
  • the saturated hydrocarbon polymer having a reactive silicon group may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used.
  • the following vinyl monomers can be copolymerized together with the (meth) acrylic acid ester monomer.
  • the vinyl monomer include styrene monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, chlorostyrene, styrene sulfonic acid and salts thereof; silicon-containing vinyl monomers such as vinyl trimethoxysilane and vinyl triethoxysilane; Maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl and dialkyl esters of fumaric acid; maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, Maleimide monomers such as dodecylmaleimide, stearylmaleimide, pheny
  • the copolymer which consists of a styrene-type monomer and a (meth) acrylic-acid type monomer from the physical property of a product etc. is preferable. More preferred is a (meth) acrylic polymer comprising an acrylate monomer and a methacrylic acid ester monomer, and particularly preferred is an acrylic polymer comprising an acrylate monomer.
  • butyl acrylate monomers are more preferred from the standpoints of low viscosity of the compound, low modulus of the cured product, high elongation, weather resistance, heat resistance and the like.
  • copolymers based on ethyl acrylate are more preferred.
  • This polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low temperature characteristics (cold resistance). Therefore, in order to improve the low temperature characteristics, a part of ethyl acrylate is converted into butyl acrylate. It is also possible to replace it. However, as the ratio of butyl acrylate is increased, its good oil resistance is impaired.
  • the ratio is preferably 40% or less, and more preferably 30% or less. More preferably. It is also preferable to use 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate or the like in which oxygen is introduced into the side chain alkyl group in order to improve low temperature characteristics without impairing oil resistance.
  • the ratio is preferably 40% or less.
  • suitable polymers by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance and low temperature characteristics.
  • required physical properties such as oil resistance, heat resistance and low temperature characteristics.
  • excellent balance of physical properties such as oil resistance, heat resistance, and low temperature characteristics include ethyl acrylate / butyl acrylate / 2-methoxyethyl acrylate (by weight ratio of 40-50 / 20- 30/30 to 20).
  • these preferred monomers may be copolymerized with other monomers, and further block copolymerized, and in that case, these preferred monomers are preferably contained in a weight ratio of 40% or more.
  • (meth) acrylic acid in the above expression form represents acrylic acid and / or methacrylic acid.
  • the method for synthesizing the (meth) acrylic acid ester-based polymer is not particularly limited, and may be performed by a known method.
  • a polymer obtained by a normal free radical polymerization method using an azo compound or a peroxide as a polymerization initiator has a problem that the molecular weight distribution is generally as large as 2 or more and the viscosity is increased. Yes. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and a low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high ratio. It is preferable to use a living radical polymerization method that does not use the non-nitrile azo polymerization initiator or the organic peroxide polymerization initiator described above.
  • the “atom transfer radical polymerization method” for polymerizing a (meth) acrylate monomer using an organic halide or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst In addition to the characteristics of the “living radical polymerization method”, it has a halogen or the like that is relatively advantageous for functional group conversion reaction, and has a specific functional group because it has a large degree of freedom in designing initiators and catalysts ( The method for producing a (meth) acrylic acid ester polymer is more preferable. Examples of this atom transfer radical polymerization method include Matyjazewski et al., Journal of American Chemical Society (J. Am. Chem. Soc.) 1995, 117, 5614.
  • Examples of the method for producing a (meth) acrylic acid ester-based polymer having a reactive silicon group include chain transfer described in JP-B-3-14068, JP-B-4-55444, JP-A-6-211922, and the like.
  • a production method using a free radical polymerization method using an agent is disclosed.
  • Japanese Patent Application Laid-Open No. 9-272714 discloses a production method using an atom transfer radical polymerization method, but is not particularly limited thereto.
  • the (meth) acrylic acid ester-based polymer having a reactive silicon group may be used alone or in combination of two or more.
  • organic polymers having a reactive silicon group may be used alone or in combination of two or more.
  • a group consisting of a polyoxyalkylene polymer having a reactive silicon group, a saturated hydrocarbon polymer having a reactive silicon group, and a (meth) acrylic acid ester polymer having a reactive silicon group An organic polymer obtained by blending two or more selected from the above can also be used.
  • a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a reactive silicon group and a (meth) acrylic acid ester polymer having a reactive silicon group is disclosed in JP-A-59-122541.
  • Japanese Laid-Open Patent Publication No. 63-112642 Japanese Laid-Open Patent Publication No. 6-172631, and Japanese Laid-Open Patent Publication No. 11-116763, the invention is not particularly limited thereto.
  • a preferred specific example has a reactive silicon group and a molecular chain substantially having the following general formula (5): —CH 2 —C (R 4 ) (COOR 5 ) — (5) (Meth) acrylate monomer unit having an alkyl group having 1 to 8 carbon atoms represented by (R 4 is a hydrogen atom or a methyl group, R 5 is an alkyl group having 1 to 8 carbon atoms) And the following general formula (6): —CH 2 —C (R 4 ) (COOR 6 ) — (6) (R 4 is the same as above, R 6 is an alkyl group having 9 or more carbon atoms) and is a copolymer consisting of a (meth) acrylate monomer unit having an alkyl group having 9 or more carbon atoms In this method, a polyoxyalkylene polymer having a reactive silicon group is blended with the polymer.
  • R 5 in the general formula (5) is, for example, 1 to 8, preferably 1 to 1 carbon atoms such as a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, and a 2-ethylhexyl group. 4, more preferably 1 or 2 alkyl groups.
  • the alkyl group of R 5 may alone, or may be a mixture of two or more.
  • R 6 in the general formula (6) is, for example, 9 or more carbon atoms such as a nonyl group, a decyl group, a lauryl group, a tridecyl group, a cetyl group, a stearyl group, or a behenyl group, usually 10 to 30, preferably Examples include 10 to 20 long-chain alkyl groups.
  • the alkyl group of R 6 is same as in the case of R 5, alone may or may be a mixture of two or more.
  • the molecular chain of the (meth) acrylic acid ester polymer is substantially composed of monomer units represented by the general formula (5) and the general formula (6). It means that the total of the monomer units of the general formula (5) and the general formula (6) present in the coal exceeds 50% by weight.
  • the total of the monomer units of general formula (5) and general formula (6) is preferably 70% by weight or more.
  • the abundance ratio of the monomer unit of the general formula (5) and the monomer unit of the general formula (6) is preferably 95: 5 to 40:60, and more preferably 90:10 to 60:40. preferable.
  • Examples of monomer units other than the general formula (5) and general formula (6) that may be contained in the copolymer include acrylic acid such as acrylic acid and methacrylic acid; acrylamide, methacrylamide, N- Monomers containing amide groups such as methylol acrylamide and N-methylol methacrylamide, epoxy groups such as glycidyl acrylate and glycidyl methacrylate, and amino groups such as diethylaminoethyl acrylate, diethylaminoethyl methacrylate and aminoethyl vinyl ether; other acrylonitrile, styrene, ⁇ -Monomer units derived from methyl styrene, alkyl vinyl ether, vinyl chloride, vinyl acetate, vinyl propionate, ethylene and the like.
  • a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based polymer having a reactive silicon functional group, in the presence of an organic polymer having a reactive silicon group (A method of polymerizing a meth) acrylate monomer can be used. This production method is specifically disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, etc. It is not limited to these.
  • the main chain skeleton of the organic polymer may contain other components such as a urethane bond component as long as the effects of the present invention are not significantly impaired.
  • the urethane bond component is not particularly limited, and examples thereof include a group (hereinafter also referred to as an amide segment) generated by a reaction between an isocyanate group and an active hydrogen group.
  • the amide segment has the general formula (7): —NR 7 —C ( ⁇ O) — (7) (R 7 represents an organic group or a hydrogen atom).
  • the organic group for R 7 is preferably a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms. Group). Since this structure has a relatively high polarity, it tends to increase the strength of the cured product and the adhesion to the substrate, which is desirable.
  • a cured product obtained by curing a curable composition comprising a polymer containing a urethane bond or an ester bond in the main chain may cleave the main chain at the urethane bond or ester bond part due to heat, etc., and the strength of the cured product May be significantly reduced.
  • the viscosity of the polymer tends to increase. Moreover, a viscosity may rise after storage, and workability
  • the average number of amide segments per molecule is preferably 1 to 10, more preferably 1.5 to 5, and more preferably 2 to 3 Particularly preferred. When the number is less than 1, the curability may not be sufficient. When the number is more than 10, the polymer may have a high viscosity and may be difficult to handle.
  • the amide segment is a urethane group formed by a reaction between an isocyanate group and a hydroxy group; a urea group formed by a reaction between an isocyanate group and an amino group; and formed by a reaction between an isocyanate group and a mercapto group.
  • a thiourethane group etc. can be mentioned.
  • groups generated by the reaction of the active hydrogen in the urethane group, urea group, and thiourethane group with an isocyanate group are also included in the group of the general formula (7).
  • An example of an industrially easy production method of an organic polymer having an amide segment and a reactive silicon group is as follows.
  • An organic polymer having an active hydrogen-containing group at the terminal is reacted with an excess polyisocyanate compound to produce a polyurethane-based main polymer.
  • all or a part of the isocyanate group is represented by the general formula (8): W—R 8 —SiR 2 3-a X a (8) (R 2 , X and a are the same as above.
  • R 8 is a divalent organic group, more preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • W is a hydroxy group, a carboxy group, a mercapto group and Examples thereof include those produced by a method in which a W group of a silicon compound represented by an amino group (an active hydrogen-containing group selected from primary or secondary) is reacted.
  • Examples of known production methods for organic polymers related to this production method include Japanese Patent Publication No. 46-12154 (US Pat. No. 3,632,557), Japanese Patent Application Laid-Open No. 58-109529 (US Pat. No. 4,374,237), Japanese Patent Application Laid-Open No. Sho 62. No. 13430 (US Pat. No.
  • JP-A-8-53528 EP0676403
  • JP-A-10-204144 EP0831108
  • JP-T 2003-508561 US Pat. No. 6,1979,912
  • JP-A-6-21879 US) No. 5364955
  • JP-A-10-53637 US Pat. No. 5,757,751
  • JP-A-11-100197 JP-A-2000-169544
  • JP-A-2000-169545 JP-A-2002-212415
  • JP-A-3313360 JP-A-3313360.
  • Examples of known production methods for organic polymers related to this production method include JP-A-11-279249 (US Pat. No. 5,990,257), JP-A 2000-119365 (US Pat. No. 6,046,270), JP-A 58- No. 29818 (US Pat. No. 4,345,053), JP-A-3-47825 (US Pat. No. 5,068,304), JP-A-11-60724, JP-A-2002-155138, JP-A-2002-249538, WO03 / 018658, WO03 / 059981 Etc.
  • organic polymer having an active hydrogen-containing group at the terminal examples include an oxyalkylene polymer having a hydroxy group at the terminal (polyether polyol), a polyacryl polyol, a polyester polyol, and a saturated hydrocarbon polymer having a hydroxy group at the terminal (Polyolefin polyol), polythiol compounds, polyamine compounds and the like.
  • polyether polyol, polyacryl polyol, and polyolefin polyol are preferable because the obtained organic polymer has a relatively low glass transition temperature and the resulting cured product is excellent in cold resistance.
  • polyether polyols are particularly preferred because the resulting organic polymer has a low viscosity, good workability, and good deep part curability and adhesiveness.
  • Polyacryl polyols and saturated hydrocarbon polymers are more preferred because the resulting cured organic polymer has good weather resistance and heat resistance.
  • polyether polyol those produced by any production method can be used, but those having at least 0.7 hydroxy groups per molecular terminal in terms of the total molecular average are preferable.
  • an oxyalkylene polymer produced using a conventional alkali metal catalyst, an initiator such as a polyhydroxy compound having at least two hydroxy groups in the presence of a double metal cyanide complex or cesium an alkylene Examples include oxyalkylene polymers produced by reacting oxides.
  • a polymerization method using a double metal cyanide complex has a lower degree of unsaturation, a smaller Mw / Mn, a lower viscosity, a high acid resistance, and a high weather resistance oxyalkylene heavy. It is preferable because a coalescence can be obtained.
  • polyacrylic polyol examples include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and a hydroxy group in the molecule.
  • the polymer synthesis method is preferably a living radical polymerization method and more preferably an atom transfer radical polymerization method because the molecular weight distribution is narrow and viscosity can be lowered.
  • Specific examples include Alfon UH-2000 manufactured by Toagosei Co., Ltd.
  • polyisocyanate compound examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate. .
  • the silicon compound of the general formula (8) is not particularly limited, but specific examples include ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, (N— Amino such as phenyl) - ⁇ -aminopropyltrimethoxysilane, N-ethylaminoisobutyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxysilane Group-containing silanes; hydroxy group-containing silanes such as ⁇ -hydroxypropyltrimethoxysilane; mercapto group-containing silanes such as ⁇ -mercaptopropyltrimethoxysilane; and the like.
  • JP-A-6-2111879 (US Pat. No. 5,364,955), JP-A-10-53637 (US Pat. No. 5,757,751), JP-A-10-204144 (EP0831108), JP-A 2000-169544, JP-A 2000-169545.
  • Michael addition reaction products of various ⁇ , ⁇ -unsaturated carbonyl compounds and primary amino group-containing silanes, or various (meth) acryloyl group-containing silanes and primary amino group-containing compounds can also be used as the silicon compound of general formula (8).
  • the reactive silicon group-containing isocyanate compound of the general formula (9) is not particularly limited, but specific examples include ⁇ -trimethoxysilylpropyl isocyanate, ⁇ -triethoxysilylpropyl isocyanate, ⁇ -methyldimethoxysilylpropyl isocyanate. ⁇ -methyldiethoxysilylpropyl isocyanate, trimethoxysilylmethyl isocyanate, triethoxymethylsilylmethyl isocyanate, dimethoxymethylsilylmethyl isocyanate, diethoxymethylsilylmethyl isocyanate and the like. Further, as described in JP-A No. 2000-119365 (US Pat. No. 6,046,270), a compound obtained by reacting a silicon compound of the general formula (8) with an excess of the polyisocyanate compound is also represented by the general formula: It can be used as the reactive silicon group-containing isocyanate compound (9).
  • the weight percentage of the component (A) relative to the total weight of the components (A) and (B) in the curable composition is preferably 20 to 90% by weight, more preferably 25 to 80% by weight, The amount is preferably 30 to 70% by weight, and more preferably 52 to 65% by weight. If it is less than 20% by weight, the weather resistance of the cured product tends to deteriorate, and if it exceeds 90% by weight, the elongation property of the cured product may be lowered.
  • the (meth) acrylic acid ester polymer (A) has a group derived from a non-nitrile azo polymerization initiator or a group derived from an organic peroxide polymerization initiator, Excellent compatibility with the organic polymer (B) having a functional silyl group.
  • the organic polymer (B) having a crosslinkable silyl group and the (meth) acrylic acid ester polymer (A) are mixed and stirred at a weight ratio of 1: 1, and then 30 ° C. or 50 in a nitrogen atmosphere. The liquid does not separate even when left overnight at °C.
  • a silanol condensation catalyst can be used.
  • an organic tin-based curing catalyst can be given.
  • the organic tin catalyst include dimethyltin diacetate, dimethyltin bis (acetylacetonate), dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctanoate, dibutyltin bis (2-ethylhexanoate) ), Dibutyltin bis (methyl maleate), dibutyltin bis (ethyl maleate), dibutyltin bis (butylmaleate), dibutyltin bis (octylmaleate), dibutyltin bis (tridecylmaleate), dibutyltin Bis (benzyl maleate), dibutyl tin diacetate, dioctyl tin bis
  • dioctyltin compounds that have low toxicity are preferred, dioctyltin bis (acetylacetonate) is preferred from the viewpoint of curability, and dioctyltin dilaurate is preferred from the viewpoint of workability.
  • a curing catalyst other than the above-described organotin type can also be used.
  • Specific examples thereof include titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, titanium tetrakis (acetylacetonate), bis (acetylacetonato) diisopropoxytitanium, diisopropoxytitanium bis (ethylacetocetate); aluminum tris And organic aluminum compounds such as (acetylacetonate), aluminum tris (ethylacetoacetate), diisopropoxyaluminum ethylacetoacetate; and zirconium compounds such as zirconium tetrakis (acetylacetonate).
  • carboxylic acid and / or carboxylic acid metal salt can also be used as a curing catalyst.
  • an amidine compound as described in WO2008 / 078654 can also be used.
  • amidine compounds include 1- (o-tolyl) biguanide, 1-phenylguanidine, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1,5,7-triazabicyclo [4.4. .0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, and the like, but are not limited thereto.
  • the curing catalyst is used in an amount of 0.1 to 10 parts by weight, preferably 0.2 to 8 parts by weight, more preferably 100 parts by weight of the total amount of components (A) and (B). Is 0.3 to 5 parts by weight. When the amount is less than 0.1 part by weight, the appropriate curability is not exhibited, and when the amount exceeds 10 parts by weight, the curing is too fast, an appropriate cured product cannot be formed, and the desired performance cannot be exhibited sufficiently.
  • plasticizer may be used.
  • plasticizers include non-aromatic dibasic acid esters such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate; aliphatic esters such as butyl oleate and methyl acetyl ricinoleate; Phosphate esters such as zil phosphate and tributyl phosphate; trimellitic acid esters; chlorinated paraffins; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oils; epoxidized soybean oil, epoxy stearin And epoxy plasticizers such as benzyl acid.
  • non-aromatic dibasic acid esters such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate
  • aliphatic esters such as butyl oleate and
  • Phthalate esters such as diisoundecyl phthalate and bisbutylbenzyl phthalate can also be used. However, in consideration of the influence on the human body and the environment, it is preferable to use less of these, and not to use them.
  • diisodecyl phthalate or diisoundecyl phthalate is preferable, and diisodecyl phthalate is more preferable.
  • the cyclohexane dicarboxylate obtained by water-adding said phthalic acid ester can be used without worrying about safety.
  • This plasticizer is sold by BASF under the trade name Hexamol DINCH and can be easily obtained.
  • the amount of low molecular weight plasticizer such as a phthalate ester plasticizer used is 200 weights per 100 weight parts of the total amount of the (A) component and the (B) component. Parts or less, preferably 100 parts by weight or less, more preferably 70 parts by weight or less, and even more preferably 50 parts by weight or less. If it is desired to obtain a curable composition that does not cause fouling, it is most desirable not to use any low molecular weight plasticizer.
  • the amount is preferably 1 to 80 parts by weight, more preferably 2 to 75 parts by weight, more preferably 3 to 70 parts by weight with respect to 100 parts by weight of the total amount of the component (A) and the component (B). Part is most preferred.
  • a polymeric plasticizer can be used for this curable composition.
  • a high-molecular plasticizer is used, the initial physical properties are maintained over a long period of time as compared with the case where a low-molecular plasticizer that is a plasticizer containing no polymer component in the molecule is used.
  • the drying property also referred to as paintability
  • an alkyd paint is applied to the cured product can be improved.
  • polymer plasticizer examples include vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester; Polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; Is a polyether polyol such as 1,000 or more polyethylene glycol, polypropylene glycol, polytetramethylene glycol or the like.
  • Polyethers such as derivatives converted to ether groups; polystyrenes such as polystyrene and poly- ⁇ -methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene, and the like. It is not a thing.
  • polyethers and vinyl polymers are preferable.
  • polyethers are used as a plasticizer, the surface curability and deep part curability are improved, and the curing delay after storage does not occur.
  • Polypropylene glycol is more preferred.
  • a vinyl polymer is preferable from the viewpoint of compatibility, weather resistance, and heat resistance.
  • acrylic polymers and / or methacrylic polymers are preferred, and acrylic polymers such as polyacrylic acid alkyl esters are more preferred.
  • the polymer synthesis method is preferably a living radical polymerization method and more preferably an atom transfer radical polymerization method because the molecular weight distribution is narrow and viscosity can be lowered.
  • a polymer obtained by so-called SGO process obtained by continuous bulk polymerization of an alkyl acrylate monomer described in JP-A-2001-207157 at high temperature and high pressure.
  • This plasticizer is sold by Toagosei Co., Ltd. under the trade name Alfon.
  • the number average molecular weight of the polymer plasticizer is preferably 500 to 15,000, more preferably 800 to 10,000, still more preferably 1,000 to 8,000, and particularly preferably 1,000. 5,000, most preferably 1,000 to 3,000. If the molecular weight is too low, the plasticizer will flow out over time due to heat and rain, the initial physical properties cannot be maintained over a long period of time, and the alkyd paintability cannot be improved. Moreover, when molecular weight is too high, a viscosity will become high and workability
  • the molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow, preferably less than 1.80, more preferably 1.70 or less, still more preferably 1.60 or less, and even more preferably 1.50 or less. .40 or less is particularly preferable, and 1.30 or less is most preferable.
  • the number average molecular weight is measured by a GPC method in the case of a vinyl polymer, and by a terminal group analysis method in the case of a polyether polymer. Moreover, molecular weight distribution (Mw / Mn) is measured by GPC method (polystyrene conversion).
  • Plasticizers may be used alone or in combination of two or more. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be blended at the time of polymer production.
  • the amount of the high molecular weight plasticizer used is 5 to 150 parts by weight, preferably 10 to 120 parts by weight, more preferably 20 parts by weight based on 100 parts by weight of the total amount of the component (A) and the component (B). Part to 100 parts by weight, more preferably 20 parts to 50 parts by weight. If it is less than 5 parts by weight, the effect as a plasticizer is not expressed, and if it exceeds 150 parts by weight, the mechanical strength of the cured product is insufficient.
  • thermally expandable fine particle hollow body described in JP-A No. 2004-51701 or JP-A No. 2004-66749 can be used.
  • the thermally expandable fine hollow body is a polymer outer shell material (vinylidene chloride copolymer, acrylonitrile copolymer, or vinylidene chloride-acrylonitrile copolymer weight) such as a hydrocarbon having 1 to 5 carbon atoms. It is a plastic sphere wrapped in a spherical shape.
  • the gas pressure in the shell of the thermally expandable fine hollow body increases, and the volume of the polymer outer shell material softens, so that the volume expands dramatically and the bonding interface is Plays the role of peeling.
  • By adding the thermally expandable fine hollow body it is possible to obtain an adhesive composition that can be easily peeled off without destroying the material simply by heating when not necessary, and can be peeled off without using any organic solvent.
  • Aminosilane can be added to the curable composition of the present invention.
  • Aminosilane is a compound having a reactive silicon group and an amino group in the molecule, and is usually referred to as an adhesion-imparting agent.
  • various adherends that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, and organic substrates such as vinyl chloride, acrylic, polyester, polyethylene, polypropylene, polycarbonate, etc. When used, it exhibits a significant adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable.
  • it is a compound that can function as a physical property modifier, an inorganic filler dispersibility improver, and the like.
  • the reactive silicon group of aminosilane include the groups already exemplified, but methoxy group, ethoxy group and the like are preferable from the viewpoint of hydrolysis rate.
  • the number of hydrolyzable groups is preferably 2 or more, particularly 3 or more.
  • aminosilane examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) amino Propylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriisopropoxysilane, ⁇ - (2- (2-aminoethyl) aminoethyl) aminopropyltrimethoxysilane,
  • ⁇ -aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane are used. preferable. Only one type of aminosilane may be used, or two or more types may be used in combination. It has been pointed out that ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane is irritating compared to other aminosilanes, and instead of reducing this aminosilane, ⁇ -aminopropyltrimethoxysilane should be used in combination. Can alleviate irritation.
  • the amount of aminosilane is preferably about 1 to 20 parts by weight, more preferably 2 to 10 parts by weight, further preferably 2 to 5 parts by weight, based on 100 parts by weight of the total amount of the components (A) and (B). preferable. If the amount of aminosilane is less than 1 part by weight, sufficient adhesion may not be obtained. On the other hand, if the blending amount exceeds 20 parts by weight, the cured product becomes brittle and sufficient strength cannot be obtained, and the curing rate may be slow.
  • An adhesiveness imparting agent other than aminosilane can be used in the composition of the present invention.
  • Specific examples of the adhesion-imparting agent other than aminosilane include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ - (3,4- Epoxy group-containing silanes such as epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropyl Isocyanate group-containing silanes such as methyldiethoxysilane, ⁇ -isocyanatopropylmethyldimethoxy
  • the condensate which condensed the said silane partially can also be used.
  • amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, and the like, which are derivatives of these, can also be used as adhesion imparting agents. .
  • the effects of the adhesion-imparting agent added to the curable composition of the present invention include various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, vinyl chloride, acrylic, and polyester. When used on organic substrates such as polyethylene, polypropylene, polycarbonate, etc., it exhibits a remarkable adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable.
  • Specific examples other than the above-described adhesion-imparting agent are not particularly limited, and examples thereof include epoxy resins, phenol resins, sulfur, alkyl titanates, and aromatic polyisocyanates.
  • the adhesiveness-imparting agent may be used alone or in combination of two or more. By adding these adhesion-imparting agents, the adhesion to the adherend can be improved.
  • ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -glycidoxypropylmethyldimethoxysilane are preferred in order to ensure good adhesion.
  • the amount of the adhesion-imparting agent used is preferably about 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, with respect to 100 parts by weight of the total amount of the components (A) and (B). More preferred is about 1 to 7 parts by weight. If the blending amount of the adhesiveness-imparting agent is below this range, sufficient adhesion may not be obtained. On the other hand, if the blending amount of the adhesion-imparting agent exceeds this range, practical deep curability may not be obtained.
  • the adhesiveness-imparting agent is not particularly limited other than the above-mentioned adhesion-imparting agent, and for example, epoxy resins, phenol resins, sulfur, alkyl titanates, aromatic polyisocyanates, and the like can be used.
  • the adhesiveness-imparting agent may be used alone or in combination of two or more.
  • the epoxy resin may lower the catalytic activity depending on the addition amount, it is preferable that the addition amount of the epoxy resin is small in the curable composition of the present invention.
  • the amount of the epoxy resin used is preferably 5 parts by weight or less, more preferably 0.5 parts by weight or less, and substantially contained with respect to 100 parts by weight of the total amount of the component (A) and the component (B). It is particularly preferred not to.
  • antioxidant antioxidant
  • antioxidant antioxidant
  • cured material can be improved.
  • antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred.
  • Tinuvin 622LD, Tinuvin 144, CHIMASSORB 944LD, CHIMASSORB 119FL (all of which are manufactured by BASF Japan Ltd.); MARK LA-57, MARK LA-62, MARK LA-67, MARK LA-63, MARK LA-68 (all above Also manufactured by ADEKA Corporation); Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of which are manufactured by Sankyo Lifetech Co., Ltd.) A hindered amine light stabilizer can also be used.
  • the amount of the antioxidant used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts per 100 parts by weight of the total amount of the components (A) and (B). Parts by weight.
  • a light stabilizer can be used in the composition obtained in the present invention.
  • Use of a light stabilizer can prevent photooxidation degradation of the cured product.
  • the light stabilizer include benzotriazole, hindered amine, and benzoate compounds, with hindered amines being particularly preferred.
  • the light stabilizer is used in an amount of 0.1 to 5 parts by weight, more preferably 0.2 to 5 parts per 100 parts by weight of the total amount of components (A) and (B). Parts by weight. Specific examples of the light stabilizer are also described in JP-A-9-194731.
  • a tertiary amine is used as a hindered amine light stabilizer as described in JP-A-5-70531. It is preferable to use a contained hindered amine light stabilizer for improving the storage stability of the composition.
  • Tinuvin 622LD Tinuvin 144, CHIMASSORB 119FL (all of these are manufactured by BASF Japan Ltd.); MARK LA-57, LA-62, LA-67, LA-63 (all of which are stocks)
  • light stabilizers such as SANOL LS-765, LS-292, LS-2626, LS-1114, and LS-744 (all of which are manufactured by BASF Japan Ltd.).
  • an ultraviolet absorber can be used.
  • the surface weather resistance of the cured product can be enhanced.
  • ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds, and benzotriazole-based compounds are particularly preferable.
  • the ultraviolet absorber is used in an amount of 0.1 to 5 parts by weight, more preferably 0.2 to 3 parts per 100 parts by weight of the total amount of the components (A) and (B). Parts by weight. It is preferable to use a phenolic or hindered phenolic antioxidant, a hindered amine light stabilizer and a benzotriazole ultraviolet absorber in combination.
  • a filler can be added to the composition of the present invention.
  • Fillers include reinforcing silica such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, carbonic acid Magnesium, diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass microballoon, phenolic resin and chloride
  • a filler such as a resin powder such as an organic microballoon of vinylidene resin, PVC powder, and PMMA powder
  • a fibrous filler such as glass fiber and filament.
  • the amount used is 1 to 250 parts by weight, preferably 10 to 200 parts by weight, based on 100 parts by weight of the filler
  • a filler selected from fine calcium carbonate, calcined clay, clay, activated zinc white and the like is preferable, and in the range of 1 to 250 parts by weight with respect to 100 parts by weight of the total amount of component (A) and component (B).
  • preferable results are obtained, preferably 1 to 200 parts by weight, more preferably 50 to 200 parts by weight, and still more preferably 80 to 200 parts by weight.
  • calcium carbonate such as titanium oxide and heavy calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide, and shirasu balloon
  • the filler selected from the above is used in the range of 5 to 200 parts by weight with respect to 100 parts by weight of the total amount of the component (A) and the component (B)
  • preferable results are obtained.
  • calcium carbonate has a greater effect of improving the breaking strength, breaking elongation, and adhesiveness of the cured product as the value of the specific surface area increases.
  • these fillers may be used alone or in combination of two or more.
  • the particle diameter of the surface-treated fine calcium carbonate is preferably 0.5 ⁇ m or less, and the surface treatment is preferably treated with a fatty acid or a fatty acid salt. Moreover, the particle size of calcium carbonate having a large particle size is preferably 1 ⁇ m or more, and an untreated surface can be used.
  • an organic balloon or an inorganic balloon In order to improve the workability (such as sharpness) of the composition and to make the cured product surface matt, it is preferable to add an organic balloon or an inorganic balloon. These fillers can be surface-treated, and may be used alone or in combination of two or more.
  • the balloon particle size is preferably 0.1 mm or less.
  • the surface of the cured product matt it is preferably 5 ⁇ m to 300 ⁇ m.
  • the composition of the present invention is an adhesive for exterior wall joints, exterior wall tiles, and exterior wall tiles such as siding boards, particularly ceramic siding boards, because the cured product has good chemical resistance.
  • high-quality outer walls are used as outer walls due to the mixture of spatter coating, colored aggregates, and the like.
  • a scaly or granular substance having a diameter of 0.1 mm or more, preferably about 0.1 mm to 5.0 mm is blended in the composition of the present invention, the cured product is in harmony with such a high-quality outer wall.
  • the chemical resistance is excellent, the appearance of the cured product is an excellent composition that lasts for a long time.
  • the surface becomes sandy or sandstone-like rough, and when a scaly material is used, the surface becomes uneven.
  • preferred diameters, blending amounts, materials, etc. of the scaly or granular substance are as follows.
  • the diameter is 0.1 mm or more, preferably about 0.1 mm to 5.0 mm, and those having an appropriate size are used according to the material and pattern of the outer wall.
  • the thing of about 0.2 mm to 5.0 mm and about 0.5 mm to 5.0 mm can also be used.
  • the thickness is about 1/10 to 1/5 of the diameter (about 0.01 mm to 1.00 mm).
  • the scale-like or granular substance is mixed in advance in the main sealing material and transported to the construction site as a sealing material, or mixed in the main sealing material at the construction site when used.
  • the scale-like or granular substance is blended in an amount of about 1 to 200 parts by weight with respect to 100 parts by weight of a composition such as a sealing material composition or an adhesive composition.
  • the blending amount is appropriately selected depending on the size of each scale-like or granular substance, the material of the outer wall, the pattern, and the like.
  • natural substances such as silica sand and mica, synthetic rubber, synthetic resin, and inorganic substances such as alumina are used.
  • it is colored in an appropriate color according to the material and pattern of the outer wall.
  • a balloon preferably having an average particle size of 0.1 mm or more
  • the surface becomes sandy or sandstone-like, and the weight can be reduced.
  • Preferred diameters, blending amounts, materials, etc. of the balloon are as follows as described in JP-A-10-251618.
  • the balloon is a spherical filler with a hollow interior.
  • the balloon material include inorganic materials such as glass, shirasu, and silica, and organic materials such as phenol resin, urea resin, polystyrene, and saran, but are not limited thereto.
  • an inorganic material and an organic material can be combined, or a plurality of layers can be formed by stacking.
  • An inorganic or organic balloon or a combination of these can be used.
  • the balloons used may be the same balloon or a mixture of different types of balloons.
  • the balloon can be used by processing or coating the surface thereof, or can be used by treating the surface with various surface treatment agents.
  • an organic balloon may be coated with calcium carbonate, talc, titanium oxide or the like, or an inorganic balloon may be surface-treated with an adhesion-imparting agent.
  • the balloon preferably has a particle size of 0.1 mm or more.
  • the thing of about 0.2 mm to 5.0 mm and about 0.5 mm to 5.0 mm can also be used. If it is less than 0.1 mm, even if it is blended in a large amount, it may only increase the viscosity of the composition and the rough feeling may not be exhibited.
  • the blending amount of the balloon can be easily determined according to the desired degree of sanding tone or sandstone tone. In general, it is desirable to blend those having a particle size of 0.1 mm or more in a ratio of 5 vol% to 25 vol% in terms of volume concentration in the composition.
  • volume concentration of the balloon When the volume concentration of the balloon is less than 5 vol%, there is no feeling of roughness, and when it exceeds 25 vol%, the viscosity of the sealing material and the adhesive becomes high, the workability is poor, the modulus of the cured product is also high, and the sealing material and bonding The basic performance of the agent tends to be impaired.
  • the volume concentration with particularly preferable balance with the basic performance of the sealing material is 8 vol% to 22 vol%.
  • the anti-slip agent as described in JP-A-2000-154368 and the surface of a cured product as described in JP-A-2001-164237 are matted to give an uneven state.
  • An amine compound for obtaining a state particularly a primary and / or secondary amine having a melting point of 35 ° C. or higher can be added.
  • balloons are disclosed in JP-A-2-129262, JP-A-4-8788, JP-A-4-173867, JP-A-5-1225, JP-A-7-113033, JP-A-9-53063, JP-A-10-10. -251618, JP-A No. 2000-154368, JP-A No. 2001-164237, WO 97/05201, and the like.
  • the cured product can form irregularities on the surface and improve the design.
  • Preferred diameters, blending amounts, materials and the like of the cured sealant particles are as follows as described in JP-A No. 2001-115142.
  • the diameter is preferably about 0.1 mm to 1 mm, more preferably about 0.2 mm to 0.5 mm.
  • the blending amount is preferably 5 to 100% by weight, more preferably 20 to 50% by weight in the curable composition.
  • the material include urethane resin, silicone, modified silicone, polysulfide rubber and the like, and are not limited as long as they are used for the sealing material, but a modified silicone-based sealing material is preferable.
  • a silicate can be used for the composition of this invention.
  • This silicate acts as a cross-linking agent and has a function of improving the resilience, durability, and creep resistance of the organic polymers that are the components (A) and (B) of the present invention. Furthermore, it has the effect of improving adhesiveness, water-resistant adhesiveness, and adhesive durability under high temperature and high humidity conditions.
  • As the silicate tetraalkoxysilane or a partial hydrolysis condensate thereof can be used.
  • the amount used is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of the components (A) and (B). is there.
  • silicate examples include, for example, tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n- Examples thereof include tetraalkoxysilanes (tetraalkyl silicates) such as butoxysilane, tetra-i-butoxysilane, and tetra-t-butoxysilane, and partial hydrolysis condensates thereof.
  • the partial hydrolysis-condensation product of tetraalkoxysilane is more preferable because the restoring effect, durability, and creep resistance of the present invention are greater than those of tetraalkoxysilane.
  • Examples of the partially hydrolyzed condensate of tetraalkoxysilane include those obtained by adding water to tetraalkoxysilane and condensing it by partial hydrolysis according to an ordinary method.
  • a commercially available product can be used as the partially hydrolyzed condensate of the organosilicate compound.
  • Examples of such condensates include methyl silicate 51 and ethyl silicate 40 (both manufactured by Colcoat Co., Ltd.).
  • a physical property modifier that adjusts the tensile properties of the cured product to be produced may be added as necessary.
  • the physical property modifier is not particularly limited, but examples thereof include alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropenoxy Silanes, alkylisopropenoxysilanes such as ⁇ -glycidoxypropylmethyldiisopropenoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethylmethoxy Silane, ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) amino
  • a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of reducing the modulus of the cured product without deteriorating the stickiness of the surface of the cured product.
  • Particularly preferred are compounds that produce trimethylsilanol.
  • Examples of the compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis include compounds described in JP-A-5-117521.
  • derivatives of alkyl alcohols such as hexanol, octanol, decanol, etc., which produce a silicon compound that produces R 3 SiOH such as trimethylsilanol by hydrolysis, trimethylol described in JP-A-11-241029
  • examples thereof include compounds that are derivatives of polyhydric alcohols having 3 or more hydroxy groups such as propane, glycerin, pentaerythritol, sorbitol and the like, and that generate silicon compounds that generate R 3 SiOH such as trimethylsilanol by hydrolysis.
  • a compound which is a derivative of an oxypropylene polymer as described in JP-A-7-258534 and generates a silicon compound which generates R3SiOH such as trimethylsilanol by hydrolysis can also be mentioned.
  • a polymer having a crosslinkable reactive silicon-containing group and a silicon-containing group that can be converted into a monosilanol-containing compound by hydrolysis as described in JP-A-6-279893 can also be used.
  • the physical property modifier is used in the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, with respect to 100 parts by weight of the total amount of component (A) and component (B).
  • a thixotropic agent (anti-sagging agent) may be added as necessary to prevent sagging and improve workability.
  • the anti-sagging agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate.
  • rubber powder having a particle size of 10 ⁇ m to 500 ⁇ m as described in JP-A-11-349916 or organic fiber as described in JP-A-2003-155389 is used, thixotropy is high. A composition having good workability can be obtained.
  • These thixotropic agents (anti-sagging agents) may be used alone or in combination of two or more.
  • the thixotropic agent is used in the range of 0.1 to 20 parts by weight, preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B).
  • a compound containing an epoxy group in one molecule can be used.
  • the restorability of the cured product can be improved.
  • the compound having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof.
  • epoxidized soybean oil epoxidized linseed oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxy octyl stearate, Examples thereof include epoxy butyl stearate. Of these, E-PS is particularly preferred.
  • the epoxy compound is preferably used in the range of 0.5 to 50 parts by weight with respect to 100 parts by weight of the total amount of the component (A) and the component (B).
  • a photocurable material can be used in the composition of the present invention.
  • a photocurable material is used, a film of the photocurable material is formed on the surface of the cured product, and the stickiness and weather resistance of the cured product can be improved.
  • a photocurable substance is a substance that undergoes a chemical change in its molecular structure in a very short time due to the action of light, resulting in a change in physical properties such as curing. Many compounds such as organic monomers, oligomers, resins or compositions containing them are known as this type of compound, and any commercially available compound can be adopted. Representative examples include unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, and the like.
  • Unsaturated acrylic compounds include monomers, oligomers or mixtures thereof having one or several acrylic or methacrylic unsaturated groups, including propylene (or butylene, ethylene) glycol di (meth) acrylate, neopentyl Examples thereof include monomers such as glycol di (meth) acrylate or oligoesters having a molecular weight of 10,000 or less.
  • Aronix M-210 special acrylate (bifunctional) Aronix M-210, Aronix M-215, Aronix M-220, Aronix M-233, Aronix M-240, Aronix M-245; (Trifunctional) Aronix M -305, Aronix M-309, Aronix M-310, Aronix M-315, Aronix M-320, Aronix M-325, and (Multifunctional) Aronix M-400, etc., but especially contain acrylic functional groups And a compound containing 3 or more of the same functional groups on average in one molecule is preferable (all Aronix is a product of Toagosei Co., Ltd.).
  • polyvinyl cinnamates examples include a photosensitive resin having a cinnamoyl group as a photosensitive group, in which polyvinyl alcohol is esterified with cinnamic acid, and many polyvinyl cinnamate derivatives are exemplified.
  • the azide resin is known as a photosensitive resin having an azide group as a photosensitive group.
  • a photosensitive resin in addition to a rubber photosensitive solution in which a diazide compound is added as a photosensitive agent, a “photosensitive resin” (March 17, 1972).
  • a “photosensitive resin” March 17, 1972.
  • the photocurable substance is used in the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of the components (A) and (B). If the amount is 0.1 parts by weight or less, there is no effect of improving the weather resistance, and if it is 20 parts by weight or more, the cured product becomes too hard and tends to crack.
  • an oxygen curable substance can be used.
  • the oxygen curable substance include unsaturated compounds that can react with oxygen in the air.
  • the oxygen curable substance reacts with oxygen in the air to form a cured film near the surface of the cured product. And prevents dust from adhering.
  • oxygen curable substance examples include drying oils typified by drill oil and linseed oil, various alkyd resins obtained by modifying the compounds; acrylic polymers and epoxy resins modified with drying oils , Silicone resins; 1,2-polybutadiene, 1,4-polybutadiene, polymers of C5 to C8 diene obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • drying oils typified by drill oil and linseed oil, various alkyd resins obtained by modifying the compounds
  • acrylic polymers and epoxy resins modified with drying oils Silicone resins
  • 1,2-polybutadiene, 1,4-polybutadiene polymers of C5 to C8 diene obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • Liquid polymers liquid copolymers such as NBR and SBR obtained by copolymerizing monomers such as acrylonitrile and styrene copolymerizable with these diene compounds so that the main component is a diene compound
  • various modified products thereof maleinized modified products, boiled oil modified products, etc.
  • drill oil and liquid diene polymers are particularly preferable.
  • the effect may be enhanced if a catalyst for promoting the oxidative curing reaction or a metal dryer is used in combination.
  • Examples of these catalysts and metal dryers include metal salts such as cobalt naphthenate, lead naphthenate, zirconium naphthenate, cobalt octylate, zirconium octylate, and amine compounds.
  • the amount of the oxygen curable substance to be used is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the component (A) and the component (B), more preferably 0. 5 to 10 parts by weight. If the amount used is less than 0.1 parts by weight, the improvement of the contamination is not sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired.
  • an oxygen curable substance is preferably used in combination with a photocurable substance.
  • a flame retardant such as a phosphorus plasticizer such as ammonium polyphosphate and tricresyl phosphate, aluminum hydroxide, magnesium hydroxide, and thermally expandable graphite can be added to the curable composition of the present invention.
  • the said flame retardant may be used independently and may be used together 2 or more types.
  • the flame retardant is used in the range of 5 to 200 parts by weight, preferably 10 to 100 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B).
  • a solvent can be used for the purpose of reducing the viscosity of the composition, increasing thixotropy, and improving workability.
  • the solvent is not particularly limited, and various compounds can be used. Specific examples include hydrocarbon solvents such as toluene, xylene, heptane, hexane and petroleum solvents; halogen solvents such as trichloroethylene; ester solvents such as ethyl acetate and butyl acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone and the like.
  • Examples include ketone solvents; alcohol solvents such as methanol, ethanol, and isopropyl alcohol; silicone solvents such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane. These solvents may be used alone or in combination of two or more.
  • the blending amount of the solvent is preferably 3 parts by weight or less, more preferably 1 part by weight or less, with respect to 100 parts by weight of the total amount of the components (A) and (B). Most preferably, it is substantially free.
  • various additives may be added as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product.
  • additives include, for example, curability regulators, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
  • curability regulators include, for example, curability regulators, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
  • These various additives may be used alone or in combination of two or more.
  • Specific examples other than the specific examples of the additives listed in this specification include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-62-2904, It is described in Japanese Laid-Open Patent Publication No. 2001
  • the curable composition of the present invention can also be prepared as a one-component type in which all the blended components are pre-blended and sealed and cured by moisture in the air after construction. It is also possible to prepare a two-component type in which components such as a plasticizer and water are blended and the compounding material and the polymer composition are mixed before use. From the viewpoint of workability, a one-component type is preferable.
  • the curable composition When the curable composition is of a one-component type, all the ingredients are pre-blended, so the water-containing ingredients are dehydrated and dried before use, or dehydrated during decompression or the like during compounding and kneading. Is preferred.
  • the curable composition When the curable composition is a two-component type, it is not necessary to add a curing catalyst to the main component containing a polymer having a reactive silicon group, so gelation is possible even if some moisture is contained in the compounding agent. However, when long-term storage stability is required, dehydration and drying are preferable.
  • heat drying method or vacuum dehydration method for solid materials such as powders, dehydration method using vacuum zeolite or activated zeolite, silica gel, quick lime, magnesium oxide for liquid materials
  • the method is preferred.
  • n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, methylsilicate, ethylsilicate, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxy are used as dehydrating agents.
  • An alkoxysilane compound such as silane or ⁇ -glycidoxypropyltrimethoxysilane may be added and reacted with water for dehydration.
  • an oxazolidine compound such as 3-ethyl-2-methyl-2- (3-methylbutyl) -1,3-oxazolidine may be blended as a dehydrating agent and reacted with water for dehydration.
  • a dehydrating agent a small amount of an isocyanate compound may be blended, and the isocyanate group and water may be reacted to dehydrate. Addition of an alkoxysilane compound, an oxazolidine compound, and an isocyanate compound improves storage stability.
  • the amount of the silicon compound capable of reacting with water such as dehydrating agent, especially vinyltrimethoxysilane is 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of component (A) and component (B).
  • the range is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight.
  • the method for preparing the curable composition of the present invention is not particularly limited.
  • the above-described components are blended and kneaded using a mixer, roll, kneader or the like at room temperature or under heating, or a small amount of a suitable solvent is used. Ordinary methods such as dissolving and mixing the components may be employed.
  • the curable composition of the present invention When the curable composition of the present invention is exposed to the atmosphere, it forms a three-dimensional network structure by the action of moisture, and is cured into a solid having rubbery elasticity.
  • the curable composition of the present invention is a pressure-sensitive adhesive, a sealing material for buildings, ships, automobiles, roads, etc., an adhesive, a mold preparation, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, a paint, and a spray material. Can be used for etc. Since the hardened
  • electrical and electronic parts materials such as solar cell backside sealing materials, electrical insulation materials such as insulation coating materials for electric wires and cables, elastic adhesives, contact type adhesives, spray type sealing materials, crack repair materials, and tiles
  • Adhesives powder paints, casting materials, medical rubber materials, medical adhesives, medical device sealing materials, food packaging materials, sealing materials for joints of exterior materials such as siding boards, coating materials, primers, electromagnetic wave shielding
  • Conductive materials thermal conductive materials, hot melt materials, potting agents for electrical and electronic use, films, gaskets, various molding materials, and anti-rust / waterproof sealing materials for meshed glass and laminated glass end faces (cut parts)
  • It can be used for various applications such as liquid sealants used in automobile parts, electrical parts, various machine parts and the like.
  • the curable composition of the present invention includes an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiles, an adhesive for stonework, an adhesive for ceiling finishing, an adhesive for floor finishing, and an adhesive for wall finishing.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid feeding system HLC-8120GPC manufactured by Tosoh Corporation Column: Tosoh TSK-GEL H type Solvent: THF Molecular weight: Polystyrene conversion Measurement temperature: 40 ° C
  • the molecular weight in terms of end groups in the examples is determined by measuring the hydroxyl value by the measuring method of JIS K 1557 and the iodine value by the measuring method of JIS K 0070, and calculating the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). This is the molecular weight determined in consideration.
  • the average number of silyl groups introduced per terminal of the polymer (B) shown in the examples was calculated by NMR measurement.
  • TSK-GEL H type was used, and the solvent was measured using polystyrene as the molecular weight.
  • viscosity measured at 23.0 ° C., 3 ° ⁇ R14 rotor using a RE80 viscometer manufactured by Tokyo Keiki Co., Ltd.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • TSMA 3- (trimethoxysilyl) propyl methacrylate
  • DSMA 3- (methyldimethoxysilyl) propyl methacrylate
  • EHA 2-ethylhexyl acrylate
  • IBA isobutyl alcohol
  • V-59 2 , 2'-Azobis (2-methylbutyronitrile) (Wako Pure Chemical Industries, Ltd.)
  • V-601 Dimethyl-2,2′-azobis (2-methylpropionate) (manufactured by Wako Pure Chemical Industries, Ltd.)
  • Perhexyl O t-hexyl peroxy-2-ethylhexanoate (manufactured by NOF Corporation)
  • Perbutyl O t-butyl peroxy-2-ethylhexanoate (manufactured by NOF Corporation)
  • Perbutyl O t-butyl peroxy-2-
  • allyl chloride was added to the hydroxyl group of the polymer (P-1) to convert the terminal hydroxyl group into an allyl group. Unreacted allyl chloride was removed by vacuum devolatilization.
  • 300 parts by weight of n-hexane and 300 parts by weight of water were mixed and stirred, and then the water was removed by centrifugation. Further, 300 parts by weight of water was mixed and stirred, and after removing water again by centrifugation, hexane was removed by devolatilization under reduced pressure.
  • a polyoxypropylene polymer (Q-1) having an allyl group at the terminal site was obtained.
  • Q-1 a polyoxypropylene polymer having an allyl group at the terminal site
  • 50 ⁇ l of platinum divinyldisiloxane complex solution was added, and 4.8 g of dimethoxymethylsilane was slowly added dropwise with stirring.
  • the mixed solution was reacted at 100 ° C. for 6 hours under 6% oxygen condition, and then unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a number average molecular weight having a dimethoxymethylsilyl group at the end of about 28,500.
  • polyoxypropylene (B-1) was obtained.
  • the polymer (B-1) was found to have an average of 0.8 dimethoxymethylsilyl groups at one end and an average of 1.6 per molecule.
  • allyl chloride was added to the hydroxyl group of the polymer (P-2) to convert the terminal hydroxyl group into an allyl group. Unreacted allyl chloride was removed by vacuum devolatilization.
  • 300 parts by weight of n-hexane and 300 parts by weight of water were mixed and stirred, and then the water was removed by centrifugation. Further, 300 parts by weight of water was mixed and stirred, and after removing water again by centrifugation, hexane was removed by devolatilization under reduced pressure.
  • a polyoxypropylene polymer (Q-2) having an allyl group at the terminal site was obtained.
  • Q-2 a polyoxypropylene polymer having an allyl group at the terminal site was obtained.
  • Q-2 a polyoxypropylene polymer having an allyl group at the terminal site was obtained.
  • Q-2 a polyoxypropylene polymer having an allyl group at the terminal site was obtained.
  • Q-2 a polyoxypropylene polymer having an allyl group at the terminal site was obtained.
  • PMMA platinum divinyldisiloxane complex solution
  • dimethoxymethylsilane dimethoxymethylsilane was slowly added dropwise with stirring.
  • the mixture solution was reacted at 100 ° C. for 6 hours under 6% oxygen condition, and then unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a number average molecular weight having a dimethoxymethylsilyl group at the end of about 21,100.
  • B-2 polyoxypropy
  • polyoxypropylene (Q-3) having an average of 2.0 carbon-carbon unsaturated bonds at one terminal site, and dimethoxymethylsilane 9. 6 g was slowly added dropwise. After the mixed solution was reacted at 90 ° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a number average molecular weight of about 28,500 having a terminal structure having two or more dimethoxymethylsilyl groups. Of polyoxypropylene (B-3) was obtained. The polymer (B-3) was found to have an average of 1.7 dimethoxymethylsilyl groups at one end and an average of 3.4 per molecule.
  • Examples 1 to 7 100 parts by weight of the polymer components shown in Table 2 in total, 60 parts by weight of phthalate plasticizer (diisodecyl phthalate, manufactured by J Plus Co., Ltd., trade name: DIDP), surface-treated colloidal calcium carbonate (Shiraishi Kogyo Co., Ltd.) Product name: Hakujyohana CCR) 150 parts by weight, heavy calcium carbonate (Maruo Calcium Co., Ltd.
  • phthalate plasticizer diisodecyl phthalate, manufactured by J Plus Co., Ltd., trade name: DIDP
  • surface-treated colloidal calcium carbonate Shiraishi Kogyo Co., Ltd.
  • Hakujyohana CCR Product name: Hakujyohana CCR 150 parts by weight, heavy calcium carbonate (Maruo Calcium Co., Ltd.
  • Nanox 25A 20 parts by weight
  • titanium oxide Ishihara Sangyo Co., Ltd., trade name: Typeke R-820
  • carbon black Asahi Carbon Co., Ltd., trade name: Asahi # 70
  • thixotropic agent manufactured by Enomoto Kasei Co., Ltd., trade name: Disparon 6500
  • UV absorber Ciba Specialty Chemicals Co., Ltd., trade name: Tinuvin 326
  • light stabilizer Ciba Specialty Chemicals Co., Ltd., products
  • Tinuvin 770 1 part by weight of weighing, after interest thoroughly kneaded by mixing, was passed three times through a small three-roll paint mill.
  • viscosity The 100 ml cup was filled so as not to contain bubbles.
  • BS type viscometer manufactured by Tokyo Keiki Co., Ltd.
  • rotor No. 7 was used to measure the viscosity of each composition at 2 rpm and 10 rpm under the conditions of 23 ° C. and 50% RH.
  • the curable composition was made into a sheet-like test body having a thickness of 3 mm and completely cured by placing it in a 23 ° C., 50% RH condition for 3 days and further in a 50 ° C. dryer for 4 days. After punching into No. 3 dumbbell shape, a tensile test was performed at an elongation rate of 200 mm / min using an autograph manufactured by Shimadzu Corporation, and 100% modulus and elongation at break (represented as M100 and EB, respectively) were measured. .
  • the curable composition has a low viscosity and good workability, and the cured product exhibits high elongation and high weather resistance.
  • the viscosity of the polymer of component (A) was increased, and the viscosity of the blend was also relatively high, resulting in poor workability.
  • Comparative Example 2 was influenced by the small amount of TSMA added, and Comparative Example 5 was influenced by the low molecular weight, resulting in poor weather resistance.
  • the elongation was low.
  • Comparative Synthesis Examples 4, 6, and 8 were compatible with B-1 in Table 1, but it can be said that it is difficult to adapt to elastic sealants and adhesives from the viewpoint of workability, elongation, and weather resistance.
  • Example 8 (Comparative Examples 6 and 7) 100 parts by weight of the polymer components shown in Table 3 in total, 20 parts by weight of PPG 3000 (diol type polypropylene glycol with a molecular weight of 3000), 50 parts by weight of surface-treated colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., trade name: Baiyinhua CCR), heavy 50 parts by weight of calcium carbonate (Shiraishi Kogyo Co., Ltd .; Whiten SB) and 2 parts by weight of a thixotropic agent (Takamoto Kasei Co., Ltd., trade name: Disparon 6500) are weighed, mixed and kneaded thoroughly.
  • PPG 3000 diol type polypropylene glycol with a molecular weight of 3000
  • surface-treated colloidal calcium carbonate manufactured by Shiraishi Kogyo Co., Ltd., trade name: Baiyinhua CCR
  • the curable composition was made into a sheet-like test body having a thickness of 3 mm and completely cured by placing it in a 23 ° C., 50% RH condition for 3 days and further in a 50 ° C. dryer for 4 days. After punching into a mini dumbbell mold, a tensile test was performed at a tensile speed of 200 mm / min using an autograph manufactured by Shimadzu Corporation, and M100 and EB were measured.
  • the mini dumbbell was placed in a 120 ° C. dryer for one week and heated and cured, and then a tensile test was performed at a tensile rate of 200 mm / min using an autograph manufactured by Shimadzu Corporation to measure EB.
  • the rate of change of EB after heat curing relative to EB before heat curing was determined. It can be said that the closer the rate of change is to 100%, the smaller the change due to heat curing and the better the heat resistance.
  • Example 8 of the present invention the curable composition has a low viscosity, good workability, and the cured product has high heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、非ニトリル系アゾ系重合開始剤もしくは有機過酸化物系重合開始剤をラジカル重合開始剤として用いることで、得られた(メタ)アクリル酸エステル系重合体と反応性ケイ素基を有する有機重合体が相溶し、組成物が低粘度で作業性が良好で、硬化物が高伸びで高い耐候性、高い耐熱性を示す硬化性組成物を提供する。 本発明は、加水分解性ケイ素基含有(メタ)アクリル酸エステル系重合体(A)と分子鎖末端もしくは分子鎖末端部位のみに架橋性シリル基を有する有機重合体(B)を含有する硬化性組成物であって、(メタ)アクリル酸エステル系重合体(A)が非ニトリル系アゾ系重合開始剤に由来する基を有するものである、または加水分解性ケイ素基含有(メタ)アクリル酸エステル系重合体(A)と分子鎖末端もしくは分子鎖末端部位のみに架橋性シリル基を有する有機重合体(B)を含有する硬化性組成物であって、(メタ)アクリル酸エステル系重合体(A)が有機過酸化物系重合開始剤に由来する基を有するものである。

Description

硬化性組成物
 本発明は、ケイ素原子上に水酸基または加水分解性基を有し、シロキサン結合を形成し得るケイ素含有基(以下、「架橋性シリル基」、「反応性ケイ素基」ともいう。)を有する(メタ)アクリル酸エステル系重合体と、反応性ケイ素基を有する有機重合体を含有する硬化性組成物に関する。
 反応性ケイ素基を含有するオキシプロピレン重合体は液状の重合体となり得るもので、湿分等により室温で硬化してゴム状硬化物を生じる。このため、建築物の弾性シーラントや接着剤等に用いられている。
 シーリング材はカートリッジ状の容器から押出して使用され、押出し性を良好にするため、組成物の粘度は通常小さいほうが望ましい。接着剤の場合にも低粘度の場合、塗布作業が容易となる。また、長期に渡り性能を維持するニーズも高まっており、耐候性も重要とされる。
 特許文献1には分子量分布が狭いオキシプロピレン重合体及びエポキシ樹脂を含有する硬化性樹脂組成物が記載されており、オキシプロピレン重合体の分子量分布が狭いため、組成物の粘度が低下しさらに硬化物の耐薬品性が向上することが記載されている。
 特許文献2には反応性ケイ素基を有するオキシプロピレン重合体とアクリル酸アルキルエステルなどのビニル系単量体の重合体を含有する硬化性組成物が記載されており、その硬化物は優れた接着性や耐候性を有することが記載されている。
 特許文献3には分子量分布が狭い反応性ケイ素基を有するオキシプロピレン重合体とアクリル酸アルキルエステルなどのビニル系単量体の重合体を含有する硬化性組成物が記載されており、組成物は低粘度で作業性が良いとされている。
 特許文献4、5には反応性ケイ素基を有するオキシプロピレン重合体と分子量が低く低粘度のアクリル酸エステルなどのビニル系単量体の重合体を含有する硬化性組成物が記載されており、その組成物は低粘度で作業性が良く、硬化物は優れた耐候性を持つことが記載されている。
 反応性ケイ素基を有するオキシプロピレン重合体とアクリル酸エステルなどのビニル系単量体の重合体を混合した場合は、それぞれが相溶すると透明な硬化物を得ることが可能となったり、硬化物の引っ張り特性の調整が容易になる。特許文献6~9にはアクリル酸ステアリルまたはメタクリル酸ステアリルのような、長鎖の炭化水素基を持つモノマーを用いたビニル系単量体の重合体とオキシプロピレン重合体を混合し、これらを相溶することで良好な物性が得られることが記載されている。
 更に特許文献9~19には、加水分解性シリル基含有ビニル重合体及び/または加水分解性シリル基含有オキシアルキレン系重合体を含む組成物が記載されている。
WO91/15533号公報 特開昭59-122541号公報 特開平6-172631号公報 WO2008/117845号公報 特開2008-239859号公報 特開2008-37937号公報 WO05/095492号公報 WO05/097898号公報 特開2003-221501号公報 特開2014-118502号公報 特開2005-082681号公報 特開2010-001493号公報 特開2004-018748号公報 WO2008/059872号公報 WO2009/145245号公報 特開2004-083606号公報 特開2001-207157号公報 特開2003-155469号公報 特開2003-193033号公報
 融点が20℃以上であるアクリル酸ステアリルまたはメタクリル酸ステアリルのような長鎖の炭化水素基を持つモノマーは結晶性が高く、冬場に固体となるため、容器からの取出しが困難となる課題が生じる。本発明は、長鎖の炭化水素基を持つモノマーを使わなくても、非ニトリル系アゾ系重合開始剤もしくは有機過酸化物系重合開始剤をラジカル重合開始剤として用いることで、得られた(メタ)アクリル酸エステル系重合体と反応性ケイ素基を有する有機重合体が相溶し、組成物が低粘度で作業性が良好で、硬化物が高伸びで高い耐候性、高い耐熱性を示す硬化性組成物を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意検討を行った結果、以下の発明を完成させた。
 すなわち、本発明は、
(1).
架橋性シリル基を含有する(メタ)アクリル酸エステルと(メタ)アクリル酸アルキルエステルに由来する繰り返し単位を有する加水分解性ケイ素基含有(メタ)アクリル酸エステル系重合体(A)と、分子鎖末端もしくは分子鎖末端部位のみに架橋性シリル基を有する有機重合体(B)を含有する硬化性組成物であって、(メタ)アクリル酸エステル系重合体(A)が非ニトリル系アゾ系重合開始剤に由来する基を有する硬化性組成物、
(2).
(メタ)アクリル酸エステル系重合体(A)が60℃~140℃で共重合することで得られる(1)に記載の硬化性組成物、
(3).
(メタ)アクリル酸エステル系重合体(A)の重合法が溶液重合法である(1)または(2)に記載の硬化性組成物、
(4).
有機重合体(B)の主鎖がポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、および飽和炭化水素系重合体からなる群から選択される1種以上である(1)~(3)のいずれかに記載の硬化性組成物、
(5).
(メタ)アクリル酸エステル系重合体(A)の重量平均分子量が7000~14000である(1)~(4)のいずれかに記載の硬化性組成物、
(6).
(メタ)アクリル酸エステル系重合体(A)が一般式(1):
-SiX   (1)
(式中、Xはヒドロキシ基または加水分解性基であり、3個のXは同一であっても良く、異なっていてもよい)および/または一般式(2):
-SiR (2)
(Rは、炭素原子数1から20の置換あるいは非置換のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSiR’(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは前記と同じであり、2個のXは同一であっても良く、異なっていてもよい。)で表されるケイ素含有官能基を1分子中に平均して0.5~2.5個有し、一般式(1)に示すケイ素含有官能基が1分子中に平均して0~2.0個、一般式(2)に示すケイ素含有官能基が1分子中に平均して0~2.0個である(1)~(5)のいずれかに記載の硬化性組成物、
(7).
(メタ)アクリル酸エステル系重合体(A)が、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のメタクリル酸エステル0~15重量部、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のアクリル酸エステル55~90重量部、エステルを構成するアルコール成分が炭素数8以上の直鎖状、分岐状または脂環式アルキル基の(メタ)アクリル酸エステル5~30重量部に由来する繰り返し単位を有する(1)~(6)のいずれかに記載の硬化性組成物、
(8).
(メタ)アクリル酸エステル系重合体(A)が、メチルメタクリレート0~15重量部、ブチルアクリレート55~90重量部、および2-エチルヘキシルアクリレート5~30重量部に由来する繰り返し単位を有する(1)~(7)のいずれかに記載の硬化性組成物、
(9).
架橋性シリル基を含有する(メタ)アクリル酸エステルと(メタ)アクリル酸アルキルエステルに由来する繰り返し単位を有する加水分解性ケイ素基含有(メタ)アクリル酸エステル系重合体(A)と、分子鎖末端もしくは分子鎖末端部位のみに架橋性シリル基を有する有機重合体(B)を含有する硬化性組成物であって、(メタ)アクリル酸エステル系重合体(A)が有機過酸化物系重合開始剤に由来する基を有し、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のメタクリル酸エステル0~15重量部、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のアクリル酸エステル55~90重量部、エステルを構成するアルコール成分が炭素数8以上の直鎖状、分岐状または脂環式アルキル基の(メタ)アクリル酸エステル5~30重量部に由来する繰り返し単位を有し、重量平均分子量が7000~14000であり、(メタ)アクリル酸エステル系重合体(A)が一般式(1)および/または一般式(2)で表されるケイ素含有官能基を1分子中に平均して0.5~2.3個有する硬化性組成物、
-SiX   (1)
(式中、Xはヒドロキシ基または加水分解性基であり、3個のXは同一であっても良く、異なっていてもよい)
-SiR (2)
(Rは、炭素原子数1から20の置換あるいは非置換のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSiR’(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは前記と同じであり、2個のXは同一であっても良く、異なっていてもよい。)
(10).
有機重合体(B)の主鎖がポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、および飽和炭化水素系重合体からなる群から選択される1種以上である(9)に記載の硬化性組成物、
(11).
(メタ)アクリル酸エステル系重合体(A)が、一般式(1)に示すケイ素含有官能基を1分子中に平均して0~2.0個、一般式(2)に示すケイ素含有官能基を1分子中に平均して0~2.0個有する(9)または(10)に記載の硬化性組成物、
(12).
(メタ)アクリル酸エステル系重合体(A)が、メチルメタクリレート0~15重量部、ブチルアクリレート55~90重量部、および2-エチルヘキシルアクリレート5~30重量部に由来する繰り返し単位を有する(9)~(11)のいずれかに記載の硬化性組成物、
(13).
(メタ)アクリル酸エステル系重合体(A)の23℃、3°×R14の条件で測定されるE型粘度が15~200Pa・sである(1)~(12)のいずれかに記載の硬化性組成物、
(14).
有機重合体(B)に含有される架橋性シリル基が重合体1分子中に平均して0.5個以上、数平均分子量がGPCにおけるポリスチレン換算において800から50,000、有機重合体(B)の架橋性シリル基は、一般式(3):
-SiR 3-a  (3)
(Rは、それぞれ独立に炭素原子数1から20の置換あるいは非置換のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSiR’(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは、それぞれ独立にヒドロキシ基または加水分解性基である。更に、aは1から3の整数である)で表される(1)~(13)のいずれかに記載の硬化性組成物、
に関する。
 非ニトリル系アゾ系重合開始剤もしくは有機過酸化物系重合開始剤をラジカル重合開始剤として用いることで、得られた(メタ)アクリル酸エステル系重合体と反応性ケイ素基を有する有機重合体が相溶し、組成物の作業性が良好で、硬化物が高い耐候性、高い耐熱性を示す硬化性組成物を得ることができる。
 以下、本発明について詳しく説明する。なお本明細書において、「ケイ素含有基」、「架橋性シリル基」、「反応性ケイ素基」は同義である。
 本発明における重合体とは以下の定義に順ずる。重合体とは、その重合体の製造工程によって得られる重合体成分全てを含有するものであり、分子量や構造、置換基の数、などが異なる成分を含む。重合体の同定には平均分子量や分子量分布、一分子あたりに平均して含有される置換基の導入量(平均の個数や含有率)を使用する。また、本発明の説明においては、便宜的に代表的な分子構造を記載する場合もある。
 本発明は、架橋性シリル基を含有する(メタ)アクリル酸エステルと(メタ)アクリル酸アルキルエステルに由来する繰り返し単位を有する加水分解性ケイ素基含有(メタ)アクリル酸エステル系重合体(A)を必須成分として使用する。
 前記(メタ)アクリル酸エステル系重合体(A)の重合開始剤としては、通常、油溶性のラジカル開始剤を用いて反応を開始する。油溶性のラジカル開始剤の例を挙げると、アゾ系化合物及び有機過酸化物があげられる。アゾ系化合物としては、化合物中にシアノ基を有さない非ニトリル系アゾ系重合開始剤が使用される。
 非ニトリル系アゾ系重合開始剤としては特に限定されず、例えば、2,2’-アゾビス〔N-(2-プロペニル)-2-メチルプロピオンアミド〕、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、ジメチル-2,2’-アゾビスイソブチレート、2,2’-アゾビス(2,4,4-トリメチルペンタン)などがあげられ、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)またはジメチル-2,2’-アゾビスイソブチレートが好ましく、より好ましくはジメチル-2,2’-アゾビス(2-メチルプロピオネート)である。
 有機過酸化物としては特に限定されず、例えば、アセチルパーオキサイド、プロピオニルパーオキサイド、イソブチロイルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、4-メチルベンゾイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、サクシニックパーオキサイド、ジ-2-エチルヘキシルパーオキシジカーボネート等のジアシルパーオキサイド類;クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシノエデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオヘプタノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシネオデカノエート、t-アミルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(3-メチルベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、ジブチルパーオキシトリメチルアジペート、t-アミルパーオキシノルマルオクトエート、t-アミルパーオキシイソノナノエート、t-アミルパーオキシベンゾエート等のパーオキシエステル類;n-ブチル4,4-ジ(t-ブチルペーオキシ)バレレート、2,2-ジ(t-ブチルパーオキシ)ブタン、2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン等のパーオキシケタール類;などがあげられ、パーオキシエステル類が好ましく、より好ましくはt-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオヘプタノエートまたはt-アミルパーオキシ-2-エチルヘキサノエートであり、更に好ましくはt-ヘキシルパーオキシ-2-エチルヘキサノエートまたはt-ブチルパーオキシ-2-エチルヘキサノエートである。上記ラジカル重合開始剤として有機過酸化物を使用する場合には、これとアスコルビン酸ナトリウム、ホルムアルデヒドスルフォキシル酸ナトリウム等の還元剤とを組み合わせてレドックス型重合開始剤として使用してもよい。
 これらの重合開始剤は、単独で用いても良く、2種類以上を任意の比率で組み合わせて用いてもよい。
 (メタ)アクリル酸エステル系重合体(A)が非ニトリル系アゾ系重合開始剤に由来する基を有する、或いは、(メタ)アクリル酸エステル系重合体(A)が有機過酸化物系重合開始剤に由来する基を有するとは、重合開始剤が分解して生成したラジカルが(メタ)アクリル酸エステル系重合体(A)の一部に付加していることをいう。
 前記(メタ)アクリル酸エステル系重合体(A)の主鎖を構成する(メタ)アクリル酸アルキルエステル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル等のエステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基の(メタ)アクリル酸エステル;(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル等のエステルを構成するアルコール成分が炭素数5~7の直鎖状、分岐状または脂環式アルキル基の(メタ)アクリル酸エステル;(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル等のエステルを構成するアルコール成分が炭素数8以上の直鎖状、分岐状または脂環式アルキル基の(メタ)アクリル酸エステル;などがあげられる。なお前記アルキル基とは炭素と水素のみからなる炭化水素基である。
 前記(メタ)アクリル酸エステル系重合体(A)を構成する架橋性シリル基を含有する(メタ)アクリル酸エステルとしては特に限定されず、後述する一般式(1)および/または一般式(2)に示すケイ素基含有官能基を有する(メタ)アクリル酸エステルであれば各種のものを用いることが出来る。例示するならば、(メタ)アクリル酸(3-トリメトキシシリル)プロピル、(メタ)アクリル酸(3-トリエトキシシリル)プロピル、(メタ)アクリル酸(3-ジメトキシメチルシリル)プロピル、(メタ)アクリル酸(2-トリメトキシシリル)エチル、(メタ)アクリル酸(2-トリエトキシシリル)エチル、(メタ)アクリル酸(2-ジメトキシメチルシリル)エチル、(メタ)アクリル酸トリメトキシシリルメチル、(メタ)アクリル酸トリエトキシシリルメチル、(メタ)アクリル酸(ジメトキシメチルシリル)メチルなどがあげられ、(メタ)アクリル酸(3-トリメトキシシリル)プロピル、(メタ)アクリル酸(3-トリエトキシシリル)プロピル、(メタ)アクリル酸(3-ジメトキシメチルシリル)プロピルが好ましく、より好ましくは(メタ)アクリル酸(3-トリメトキシシリル)プロピルまたは(メタ)アクリル酸(3-ジメトキシメチルシリル)プロピルであり、更に好ましくは(メタ)アクリル酸(3-トリメトキシシリル)プロピルである。
 これらのモノマーは、単独で用いても良いし、複数を共重合させても構わない。
 中でも(メタ)アクリル酸エステル系重合体(A)は、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のメタクリル酸エステル0~15重量部(より好ましくは0.5~10重量部、更に好ましくは1~5重量部)、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のアクリル酸エステル55~90重量部(より好ましくは60~85重量部、更に好ましくは67~80重量部)、エステルを構成するアルコール成分が炭素数8以上の直鎖状、分岐状または脂環式アルキル基の(メタ)アクリル酸エステル5~30重量部(より好ましくは10~25重量部、更に好ましくは13~22重量部)に由来する繰り返し単位を有する重合体であることが望ましい。
 (メタ)アクリル酸エステル系重合体(A)は、より好ましくはメチルメタクリレート0~15重量部(より好ましくは0.5~10重量部、更に好ましくは1~5重量部)、ブチルアクリレート55~90重量部(より好ましくは60~85重量部、更に好ましくは67~80重量部)、および2-エチルヘキシルアクリレート5~30重量部(より好ましくは10~25重量部、更に好ましくは13~22重量部)に由来する繰り返し単位を有する重合体であることが望ましい。
 また架橋性シリル基を含有する(メタ)アクリル酸エステルは、(メタ)アクリル酸エステル系重合体(A)を構成する全モノマー100重量%中、好ましくは1.2重量%以上、より好ましくは2.0重量%以上、更に好ましくは3.0重量%以上であり、好ましくは12重量%未満、より好ましくは10重量%以下、更に好ましくは8重量%以下、よりさらに好ましくは5重量%以下である。
 また(メタ)アクリル酸アルキルエステル系モノマー全量は、架橋性シリル基を含有する(メタ)アクリル酸エステル全量に対し、1~100倍モルが好ましく、より好ましくは20~60倍モルであり、更に好ましくは30~50倍モルである。
 前記(メタ)アクリル酸エステル系重合体(A)の合成法としては、特に限定されず、公知の方法があげられ、具体的には、フリーラジカル重合法を用いることが出来る。フリーラジカル重合法としては、重合開始剤、連鎖移動剤、溶媒などを加え、50~150℃で重合を行う溶液重合法、特開2001-207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で合成する連続塊状重合法などがあげられる。
 前記(メタ)アクリル酸エステル系重合体(A)の重合温度は、60℃~140℃であることが好ましく、より好ましくは80℃~130℃であり、さらに好ましくは90℃~110℃である。(A)成分の重合温度が60℃より低い場合は、分子量が大きくなり、高粘度となることがあり、140℃よりも高い場合は、合わせて高沸点の溶剤を使用する必要があり、溶剤を脱揮することが困難となる。
 連鎖移動剤としては、例えば、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、ラウリルメルカプタンなどのメルカプト基含有化合物があげられる。また、(メタ)アクリル酸エステル系重合体の分子鎖末端に反応性ケイ素基を導入したい場合には、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルクロロメチルジメトキシシラン、3-メルカプトプロピルメトキシメチルジメトキシシラン、メルカプトメチルトリメトキシシラン、(メルカプトメチル)ジメトキシメチルシランなどがあげられる。これらは1種のみを使用してもよく、2種以上を併用して使用してもかまわない。連鎖移動剤は耐候性に悪影響を与えることがあるため、使用量はモノマー全量の2%以下であることが好ましく、使用しないのが特に好ましい。
 溶媒としては、例えば、トルエン、キシレン、スチレン、エチルベンゼン、パラジクロルベンゼン、フタル酸ジ-2-エチルヘキシル、フタル酸ジ-n-ブチルなどの芳香族化合物;ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素化合物;酢酸ブチル、酢酸n-プロプル、酢酸イソプロピルなどのカルボン酸エステル化合物;メチルイソブチルケトン、メチルエチルケトンなどのケトン化合物;ジメチルカーボネート、ジエチルカーボネートなどのジアルキルカーボネート化合物;1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、アミルアルコールなどのアルコール化合物などをあげることができる。これらの中では、厚生労働省指針値策定物質でないこと、臭気、環境負荷などの点から、ジアルキルカーボネート化合物、および、アルコール化合物から選択される1種以上が好ましい。さらに、沸点、GEV(ゲマインシャフト・エミッションコントリールテ・フェリーゲヴェルクシュトッフェ・エー・ヴェー)の定めるGEVスペシフィケーション・アンド・クラシフィケーション・クライテリア2001年2月14日版に記載の測定法による組成物からの全揮発性有機化合物の放散性を抑制できる点から、ジメチルカーボネート、1-プロパノ-ル、2-プロパノール、1-ブタノ-ル、2-ブタノール、イソブチルアルコール、tert-ブチルアルコールがより好ましく、特に、2-プロパノ-ル、イソブチルアルコールが好ましい。
 なお、溶媒以外では、反応性ケイ素基含有ポリエーテル系重合体やその前駆体化合物、後述の可塑剤などと共に重合することも可能である。
 前記(メタ)アクリル酸エステル系重合体(A)は、架橋性シリル基を含有する(メタ)アクリル酸エステル架橋性シリル基を含有する(メタ)アクリル酸エステルと(メタ)アクリル酸アルキルエステルに由来する繰り返し単位を有しており、(メタ)アクリル酸エステル系重合体(A)は架橋性シリル基を分子鎖側鎖に含有している。
 前記(メタ)アクリル酸エステル系重合体(A)の重量平均分子量はGPCにおけるポリスチレン換算において7,000~14,000であることが好ましく、より好ましくは7,500~12,000であり、さらに好ましくは8,000~10,000である。(A)成分の重量平均分子量が14,000を超えると有機重合体(B)との相溶性の低下を引き起こしたり、高粘度のため作業性の低下を引き起こすことがある。また(メタ)アクリル酸エステル系重合体(A)の数平均分子量は3,500~5,800であることが好ましく、より好ましくは3,800~5,600であり、更に好ましくは4,000~5,000である。
 (メタ)アクリル酸エステル系重合体(A)の分子量分布(Mw/Mn)は特に限定されないが、3.0未満が好ましく、2.5以下がより好ましく、2.3以下がさらに好ましく、2.2以下が特に好ましい。下限は特に限定されないが、1以上が好ましく、1.9以上であってもよい。
 前記(メタ)アクリル酸エステル系重合体(A)は一般式(1)および/または一般式(2)に示すケイ素基含有官能基を有しており、一般式(1)に示すケイ素含有官能基が1分子中に平均して0~2.0個、一般式(2)に示すケイ素含有官能基が1分子中に平均して0~2.0個含有し、(A)に含有される反応性ケイ素基は合計すると、重合体1分子中に平均して、0.5~2.5個であることが好ましく、より好ましくは0.5~2.3個、更に好ましくは0.5~2.0個、よりさらに好ましくは0.6~1.5個である。0.5個未満では硬化物の耐候性が低下する傾向がある。一方、2.5個を超えると硬化物の強度が低下し、脆くなることがある。また、一般式(1)に示すケイ素含有官能基と一般式(2)に示すケイ素含有官能基を併用することが高復元性と高伸びを両立できるために好ましい。
-SiX   (1)
(式中、Xはヒドロキシ基または加水分解性基であり、3個のXは同一であっても良く、異なっていてもよい)
-SiR (2)
(Rは、炭素原子数1から20の置換あるいは非置換のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSiR’(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは前記と同じであり、2個のXは同一であっても良く、異なっていてもよい。)
 1分子中のケイ素含有官能基の個数は、GPCによるポリスチレン換算の数平均分子量とケイ素基含有官能基の濃度(モル/g)の積として求められる。また加水分解性基は後に詳述する。
 (メタ)アクリル酸エステル系重合体(A)の23℃、3°×R14の条件で測定されるE型粘度は、15~200Pa・sであり、好ましくは22~100Pa・s、より好ましくは25~50Pa・s、更に好ましくは26~40Pa・sである。
 本発明は、反応性ケイ素基を有する有機重合体(B)を使用する。
 有機重合体(B)の反応性ケイ素基は、一般式(3):
-SiR 3-a  (3)
(Rは、それぞれ独立に炭素原子数1から20の置換あるいは非置換のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSiR’(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは、それぞれ独立にヒドロキシ基または加水分解性基である。更に、aは1から3の整数である)で表される。
 加水分解性基としては、特に限定されず、具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基等が挙げられる。これらの中では、ハロゲン、アルコキシ基、アルケニルオキシ基、アシルオキシ基が活性が高いため好ましく、加水分解性が穏やかで取扱いやすいことからメトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。またエトキシ基やイソプロペノキシ基は、反応により脱離する化合物がそれぞれエタノール、アセトンであり、安全性の点で好ましい。
 加水分解性基やヒドロキシ基は、1個のケイ素原子に1から3個の範囲で結合することができる。加水分解性基やヒドロキシ基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
 上記一般式(3)におけるaは、硬化性の点から、2または3であることが好ましく、特に速硬化性を求める場合には3であることが好ましく、貯蔵中の安定性を求める場合には2であることが好ましい。
 また上記一般式(3)におけるRの具体例としては、例えばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、トリメチルシロキシ基、クロロメチル基、メトキシメチル基等があげられる。これらの中ではメチル基が特に好ましい。
 反応性ケイ素基のより具体的な例としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基、トリス(2-プロペニルオキシ)シリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(エトキシメチル)ジメトキシシリル基が挙げられる。汎用で活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基がより好ましく、ジメトキシメチルシリル基が特に好ましい。また、貯蔵安定性の点からはジメトキシメチルシリル基、トリエトキシシリル基が特に好ましい。クロロメチルジメトキシシリル基、メトキシメチルジメトキシシリル基は特に高い硬化性を示すため好ましい。トリメトキシシリル基、トリエトキシシリル基などの3官能性シリル基を有する有機重合体から得られる硬化物は復元性が高くなる傾向があり、好ましい。
 反応性ケイ素基の導入は公知の方法で行えばよい。すなわち、例えば以下の方法が挙げられる。
 (I)ヒドロシリル化:先ず、有機重合体(B)の原料となる重合体(前駆重合体と記すこともある)に不飽和結合を導入し、この不飽和結合に対してヒドロシラン化合物をヒドロシリル化反応により付加させる方法である。不飽和結合の導入方法は任意の方法を利用できるが、例えば、水酸基などの官能基を有する前駆重合体に、この官能基に対して反応性を示す基および不飽和基を有する化合物を反応させ、不飽和基含有重合体を得る方法や、不飽和結合を有する重合性モノマーを共重合させる方法がある。
 (II)反応性基含有重合体(前駆重合体)とシランカップリング剤との反応:水酸基、アミノ基、不飽和結合などの反応性基を有する前駆重合体と、その反応性基と反応して結合を形成し得る基および反応性ケイ素基の両方を有する化合物(シランカップリング剤とも呼ばれる)とを反応させる方法である。前駆重合体の反応性基とシランカップリング剤の反応性基の組合せとしては、水酸基とイソシアネート基、水酸基とエポキシ基、アミノ基とイソシアネート基、アミノ基とチオイソシアネート基、アミノ基とエポキシ基、アミノ基とアクリル構造とのマイケル付加、カルボン酸基とエポキシ基、不飽和結合とメルカプト基などが挙げられるがこれに限らない。
 (I)の方法は、反応が簡便で、反応性ケイ素基の導入量の調整や、得られる反応性ケイ素基含有重合体の物性が安定であるため好ましい。(II)の方法は反応の選択肢が多く、反応性ケイ素基導入率を高めることが容易で好ましい。
 (I)の方法において用いるヒドロシラン化合物の具体例としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシランのようなハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシラン、(クロロメチル)ジメトキシシラン、(メトキシメチル)ジメトキシシラン、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、トリス(2-プロペニルオキシ)シランのようなアルコキシシラン類;メチルジアセトキシシラン、フェニルジアセトキシシランのようなアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランのようなケトキシメートシラン類などがあげられるが、これらに限定されるものではない。これらのうちでは入手性の点でハロゲン化シラン類、アルコキシシラン類が好ましい。アルコキシシラン類は、加水分解性が穏やかで取り扱いやすいため好ましい。
 (II)の方法で使用できるシランカップリング剤としては、以下の化合物があげられる。例示すると、不飽和結合と反応する、3-メルカプトプロピル(メトキシメチル)(メトキシ)メチルシランなどのメルカプトシラン類;水酸基と反応する、3-イソシアネートプロピル(メトキシメチル)(メトキシ)メチルシランなどのイソシアネートシラン類;水酸基、アミノ基、カルボン酸基と反応する、3-グリシドキシプロピル(メトキシメチル)(メトキシ)メチルシランなどのエポキシシラン類;イソシアネート基、チオイソシアネート基と反応する、3-アミノプロピル(メトキシメチル)(メトキシ)メチルシランなどのアミノシラン類;ヒドロキシアルキルシラン類などである。上記のシランカップリング剤は一例であり、類似の反応を利用または応用してシリル基を導入することができる。
 反応性ケイ素基含有有機重合体(B)に含有される反応性ケイ素基は、重合体1分子中に平均して少なくとも0.5個以上、好ましくは1~5個、より好ましくは1.3~4個、更に好ましくは1.4~3.5個、より更に好ましくは1.5~3個存在するのがよく、特に高伸び、高強度の観点からは、2~5個が好ましく、2~4個がより好ましく、2~3.5個が更に好ましい。分子中に含まれる反応性ケイ素基の数が平均して0.5個未満になると、硬化性が不十分になり、良好なゴム弾性挙動を発現しにくくなる。分子中に含まれる反応性ケイ素基の数が平均して5個を超えると、硬化物が硬くなり、伸び物性が低下する傾向がある。
 反応性ケイ素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、反応性ケイ素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びを示すゴム状硬化物が得られやすくなり、好ましい。
 反応性ケイ素基含有有機重合体(B)の数平均分子量は、GPCにおけるポリスチレン換算において800から50,000程度、より好ましくは1,500から40,000であり、特に好ましくは2,000から30,000であり、更に好ましくは20,000から30,000である。(B)成分の数平均分子量が小さいと、反応性ケイ素基の導入量が多くなり、製造コストの点で不都合になる場合がある。一方、分子量が大きいと、高粘度となる為に作業性の点で不都合な傾向がある。
 有機重合体(B)の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましく、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。下限は特に限定されないが、1以上が好ましく、1.05以上であってもよい。
 本発明に用いる反応性ケイ素基含有有機重合体(B)の主鎖骨格は特に制限はなく、各種の主鎖骨格を持つものを使用することができる。
 具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε-カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε-アミノウンデカン酸の縮重合によるナイロン11、ε-アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;例えばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。
 ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることからより好ましい。
 (B)成分である有機重合体のガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、-20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり作業性が悪くなる場合があり、また、硬化物の柔軟性が低下し、伸びが低下する場合がある。前記ガラス転移温度はDSC測定により求めることができる。
 飽和炭化水素系重合体、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体などの有機重合体は、接着剤やシーリング材のベースポリマーとして使用した際に、低分子量成分の接着基材への移行などによる汚染が少なく好ましい。
 また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れ、更に接着性にも優れることから特に好ましく、ポリオキシアルキレン系重合体は最も好ましい。ポリオキシアルキレン系重合体の中でも、ポリオキシプロピレン系重合体が特に好ましい。
 前記ポリオキシアルキレン系重合体は、本質的に一般式(4):
-R-O-  (4)
(Rは、炭素原子数1から14の直鎖状もしくは分岐アルキレン基である)で示される繰り返し単位を有する重合体であり、重合体の全ての繰り返し単位中に一般式(4)で表される繰り返し単位が50重量%以上存在することが好ましい。一般式(4)におけるRは、炭素原子数1から14の、更には2から4の、直鎖状もしくは分岐アルキレン基が好ましい。一般式(4)で示される繰り返し単位の具体例としては、
-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーリング材等に使用される場合には、プロピレンオキシド重合体を主成分とする重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。
 ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、特開昭61-215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物-ポルフィリン錯体触媒による重合法、特公昭46-27250号、特公昭59-15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号等に示される複合金属シアン化物錯体触媒による重合法、特開平10-273512号に例示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11-060722号に例示されるホスファゼン化合物からなる触媒を用いる重合法等があげられるが、特に限定されるものではない。
 反応性ケイ素基を有するポリオキシアルキレン系重合体の製造方法は、特公昭45-36319号、同46-12154号、特開昭50-156599号、同54-6096号、同55-13767号、同55-13468号、同57-164123号、特公平3-2450号、米国特許3632557、米国特許4345053、米国特許4366307、米国特許4960844等の各公報に提案されているもの、また特開昭61-197631号、同61-215622号、同61-215623号、同61-218632号、特開平3-72527号、特開平3-47825号、特開平8-231707号の各公報に提案されている数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体が例示できるが、特にこれらに限定されるものではない。
 上記の反応性ケイ素基を有するポリオキシアルキレン系重合体は、単独で使用してもよいし2種以上併用してもよい。
 前記飽和炭化水素系重合体は芳香環以外の炭素-炭素不飽和結合を実質的に含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、1-ブテン、イソブチレンなどのような炭素原子数2から6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、上記オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。
 主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、および、湿気遮断性に優れる特徴を有する。
 イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよいが、ゴム特性の面からイソブチレンに由来する繰り返し単位を50重量%以上含有するものが好ましく、80重量%以上含有するものがより好ましく、90重量%から99重量%含有するものが特に好ましい。
 飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されているが、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J.P.Kennedyら、J.Polymer Sci., Polymer Chem. Ed. 1977年、15巻、2869頁)を用いることにより容易に製造することが可能であり、分子量500から100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。
 反応性ケイ素基を有する飽和炭化水素系重合体の製法としては、例えば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、特開平1-197509号、特許公報第2539445号、特許公報第2873395号、特開平7-53882号の各明細書などに記載されているが、特にこれらに限定されるものではない。
 上記の反応性ケイ素基を有する飽和炭化水素系重合体は、単独で使用してもよいし2種以上併用してもよい。
 前記(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、(メタ)アクリル酸(3-トリメトキシシリル)プロピル、(メタ)アクリル酸(3-ジメトキシメチルシリル)プロピル、(メタ)アクリル酸(2-トリメトキシシリル)エチル、(メタ)アクリル酸(2-ジメトキシメチルシリル)エチル、(メタ)アクリル酸トリメトキシシリルメチル、(メタ)アクリル酸(ジメトキシメチルシリル)メチル、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2-トリフルオロメチル-2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマーが挙げられる。
 前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸およびその塩等のスチレン系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステルおよびジアルキルエステル;フマル酸、フマル酸のモノアルキルエステルおよびジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。
 これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、スチレン系モノマーおよび(メタ)アクリル酸系モノマーからなる共重合体が好ましい。より好ましくは、アクリル酸エステルモノマーおよびメタクリル酸エステルモノマーからなる(メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマーからなるアクリル系重合体である。
 一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途にはその比率は40%以下にするのが好ましく、更には30%以下にするのがより好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2-メトキシエチルやアクリル酸2-エトキシエチル等を用いるのも好ましい。
 ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は40%以下にするのが好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸2-メトキシエチル(重量比で40~50/20~30/30~20)の共重合体が挙げられる。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお本明細書において、上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
 (メタ)アクリル酸エステル系重合体の合成法としては、特に限定されず、公知の方法で行えばよい。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、前述する非ニトリル系アゾ系重合開始剤または有機過酸化物系重合開始剤を使用しないリビングラジカル重合法を用いることが好ましい。
 「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒として(メタ)アクリル酸エステル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有する(メタ)アクリル酸エステル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁などが挙げられる。
 反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体の製法としては、例えば、特公平3-14068号公報、特公平4-55444号公報、特開平6-211922号公報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている。また、特開平9-272714号公報等に、原子移動ラジカル重合法を用いた製法が開示されているが、特にこれらに限定されるものではない。上記の反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。
 これらの反応性ケイ素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、反応性ケイ素基を有するポリオキシアルキレン系重合体、反応性ケイ素基を有する飽和炭化水素系重合体、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体、からなる群から選択される2種以上をブレンドしてなる有機重合体も使用できる。
 反応性ケイ素基を有するポリオキシアルキレン系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59-122541号、特開昭63-112642号、特開平6-172631号、特開平11-116763号公報等に提案されているが、特にこれらに限定されるものではない。好ましい具体例は、反応性ケイ素基を有し分子鎖が実質的に、下記一般式(5):
-CH-C(R)(COOR)-  (5)
(Rは水素原子またはメチル基、Rは炭素原子数1から8のアルキル基を示す)で表される炭素原子数1から8のアルキル基を有する(メタ)アクリル酸エステル単量体単位と、下記一般式(6):
-CH-C(R)(COOR)-  (6)
(Rは前記に同じ、Rは炭素原子数9以上のアルキル基を示す)で表される炭素原子数9以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位からなる共重合体に、反応性ケイ素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
 前記一般式(5)のRとしては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、t-ブチル基、2-エチルヘキシル基等の炭素原子数1から8、好ましくは1から4、さらに好ましくは1または2のアルキル基があげられる。なお、Rのアルキル基は単独でもよく、2種以上混合していてもよい。
 前記一般式(6)のRとしては、例えば、ノニル基、デシル基、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素原子数9以上、通常は10から30、好ましくは10から20の長鎖のアルキル基があげられる。なお、Rのアルキル基はRの場合と同様、単独でもよく、2種以上混合したものであってもよい。
 該(メタ)アクリル酸エステル系重合体の分子鎖は実質的に一般式(5)および一般式(6)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する一般式(5)および一般式(6)の単量体単位の合計が50重量%をこえることを意味する。一般式(5)および一般式(6)の単量体単位の合計は好ましくは70重量%以上である。
 また、一般式(5)の単量体単位と一般式(6)の単量体単位の存在比は、重量比で95:5から40:60が好ましく、90:10から60:40がさらに好ましい。
 該共重合体に含有されていてもよい一般式(5)および一般式(6)以外の単量体単位としては、例えば、アクリル酸、メタクリル酸等のアクリル酸;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α-メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。
 反応性ケイ素基を有する飽和炭化水素系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体は、特開平1-168764号、特開2000-186176号公報等に提案されているが、特にこれらに限定されるものではない。
 更に、反応性ケイ素官能基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法としては、他にも、反応性ケイ素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59-78223号、特開昭59-168014号、特開昭60-228516号、特開昭60-228517号等の各公報に具体的に開示されているが、これらに限定されるものではない。
 一方、有機重合体の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレタン結合成分等の他の成分を含んでいてもよい。
 前記ウレタン結合成分としては特に限定されないが、イソシアネート基と活性水素基との反応により生成する基(以下、アミドセグメントともいう)を挙げることができる。
 前記アミドセグメントは一般式(7):
-NR-C(=O)-  (7)
(Rは有機基または水素原子を表す)で表される基である。Rの有機基として好ましくは、炭素原子数1から20の置換あるいは非置換の1価の炭化水素基であり、より好ましくは炭素原子数1から8の置換あるいは非置換の1価の炭化水素基である)で表される基である。この構造は極性が比較的高いため、硬化物の強度や基材への接着性が高くなる傾向にあり望ましい。
 主鎖にウレタン結合やエステル結合を含有する重合体からなる硬化性組成物を硬化させた硬化物は、熱などによりウレタン結合やエステル結合部分で主鎖が開裂する恐れがあり、硬化物の強度が著しく低下する場合がある。
 本発明の重合体(B)の主鎖骨格中にアミドセグメントが多いと、重合体の粘度が高くなる傾向がある。また、貯蔵後に粘度が上昇する場合もあり、得られる組成物の作業性が低下する可能性がある。さらに、前記したように、熱などによってアミドセグメントが開裂する可能性がある。従って、貯蔵安定性や作業性の優れた組成物を得るためには、実質的にアミドセグメントを含まないことが好ましい。一方、重合体(B)の主鎖骨格中のアミドセグメントによって、硬化性が向上する傾向がある。従って、重合体(B)の主鎖骨格中にアミドセグメントを含む場合、アミドセグメントは1分子あたり平均で、1~10個が好ましく、1.5~5個がより好ましく、2~3個が特に好ましい。1個よりも少ない場合には、硬化性が十分ではない場合があり、10個よりも大きい場合には、重合体が高粘度となり取り扱い難くなる可能性がある。
 前記アミドセグメントとしては、具体的には、イソシアネート基とヒドロキシ基との反応により生成するウレタン基;イソシアネート基とアミノ基との反応により生成する尿素基;イソシアネート基とメルカプト基との反応により生成するチオウレタン基などを挙げることができる。また、本発明では、上記ウレタン基、尿素基、および、チオウレタン基中の活性水素が、更にイソシアネート基と反応して生成する基も、一般式(7)の基に含まれる。
 アミドセグメントと反応性ケイ素基を有する有機重合体の工業的に容易な製造方法を例示すると、末端に活性水素含有基を有する有機重合体に、過剰のポリイソシアネート化合物を反応させて、ポリウレタン系主鎖の末端にイソシアネート基を有する重合体とした後、あるいは同時に、該イソシアネート基の全部または一部に一般式(8):
W-R-SiR 3-a  (8)
(R、X、aは前記と同じ。Rは2価の有機基であり、より好ましくは炭素原子数1から20の炭化水素基である。Wはヒドロキシ基、カルボキシ基、メルカプト基およびアミノ基(1級または2級)から選ばれた活性水素含有基である)で表されるケイ素化合物のW基を反応させる方法により製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特公昭46-12154号(米国特許3632557号)、特開昭58-109529号(米国特許4374237号)、特開昭62-13430号(米国特許4645816号)、特開平8-53528号(EP0676403)、特開平10-204144号(EP0831108)、特表2003-508561(米国特許6197912号)、特開平6-211879号(米国特許5364955号)、特開平10-53637号(米国特許5756751号)、特開平11-100427号、特開2000-169544号、特開2000-169545号、特開2002-212415号、特許第3313360号、米国特許4067844号、米国特許3711445号、特開2001-323040号等が挙げられる。
 また、末端に活性水素含有基を有する有機重合体に一般式(9):
O=C=N-R-SiR 3-a  (9)
(R、R、X、aは前記に同じ)で示される反応性ケイ素基含有イソシアネート化合物とを反応させることにより製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特開平11-279249号(米国特許5990257号)、特開2000-119365号(米国特許6046270号)、特開昭58-29818号(米国特許4345053号)、特開平3-47825号(米国特許5068304号)、特開平11-60724号、特開2002-155145号、特開2002-249538号、WO03/018658、WO03/059981等が挙げられる。
 末端に活性水素含有基を有する有機重合体としては、末端にヒドロキシ基を有するオキシアルキレン重合体(ポリエーテルポリオール)、ポリアクリルポリオール、ポリエステルポリオール、末端にヒドロキシ基を有する飽和炭化水素系重合体(ポリオレフィンポリオール)、ポリチオール化合物、ポリアミン化合物等が挙げられる。これらの中でも、ポリエーテルポリオール、ポリアクリルポリオール、および、ポリオレフィンポリオールは、得られる有機重合体のガラス転移温度が比較的低く、得られる硬化物が耐寒性に優れることから好ましい。特に、ポリエーテルポリオールは、得られる有機重合体の粘度が低く作業性が良好であり、深部硬化性および接着性が良好である為に特に好ましい。また、ポリアクリルポリオールおよび飽和炭化水素系重合体は、得られる有機重合体の硬化物の耐候性、耐熱性が良好である為により好ましい。
 ポリエーテルポリオールとしては、いかなる製造方法において製造されたものでも使用することが出来るが、全分子平均で分子末端当り少なくとも0.7個のヒドロキシ基を末端に有するものが好ましい。具体的には、従来のアルカリ金属触媒を使用して製造したオキシアルキレン重合体や、複合金属シアン化物錯体やセシウムの存在下、少なくとも2つのヒドロキシ基を有するポリヒドロキシ化合物などの開始剤に、アルキレンオキシドを反応させて製造されるオキシアルキレン重合体などが挙げられる。
 上記の各重合法の中でも、複合金属シアン化物錯体を使用する重合法は、より低不飽和度で、Mw/Mnが狭く、より低粘度でかつ、高耐酸性、高耐候性のオキシアルキレン重合体を得ることが可能であるため好ましい。
 前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体を骨格とし、かつ、分子内にヒドロキシ基を有するポリオールを挙げることができる。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法がさらに好ましい。また、特開2001-207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。具体的には、東亞合成(株)製のアルフォンUH-2000等が挙げられる。
 前記ポリイソシアネート化合物の具体例としては、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートなどを挙げることができる。
 一般式(8)のケイ素化合物としては特に限定はないが、具体的に例示すると、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、(N-フェニル)-γ-アミノプロピルトリメトキシシラン、N-エチルアミノイソブチルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン等のアミノ基含有シラン類;γ-ヒドロキシプロピルトリメトキシシラン等のヒドロキシ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン等のメルカプト基含有シラン類;等が挙げられる。また、特開平6-211879号(米国特許5364955号)、特開平10-53637号(米国特許5756751号)、特開平10-204144号(EP0831108)、特開2000-169544号、特開2000-169545号に記載されている様に、各種のα,β-不飽和カルボニル化合物と一級アミノ基含有シランとのMichael付加反応物、または、各種の(メタ)アクリロイル基含有シランと一級アミノ基含有化合物とのMichael付加反応物もまた、一般式(8)のケイ素化合物として用いることができる。
 一般式(9)の反応性ケイ素基含有イソシアネート化合物としては特に限定はないが、具体的に例示すると、γ-トリメトキシシリルプロピルイソシアネート、γ-トリエトキシシリルプロピルイソシアネート、γ-メチルジメトキシシリルプロピルイソシアネート、γ-メチルジエトキシシリルプロピルイソシアネート、トリメトキシシリルメチルイソシアネート、トリエトキシメチルシリルメチルイソシアネート、ジメトキシメチルシリルメチルイソシアネート、ジエトキシメチルシリルメチルイソシアネート等が挙げられる。また、特開2000-119365号(米国特許6046270号)に記載されている様に、一般式(8)のケイ素化合物と、過剰の前記ポリイソシアネート化合物を反応させて得られる化合物もまた、一般式(9)の反応性ケイ素基含有イソシアネート化合物として用いることができる。
 硬化性組成物中の(A)成分と(B)成分の総重量に対する(A)成分の重量%が20~90重量%であることが好ましく、より好ましくは25~80重量%であり、更に好ましくは30~70重量%であり、より更に好ましくは52~65重量%である。20重量%未満であれば、硬化物の耐候性が悪くなる傾向があり、90重量%を超える場合は、硬化物の伸び物性が低下したりすることがある。
 また(メタ)アクリル酸エステル系重合体(A)は、非ニトリル系アゾ系重合開始剤に由来する基、或いは、有機過酸化物系重合開始剤に由来する基を有しているため、架橋性シリル基を有する有機重合体(B)との相溶性に優れる。例えば、架橋性シリル基を有する有機重合体(B)と(メタ)アクリル酸エステル系重合体(A)を重量比で1:1の比で混合攪拌した後、窒素雰囲気下で30℃もしくは50℃で一晩放置しても、液は分離しない。
 本発明の硬化性組成物では、シラノール縮合触媒を使用することができる。シラノール縮合触媒の代表として有機錫系硬化触媒が挙げられる。有機錫系触媒の具体例としては、ジメチル錫ジアセテート、ジメチル錫ビス(アセチルアセトナート)、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2-エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジオクチル錫ビス(アセチルアセトナート)等の4価の有機錫化合物;であるが、これらに限定されるものではない。これらの中で、毒性が低いとされるジオクチル錫系化合物が好ましく、更に硬化性の観点からジオクチル錫ビス(アセチルアセトナート)が好ましく、作業性の観点からジオクチル錫ジラウレートが好ましい。
 上記に示した有機錫系以外の、硬化触媒も使用することができる。その具体例としては、テトラブチルチタネート、テトラプロピルチタネート、チタンテトラキス(アセチルアセトナート)、ビス(アセチルアセトナート)ジイソプロポキシチタン、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどの有機アルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。また、カルボン酸および/またはカルボン酸金属塩を硬化触媒として使用することもできる。また、WO2008/078654号公報に記載されているようなアミジン化合物も使用できる。アミジン化合物の例として、1-(o-トリル)ビグアニド、1-フェニルグアニジン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン等を挙げることができるが、これらに限られるものではない。
 上記硬化触媒の使用量は、(A)成分と(B)成分の合計量100重量部に対して0.1重量部から10重量部、好ましくは0.2重量部から8重量部、更に好ましくは0.3重量部から5重量部である。0.1重量部未満では適切な硬化性が発現しなくなり、10重量部を超えると硬化が速すぎて、適切な硬化物を形成できず、所望の性能が十分発揮できなくなるためである。
 本発明では、可塑剤を使用してもよい。可塑剤の例としては、ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸ジイソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類をあげることができる。
 また、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジノルマルヘキシル、フタル酸ビス(2-エチルヘキシル)、フタル酸ジノルマルオクチル、フタル酸ジイソノニル、フタル酸ジノニル、フタル酸ジイソデシル、フタル酸ジイソウンデシル、フタル酸ビスブチルベンジル等のフタル酸エステル類も使用することはできるが、人体や環境への影響を考慮すると、これらの使用量は少ない方が好ましく、使用しないことが望ましい。フタル酸エステル類を使用する場合は、フタル酸ジイソデシルまたはフタル酸ジイソウンデシルが好ましく、より好ましくはフタル酸ジイソデシルである。また、上記のフタル酸エステル類を水添加して得られる、シクロヘキサンジカルボキシレートは、安全性を憂慮せずに使用することができる。この可塑剤は、BASF社からHexamoll DINCHという商品名で販売されており、容易に入手することができる。
 上記で挙げたような比較的低分子量の可塑剤は、硬化性組成物を施工した周辺の基材を汚染することがあるため、使用量は少ない方が望ましい。特に多孔質の石材が汚染が出易い傾向にあり、御影石や大理石、サイディングボード等は可塑剤の染み出しが生じ易く、美観を損なうことがある。このような美観の低下を抑えるためには、フタル酸エステル系可塑剤のような低分子量可塑剤の使用量は、(A)成分と(B)成分の合計量100重量部に対して200重量部以下、好ましくは100重量部以下、さらに好ましくは70重量部以下であり、より更に好ましくは50重量部以下である。汚染性を生じない硬化性組成物を得たい場合は、低分子量可塑剤は全く使用しないことが最も望ましい。
 硬化性組成物上に塗料を塗布する場合は、汚染性を低下させない範囲でフタル酸エステル系可塑剤を併用することが好ましい。併用することで、塗膜の密着性が向上し、剥がれの問題が改善できるためである。具体的には、(A)成分と(B)成分の合計量100重量部に対して1重量部から80重量部が好ましく、2重量部から75重量部がさらに好ましく、3重量部から70重量部が最も好ましい。
 また、本硬化性組成物には、高分子可塑剤を使用することができる。高分子可塑剤を使用すると重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持する。更に、該硬化物にアルキド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できる。高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;分子量500以上、更には1,000以上のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいはこれらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレンやポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられるが、これらに限定されるものではない。
 これらの高分子可塑剤のうちで、(A)成分および(B)成分の重合体と相溶するものが好ましい。この点から、ポリエーテル類やビニル系重合体が好ましい。また、ポリエーテル類を可塑剤として使用すると、表面硬化性および深部硬化性が改善され、貯蔵後の硬化遅延も起こらないことから好ましく、中でもポリプロピレングリコールがより好ましい。また、相溶性および耐候性、耐熱性の点からビニル系重合体が好ましい。ビニル系重合体の中でもアクリル系重合体および/またはメタクリル系重合体が好ましく、ポリアクリル酸アルキルエステルなどアクリル系重合体が更に好ましい。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法が更に好ましい。また、特開2001-207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。この可塑剤は、東亞合成株式会社からアルフォンという商品名で販売されている。
 高分子可塑剤の数平均分子量は、好ましくは500から15,000であるが、より好ましくは800から10,000であり、更に好ましくは1,000から8,000、特に好ましくは1,000から5,000であり、最も好ましくは1,000から3,000である。分子量が低すぎると熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキド塗装性が改善できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.80未満が好ましく、1.70以下がより好ましく、1.60以下がなお好ましく、1.50以下が更に好ましく、1.40以下が特に好ましく、1.30以下が最も好ましい。
 数平均分子量はビニル系重合体の場合はGPC法で、ポリエーテル系重合体の場合は末端基分析法で測定される。また、分子量分布(Mw/Mn)はGPC法(ポリスチレン換算)で測定される。
 可塑剤は、単独で使用してもよく、2種以上を併用してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なおこれら可塑剤は、重合体製造時に配合することも可能である。
 高分子量可塑剤の使用量は、(A)成分と(B)成分の合計量100重量部に対して5重量部から150重量部、好ましくは10重量部から120重量部、更に好ましくは20重量部から100重量部であり、より更に好ましくは20重量部から50重量部である。5重量部未満では可塑剤としての効果が発現しなくなり、150重量部を超えると硬化物の機械強度が不足する。
 また、特開2004-51701号公報または特開2004-66749号公報などに記載の熱膨張性微粒中空体を使用することができる。熱膨張性微粒中空体とは、炭素原子数1から5の炭化水素などの低沸点化合物を高分子外殻材(塩化ビニリデン系共重合体、アクリロニトリル系共重合体、または塩化ビニリデン-アクリロニトリル共重合体)で球状に包み込んだプラスチック球体である。本組成物を用いた接着部分を加熱することによって、熱膨張性微粒中空体の殻内のガス圧が増し、高分子外殻材が軟化することで体積が劇的に膨張し、接着界面を剥離させる役割を果たす。熱膨張性微粒中空体の添加により、不要時には加熱するだけで簡単に材料の破壊を伴わずに剥離でき、且つ有機溶剤を一切用いないで加熱剥離可能な接着性組成物が得られる。
 本発明の硬化性組成物には、アミノシランを添加することができる。アミノシランとは、分子中に反応性ケイ素基とアミノ基を有する化合物であり、通常、接着性付与剤と称される。これを使用することで、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。他にも物性調整剤、無機充填材の分散性改良剤等として機能し得る化合物である。
 アミノシランの反応性ケイ素基の具体的な例としては、既に例示した基を挙げることができるが、メトキシ基、エトキシ基等が加水分解速度の点から好ましい。加水分解性基の個数は、2個以上、特に3個以上が好ましい。アミノシランの具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(2-(2-アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のケチミン型シラン類を挙げることができる。
 これらのうち良好な接着性を確保するためには、γ-アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシランが好ましい。アミノシランは1種類のみ使用してもよいし、2種類以上を併用してもよい。γ-(2-アミノエチル)アミノプロピルトリメトキシシランは他のアミノシランに比べて刺激性があることが指摘されており、このアミノシランを減量する代わりに、γ-アミノプロピルトリメトキシシランを併用することで刺激性を緩和させることができる。
 アミノシランの配合量は、(A)成分と(B)成分の合計量100重量部に対して1~20重量部程度が好ましく、更に2~10重量部がより好ましく、2~5重量部が更に好ましい。アミノシランの配合量が1重量部未満であると十分な接着性が得られない場合がある。一方、配合量が20重量部を超えると、硬化物がもろくなって十分な強度が得られなくなり、また硬化速度が遅くなる場合がある。
 本発明の組成物には、アミノシラン以外の接着性付与剤を使用することができる。
 アミノシラン以外の接着性付与剤の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ-クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。また、上記シラン類を部分的に縮合した縮合体も使用できる。さらに、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等も接着性付与剤として用いることができる。
 本発明の硬化性組成物に添加される接着性付与剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。前述した接着性付与剤以外の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。
 これらのうち、良好な接着性を確保するためには、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランが好ましい。
 接着性付与剤の使用量としては、(A)成分と(B)成分の合計量100重量部に対し、0.01重量部から20重量部程度が好ましく、0.1重量部から10重量部程度がより好ましく、1重量部から7重量部程度が特に好ましい。接着性付与剤の配合量がこの範囲を下回ると、接着性が十分に得られない場合がある。一方、接着性付与剤の配合量がこの範囲を上回ると実用的な深部硬化性が得られない場合がある。
 接着性付与剤としては、上記の接着性付与剤以外にも、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が使用できる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。しかしながら、エポキシ樹脂は添加量に応じて触媒活性を低下させる場合があるため、本発明の硬化性組成物には、エポキシ樹脂の添加量は少ないことが好ましい。エポキシ樹脂の使用量としては、(A)成分と(B)成分の合計量100重量部に対して、5重量部以下が好ましく、0.5重量部以下がより好ましく、実質的に含有していないことが特に好ましい。
 本発明で得られる組成物には酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐熱性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、チヌビン622LD,チヌビン144,CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもBASFジャパン株式会社製);MARK LA-57,MARK LA-62,MARK LA-67,MARK LA-63,MARK LA-68(以上いずれも株式会社ADEKA製);サノールLS-770,サノールLS-765,サノールLS-292,サノールLS-2626,サノールLS-1114,サノールLS-744(以上いずれも三共ライフテック株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。酸化防止剤の使用量は、(A)成分と(B)成分の合計量100重量部に対して0.1~10重量部の範囲で使用するのがよく、さらに好ましくは0.2~5重量部である。
 本発明で得られる組成物には光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。光安定剤の使用量は、(A)成分と(B)成分の合計量100重量部に対して0.1~5重量部の範囲で使用するのがよく、さらに好ましくは0.2~5重量部である。光安定剤の具体例は特開平9-194731号公報にも記載されている。
 本発明で得られる組成物に光硬化性物質を併用する場合、特に不飽和アクリル系化合物を用いる場合、特開平5-70531号公報に記載されているようにヒンダードアミン系光安定剤として3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン622LD,チヌビン144,CHIMASSORB119FL(以上いずれもBASFジャパン株式会社製);MARK LA-57,LA-62,LA-67,LA-63(以上いずれも株式会社ADEKA製);サノールLS-765,LS-292,LS-2626,LS-1114,LS-744(以上いずれもBASFジャパン株式会社製)などの光安定剤が例示できる。
 本発明で得られる組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。紫外線吸収剤の使用量は、(A)成分と(B)成分の合計量100重量部に対して0.1~5重量部の範囲で使用するのがよく、さらに好ましくは0.2~3重量部である。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。
 本発明の組成物には充填剤を添加することができる。充填剤としては、フュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックの如き補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末の如き充填剤;ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。充填剤を使用する場合、その使用量は(A)成分と(B)成分の合計量100重量部に対して1重量部から250重量部、好ましくは10重量部から200重量部である。
 これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤が好ましく、(A)成分と(B)成分の合計量100重量部に対し、1重量部から250重量部の範囲で使用すれば好ましい結果が得られ、好ましくは1重量部から200重量部であり、より好ましくは50重量部から200重量部であり、更に好ましくは80重量部から200重量部である。また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、(A)成分と(B)成分の合計量100重量部に対して、5重量部から200重量部の範囲で使用すれば好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。炭酸カルシウムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径が大きい炭酸カルシウムを併用することが望ましい。表面処理微細炭酸カルシウムの粒径は0.5μm以下が好ましく、表面処理は脂肪酸や脂肪酸塩で処理されていることが好ましい。また、粒径が大きい炭酸カルシウムの粒径は1μm以上が好ましく表面処理されていないものを用いることができる。
 組成物の作業性(キレなど)向上や硬化物表面を艶消し状にするために、有機バルーン、無機バルーンの添加が好ましい。これらの充填剤は表面処理することもでき、1種類のみで使用しても良いし、2種類以上混合使用することもできる。作業性(キレなど)向上には、バルーンの粒径は0.1mm以下が好ましい。硬化物表面を艶消し状にするためには、5μmから300μmが好ましい。
 本発明の組成物は硬化物の耐薬品性が良好であるなどの理由により、サイディングボード、特に窯業系サイディングボード、など住宅の外壁の目地や外壁タイルの接着剤、外壁タイルの接着剤であって目地に接着剤がそのまま残るものなどに好適に用いられるが、外壁の意匠とシーリング材の意匠が調和することが望ましい。特に、外壁としてスパッタ塗装、着色骨材などの混入により高級感のある外壁が用いられるようになっている。本発明の組成物に直径が0.1mm以上、好ましくは0.1mmから5.0mm程度の鱗片状または粒状の物質が配合されていると、硬化物はこのような高級感のある外壁と調和し、耐薬品性が優れるためこの硬化物の外観は長期にわたって持続するすぐれた組成物となる。粒状の物質を用いると砂まき調あるいは砂岩調のざらつき感がある表面となり、鱗片状物質を用いると鱗片状に起因する凹凸状の表面となる。
 鱗片状または粒状の物質の好ましい直径、配合量、材料などは特開平9-53063号公報に記載されているように次の通りである。
 直径は0.1mm以上、好ましくは0.1mmから5.0mm程度であり、外壁の材質、模様等に合わせて適当な大きさのものが使用される。0.2mmから5.0mm程度や0.5mmから5.0mm程度のものも使用可能である。鱗片状の物質の場合には、厚さが直径の1/10から1/5程度の薄さ(0.01mmから1.00mm程度)とされる。鱗片状または粒状の物質は、シーリング主材内に予め混合されてシーリング材として施工現場に運搬されるか、使用に際して、施工現場にてシーリング主材内に混合される。
 鱗片状または粒状の物質は、シーリング材組成物や接着剤組成物等の組成物100重量部に対して、1重量部から200重量部程度が配合される。配合量は、個々の鱗片状または粒状の物質の大きさ、外壁の材質、模様等によって、適当に選定される。
 鱗片状または粒状の物質としては、ケイ砂、マイカ等の天然物、合成ゴム、合成樹脂、アルミナ等の無機物が使用される。目地部に充填した際の意匠性を高めるために、外壁の材質、模様等に合わせて、適当な色に着色される。
 また、同様の目的でバルーン(好ましくは平均粒径が0.1mm以上のもの)を用いれば砂まき調あるいは砂岩調のざらつき感がある表面になり、かつ軽量化を図ることができる。バルーンの好ましい直径、配合量、材料などは特開平10-251618号公報に記載されているように次の通りである。
 バルーンは、球状体充填剤で内部が中空のものである。このバルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料があげられるが、これらのみに限定されるものではなく、無機系の材料と有機系の材料とを複合させたり、また、積層して複数層を形成させたりすることもできる。無機系の、あるいは有機系の、またはこれらを複合させるなどしたバルーンを使用することができる。また、使用するバルーンは、同一のバルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用しても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたものを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使用することもできる。例えば、有機系のバルーンを炭酸カルシウム、タルク、酸化チタンなどでコーティングしたり、無機系のバルーンを接着性付与剤で表面処理することなどが挙げられる。
 砂まき調あるいは砂岩調のざらつき感がある表面を得るには、バルーンは粒径が0.1mm以上であることが好ましい。0.2mmから5.0mm程度や0.5mmから5.0mm程度のものも使用可能である。0.1mm未満のものでは、多量に配合しても組成物の粘度を上昇させるだけで、ざらつき感が発揮されない場合がある。バルーンの配合量は目的とする砂まき調あるいは砂岩調のざらつき感の程度によって容易に定めることができる。通常、粒径が0.1mm以上のものを組成物中の容積濃度で5vol%から25vol%の範囲となる割合で配合することが望ましい。バルーンの容積濃度が5vol%未満であるとざらつき感がなく、また25vol%を超えると、シーリング材や接着剤の粘度が高くなり作業性が悪く、硬化物のモジュラスも高くなり、シーリング材や接着剤の基本性能が損なわれる傾向にある。シーリング材の基本性能とのバランスが特に好ましい容積濃度は8vol%から22vol%である。
 バルーンを用いる際には特開2000-154368号公報に記載されているようなスリップ防止剤、特開2001-164237号公報に記載されているような硬化物の表面を凹凸状態に加えて艶消し状態にするためのアミン化合物、特に融点35℃以上の第1級および/または第2級アミンを添加することができる。
 バルーンの具体例は特開平2-129262号、特開平4-8788号、特開平4-173867号、特開平5-1225号、特開平7-113073号、特開平9-53063号、特開平10-251618号、特開2000-154368号、特開2001-164237号、WO97/05201号などの各公報に記載されている。
 本発明の組成物がシーリング材硬化物粒子を含む場合も硬化物は表面に凹凸を形成し意匠性を向上させることができる。シーリング材硬化物粒子の好ましい直径、配合量、材料などは特開2001-115142号公報に記載されているように次の通りである。直径は0.1mmから1mm、更には0.2mmから0.5mm程度が好ましい。配合量は硬化性組成物中に5~100重量%、更には20~50重量%が好ましい。材料は、ウレタン樹脂、シリコーン、変成シリコーン、多硫化ゴム等を挙げることができシーリング材に用いられるものであれば限定されないが、変成シリコーン系のシーリング材が好ましい。
 また、本発明の組成物には、シリケートを用いることができる。このシリケートは、架橋剤として作用し、本発明の(A)成分および(B)成分である有機重合体の復元性、耐久性、および、耐クリープ性を改善する機能を有する。また更に、接着性および耐水接着性、高温高湿条件での接着耐久性を改善する効果も有する。シリケートとしてはテトラアルコキシシランまたはその部分加水分解縮合物が使用できる。シリケートを使用する場合、その使用量は(A)成分と(B)成分の合計量100重量部に対して0.1重量部から20重量部、好ましくは0.5重量部から10重量部である。
 シリケートの具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物があげられる。
 テトラアルコキシシランの部分加水分解縮合物は、本発明の復元性、耐久性、および、耐クリープ性の改善効果がテトラアルコキシシランよりも大きい為により好ましい。
 前記テトラアルコキシシランの部分加水分解縮合物としては、例えば、通常の方法でテトラアルコキシシランに水を添加し、部分加水分解させて縮合させたものがあげられる。また、オルガノシリケート化合物の部分加水分解縮合物は、市販のものを用いることができる。このような縮合物としては、例えば、メチルシリケート51、エチルシリケート40(いずれもコルコート(株)製)等が挙げられる。
 本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
 特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、特開平5-117521号公報に記載されている化合物をあげることができる。また、ヘキサノール、オクタノール、デカノール等のアルキルアルコールの誘導体であって加水分解によりトリメチルシラノール等のRSiOHを生成するシリコン化合物を生成する化合物、特開平11-241029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリトールあるいはソルビトール等のヒドロキシ基数が3以上の多価アルコールの誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物をあげることができる。
 また、特開平7-258534号公報に記載されているようなオキシプロピレン重合体の誘導体であって加水分解によりトリメチルシラノールなどのR3SiOHを生成するシリコン化合物を生成する化合物もあげることができる。更に特開平6-279693号公報に記載されている架橋可能な反応性ケイ素含有基と加水分解によりモノシラノール含有化合物となりうるケイ素含有基を有する重合体を使用することもできる。
 物性調整剤は、(A)成分と(B)成分の合計量100重量部に対して、0.1重量部から20重量部、好ましくは0.5重量部から10重量部の範囲で使用される。
 本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。また、特開平11-349916号公報に記載されているような粒子径10μmから500μmのゴム粉末や、特開2003-155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な組成物が得られる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。チクソ性付与剤は(A)成分と(B)成分の合計量100重量部に対して、0.1重量部から20重量部の範囲、好ましくは1重量部から10重量部の範囲で使用される。
 本発明の組成物においては1分子中にエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環式エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物およびそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化アマニ油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-ト等があげられる。これらのなかではE-PSが特に好ましい。エポキシ化合物は、(A)成分と(B)成分の合計量100重量部に対して0.5重量部から50重量部の範囲で使用するのがよい。
 本発明の組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや耐候性を改善できる。光硬化性物質とは、光の作用によってかなり短時間に分子構造が化学変化をおこし、硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、市販の任意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。不飽和アクリル系化合物としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物であって、プロピレン(またはブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の単量体または分子量10,000以下のオリゴエステルが例示される。具体的には、例えば特殊アクリレート(2官能)のアロニックスM-210,アロニックスM-215,アロニックスM-220,アロニックスM-233,アロニックスM-240,アロニックスM-245;(3官能)のアロニックスM-305,アロニックスM-309,アロニックスM-310,アロニックスM-315,アロニックスM-320,アロニックスM-325,および(多官能)のアロニックスM-400などが例示できるが、特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい(以上アロニックスはいずれも東亞合成株式会社の製品である。)。
 ポリケイ皮酸ビニル類としては、シンナモイル基を感光基とする感光性樹脂でありポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル誘導体が例示される。アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁から、第106頁から、第117頁から)に詳細な例示があり、これらを単独または混合し、必要に応じて増感剤を加えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤やアミン類などの促進剤を添加すると、効果が高められる場合がある。光硬化性物質は、(A)成分と(B)成分の合計量100重量部に対して0.1重量部から20重量部、好ましくは0.5重量部から10重量部の範囲で使用するのがよく、0.1重量部以下では耐候性を高める効果はなく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。
 本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2-ポリブタジエン、1,4-ポリブタジエン、C5からC8ジエンの重合体などの液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させてえられるNBR、SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。これらのうちではキリ油や液状ジエン系重合体がとくに好ましい。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩や、アミン化合物等が例示される。酸素硬化性物質の使用量は、(A)成分と(B)成分の合計量100重量部に対して0.1重量部から20重量部の範囲で使用するのがよく、さらに好ましくは0.5重量部から10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
 本発明の硬化性組成物には、ポリリン酸アンモニウム、トリクレジルホスフェートなどのリン系可塑剤、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛などの難燃剤を添加することができる。上記難燃剤は単独で用いてもよく、2種以上併用してもよい。
 難燃剤は(A)成分と(B)成分の合計量100重量部に対して、5重量部から200重量部、好ましくは10重量部から100重量部の範囲で使用される。
 本発明の組成物には、組成物の粘度を低減し、チクソ性を高め、作業性を改善する目的で、溶剤を使用することができる。溶剤としては、特に限定は無く、各種の化合物を使用することができる。具体例としては、トルエン、キシレン、ヘプタン、ヘキサン、石油系溶媒等の炭化水素系溶剤;トリクロロエチレン等のハロゲン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシリコーン系溶剤;が例示される。これらの溶剤は、単独で使用してもよく、2種以上併用してもよい。
 但し、溶剤の配合量が多い場合には、人体への毒性が高くなる場合があり、また、硬化物の体積収縮などが見られる場合がある。従って、溶剤の配合量は、(A)成分と(B)成分の合計量100重量部に対して、3重量部以下であることが好ましく、1重量部以下であることがより好ましく、溶剤を実質的に含まないことが最も好ましい。
 本発明の硬化性組成物には、硬化性組成物または硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防蟻剤、防かび剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書にあげた添加物の具体例以外の具体例は、たとえば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、特開2001-72854号の各公報などに記載されている。
 本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
 前記硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。前記硬化性組成物が2成分型の場合、反応性ケイ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので配合剤中には若干の水分が含有されていてもゲル化の心配は少ないが、長期間の貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水、乾燥方法としては粉状などの固状物の場合は加熱乾燥法または減圧脱水法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸化マグネシウムなどを使用した脱水法が好適である。かかる脱水乾燥法に加えて、脱水剤として、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチルシリケート、エチルシリケート、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加し、水と反応させて脱水してもよい。また脱水剤として、3-エチル-2-メチル-2-(3-メチルブチル)-1,3-オキサゾリジンなどのオキサゾリジン化合物を配合して水と反応させて脱水してもよい。また脱水剤として、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。アルコキシシラン化合物やオキサゾリジン化合物、および、イソシアネート化合物の添加により、貯蔵安定性が向上する。
 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、(A)成分と(B)成分の合計量100重量部に対して、0.1重量部から20重量部、好ましくは0.5重量部から10重量部の範囲が好ましく、1重量部から5重量部がより好ましい。
 本発明の硬化性組成物の調製法には特に限定はなく、例えば上記した成分を配合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混練したり、適した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用されうる。
 本発明の硬化性組成物は、大気中に暴露されると水分の作用により、三次元的に網状組織を形成し、ゴム状弾性を有する固体へと硬化する。
 本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、これらの中でも、シーリング材または接着剤として用いることがより好ましい。
 また、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイディングボード等の外装材の目地用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤等の様々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、としても使用可能である。
 本願は、2014年9月1日に出願された日本国特許出願第2014-177323号に基づく優先権の利益を主張するものである。2014年9月1日に出願された日本国特許出願第2014-177323号の明細書の全内容が、本願に参考のため援用される。
 つぎに実施例および比較例によって本発明を具体的に説明するが、本発明はこれに限定されるものではない。
 実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
  送液システム:東ソー製HLC-8120GPC
  カラム:東ソー製TSK-GEL Hタイプ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
 実施例中の末端基換算分子量は、水酸基価をJIS K 1557の測定方法により、ヨウ素価をJIS K 0070の測定方法により求め、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた分子量である。
 実施例に示す重合体(Q)の末端1個あたりへの炭素-炭素不飽和結合の平均導入数は以下の計算式により算出した。
(平均導入数)=[重合体(Q)のヨウ素価-前駆重合体(P)のヨウ素価]/[前駆重合体(P)の水酸基価]。
 実施例に示す重合体(B)の末端1個あたりへのシリル基の平均導入数はNMR測定により算出した。
 (合成例1~6)(比較合成例1~8)
 フラスコに、イソブタノールを添加し105℃に加熱し、窒素置換を行った後、攪拌しながら、窒素雰囲気下で、表1に示すアクリル酸エステル系単量体と重合開始剤とイソブタノールの溶液を5時間かけて滴下し、その後1時間後重合を行った。得られたイソブタノール溶液のポリアクリル系重合体を加熱減圧下でイソブタノールを除去することにより、透明で粘稠な液体を得た。以上により、表1に示す分子量(送液システムとして東ソー(株)製HLC-8120GPCを用い、カラムは東ソー(株)製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)と粘度(東京計器(株)製RE80形粘度計を用い、測定温度23.0℃、3°×R14ローターで測定)の反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体を得た。
 表1における、アクリル酸エステル系単量体と溶剤の略号、重合開始剤の詳細は以下の通りである。
MMA:メタクリル酸メチル
BA:アクリル酸ブチル
TSMA:メタクリル酸3-(トリメトキシシリル)プロピル
DSMA:メタクリル酸3-(メチルジメトキシシリル)プロピル
2EHA:アクリル酸2-エチルヘキシル
IBA:イソブチルアルコール
V-59:2,2’-アゾビス(2-メチルブチロニトリル)(和光純薬工業(株)製)
V-601:ジメチル-2,2’-アゾビス(2-メチルプロピオネート)(和光純薬工業(株)製)
パーヘキシルO:t-ヘキシルパーオキシ-2-エチルヘキサノエート(日油(株)製)
パーブチルO:t-ブチルパーオキシ-2-エチルヘキサノエート(日油(株)製)
 (合成例7)
 数平均分子量が約2,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900(末端基換算分子量17700)、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-1)を得た。続いてこの水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリオキシプロピレン100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端部位にアリル基を有するポリオキシプロピレン重合体(Q-1)を得た。この重合体(Q-1)500gに対して白金ジビニルジシロキサン錯体溶液150μlを加え、撹拌しながら、ジメトキシメチルシラン4.8gをゆっくりと滴下した。その混合溶液を6%酸素条件下、100℃で6時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量約28,500のポリオキシプロピレン(B-1)を得た。重合体(B-1)はジメトキシメチルシリル基を1つの末端に平均0.8個、1分子中に平均1.6個有することが分かった。
Figure JPOXMLDOC01-appb-T000001
 (相溶性)
 合成例7で得られたジメトキシメチルシリル基を有するポリオキシプロピレン(B-1)と表1に示す溶剤を留去させた反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体を重量比で1:1の比で混合攪拌した後、ガラス瓶へ移し、窒素置換を行い密閉した。30℃もしくは、50℃のオーブンで一晩放置した後、液の状態を観察し、分離した場合を×、分離しなかった場合を○とした。
 表1の結果から、本発明の合成例1~6、比較合成例6、8は低粘度でB-1と良好な相溶性を示すことがわかる。一方、比較合成例1~3、5、7ではB-1と非相溶となり、また、比較合成例4では相溶するが、粘度が極めて高いという結果となった。
 (合成例8)
 数平均分子量が約2,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量20,900(末端基換算分子量13,600)、分子量分布Mw/Mn=1.23のポリオキシプロピレン(P-2)を得た。続いてこの水酸基末端ポリオキシプロピレン(P-2)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-2)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリオキシプロピレン100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端部位にアリル基を有するポリオキシプロピレン重合体(Q-2)を得た。この重合体(Q-2)500gに対して白金ジビニルジシロキサン錯体溶液150μlを加え、撹拌しながら、ジメトキシメチルシラン5.8gをゆっくりと滴下した。その混合溶液を6%酸素条件下、100℃で6時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量約21,100のポリオキシプロピレン(B-2)を得た。重合体(B-2)はジメトキシメチルシリル基を1つの末端に平均0.7個、1分子中に平均1.5個有することが分かった。
 (合成例9)
 合成例7で得られた水酸基末端ポリオキシアルキレン(P-1)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。得られた未精製のアリル基末端ポリオキシプロピレン100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去した後、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、炭素-炭素不飽和結合を2個以上有する末端構造を有するポリオキシプロピレン(Q-3)を得た。重合体(Q-3)は1つの末端部位に炭素-炭素不飽和結合が平均2.0個導入されていることがわかった。
 得られた1つの末端部位に炭素-炭素不飽和結合を平均2.0個有するポリオキシプロピレン(Q-3)500gに対し白金ジビニルジシロキサン錯体溶液50μlを加え、撹拌しながらジメトキシメチルシラン9.6gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、2個以上のジメトキシメチルシリル基を有する末端構造を有する数平均分子量約28,500のポリオキシプロピレン(B-3)を得た。重合体(B-3)はジメトキシメチルシリル基を1つの末端に平均1.7個、一分子中に平均3.4個有することが分かった。
 (合成例10)
 合成例8で得られた水酸基末端ポリオキシアルキレン(P-2)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。重合体(P-2)の水酸基に対して、0.3モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリオキシプロピレン100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去した後、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、炭素-炭素不飽和結合を末端に有するポリオキシプロピレン(Q-3)を得た。重合体(Q-3)は1つの末端部位に炭素-炭素不飽和結合が平均1.29個導入されていることがわかった。
 得られた(Q-3)500gに対し白金ジビニルジシロキサン錯体(白金換算で3重量%の2-プロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン8.2gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、1つの末端に平均して1.0個より多くのジメトキシメチルシリル基を有する数平均分子量約22,000の反応性ケイ素基含有ポリオキシプロピレン(B-4)を得た。重合体(B-4)はジメトキシメチルシリル基を1つの末端に平均して1.0個、一分子中に平均2.1個有することが分かった。
 (実施例1~7)(比較例1~5)
 表2に示すポリマー成分を合計100重量部、フタル酸エステル系可塑剤(フタル酸ジイソデシル、ジェイ・プラス(株)製、商品名:DIDP)60重量部、表面処理膠質炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)150重量部、重質炭酸カルシウム(丸尾カルシウム(株)商品名;ナノックス25A)20重量部、酸化チタン(石原産業(株)製、商品名:タイペークR-820)10重量部、カーボンブラック(旭カーボン(株)製、商品名:旭#70)0.2重量部、チクソ性付与剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部、紫外線吸収剤(チバ・スペシャルティ・ケミカルズ(株)製、商品名:チヌビン326)1重量部、光安定剤(チバ・スペシャルティ・ケミカルズ(株)製、商品名:チヌビン770)1重量部を計量、混合して充分混練りした後、小型3本ペイントロールに3回通した。この後、120℃で2時間減圧脱水を実施、50℃以下に冷却後、脱水剤としてビニルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A-171)3重量部、接着性付与剤としてγ-(2-アミノエチル)アミノプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A-1120)2重量部、硬化触媒としてジオクチル錫ジラウレート(日東化成工業(株)製、商品名:ネオスタンU-100)2重量部を加えて混練し、硬化性組成物を得た。この硬化性組成物の、粘度、耐候性、ダンベル引張物性を下記の方法に従って測定した。
Figure JPOXMLDOC01-appb-T000002
 (粘度)
 100ml用のカップに泡が入らないように充填した。BS型粘度計(東京計器(株)製)とローターNo.7を用いて、23℃50%RH条件下で各組成物の2rpm、10rpmでの粘度を測定した。
 (引張物性)
 上記硬化性組成物を厚さ3mmのシート状試験体にして23℃、50%RH条件に3日間、さらに50℃乾燥機に4日間入れることで完全に硬化させた。3号ダンベル型に打ち抜いた後、島津(株)製オートグラフを用いて引張速度200mm/分で引張試験を行い、100%モジュラス、破断時の伸び(それぞれ、M100、EBと示す)を測定した。
 (耐候性)
 厚さ100μmのシート状試験体の一部を3.5cm角に切り取ったものをメタルウェザー耐候性試験機(ダイプラ・ウィンテス(株)製、メタルウェザーKU-R5C1-A)を用いて、照度を75mW/cm、ブラックパネル温度を63℃、水を2時間毎に2分間噴霧する設定にて570時間暴露した後取り出し、硬化物表面を観察した。表面クラックなどの異常が観察されたものを×、異常が観察されなかったものを○とした。
 表2の結果から、本発明の実施例1~7は、硬化性組成物が低粘度で作業性が良好、且つ、硬化物が高伸び高耐候性を示すことがわかる。実施例7と比べて、比較例1は(A)成分のポリマーの粘度が高くなった影響で、配合物の粘度も比較的高粘度となり、作業性の悪化が生じた。実施例7と比べて、比較例2はTSMAの添加量が少ないことが影響し、比較例5は分子量が低いことが影響し、耐候性が劣る結果が得られた。比較例3、4は低伸びとなった。比較合成例4、6、8は表1でB-1と相溶したが、作業性、伸び、耐候性の観点で弾性シーラントや接着剤等への適応は難しいといえる。
 (合成例11)
 窒素気流下でアクリル酸ブチル100重量部、臭化第一銅0.8重量部、アセトニトリル8.8重量部、2,5-ジブロモアジピン酸ジエチル1.8重量部を仕込み、80℃で攪拌した。これにペンタメチルジエチレントリアミン0.18重量部を加えて反応を開始した。途中、アクリル酸ブチル80.0重量部を断続的に追加し、さらにペンタメチルジエチレントリアミンを適宜追加しながら反応溶液の温度が80℃~90℃となるように加熱攪拌を続けた。アクリル酸ブチルの反応率が95%に達した後、反応容器内を減圧にし、揮発分を除去した。
 これにアセトニトリル35重量部、1,7-オクタジエン21重量部を添加し、さらにペンタメチルジエチレントリアミン0.3重量部を加えて80℃で加熱撹拌した。この後、反応容器内を減圧にし、揮発分を除去した。
 これを酢酸ブチルで希釈し、合成ハイドロタルサイト(協和化学工業(株)製、商品名キョーワード500SH)、珪酸アルミニウム(協和化学工業(株)製、商品名キョーワード700SEN)、ろ過助剤を添加し、酸素・窒素混合ガス雰囲気下で加熱攪拌した。固形分を除去した後、溶液を濃縮した。合成ハイドロタルサイト、珪酸アルミニウムを加え、減圧下で加熱撹拌した。これを酢酸ブチルで希釈し、さらに合成ハイドロタルサイト、珪酸アルミニウムを加えて加熱撹拌した。固形分を除去後、濃縮してアルケニル末端ポリアクリル酸ブチルを得た。
 上記方法により得られたアルケニル基を有するポリアクリル酸ブチル100重量部に対して、ジメトキシメチルシラン1.7重量部、オルトギ酸メチル0.9部、白金時ビニルジシロキサン錯体溶液0.0010重量部を混合し、窒素雰囲気下、100℃で加熱攪拌した。1時間程度加熱攪拌後、未反応のジメトキシメチルシラン等の揮発分を減圧留去し、両末端にメチルジメトキシシリル基を有するポリアクリル酸ブチル(B-5)を得た。(B-5)の数平均分子量は、25000であり、ジメトキシメチルシリル基を1分子中に平均1.9個有することが分かった。
 (実施例8)(比較例6、7)
 表3に示すポリマー成分を合計100重量部、PPG3000(分子量3000のジオール型ポリプロピレングリコール)20重量部、表面処理膠質炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)50重量部、重質炭酸カルシウム(白石工業(株)商品名;ホワイトンSB)50重量部、チクソ性付与剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部を計量、混合して充分混練りした後、小型3本ペイントロールに3回通した。この後、120℃で2時間減圧脱水を実施、50℃以下に冷却後、脱水剤としてビニルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A-171)2重量部、接着性付与剤としてγ-(2-アミノエチル)アミノプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A-1120)3重量部、硬化触媒としてジブチル錫ビスアセチルアセトナート(日東化成工業(株)製、商品名:ネオスタンU-220H)1重量部を加えて混練し、硬化性組成物を得た。この硬化性組成物の粘度、ミニダンベル引張物性、耐熱性を下記の方法に従って測定した。
Figure JPOXMLDOC01-appb-T000003
 (ミニダンベル引張物性)
 上記硬化性組成物を厚さ3mmのシート状試験体にして23℃、50%RH条件に3日間、さらに50℃乾燥機に4日間入れることで完全に硬化させた。ミニダンベル型に打ち抜いた後、島津(株)製オートグラフを用いて引張速度200mm/分で引張試験を行い、M100、EBを測定した。
 (耐熱性)
 上記ミニダンベルを120℃乾燥機に1週間いれて加熱養生した後、島津(株)製オートグラフを用いて引張速度200mm/分で引張試験を行い、EBを測定した。加熱養生前のEBに対する加熱養生後のEBの変化率を求めた。変化率が100%に近いほど、加熱養生による変化が小さく、耐熱性に優れているといえる。
 表3の結果から、本発明の実施例8は、硬化性組成物が低粘度で作業性が良好、且つ、硬化物の耐熱性が高いことがわかる。

Claims (14)

  1. 架橋性シリル基を含有する(メタ)アクリル酸エステルと(メタ)アクリル酸アルキルエステルに由来する繰り返し単位を有する加水分解性ケイ素基含有(メタ)アクリル酸エステル系重合体(A)と、分子鎖末端もしくは分子鎖末端部位のみに架橋性シリル基を有する有機重合体(B)を含有する硬化性組成物であって、(メタ)アクリル酸エステル系重合体(A)が非ニトリル系アゾ系重合開始剤に由来する基を有する硬化性組成物。
  2. (メタ)アクリル酸エステル系重合体(A)が60℃~140℃で共重合することで得られる請求項1に記載の硬化性組成物。
  3. (メタ)アクリル酸エステル系重合体(A)の重合法が溶液重合法である請求項1または2に記載の硬化性組成物。
  4. 有機重合体(B)の主鎖がポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、および飽和炭化水素系重合体からなる群から選択される1種以上である請求項1~3のいずれかに記載の硬化性組成物。
  5. (メタ)アクリル酸エステル系重合体(A)の重量平均分子量が7000~14000である請求項1~4のいずれかに記載の硬化性組成物。
  6. (メタ)アクリル酸エステル系重合体(A)が一般式(1):
    -SiX   (1)
    (式中、Xはヒドロキシ基または加水分解性基であり、3個のXは同一であっても良く、異なっていてもよい)および/または一般式(2):
    -SiR (2)
    (Rは、炭素原子数1から20の置換あるいは非置換のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSiR’(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは前記と同じであり、2個のXは同一であっても良く、異なっていてもよい。)で表されるケイ素含有官能基を1分子中に平均して0.5~2.5個有し、一般式(1)に示すケイ素含有官能基が1分子中に平均して0~2.0個、一般式(2)に示すケイ素含有官能基が1分子中に平均して0~2.0個である請求項1~5のいずれかに記載の硬化性組成物。
  7. (メタ)アクリル酸エステル系重合体(A)が、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のメタクリル酸エステル0~15重量部、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のアクリル酸エステル55~90重量部、エステルを構成するアルコール成分が炭素数8以上の直鎖状、分岐状または脂環式アルキル基の(メタ)アクリル酸エステル5~30重量部に由来する繰り返し単位を有する請求項1~6のいずれかに記載の硬化性組成物。
  8. (メタ)アクリル酸エステル系重合体(A)が、メチルメタクリレート0~15重量部、ブチルアクリレート55~90重量部、および2-エチルヘキシルアクリレート5~30重量部に由来する繰り返し単位を有する請求項1~7のいずれかに記載の硬化性組成物。
  9. 架橋性シリル基を含有する(メタ)アクリル酸エステルと(メタ)アクリル酸アルキルエステルに由来する繰り返し単位を有する加水分解性ケイ素基含有(メタ)アクリル酸エステル系重合体(A)と、分子鎖末端もしくは分子鎖末端部位のみに架橋性シリル基を有する有機重合体(B)を含有する硬化性組成物であって、(メタ)アクリル酸エステル系重合体(A)が有機過酸化物系重合開始剤に由来する基を有し、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のメタクリル酸エステル0~15重量部、エステルを構成するアルコール成分が炭素数1~4の直鎖状、分岐状または脂環式アルキル基のアクリル酸エステル55~90重量部、エステルを構成するアルコール成分が炭素数8以上の直鎖状、分岐状または脂環式アルキル基の(メタ)アクリル酸エステル5~30重量部に由来する繰り返し単位を有し、重量平均分子量が7000~14000であり、(メタ)アクリル酸エステル系重合体(A)が一般式(1)および/または一般式(2)で表されるケイ素含有官能基を1分子中に平均して0.5~2.3個有する硬化性組成物。
    -SiX   (1)
    (式中、Xはヒドロキシ基または加水分解性基であり、3個のXは同一であっても良く、異なっていてもよい)
    -SiR (2)
    (Rは、炭素原子数1から20の置換あるいは非置換のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSiR’(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは前記と同じであり、2個のXは同一であっても良く、異なっていてもよい。)
  10. 有機重合体(B)の主鎖がポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、および飽和炭化水素系重合体からなる群から選択される1種以上である請求項9に記載の硬化性組成物。
  11. (メタ)アクリル酸エステル系重合体(A)が、一般式(1)に示すケイ素含有官能基を1分子中に平均して0~2.0個、一般式(2)に示すケイ素含有官能基を1分子中に平均して0~2.0個有する請求項9または10に記載の硬化性組成物。
  12. (メタ)アクリル酸エステル系重合体(A)が、メチルメタクリレート0~15重量部、ブチルアクリレート55~90重量部、および2-エチルヘキシルアクリレート5~30重量部に由来する繰り返し単位を有する請求項9~11のいずれかに記載の硬化性組成物。
  13. (メタ)アクリル酸エステル系重合体(A)の23℃、3°×R14の条件で測定されるE型粘度が15~200Pa・sである請求項1~12のいずれかに記載の硬化性組成物。
  14. 有機重合体(B)に含有される架橋性シリル基が重合体1分子中に平均して0.5個以上、数平均分子量がGPCにおけるポリスチレン換算において800から50,000、有機重合体(B)の架橋性シリル基は、一般式(3):
    -SiR 3-a  (3)
    (Rは、それぞれ独立に炭素原子数1から20の置換あるいは非置換のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、-OSiR’(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは、それぞれ独立にヒドロキシ基または加水分解性基である。更に、aは1から3の整数である)で表される請求項1~13のいずれかに記載の硬化性組成物。
     
PCT/JP2015/074516 2014-09-01 2015-08-28 硬化性組成物 WO2016035718A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016546622A JP6561062B2 (ja) 2014-09-01 2015-08-28 硬化性組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-177323 2014-09-01
JP2014177323 2014-09-01

Publications (1)

Publication Number Publication Date
WO2016035718A1 true WO2016035718A1 (ja) 2016-03-10

Family

ID=55439781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074516 WO2016035718A1 (ja) 2014-09-01 2015-08-28 硬化性組成物

Country Status (2)

Country Link
JP (1) JP6561062B2 (ja)
WO (1) WO2016035718A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376300B1 (ja) * 2018-02-19 2018-08-22 東亞合成株式会社 硬化性組成物、及び接着剤組成物
JP6376302B1 (ja) * 2017-09-20 2018-08-22 東亞合成株式会社 硬化性組成物、及びシーリング材組成物
CN108659327A (zh) * 2018-03-30 2018-10-16 湖北娅安科技开发有限公司 一种新能源汽车电池专用导热绝缘材料及其制备方法
WO2019058794A1 (ja) * 2017-09-20 2019-03-28 東亞合成株式会社 硬化性組成物、シーリング材組成物、及び接着剤組成物
JP2019156885A (ja) * 2018-03-07 2019-09-19 Agc株式会社 硬化性組成物、及び硬化物
WO2020110713A1 (ja) * 2018-11-27 2020-06-04 株式会社カネカ ポリオキシアルキレン系重合体及び硬化性組成物
WO2020196228A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 硬化性組成物、及び硬化物
WO2022163563A1 (ja) * 2021-01-29 2022-08-04 株式会社カネカ ポリオキシアルキレン系重合体及びその混合物
CN115335452A (zh) * 2020-03-24 2022-11-11 综研化学株式会社 固化性组合物以及固化物
WO2022270196A1 (ja) * 2021-06-22 2022-12-29 株式会社スリーボンド 湿気硬化型樹脂組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155469A (ja) * 2001-11-20 2003-05-30 Toagosei Co Ltd シーリング材組成物
JP2005082681A (ja) * 2003-09-08 2005-03-31 Cemedine Co Ltd 硬化性組成物及び弾性パテ組成物
JP2006096889A (ja) * 2004-09-29 2006-04-13 Sekisui Chem Co Ltd 硬化性組成物、シーリング材及び接着剤
WO2008117845A1 (ja) * 2007-03-28 2008-10-02 Toagosei Co., Ltd. 湿気硬化性組成物、該組成物を含有する接着剤組成物及びシーリング剤組成物
JP2012077236A (ja) * 2010-10-05 2012-04-19 Jnc Corp 熱硬化性着色組成物及びそれを焼成して得られる硬化膜
WO2014034516A1 (ja) * 2012-08-28 2014-03-06 日産化学工業株式会社 硬化膜形成組成物
JP2014118502A (ja) * 2012-12-18 2014-06-30 Toagosei Co Ltd シリル基含有ビニル重合体、及びこれを含む硬化性樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155469A (ja) * 2001-11-20 2003-05-30 Toagosei Co Ltd シーリング材組成物
JP2005082681A (ja) * 2003-09-08 2005-03-31 Cemedine Co Ltd 硬化性組成物及び弾性パテ組成物
JP2006096889A (ja) * 2004-09-29 2006-04-13 Sekisui Chem Co Ltd 硬化性組成物、シーリング材及び接着剤
WO2008117845A1 (ja) * 2007-03-28 2008-10-02 Toagosei Co., Ltd. 湿気硬化性組成物、該組成物を含有する接着剤組成物及びシーリング剤組成物
JP2012077236A (ja) * 2010-10-05 2012-04-19 Jnc Corp 熱硬化性着色組成物及びそれを焼成して得られる硬化膜
WO2014034516A1 (ja) * 2012-08-28 2014-03-06 日産化学工業株式会社 硬化膜形成組成物
JP2014118502A (ja) * 2012-12-18 2014-06-30 Toagosei Co Ltd シリル基含有ビニル重合体、及びこれを含む硬化性樹脂組成物

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376302B1 (ja) * 2017-09-20 2018-08-22 東亞合成株式会社 硬化性組成物、及びシーリング材組成物
WO2019058794A1 (ja) * 2017-09-20 2019-03-28 東亞合成株式会社 硬化性組成物、シーリング材組成物、及び接着剤組成物
JP2019056098A (ja) * 2017-09-20 2019-04-11 東亞合成株式会社 硬化性組成物、及びシーリング材組成物
JP2019143010A (ja) * 2018-02-19 2019-08-29 東亞合成株式会社 硬化性組成物、及び接着剤組成物
JP6376300B1 (ja) * 2018-02-19 2018-08-22 東亞合成株式会社 硬化性組成物、及び接着剤組成物
JP2019156885A (ja) * 2018-03-07 2019-09-19 Agc株式会社 硬化性組成物、及び硬化物
CN108659327A (zh) * 2018-03-30 2018-10-16 湖北娅安科技开发有限公司 一种新能源汽车电池专用导热绝缘材料及其制备方法
JP7394783B2 (ja) 2018-11-27 2023-12-08 株式会社カネカ ポリオキシアルキレン系重合体を含む硬化性組成物
WO2020110713A1 (ja) * 2018-11-27 2020-06-04 株式会社カネカ ポリオキシアルキレン系重合体及び硬化性組成物
CN113166395A (zh) * 2018-11-27 2021-07-23 株式会社钟化 聚氧化烯系聚合物及固化性组合物
JPWO2020110713A1 (ja) * 2018-11-27 2021-10-14 株式会社カネカ ポリオキシアルキレン系重合体及び硬化性組成物
CN113166395B (zh) * 2018-11-27 2024-01-05 株式会社钟化 聚氧化烯系聚合物及固化性组合物
WO2020196228A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 硬化性組成物、及び硬化物
CN115335452A (zh) * 2020-03-24 2022-11-11 综研化学株式会社 固化性组合物以及固化物
WO2022163563A1 (ja) * 2021-01-29 2022-08-04 株式会社カネカ ポリオキシアルキレン系重合体及びその混合物
WO2022270196A1 (ja) * 2021-06-22 2022-12-29 株式会社スリーボンド 湿気硬化型樹脂組成物

Also Published As

Publication number Publication date
JPWO2016035718A1 (ja) 2017-06-15
JP6561062B2 (ja) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6561062B2 (ja) 硬化性組成物
JP5850851B2 (ja) 硬化性組成物
JP5226217B2 (ja) 硬化性組成物
JP5420895B2 (ja) 硬化性組成物
JP5226315B2 (ja) 硬化性組成物
JP5068997B2 (ja) 一液型硬化性組成物
JP5081448B2 (ja) 硬化性組成物
JP5785954B2 (ja) 反応性可塑剤、およびこれを含む硬化性組成物
JP5953234B2 (ja) 硬化性組成物
JPWO2008099858A1 (ja) 硬化性組成物
JPWO2008078654A1 (ja) 硬化性組成物
JP5907708B2 (ja) 硬化性組成物
JPWO2015098998A1 (ja) 硬化性組成物およびその硬化物
JP5476119B2 (ja) 硬化性組成物
JP5025162B2 (ja) 硬化性組成物
JP2013237815A (ja) 硬化性組成物およびその硬化物
JP5340815B2 (ja) 一液型接着剤
JP5129102B2 (ja) 硬化性組成物と硬化物
JP5639442B2 (ja) 硬化性組成物
JP2020164607A (ja) 反応性シリル基含有(メタ)アクリル酸エステル系重合体およびこれを含有する硬化性組成物
JP6383163B2 (ja) 硬化性組成物およびその硬化物
JP7489206B2 (ja) Si-F結合を含有する重合体、およびそれを含有する硬化性組成物
JP7269066B2 (ja) 湿気硬化性樹脂組成物および硬化物
JP2020164606A (ja) 反応性シリル基含有(メタ)アクリル酸エステル系共重合体およびこれを含有する硬化性組成物
JP2009102592A (ja) 触媒組成物および硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839028

Country of ref document: EP

Kind code of ref document: A1