WO2012067444A2 - 산화막이 형성된 도전성 필름 및 그 제조방법 - Google Patents

산화막이 형성된 도전성 필름 및 그 제조방법 Download PDF

Info

Publication number
WO2012067444A2
WO2012067444A2 PCT/KR2011/008802 KR2011008802W WO2012067444A2 WO 2012067444 A2 WO2012067444 A2 WO 2012067444A2 KR 2011008802 W KR2011008802 W KR 2011008802W WO 2012067444 A2 WO2012067444 A2 WO 2012067444A2
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
film
conductive
oxide film
resin
Prior art date
Application number
PCT/KR2011/008802
Other languages
English (en)
French (fr)
Other versions
WO2012067444A3 (ko
Inventor
김지희
김정범
이정형
박민춘
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2013539763A priority Critical patent/JP5818383B2/ja
Priority to EP11841789.8A priority patent/EP2629308B1/en
Priority to CN201180055243.XA priority patent/CN103210453B/zh
Publication of WO2012067444A2 publication Critical patent/WO2012067444A2/ko
Publication of WO2012067444A3 publication Critical patent/WO2012067444A3/ko
Priority to US13/894,928 priority patent/US9101059B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the present invention relates to a conductive film including a conductive pattern on which an oxide film is formed and a method of manufacturing the same.
  • a conductive glass substrate having an indium oxide thin film formed on a glass substrate is used as a general conductive film.
  • the conductive glass substrate has a problem that the sheet resistance is increased as the area is increased. If the sheet resistance increases, a partial voltage drop may occur.
  • a metal conductive layer may be formed on the conductive glass substrate.
  • rapid oxidation may be caused on the surface. If rapid oxidation occurs on the surface of the metal conductive layer, the surface film becomes uneven and, in severe cases, swelling may occur or short-circuit of the device may degrade performance.
  • a separate protective layer may be formed.
  • the formation of a separate protective layer can be complicated, causing a higher unit cost.
  • light transmittance may be lowered due to total internal reflection generated at the interface of the multilayer structure.
  • An object of the present invention is to provide a conductive film comprising a conductive pattern on which an oxide film is formed and a method of manufacturing the same.
  • the present invention provides a conductive film comprising a first conductive layer and a second conductive layer formed on the substrate, the oxide film is formed on the upper surface and side surfaces of the second conductive layer.
  • the present invention comprises the steps of forming a first conductive layer and a second conductive layer on the substrate; And forming a patterned second conductive layer having an oxide film formed on an upper surface and a side surface thereof.
  • the conductive film according to the present invention forms an artificial oxide film on the upper and side surfaces of the patterned conductive layer, thereby preventing defects or breakage of the substrate due to rapid oxidation of the conductive layer, and increasing light emission uniformity. have.
  • FIG. 1 is a schematic diagram showing a laminated structure of a conductive film according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a laminated structure of a conductive film according to another embodiment of the present invention.
  • FIG. 3 is a photograph showing the swelling caused by the rapid oxidation of the patterned metal conductive layer
  • FIG. 4 is a photograph showing a conductive film including a patterned metal conductive layer according to one embodiment of the present invention.
  • FIG. 5 is a graph comparing and analyzing a GID pattern for a manufactured conductive film
  • FIG. 6 is a graph comparing and analyzing the XRR pattern for the prepared conductive film.
  • a conductive film comprising a first conductive layer and a second conductive layer formed on a substrate and having an oxide film formed on the surface of the second conductive layer is provided.
  • the second conductive layer may have a patterned structure.
  • the patterned second conductive layer may serve as a conductive pattern for reducing sheet resistance of the first conductive layer.
  • the second conductive layer includes a structure in which an oxide film is formed on a side surface as well as an upper surface of the pattern.
  • the conductive film may be a transparent conductive film capable of light transmission. Therefore, the present invention can be utilized for various display devices and lighting devices that require light transmittance.
  • a native oxide layer may be formed on the surface.
  • a natural oxide film is not enough to protect the conductive layer because of its low thickness and low density.
  • the substrate including the metal conductive layer may be subjected to a high temperature process or exposed to environmental changes in the process of processing the substrate including the metal conductive layer, and these factors may cause rapid oxidation on the surface of the conductive layer. Rapid oxidation results in uneven film swelling or swelling and, in severe cases, breakage of the substrate.
  • the present invention solves these problems by forming a separate oxide film on the surface of the second conductive layer.
  • an oxide film may be formed on the surface of the second conductive layer through heat or plasma treatment.
  • the oxide film formed on the surface of the second conductive layer may be classified into a kind of artificial oxide film.
  • the artificial oxide film is characterized in that the thickness of the film is thicker and the film density is higher than that of the natural oxide film.
  • the substrate is not particularly limited, and a glass substrate or a light transmissive plastic film can be used.
  • a glass substrate or a light transmissive plastic film for example, polyester resin, acetate resin, polyether sulfone resin, polycarbonate resin, polyamide resin, polyimide resin, (meth) acrylic It may contain one or more of the rate resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl alcohol resin, polyarylate resin and polyphenylene sulfide resin.
  • the first conductive layer may be a zinc oxide based thin film (ZnO: M) doped with ITO or element M, and the element M may be a Group 13 element or a transition metal having an oxidation number of +3.
  • the element M include B, Al, Ga, In, Ti, Sc, V, Cr, Mn, Fe, Co or Ni, and more specifically, Al or Ga may be used.
  • the second conductive layer is not particularly limited as long as it is a conductive material.
  • a conductive material for example, copper, aluminum, molybdenum, chromium, magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, silver, tin, lead or Alloys thereof.
  • the second conductive layer may be copper.
  • the conductive film may include a separate protective layer formed on the second conductive layer on which the oxide film is formed.
  • the protective layer may include at least one of ITO, IZO, and metal.
  • the metal is not particularly limited, but may be an alkali, an alkaline earth metal, or a mixture or alloy thereof.
  • the size of the second conductive layer is not particularly limited, and for example, the thickness of the second conductive layer may range from 1 nm to 1 mm.
  • the second conductive layer serves to lower the sheet resistance and increase the conductivity by assisting the first conductive layer having a relatively large sheet resistance.
  • the second conductive layer can obtain sufficient electrical conductivity in the above thickness range.
  • the second conductive layer may have a patterned structure, the width of the pattern may range from 50 nm to 2 ⁇ m, and the interval between patterns may range from 50 ⁇ m to 5 mm.
  • interval between patterns of a 2nd conductive layer can obtain more excellent uniformity of light emission, without reducing the permeability of the 1st conductive layer which is a transparent electrode in the said range.
  • the oxide film formed on the second conductive layer may include Cu 2 O.
  • the oxide film containing Cu 2 O can prevent defects or breakage of the substrate due to rapid oxidation of the conductive layer without lowering the physical properties of the conductive film.
  • the thickness of the oxide film formed on the second conductive layer may range from 1 nm to 100 nm.
  • the oxide film formed on the surface of the second conductive layer has a feature that the film thickness is thicker and the film quality is higher than that of the natural oxide film.
  • the present invention provides a method for producing a conductive film comprising a first conductive layer and a second conductive layer formed on a substrate, the oxide film is formed on the surface of the second conductive layer.
  • the manufacturing method In one embodiment, the manufacturing method,
  • the method may include forming a patterned second conductive layer having an oxide film formed on upper and side surfaces thereof.
  • the manufacturing method may vary in part depending on the order of patterning the second conductive layer. That is, the process of patterning the second conductive layer may be before or after the process of forming an oxide film on the second conductive layer.
  • an oxide film is formed on the entire surface of the second conductive layer and then subjected to a patterning process. Then, after patterning, a process of forming an oxide film on the side of the second conductive layer is performed.
  • the method may include forming an oxide layer on an upper surface and a side surface of the patterned second conductive layer. In this case, after patterning the second conductive layer, an oxide film is formed on the upper surface and side surfaces of the patterned second conductive layer.
  • Forming the first conductive layer and the second conductive layer on the substrate may be sequentially stacked by using a method such as thermal deposition, vacuum deposition, sputtering, electron beam deposition, ion beam deposition, but is not limited thereto. No conventional methods known in the art can be used.
  • the process of forming the oxide film on the second conductive layer may be performed by heat or plasma treatment.
  • the heat treatment temperature is not particularly limited as long as it is a temperature capable of forming an oxide layer on the surface of the second conductive layer, and may be, for example, 130 ° C to 200 ° C, more specifically 140 ° C to 160 ° C.
  • An oxide film can be formed more stably while preventing deformation of the second conductive layer in the heat treatment range.
  • the plasma treatment may be performed under an oxygen atmosphere to form an oxide layer on the surface of the second conductive layer.
  • the oxide film after the oxide film is formed, it may be further subjected to a post-treatment step of applying plasma or heat in an inert gas atmosphere.
  • the conductive film according to the present invention can be applied in various fields, and can be utilized for display devices or lighting devices.
  • the conductive film can be used in PDAs, notebooks, monitors, OA-FA devices, ATMs, mobile phones, e-paper, navigation, and the like, and can also be used in displays, lights, and the like of LCDs, LEDs, and OLEDs.
  • FIG. 1 is a schematic view of a conductive film according to an embodiment of the present invention.
  • a first conductive layer 20 and a second conductive layer 30 are formed on a substrate 10, and an oxide film () is formed on a surface of the second conductive layer 30. 40) is formed.
  • the oxide layer 40 may be formed by oxidizing the surface of the second conductive layer 30 by applying heat or plasma.
  • the substrate 10 is a glass substrate
  • the first conductive layer 20 is an ITO layer.
  • the second conductive layer 30 may include copper, and an artificial oxide film 40 is formed on the surface of the second conductive layer 30 by applying heat or plasma.
  • FIG. 2 is a schematic diagram showing a case where the second conductive layer is etched and patterned.
  • a first conductive layer 20 is formed on a substrate 10
  • a patterned second conductive layer 31 is formed on the first conductive layer 20.
  • an oxide film 41 is formed not only on the upper surface but also on the side portion exposed by etching.
  • FIG. 3 is a photograph showing a result of a swelling phenomenon caused by rapid oxidation of the patterned second conductive layer.
  • swelling may occur due to rapid oxidation.
  • a separate protective layer is formed on the upper surface of the second conductive layer, the side surface is exposed during the patterning process, and rapid oxidation may occur at the exposed side, causing unevenness or swelling of the film quality.
  • FIG. 4 is a photograph showing a conductive film including a second conductive layer having an oxide film according to an embodiment of the present invention.
  • the conductive film includes a patterned second conductive layer, and an oxide film is formed on an upper surface and a side surface of the second conductive layer.
  • the conductive film disclosed in FIG. 4 has undergone the same high temperature process as that of FIG. 3, it can be seen that the film quality of the conductive layer is uniform and no swelling phenomenon or the like occurs.
  • An ITO layer and a Cu layer were formed sequentially on the glass substrate, and the film of a multilayered structure was produced. Then, the Cu layer was patterned. The width
  • An oxide film (Cu 2 O) was formed on the surface by heat-treating the patterned Cu layer at 120 DEG C for 10 minutes. The thickness of each layer of the produced film is shown in Table 1 below.
  • An ITO layer and a Cu layer were formed sequentially on the glass substrate, and the film of a multilayered structure was produced. Then, the Cu layer was patterned. The width
  • An oxide film (Cu 2 O) was formed on the surface by heat-treating the patterned Cu layer at 150 DEG C for 10 minutes.
  • An ITO layer and a Cu layer were formed sequentially on the glass substrate, the film of a multilayered structure was produced, and heat-processed at 150 degreeC for 10 minutes. Then, the Cu layer was patterned in the structure which forms a film. The width
  • An ITO layer and a Cu layer were formed sequentially on the glass substrate, and the film of a multilayered structure was produced. Then, the Cu layer was patterned in the structure which forms a film.
  • variety of the pattern was 1 micrometer, and the space
  • the Cu / ITO substrate (comparative example) in which the natural oxide film was formed by exposure to the atmosphere and the Cu 2 O / Cu / ITO substrate in which the oxide film was formed through the treatment process according to the present invention (Example 1 ) was measured for the GID (Grazing Incidence Diffraction) pattern. The measurement results are shown in FIG. 5.
  • a Cu 2 O film was formed on the surface of the patterned copper conductive layer in the heat treated substrate (Example 1).
  • the heat treatment is not performed (comparative example)
  • X-ray reflectometry (XRR) patterns were analyzed to calculate the thickness of the oxide film through heat treatment.
  • the XRR pattern for exposing the atmosphere Cu / ITO substrate (comparative example)
  • Example 2 when the heat treatment was performed (Example 2), it was confirmed that a Cu 2 O film of about 10 nm was formed on the surface.
  • the thickness of each layer of the film according to Example 2 and Comparative Example is summarized in Tables 1 and 2, respectively.
  • the conductive film according to the present invention can be variously used for electronic devices such as display devices or lighting devices.

Abstract

본 발명은 기재; 기재 위에 형성된 제1 도전층; 및 제1 도전층 위에 형성된 패턴화된 제2 도전층을 포함하며, 제2 도전층의 표면에는 산화막이 형성된 도전성 필름 및 그 제조방법에 관한 것으로서, 도전층의 급격한 산화로 인한 불량 내지 기재의 파손을 방지하고, 발광 균일도를 높일 수 있다.

Description

산화막이 형성된 도전성 필름 및 그 제조방법
본 발명은 산화막이 형성된 도전성 패턴을 포함하는 도전성 필름 및 그 제조방법에 관한 것이다.
일반적인 도전성 필름으로는 유리 기판상에 산화인듐 박막을 형성한 도전성 유리기판이 사용된다. 그러나, 상기 도전성 유리 기판은 면적이 증가함에 따라 면저항이 증가되는 문제점이 있다. 면저항이 증가하면, 부분적으로 전압 강하가 발생할 수 있다. 이러한 면저항 증가를 방지하기 위해서 도전성 유리 기판상에 금속 도전층을 형성할 수 있다. 그러나, 전극상에 형성된 금속 도전층은 공기중에 노출되거나 가공 공정에서 고온에 노출되면, 표면에 급격한 산화가 유발될 수 있다. 금속 도전층의 표면에 급격한 산화가 일어나게 되면, 표면 막질이 불균일해지고 심한 경우에는 스웰링이 발생되거나 소자의 단락을 유발하여 성능을 저하시킬 수 있다.
급격한 표면 산화를 방지하기 위해서 별도의 보호층을 형성하기도 한다. 그러나, 별도의 보호층을 형성하는 것은 공정이 복잡해질 수 있고, 제품 단가를 높이는 원인이 된다. 또한, 별도의 보호층을 적층하게 되면, 다층 구조의 계면에서 발생되는 내부 전반사 등으로 인해 광투과도가 저하될 수 있다.
본 발명의 목적은 산화막이 형성된 도전성 패턴을 포함하는 도전성 필름 및 그 제조방법을 제공하기 위한 것이다.
본 발명은 기재; 기재상에 형성된 제1 도전층과 제2 도전층을 포함하며, 제2 도전층의 상부면 및 측면에 산화막이 형성된 도전성 필름을 제공한다.
또한, 본 발명은 기재상에 제1 도전층과 제2 도전층을 형성하는 단계; 및 상부면 및 측면에 산화막이 형성된 패턴화된 제2 도전층을 형성하는 단계를 포함하는 도전성 필름의 제조방법을 제공한다.
이상 설명한 바와 같이, 본 발명에 따른 도전성 필름은 패턴화된 도전층의 상부면 및 측면에 인위적인 산화막을 형성함으로써, 도전층의 급격한 산화로 인한 불량 내지 기재의 파손을 방지하고, 발광 균일도를 높일 수 있다.
도 1은 본 발명의 하나의 실시예에 따른 도전성 필름의 적층 구조를 나타낸 모식도이다;
도 2는 본 발명의 또 다른 하나의 실시예에 따른 도전성 필름의 적층구조를 나타낸 모식도이다;
도 3은 패턴화된 금속 도전층이 급격한 산화로 인해 스웰링이 유발된 모습을 도시한 사진이다;
도 4는 본 발명의 하나의 실시예에 따른 패턴화된 금속 도전층을 포함하는 도전성 필름을 나타낸 사진이다;
도 5는 제조된 도전성 필름에 대한 GID 패턴을 비교 분석한 그래프이다;
도 6은 제조된 도전성 필름에 대한 XRR 패턴을 비교 분석한 그래프이다.
본 발명은 기재; 기재상에 형성된 제1 도전층과 제2 도전층을 포함하며, 제2 도전층의 표면에는 산화막이 형성된 도전성 필름을 제공한다. 상기 제2 도전층은 패턴화된 구조일 수 있다. 패턴화된 제2 도전층은 제1 도전층의 면저항 감소를 위한 도전 패턴의 역할을 수행할 수 있다. 또한, 상기 제2 도전층은 패턴의 상부 표면 뿐만 아니라 측면에도 산화막이 형성된 것을 구조를 포함한다.
상기 도전성 필름은 광투과가 가능한 투명 도전성 필름일 수 있다. 따라서, 광투과성이 요구되는 다양한 디스플레이 장치 및 조명 장치 등에 활용 가능하다.
금속 도전층이 대기중에 노출되면 표면에 자연산화막(native oxide layer)이 형성될 수 있다. 그러나, 이러한 자연산화막은 두께가 얇고 밀도가 조밀하지 못하기 때문에 도전층에 대한 보호가 충분치 못하다. 예를 들어, 금속 도전층을 포함하는 기재를 가공하는 과정에서 고온 공정을 거치거나 환경변화에 노출될 수 있으며, 이러한 요인들로 인해 도전층 표면에 급격한 산화가 진행될 수 있다. 급격한 산화로 인해 막질이 불균일해 지거나 스웰링 현상이 유발되고, 심한 경우에는 기재의 파손이 유발된다.
본 발명에서는 제2 도전층의 표면에 별도의 산화막을 형성함으로써, 이러한 문제점들을 해소하였다. 구체적으로는 열 또는 플라즈마 처리를 통해 상기 제2 도전층의 표면에 산화막을 형성할 수 있다. 상기 제2 도전층의 표면에 형성된 산화막은 일종의 인공산화막으로 분류할 수 있다. 상기 인공산화막은 자연산화막에 비해 막의 두께가 두껍고 막질의 밀도가 높다는 특징이 있다.
상기 기재는 특별히 제한되지 않으며, 유리 기판 또는 광투과성 플라스틱 필름을 사용할 수 있다. 상기 기재를 광투과성 필름으로 형성하는 경우에는, 예를 들어, 폴리에스테르계 수지, 아세테이트계 수지, 폴리에테르 술폰계 수지, 폴리카보네이트계 수지, 폴리아미드계 수지, 폴리이미드계 수지, (메타)아크릴레이트계 수지, 폴리염화비닐계 수지, 폴리염화비닐리덴계 수지, 폴리스티렌계 수지, 폴리비닐 알코올계 수지, 폴리아릴레이트계 수지 및 폴리페닐렌 황화물계 수지 중 1 종 이상을 포함할 수 있다.
상기 제1 도전층은 ITO 또는 원소 M이 도핑된 산화 아연계 박막(ZnO:M) 등이 사용될 수 있으며, 상기 원소 M은 13 족 원소 또는 +3의 산화수를 갖는 전이금속일 수 있다. 상기 원소 M의 비제한적인 예로는 B, Al, Ga, In, Ti, Sc, V, Cr, Mn, Fe, Co 또는 Ni 등이 있으며, 보다 구체적으로는 Al 또는 Ga 등이 사용될 수 있다.
상기 제2 도전층은 도전성 물질이라면 특별히 제한되지 않으며, 예를 들어, 구리, 알루미늄, 몰리브덴, 크롬, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 은, 주석, 납 또는 이들의 합금을 포함할 수 있다. 예를 들어, 상기 제2 도전층은 구리일 수 있다.
상기 도전성 필름은 산화막이 형성된 제2 도전층 위에 형성된 별도의 보호층을 포함할 수 있다. 상기 보호층은 ITO, IZO 및 금속 중 1 종 이상을 포함할 수 있다. 또한, 보호층이 금속 재질로 이루어진 경우에는, 상기 금속은 특별히 제한되지 않으나 알칼리, 알칼리 토금속 또는 이들의 혼합물 또는 합금일 수 있다. 보호층을 형성함으로써, 제2 도전층에 대한 급격한 산화로 인한 기재의 파손을 방지할 수 있다.
상기 제2 도전층의 규격은 특별히 제한되지 않으며, 예를 들어, 제2 도전층의 두께는 1 nm 내지 1 mm 범위일 수 있다. 위의 제2 도전층은 상대적으로 큰 면저항을 가진 제1 도전층을 보조하여 면저항을 낮추고 전도도를 높여주는 역할을 하게 된다. 제2 도전층은 위의 두께 범위에서 충분한 전기전도도를 얻을 수 있다. 또한, 제2 도전층은 패턴화된 구조이고, 패턴의 폭은 50 nm 내지 2 ㎛ 범위, 그리고, 패턴간 간격은 50 ㎛ 내지 5 mm 범위일 수 있다. 제2 도전층의 패턴간 폭 및 간격은 상기 범위에서, 투명 전극인 제1 도전층의 투과도를 크게 낮추지 않으면서, 보다 우수한 발광 균일도를 얻을 수 있다.
제2 도전층에 형성된 산화막은 Cu2O를 포함할 수 있다. Cu2O를 포함하는 산화막은 도전성 필름의 물성을 저하시지 않으면서, 도전층의 급격한 산화로 인한 불량 내지 기재의 파손을 방지할 수 있다. 또한, 상기 제 2 도전층에 형성된 산화막의 두께는 1 nm 내지 100 nm 범위일 수 있다. 본 발명에서, 제2 도전층의 표면에 형성된 산화막은 자연산화막에 비해 막의 두께가 두껍고 막질의 밀도가 높다는 특징이 있다.
또한, 본 발명은 기재; 기재상에 형성된 제1 도전층과 제2 도전층을 포함하며, 제2 도전층의 표면에 산화막이 형성된 도전성 필름을 제조하는 방법을 제공한다.
일실시예에서, 상기 제조방법은,
기재상에 제1 도전층과 제2 도전층을 형성하는 단계; 및
상부면 및 측면에 산화막이 형성된 패턴화된 제2 도전층을 형성하는 단계를 포함할 수 있다.
상기 제조방법은 제2 도전층을 패턴화하는 순서에 따라 제조 공정이 일부 달라질 수 있다. 즉, 제2 도전층을 패턴화하는 공정은 제2 도전층에 산화막을 형성하는 공정 이전 또는 이후일 수 있다.
상기 제조방법은,
기재상에 제1 도전층과 제2 도전층을 형성하는 단계;
제2 도전층의 표면에 산화막을 형성하는 단계;
산화막이 형성된 제2 도전층을 패턴화하는 단계; 및
패턴화된 제2 도전층의 측면에 산화막을 형성하는 단계를 포함할 수 있다. 이 경우에는, 제2 도전층의 전면에 산화막을 형성한 후, 패턴화 과정을 거치게 된다. 그런 다음, 패턴화 이후에, 제2 도전층의 측면에 산화막을 형성하는 과정을 거치게 된다.
또한, 상기 제조방법은,
기재상에 제1 도전층과 제2 도전층을 형성하는 단계;
제2 도전층을 패턴화하는 단계; 및
패턴화된 제2 도전층의 상부면 및 측면에 산화막을 형성하는 단계를 포함할 수 있다. 이 경우에는, 제2 도전층을 패턴화한 후, 패턴화된 제2 도전층의 상부 표면 및 측면에 산화막을 형성하게 된다.
상기 기재상에 제1 도전층과 제2 도전층을 형성하는 단계는, 열증착, 진공증착, 스퍼터링, 전자빔증착, 이온빔증착 등의 방법을 이용하여, 순차적으로 적층할 수 있으나, 이에 한정되는 것은 아니며, 당업계에 알려진 통상적인 방법이 이용될 수 있다.
제2 도전층에 산화막을 형성하는 과정은 열 또는 플라즈마 처리를 통해 수행할 수 있다. 상기 열 처리 온도는, 제2 도전층의 표면에 산화층을 형성할 수 있는 온도라면 특별히 제한되지 않으며, 예를 들어 130℃ 내지 200℃, 보다 구체적으로는 140℃ 내지 160℃ 범위일 수 있다. 상기 열처리 범위에서 제2 도전층의 변형을 방지하면서, 보다 안정적으로 산화막을 형성할 수 있다. 상기 플라즈마 처리는 제2 도전층의 표면에 산화층을 형성하기 위해 산소 분위기하에서 수행될 수 있다.
경우에 따라서는, 산화막을 형성한 후 불활성 기체 분위기에서 플라즈마 또는 열을 가하는 후처리 공정을 더 거칠 수 있다.
본 발명에 따른 도전성 필름은 다양한 분야에서 적용 가능하며, 디스플레이 장치 또는 조명 장치 등에 활용 가능하다. 예를 들어, 상기 도전성 필름은 PDA, 노트북, 모니터, OA·FA 기기, ATM, 휴대폰, e-종이, 네비게이션 등에 사용 가능하며, LCD, LED, OLED 등의 디스플레이 또는 조명 등에도 사용 가능하다.
이하, 본 발명에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1은 본 발명의 하나의 실시예에 따른 도전성 필름에 대한 모식도이다. 도 1을 참조하면, 도전성 필름(100)은 기재(10)상에 제1 도전층(20) 및 제2 도전층(30)이 형성되어 있으며, 제2 도전층(30)의 표면에는 산화막(40)이 형성되어 있다. 상기 산화막(40)은 열 또는 플라즈마를 가하여 제2 도전층(30)의 표면을 산화시켜 형성할 수 있다. 예를 들어, 상기 기재(10)는 유리 기판이고, 제1 도전층(20)은 ITO층이다. 또한, 제2 도전층(30)은 구리를 포함할 수 있으며, 열 또는 플라즈마를 가하여 제2 도전층(30)의 표면에 인공 산화막(40)이 형성되도록 하였다. 산화막(40) 형성을 통해 제2 도전층(30)의 급격한 산화를 방지하고, 소자의 성능을 유지할 수 있다.
도 2는 제2 도전층을 에칭하여 패턴화한 경우를 나타낸 모식도이다. 도 2를 참조하면, 도전성 필름(200)은 기재(10)상에 제1 도전층(20)이 형성되어 있으며, 제1 도전층(20) 위에는 패턴화된 제2 도전층(31)이 형성된 구조이다. 상기 제2 도전층(31)은 상부 표면 뿐만 아니라 에칭으로 노출된 측면 부분에도 산화막(41)이 형성되어 있다.
도 3은 패턴화된 제2 도전층이 급격한 산화로 인해 스웰링 현상이 발생된 결과를 나타낸 사진이다. 패턴화된 도전층이 가공을 위한 고온 공정에 노출되면 급격한 산화로 인해 스웰링 현상이 발생될 수 있다. 이는 제2 도전층의 상부 표면에 별도의 보호층을 형성하였더라도, 패턴화 과정에서 측면이 노출되며, 노출된 측면에서 급격한 산화가 진행되어 막질의 불균일 내지 스웰링 현상이 유발될 수 있다.
또한, 도 4는 본 발명의 하나의 실시예에 따른 산화막이 형성된 제2 도전층을 포함하는 도전성 필름을 나타낸 사진이다. 도 4를 참조하면, 상기 도전성 필름은 패턴화된 제2 도전층을 포함하며, 상기 제2 도전층의 상부 표면과 측면에도 산화막이 형성된 경우이다. 도 4에 개시된 도전성 필름은, 도 3의 경우와 동일한 고온 공정을 거쳤음에도 불구하고, 도전층의 막질이 균일하고 스웰링 현상 등은 발생되지 않았음을 알 수 있다.
본 발명을 하기의 실시예를 통하여 보다 구체적으로 설명한다. 그러나, 이들 실시예는 단지 예시적인 것일 뿐, 본 발명의 기술적 범위를 한정하는 것은 아니다.
실시예 1
유리 기판상에 ITO층 및 Cu층을 순차적으로 형성하여, 다층 구조의 필름을 제조하였다. 그런 다음, Cu층을 패턴화하였다. 패턴의 폭은 1 ㎛, 패턴간 간격은 100 ㎛로 형성하였다. 패턴화된 Cu층에 대해 120℃에서 10 분간 열처리함으로써, 표면에 산화막(Cu2O)을 형성하였다. 제조된 필름의 각 층별 두께는 하기 표 1과 같다.
실시예 2
유리 기판상에 ITO층 및 Cu층을 순차적으로 형성하여, 다층 구조의 필름을 제조하였다. 그런 다음, Cu층을 패턴화하였다. 패턴의 폭은 1 ㎛, 패턴간 간격은 100 ㎛로 형성하였다. 패턴화된 Cu층에 대해 150℃에서 10 분간 열처리함으로써, 표면에 산화막(Cu2O)을 형성하였다
실시예 3
유리 기판상에 ITO층 및 Cu층을 순차적으로 형성하여, 다층 구조의 필름을 제조하고, 150℃에서 10 분간 열처리하였다. 그런 다음, 필름을 형성하는 구조 중에서 Cu층을 패턴화하였다. 패턴의 폭은 1 ㎛, 패턴간 간격은 100 ㎛로 형성하였다. 패턴화된 Cu층에 대해 150℃에서 추가 열처리를 실시하였다
비교예
유리 기판상에 ITO층 및 Cu층을 순차적으로 형성하여, 다층 구조의 필름을 제조하였다. 그런 다음, 필름을 형성하는 구조 중에서 Cu층을 패턴화하였다. 패턴의 폭은 1 ㎛, 패턴간 간격은 100 ㎛로 형성하였다. 제조된 필름에 대해서 별도의 열처리는 하지 않았다.
실험예 1: GID 분석
산화막층에 대한 정보를 분석하기 위해서, 대기 중에 노출시켜 자연산화막이 형성된 Cu/ITO 기판(비교예)과 본 발명에 따른 처리공정을 거쳐 산화막이 형성된 Cu2O/Cu/ITO 기판(실시예 1)에 대해서 GID(Grazing Incidence Diffraction) 패턴을 측정하였다. 측정결과는 도 5와 같다.
도 5를 참조하면, 열처리를 한 기판(실시예 1)는 패턴화된 구리 도전층의 표면에 Cu2O 막이 형성되었다. 그에 반해, 열처리를 하지 않은 경우(비교예)에는 측정이 거의 되지 않을 정도로 매우 얇은 산화막이 형성되었음을 알 수 있다.
실험예 2: XRR 분석
열처리를 통한 산화막의 두께를 산출하기 위해서 XRR(X-ray reflectometry) 패턴을 분석하였다. 대기 중에 노출시켜 자연산화막이 형성된 Cu/ITO 기판(비교예)과 본 발명에 따른 처리공정을 거쳐 Cu 산화막이 형성된 Cu2O/Cu/ITO 기판(실시예 2)에 대해서 XRR 패턴을 측정하였다. 측정결과는 도 6과 같다.
도 6을 참조하면, 열처리를 거친 경우(실시예 2)에는 표면에 약 10 nm의 Cu2O 막이 형성되었음을 확인하였다. 실시예 2와 비교예에 따른 필름의 층별 두께는 하기 표 1 및 2에 각각 정리하였다.
표 1
실시예 2 평균 두께(nm) 최소값(nm) 최대값(nm)
Cu2O 10.3 10.0 10.5
Cu 364.0 354.2 388.3
ITO 121.8 120.8 123.4
표 2
비교예 평균 두께(nm) 최소값(nm) 최대값(nm)
Cu 363.3 353.6 374.3
ITO 122.7 122.1 123.6
본 발명에 따른 도전성 필름은 디스플레이 장치 또는 조명 장치 등과 같은 전자장치 등에 다양하게 활용 가능하다.
(부호의 설명)
10: 기재
20: 제1 도전층
30, 31: 제2 도전층
40, 41: 산화막
100, 200: 도전성 필름

Claims (18)

  1. 기재; 기재상에 형성된 제1 도전층; 및 제1 도전층 상에 형성된 패턴화된 제2 도전층을 포함하며,
    상기 제2 도전층의 상부면 및 측면에 산화막이 형성된 도전성 필름.
  2. 제 1 항에 있어서,
    기재는 폴리에스테르계 수지, 아세테이트계 수지, 폴리에테르 술폰계 수지, 폴리카보네이트계 수지, 폴리아미드계 수지, 폴리이미드계 수지, (메타)아크릴레이트계 수지, 폴리염화비닐계 수지, 폴리염화비닐리덴계 수지, 폴리스티렌계 수지, 폴리비닐 알코올계 수지, 폴리아릴레이트계 수지 및 폴리페닐렌 황화물계 수지 중 1 종 이상을 포함하는 도전성 필름.
  3. 제 1 항에 있어서,
    제1 도전층은 ITO 또는 원소 M이 도핑된 산화 아연계 박막(ZnO:M)으로 이루어지고, 상기 원소 M은 13 족 원소 또는 +3의 산화수를 갖는 전이금속인 도전성 필름.
  4. 제 1 항에 있어서,
    제2 도전층은 구리, 알루미늄, 몰리브덴, 크롬, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 은, 주석, 납 또는 이들 중 2 종 이상 합금을 포함하는 도전성 필름.
  5. 제 1 항에 있어서,
    산화막이 형성된 제2 도전층 위에 형성된 보호층을 더 포함하는 도전성 필름.
  6. 제 5 항에 있어서,
    보호층은 ITO, IZO 및 금속 중 1 종 이상을 포함하는 도전성 필름.
  7. 제 1 항에 있어서,
    제2 도전층의 두께는 1 nm 내지 1 mm인 도전성 필름.
  8. 제 1 항에 있어서,
    제2 도전층은 패턴화된 구조이고,
    패턴의 폭은 50 nm 내지 2 ㎛, 그리고 패턴간 간격은 50 ㎛ 내지 5 mm인 도전성 필름.
  9. 제 1 항에 있어서,
    제2 도전층에 형성된 산화막은 Cu2O를 포함하는 도전성 필름.
  10. 제 1 항에 있어서,
    제2 도전층에 형성된 산화막의 두께는 1 nm 내지 100 nm인 도전성 필름.
  11. 기재상에 제1 도전층과 제2 도전층을 형성하는 단계; 및
    상부면 및 측면에 산화막이 형성된 패턴화된 제2 도전층을 형성하는 단계를 포함하는 도전성 필름의 제조방법.
  12. 제 11 항에 있어서,
    기재상에 제1 도전층과 제2 도전층을 형성하는 단계;
    제2 도전층의 표면에 산화막을 형성하는 단계;
    산화막이 형성된 제2 도전층을 패턴화하는 단계; 및
    패턴화된 제2 도전층의 측면에 산화막을 형성하는 단계를 포함하는 도전성 필름의 제조방법.
  13. 제 11 항에 있어서,
    기재상에 제1 도전층과 제2 도전층을 형성하는 단계;
    제2 도전층을 패턴화하는 단계; 및
    패턴화된 제2 도전층의 상부면 및 측면에 산화막을 형성하는 단계를 포함하는 도전성 필름의 제조방법.
  14. 제 11 항에 있어서,
    기재상에 제1 도전층과 제2 도전층을 형성하는 단계는, 열증착, 진공증착, 스퍼터링, 전자빔증착 또는 이온빔증착을 이용하여 수행하는 도전성 필름의 제조방법.
  15. 제 11 항에 있어서,
    산화막은 열 처리 또는 플라즈마 처리를 통해 형성하는 도전성 필름의 제조방법.
  16. 제 15 항에 있어서,
    열 처리 온도는 130 내지 200℃ 범위인 도전성 필름의 제조방법.
  17. 제 1 항에 따른 도전성 필름을 포함하는 디스플레이 장치.
  18. 제 1 항에 따른 도전성 필름을 포함하는 조명 장치.
PCT/KR2011/008802 2010-11-17 2011-11-17 산화막이 형성된 도전성 필름 및 그 제조방법 WO2012067444A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013539763A JP5818383B2 (ja) 2010-11-17 2011-11-17 酸化膜が形成された導電性フィルムを備える有機発光ダイオードディスプレイ及びその製造方法
EP11841789.8A EP2629308B1 (en) 2010-11-17 2011-11-17 Conductive film with an oxide film and method for producing same
CN201180055243.XA CN103210453B (zh) 2010-11-17 2011-11-17 形成有氧化膜的导电膜及其制造方法
US13/894,928 US9101059B2 (en) 2010-11-17 2013-05-15 Conductive film having oxide layer and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0114642 2010-11-17
KR20100114642 2010-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/894,928 Continuation US9101059B2 (en) 2010-11-17 2013-05-15 Conductive film having oxide layer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
WO2012067444A2 true WO2012067444A2 (ko) 2012-05-24
WO2012067444A3 WO2012067444A3 (ko) 2012-07-12

Family

ID=46084532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008802 WO2012067444A2 (ko) 2010-11-17 2011-11-17 산화막이 형성된 도전성 필름 및 그 제조방법

Country Status (7)

Country Link
US (1) US9101059B2 (ko)
EP (1) EP2629308B1 (ko)
JP (1) JP5818383B2 (ko)
KR (2) KR20120053480A (ko)
CN (1) CN103210453B (ko)
TW (1) TWI484571B (ko)
WO (1) WO2012067444A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080496A1 (ko) * 2013-11-27 2015-06-04 주식회사 엘지화학 전도성 구조체 전구체, 전도성 구조체 및 이의 제조방법
JP2015533678A (ja) * 2012-08-31 2015-11-26 エルジー・ケム・リミテッド 金属構造体およびこの製造方法{metalstructurebodyandmethodformanufacturingthesame}
WO2016018052A1 (ko) * 2014-07-29 2016-02-04 주식회사 엘지화학 전도성 적층체 및 이의 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984570B2 (ja) * 2012-08-09 2016-09-06 日東電工株式会社 導電性フィルム
EP3041890A1 (en) * 2013-09-06 2016-07-13 Solvay Specialty Polymers Italy S.p.A. Electrically conducting assemblies
JP6251782B2 (ja) * 2016-08-02 2017-12-20 日東電工株式会社 導電性フィルム
CN106910780B (zh) * 2017-05-08 2020-12-11 京东方科技集团股份有限公司 薄膜晶体管及制造方法、阵列基板、显示面板、显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270751A (en) * 1975-12-09 1977-06-13 Fujitsu Ltd Manufacture of electrode of gas discharge panel
JP3216358B2 (ja) 1993-09-07 2001-10-09 ソニー株式会社 半導体装置の配線構造及びその形成方法
WO2003032332A1 (fr) * 2001-10-05 2003-04-17 Bridgestone Corporation Film transparent electroconducteur, son procede de fabrication, et ecran tactile y relatif
JP3960022B2 (ja) * 2001-11-27 2007-08-15 松下電器産業株式会社 プラズマディスプレイパネルの製造方法
WO2004032274A1 (ja) * 2002-10-03 2004-04-15 Fujikura Ltd. 電極基板、光電変換素子、導電性ガラス基板およびその製造方法、並びに色素増感太陽電池
JP2005038778A (ja) * 2003-07-17 2005-02-10 Fujitsu Ltd 放電型表示装置の製造方法
JP2005144858A (ja) * 2003-11-14 2005-06-09 Nitto Denko Corp 透明導電性フィルムの製造方法
KR101196342B1 (ko) * 2005-05-26 2012-11-01 군제 가부시키가이샤 투명 평면체 및 투명 터치스위치
JP5008841B2 (ja) * 2005-08-02 2012-08-22 株式会社フジクラ 電極基板の製造方法、光電変換素子および色素増感太陽電池
JP4866787B2 (ja) * 2007-05-11 2012-02-01 日東電工株式会社 配線回路基板およびその製造方法
WO2009078682A2 (en) 2007-12-18 2009-06-25 Electronics And Telecommunications Research Institute Transparent conductive film and method for preparing the same
JP4966924B2 (ja) * 2008-07-16 2012-07-04 日東電工株式会社 透明導電性フィルム、透明導電性積層体及びタッチパネル、並びに透明導電性フィルムの製造方法
US20110159633A1 (en) * 2008-09-05 2011-06-30 Min-Seo Kim Paste and manufacturing method of solar cell using the same
TW201029245A (en) * 2009-01-16 2010-08-01 Ind Tech Res Inst Method of forming nanoporous metal oxide thin film on flexible substrate
TWI447945B (zh) * 2009-04-03 2014-08-01 Epistar Corp 具有透明黏結結構之光電元件及其製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2629308A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533678A (ja) * 2012-08-31 2015-11-26 エルジー・ケム・リミテッド 金属構造体およびこの製造方法{metalstructurebodyandmethodformanufacturingthesame}
EP2891554A4 (en) * 2012-08-31 2016-03-16 Lg Chemical Ltd METALLIC STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
US9903989B2 (en) 2012-08-31 2018-02-27 Lg Chem, Ltd. Metal structure for decorative bezel and method for manufacturing same
WO2015080496A1 (ko) * 2013-11-27 2015-06-04 주식회사 엘지화학 전도성 구조체 전구체, 전도성 구조체 및 이의 제조방법
US10338706B2 (en) 2013-11-27 2019-07-02 Lg Chem, Ltd. Conductive structure body precursor, conductive structure body and method for manufacturing the same
WO2016018052A1 (ko) * 2014-07-29 2016-02-04 주식회사 엘지화학 전도성 적층체 및 이의 제조방법

Also Published As

Publication number Publication date
EP2629308A2 (en) 2013-08-21
EP2629308B1 (en) 2019-03-06
JP5818383B2 (ja) 2015-11-18
JP2014503381A (ja) 2014-02-13
EP2629308A4 (en) 2017-01-04
TWI484571B (zh) 2015-05-11
CN103210453A (zh) 2013-07-17
KR20150022964A (ko) 2015-03-04
CN103210453B (zh) 2016-11-02
US20130248227A1 (en) 2013-09-26
KR20120053480A (ko) 2012-05-25
WO2012067444A3 (ko) 2012-07-12
TW201243969A (en) 2012-11-01
US9101059B2 (en) 2015-08-04

Similar Documents

Publication Publication Date Title
WO2012067444A2 (ko) 산화막이 형성된 도전성 필름 및 그 제조방법
WO2012099394A2 (en) Touch panel and method for manufacturing the same
WO2010030075A2 (ko) 디스플레이 장치, 이를 구비하는 모바일 기기 및 디스플레이 제어 방법
WO2018030712A1 (ko) 포토레지스트 음각패턴 및 표면개질을 이용한 금속메쉬 타입 투명 전도막 제조방법 및 이에 의해 제조되는 투명 전도막
WO2015009121A1 (ko) 전극 적층체 및 유기 발광 소자
WO2014137147A1 (en) Conductive film, method for manufacturing the same, and electronic device including the same
WO2014021522A1 (ko) 반도체 소자 및 그의 제조 방법
WO2016036150A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2011162461A1 (ko) 투명 전극 및 이의 제조 방법
EP4160624B1 (en) Double-sided conductive film, coating method, and touch screen
WO2015080496A1 (ko) 전도성 구조체 전구체, 전도성 구조체 및 이의 제조방법
WO2016047936A4 (ko) 플렉서블 기판 및 그 제조방법
JP2012123454A (ja) 静電容量式タッチパネル用の透明導電フィルム
WO2021029561A1 (ko) 전기 변색 소자
WO2016148514A1 (ko) 전도성 구조체 및 이를 포함하는 전자 소자
WO2016186394A1 (ko) 전도성 적층체 및 이를 포함하는 투명 전극
KR20150060277A (ko) 디스플레이용 하이브리드형 플렉서블 기판 및 그 제조방법
WO2017074047A1 (ko) 투광성 기판 및 이의 제조방법
WO2016148515A1 (ko) 전도성 구조체 및 이를 포함하는 전자 소자
WO2017030352A1 (ko) Azo/ag/azo 다층박막 구조를 갖는 플렉시블 투명 전극 및 그 제조방법
WO2017034078A1 (ko) Tio2/ag/tio2 다층박막 구조를 갖는 플렉시블 투명전극 및 그 제조방법
WO2019160296A1 (ko) 컬러필터 일체형 유연성 터치센서 및 그 제조 방법
CN214152473U (zh) 一种双面导电膜及触控屏
WO2011007925A1 (en) Hole transporting layer for light emitting devices and solar cells and method for manufacturing the same
WO2012057568A2 (ko) 터치패널용 패드의 제조방법 및 이 제조방법에 의해 제조되는 터치패널용 패드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841789

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013539763

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011841789

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE