WO2012067426A2 - 내마모성이 개선된 로커암 샤프트 및 이를 포함하는 로커암 샤프트-부시 조립체 - Google Patents

내마모성이 개선된 로커암 샤프트 및 이를 포함하는 로커암 샤프트-부시 조립체 Download PDF

Info

Publication number
WO2012067426A2
WO2012067426A2 PCT/KR2011/008760 KR2011008760W WO2012067426A2 WO 2012067426 A2 WO2012067426 A2 WO 2012067426A2 KR 2011008760 W KR2011008760 W KR 2011008760W WO 2012067426 A2 WO2012067426 A2 WO 2012067426A2
Authority
WO
WIPO (PCT)
Prior art keywords
rocker arm
arm shaft
bush
unevenness
shaft
Prior art date
Application number
PCT/KR2011/008760
Other languages
English (en)
French (fr)
Other versions
WO2012067426A3 (ko
Inventor
김성기
오석주
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to CN201180055665.7A priority Critical patent/CN103221646B/zh
Priority to EP11840978.8A priority patent/EP2642093B1/en
Priority to US13/988,075 priority patent/US20130239741A1/en
Publication of WO2012067426A2 publication Critical patent/WO2012067426A2/ko
Publication of WO2012067426A3 publication Critical patent/WO2012067426A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/14Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation perpendicular to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/24Safety means or accessories, not provided for in preceding sub- groups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/10Lubrication of valve gear or auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/18Camshafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams
    • Y10T74/2107Follower

Definitions

  • the present invention relates to a rocker arm shaft with micro-roughness on its surface to improve wear resistance.
  • the invention also relates to a rocker arm shaft-bush assembly comprising a rocker arm shaft whose surface is machined with a roughened surface and a rocker arm bush surrounding the rocker arm shaft.
  • the engine rotates the camshaft by the rotational force of the crankshaft, and injects and compresses a mixture of fuel gas and air into the combustion chamber while the intake and exhaust valves reciprocate vertically at regular intervals by the cam formed on the camshaft. The process of exploding and powering by the explosion pressure is repeated.
  • a unit comprising a series of elements such as a camshaft, a cam, a cam follower (e.g. tappet), a push rod, a rocker arm, a valve spring, a valve and the like for operating the intake and exhaust valves as described above is called a valve train.
  • valve 1 shows a valve train according to the prior art, in which a plurality of cams 2 are formed on the camshaft 1 at regular intervals along an axis line, and are provided to be slidable up and down within the engine body block 3.
  • the lower end of the push rod 4 is provided with a cam follower 5.
  • the upper end of the push rod (4) is pivotally connected to one side of the rocker arm (6), the other side of the rocker arm (6) is connected to the intake port or exhaust port side of the cylinder head block (7) valve spring ( It is pivotally connected with the upper end of the valve 9 which is elastically supported by 8).
  • the rocker arm 6 is provided with a rocker arm shaft 10 and a rocker arm bush 11 for movement and support of the rocker arm 6.
  • the rocker arm 6 is capable of reciprocating by the rocker arm shaft 10 and the rocker arm bush 11, where the rocker arm shaft 10 and the rocker arm bush 11 mediate engine oil. Reciprocate with each other.
  • the rocker arm shaft 10 and the rocker arm bush 11 are not free to wear because they continuously reciprocate.
  • the reciprocating motion of the rocker arm shaft 10 and the rocker arm bush 11 occurs twice per cycle at the time when the movement speed becomes zero.
  • the lubrication theory does not form a lubrication theory. can not do it.
  • no oil film is formed, which causes particularly severe friction and wear on the rocker arm shaft and the rocker arm bush.
  • the gap between the rocker arm shaft and the rocker arm bush increases, which causes a change in the valve gap, which may affect the performance of the internal combustion engine, and the noise and vibration become serious.
  • the present inventors have studied the friction on the two surfaces relative to the lubricant and the wear caused by the friction to study a method of reducing the wear caused by the friction.
  • the present invention seeks to provide a method which can reduce wear on the rocker arm shaft and rocker arm bush in a relatively simple manner without incurring high costs such as material change. It is also an object of the present invention to provide an improved wear resistance rocker arm shaft and an assembly of rocker arm shaft and rocker arm bush, which can be manufactured at a relatively low manufacturing cost and manufacturing time.
  • the present invention is to provide a rocker arm shaft that optimizes the position and shape of the unevenness in order to maximize the wear improvement effect.
  • the present invention provides a rocker arm shaft having irregularities formed on the surface thereof to improve wear resistance.
  • the rocker arm shaft 10 is housed inside the rocker arm bush 11 to allow the rocker arm 6 to reciprocate by performing relative motion with the rocker arm bush 11 via a lubricant.
  • a rocker arm shaft 10 having a plurality of groove-shaped irregularities 21 formed on at least a portion of an outer surface 20 of the rocker arm shaft 10 in contact with the rocker arm bush 11.
  • the unevenness may be formed on the entire outer surface 20 of the rocker arm shaft 10, but may be formed only on a part of the outer surface 20 of the rocker arm shaft 10. That is, the unevenness 21 may be formed only in a portion having a lot of contact with the rocker arm bush 11 without being formed on the entire outer surface 20 of the rocker arm shaft 10.
  • the ratio of the region where the unevenness 21 is formed in the outer surface 20 of the rocker arm shaft 10 is 20% to the area of the outer surface 20 of the entire rocker arm shaft 10. 50% is possible.
  • the unevenness 21 has a maximum line contact load with the rocker arm bush 11 when the valve connected via the rocker arm 6 is opened by 50% as shown in FIG. 3.
  • This may be formed on both sides about the corresponding portion 30 of the rocker arm shaft 10 (see 40).
  • the portion where the unevenness is formed may be formed in a portion corresponding to the arc of a fan shape with a central angle of 72 ° to 180 ° based on the center of the portion where the maximum line contact load is generated.
  • the ratio of the sum of the surface area occupied by the uneven portion 21 in the region where the uneven portion 21 is formed may be as much as 5% to 30%. This can be easily understood with reference to FIG. 6, which illustrates the irregularities in the form of broken lines.
  • the unevenness 21 is in the form of a broken line, and the long side of the broken line may be disposed in parallel with the axial direction of the rocker arm shaft 10.
  • the depth of the broken line is 10 to 30 ⁇ m
  • the long side length of the broken line may be in the range of 100 to 500 ⁇ m.
  • the ratio of the surface area occupied by the broken line portion in the region where the broken line is formed is 5% to 30%.
  • the ratio of the surface area occupied by the dashed portion in the region where the dashed line is formed may also be referred to as density, where the expression "density” may be understood as "density of dashed line arrangement".
  • the density may be calculated as in Equation 1 below.
  • La is the length (thickness) of the short side of a broken line
  • Lb is the length of the long side of a broken line
  • Lc is the space
  • Ld is the space
  • concave-convex 21 is characterized in that it is provided with a circular groove.
  • the unevenness 21 corresponds to that of the rocker arm shaft 10 in which the maximum linear contact load with the rocker arm bush 11 is generated when the valve connected via the rocker arm 6 is 50% open. It is formed on both sides of the part, and the part where the unevenness 21 is formed corresponds to a fan-shaped arc having a center angle of 72 ° to 180 ° around the part 30 where the maximum line contact load is generated. It is characterized in that formed on the part.
  • the concave-convex 21 is provided as a circular groove, the diameter of the groove is characterized in that it is provided with 100 ⁇ m.
  • the concave-convex 21 is provided as a circular groove, the depth of the groove is characterized in that it is provided in 10 ⁇ 20 ⁇ m.
  • the unevenness 21 is provided as a circular groove, the interval of the groove is characterized in that it is provided in 350 ⁇ m ⁇ 450 ⁇ m.
  • the present invention also provides a rocker arm shaft-bush assembly comprising the rocker arm shaft 10 described above and a rocker arm bush 11 in which the rocker arm shaft 10 is received.
  • the present invention also provides a rocker arm comprising the rocker arm shaft-bush assembly.
  • the present invention it is possible to significantly reduce the wear of the rocker arm shaft and the rocker arm bush by forming the fine roughness on the surface of the rocker arm shaft.
  • the present invention by optimizing the shape, size and position of the fine roughness in order to maximize the wear improvement effect, it is possible to maximize the wear reduction effect without excessive manufacturing cost or time.
  • FIG. 1 shows an example of a valve train to which the rocker arm shaft 10 and the rocker arm bush 11 according to the present invention are applied.
  • FIG. 2 is a cross-sectional view of the rocker arm shaft and rocker arm bush in FIG.
  • FIG 4 is a perspective view of a rocker arm shaft 10 according to an example of the present invention.
  • FIG. 5 is a view illustrating a reduction rate of wear when unevenness is formed in the rocker arm shaft 10, and shows a relationship between the unevenness formation area and the wear reduction in degrees.
  • FIG. 6 is an enlarged view of an uneven part of the present invention in which the irregularities are formed in a broken line shape.
  • FIG. 8 is an enlarged view of the concave-convex portion of the concave-convex shape in which the concave-convex shape is formed in a concave-convex shape.
  • rocker arm 10 rocker arm shaft
  • rocker arm bush 12 friction area without micropores
  • the present invention relates to a technique for reducing friction and wear by processing the fine concavo-convex on at least one of the two surfaces of the relative movement through the lubricant.
  • fluid dynamic pressure does not occur in the lubricant even though the two surfaces move relative to each other via a liquid lubricant.
  • fluid dynamic pressure generally occurs when the film thickness has a wedge effect that decreases along the sliding direction. Taking hydrodynamic thrust bearings and journal bearings as an example, thrust bearings generate this wedge effect through assembly errors and journal bearings through eccentricity.
  • machine workpieces have surface curvatures due to minute curvature or surface roughness.
  • the film pressure generated in this region improves the lubricity between the two surfaces.
  • such surface irregularities serve as a trap of wear particles or a fine oil reservoir.
  • a plurality of groove-shaped unevennesses 21 were formed in at least a portion of the grooves.
  • the shape, size and arrangement of the unevenness is also important.
  • the shape, arrangement and specification of the unevenness to minimize friction and wear are greatly influenced by the operating conditions such as the contact form of the two surfaces, the load and the sliding speed.
  • the shape of the contact portion is different from the shape of the concave-convex and the arrangement of the concave-convex to minimize the friction and wear of the point, the point and the surface.
  • the shape, size, and arrangement of the unevenness are optimized to match the operating characteristics of the rocker arm shaft 10 and the rocker arm bush 11.
  • the manufacturing cost is increased, so that the uneven portion is formed only in the optimal region.
  • irregularities are formed on the surface of the rocker arm shaft 10 in a dashed line shape parallel to the friction movement direction of the rocker arm shaft 10.
  • the direction perpendicular to the frictional movement direction of the rocker arm shaft 10 may be referred to as the axial direction of the rocker arm shaft 10.
  • the irregularities capture the wear particles to accelerate the wear between the rocker arm shaft 10 and the rocker arm bush 11, and serves to supply a lubricant in the absence of lubricant, and the rocker arm shaft 10 and It serves to increase the oil film pressure between the rocker arm bush 11 is advantageous to reduce wear.
  • the manufacturing cost is increased, so it is important to form the uneven portion only in the optimal region.
  • the unevenness 21 is formed only in an area of about 20 to 50% of the entire area of the outer surface 20 of the rocker arm shaft 10, a sufficient wear reduction effect can be exhibited. If so, it is important to determine where the irregularities are formed.
  • the rocker arm shaft 10 and the rocker arm bush 11 shown in FIG. 1 are in contact only in a specific region due to their characteristics.
  • the circumferential center of the contact area is the center where the rocker arm shaft 10 and the rocker arm bush 11 come into contact with each other along the direction of the force of the force acting on the rocker arm.
  • the rocker arm shaft 10 and the rocker arm bush 11 move as shown by arrows indicated by “M” in FIG. 2.
  • the direction center 30 of the force of the force acting on the rocker arm is calculated based on when the opening amount of the valve controlled by the rocker arm is 50%, and the processing area of the fine concavo-convex surface is calculated based on this. To maximize the efficiency of the fine concave-convex processing (see Fig. 3).
  • the rocker arm shaft that generates a maximum line contact load with the rocker arm bush 11 when the valve connected via the rocker arm 6 is opened by 50% ( 10 may be formed on both sides with respect to the corresponding portion 30 of the.
  • the portion where the unevenness is formed is to be formed in the portion 40 corresponding to the arc of a circular arc having a center angle of 72 ° to 180 ° centered on the central portion 30 in which the maximum line contact load occurs.
  • a gap D is formed between the rocker arm shaft 10 and the rocker arm bush 11 due to the difference between the outer diameter of the rocker arm shaft 10 and the inner diameter of the rocker arm bush 11.
  • the size of the contact area between the rocker arm shaft 10 and the rocker arm bush 11 may vary according to the gap D. Therefore, the uneven region considering the contact area should be calculated in consideration of the load acting between the rocker arm shaft 10 and the rocker arm bush 11 and the elastic deformation of the rocker arm shaft 10 and the rocker arm bush 11. do.
  • FIG. 5 is a result of measuring a reduction rate of wear compared to an area where unevenness is formed, as compared with a case where unevenness is not formed in the rocker arm shaft 10.
  • the angle is an angle corresponding to the range of the concave-convex formation region 40 formed in the shape of a fan shape when viewed from the cross section of the rocker arm shaft 10, and the concave-convex structure is the standard of the tenth embodiment disclosed in Table 1 below.
  • Table 1 below.
  • corrugation 21 is a broken line form, and the long side of the said broken line is arrange
  • the irregularities in the form of broken lines are economical because they are easy to process, and are excellent in capturing wear particles, supplying lubricant, and increasing oil film pressure.
  • the depth of the broken line is 10 to 30 ⁇ m
  • the long side length of the broken line may be in the range of 100 to 500 ⁇ m.
  • the ratio of the surface area occupied by the broken line portion in the region where the broken line is formed is 5 to 30%.
  • the ratio of the surface area occupied by the dashed portion in the region where the dashed line is formed may also be referred to as density, where the expression “density” may be understood as “density of dashed line arrangement”.
  • the density may be calculated as in Equation 1 below.
  • La is the length (thickness) of the short side of a broken line
  • Lb is the length of the long side of a broken line
  • Lc is the space
  • Ld is the space
  • the ratio of the sum of the surface area occupied by the uneven portion 21 in the region where the uneven portion 21 is formed may be as much as 5 to 30%.
  • FIG. 6 illustrates the irregularities in the form of broken lines.
  • Le is the depth of the unevenness.
  • the abrasion test was performed on the parameters as shown in the table below, using the gap Lc in the thickness direction and the gap Ld in the longitudinal direction as design variables. As a comparative example, the case where unevenness
  • the comparative example in Table 1 is a test result for not processing the fine roughness, when comparing Example 10 and Comparative Example, Example 10 was reduced by more than 60% compared to the comparative example.
  • the wear improvement effect was excellent. That is, when the valve opening amount is 50%, the length of the long side of the rocker arm shaft 10 on the outer circumferential surface of the rocker arm shaft 10 in a region of 180 degrees around the direction of the force applied to the rocker arm shaft is 0.3 mm long, 0.02 mm deep, and 13% density When the irregular groove of the broken groove shape is processed, it is confirmed that the wear can be reduced by more than 60%.
  • Figure 8 shows a circular groove provided on the outer circumferential surface of the rocker arm shaft 10 according to another embodiment of the present invention.
  • the fine roughness according to the present invention is characterized by a circular fine roughness having a rectangular arrangement on a sliding surface in which friction occurs.
  • the groove may have a diameter of 100 ⁇ m to 150 ⁇ m, the depth of the groove may be 10 ⁇ m to 20 ⁇ m, and the interval of the groove may be 350 ⁇ m to 450 ⁇ m.
  • the operating environment of the rocker arm assembly in an internal combustion engine is in the form of a linear reciprocating motion on the sliding surface with the rocker arm bush inserted about the central axis of the rocker arm shaft.
  • the lubricating surface formed on the reciprocating sliding surface has a poor lubricating performance in a region in which the direction of movement changes due to its physical characteristics, thereby facilitating the occurrence of wear of the lubricating surface.
  • the rocker arm shaft provided with the circular groove can significantly reduce the amount of wear by significantly improving the lubrication performance of the lubricating surface of the rocker arm assembly reciprocating by the circular groove. .
  • the present invention can be applied to a rocker arm shaft that can achieve a wear reduction effect without excessive manufacturing cost or time by forming fine irregularities on the surface of the rocker arm shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

본 발명은 로커암 샤프트(rocker arm shaft) 및 로커암 샤프트와 상기 로커암 샤프트를 둘러싼 로커암 부시를 포함하는 로커암 샤프트-부시 조립체에 대한 것으로서, 상기 로커암 샤프트의 표면에 미세 가공한 요철이 형성되어 있어 윤활특성이 우수하고 그 결과 내마모성이 우수하다.

Description

내마모성이 개선된 로커암 샤프트 및 이를 포함하는 로커암 샤프트-부시 조립체
본 발명은 내마모성을 개선하기 위하여 표면에 미세요철을 가공한 로커암 샤프트(rocker arm shaft)에 대한 것이다. 본 발명은 또한 표면이 미세요철로 가공된 로커암 샤프트와 상기 로커암 샤프트를 둘러싼 로커암 부시를 포함하는 로커암 샤프트-부시 조립체에 대한 것이다.
일반적으로, 엔진은 크랭크축의 회전력에 의해 캠축이 회전되고, 상기 캠축에 형성된 캠에 의해 흡기 및 배기 밸브가 일정시간 간격으로 상하로 왕복 운동하면서 연소실에 연료가스와 공기의 혼합가스를 분사, 압축 및 폭발시켜 그 폭발 압력에 의해 동력을 얻는 과정이 반복된다.
상기와 같이 흡기 및 배기 밸브를 작동시키기 위한 캠축, 캠, 캠 종동자(예를 들어 타펫), 푸쉬 로드, 로커암, 밸브 스프링, 밸브 등의 일련의 요소들을 포함하는 유닛을 밸브 트레인이라 한다.
도 1은 종래 기술에 따른 밸브 트레인을 도시한 것으로서, 캠축(1)에는 다수 개의 캠(2)이 축선을 따라 일정간격을 두고 형성되고, 엔진 바디블록(3) 내에 상하로 슬라이딩 가능하게 구비되는 푸쉬로드(4)의 하단부에는 캠 종동자(5)를 구비한다. 또한, 상기 푸쉬로드(4)의 상단부는 로커암(6)의 일측에 피봇 연결되고, 상기 로커암(6)의 타측은 실린더 헤드블록(7)의 흡기 포트 또는 배기 포트 쪽에 연결되어 밸브 스프링(8)에 의해 탄성 지지되는 밸브(9)의 상단부와 피봇 연결된다.
상기 로커암(6)에는 로커암(6)의 운동 및 지지를 위하여 로커암 샤프트(10)와 로커암 부시(11)가 구비된다. 상기 로커암(6)은 상기 로커암 샤프트(10)와 로커암 부시(11)에 의하여 왕복운동이 가능하게 되는데, 여기서 상기 로커암 샤프트(10)와 로커암 부시(11)는 엔진오일을 매개로 서로 왕복 운동을 한다.
엔진 구동에 의하여 상기 로커암 샤프트(10)와 로커암 부시(11)는 계속적인 왕복 운동을 하기 때문에 마모에 자유로울 수 없다. 특히 상기 로커암 샤프트(10)와 로커암 부시(11)의 왕복운동은 운동 속도가 0이 되는 시점이 1 주기당 2 회 발생하게 되는데, 이와 같이 운동 속도가 0이 되면 윤활이론상 윤활막이 형성되지 못한다. 상기와 같은 정지-가속의 경우에는 유막 형성이 되지 않아 상기 로커암 샤프트와 로커암 부시에 특히 심한 마찰과 마모가 일어나게 된다. 이러한 운전조건 하에서 장시간 운전할 경우 로커암 샤프트와 로커암 부시의 간극이 커지게 되고 이로 인해 내연기관 성능에 영향을 줄 수 있는 밸브 간극의 변화가 발생하고 소음과 진동이 심각해 지게 된다.
종래에는 로커암 샤프트와 로커암 부시의 내마모성 개선을 위해서 주로 부시의 재료와 소재를 개선하는 방향으로 연구가 이루어졌다. 그러나, 상기와 같은 재료 및 소재의 개선은 제조 단가 상승을 유발시키고, 특히, 최근에는 엔진 작동환경이 로커암 샤프트와 로커암 부시의 마모를 더욱 유발시키는 방향으로 변해감에 따라 재료나 소재의 개선만으로 마모를 저감시키는 데에는 한계가 있다.
이와 같이 엔진 성능 향상 등을 위해서는 로커암 샤프트와 로커암 부시의 마모를 감소시키는 것이 필요하며, 특히 경제적인 관점에서 재료나 소재 개선 이외의 보다 경제적인 방법으로 로커암 샤프트와 로커암 부시의 마모를 감소시켜 내마모성을 향상시키는 것이 필요하다.
이에 본 발명자들은 윤활제를 매개로 상대 운동하는 두 표면에서의 마찰과 상기 마찰에 의한 마모에 대하여 연구하여 상기 마찰에 의한 마모를 줄일 수 있는 방법에 대하여 연구하였다.
본 발명에서는, 소재 변경과 같은 고비용을 발생하지 않고 비교적 간단한 방법으로 로커암 샤프트와 로커암 부시에서의 마모를 감소시킬 수 있는 방법을 제공하고자 한다. 또한 비교적 적은 제작비용과 제작 시간으로 제조될 수 있는, 내마모성이 향상된 로커암 샤프트 및 로커암 샤프트와 로커암 부시의 조립체를 제공하고자 한다.
본 발명에서는 로커암 샤프트와 로커암 부시의 마모를 감소시키기 위하여 요철이 형성된 로커암 샤프트를 제공하고자 한다.
또한 본 발명에서는 마모 개선 효과의 극대화를 위하여 요철의 위치와 형태를 최적화한 로커암 샤프트를 제공하고자 한다.
본 발명은 표면에 요철이 형성되어 내마모성이 향상된 로커암 샤프트를 제공한다.
본 발명의 일례에서는, 로커암 부시(11) 내부에 수납되어 윤활제를 매개로 하여 상기 로커암 부시(11)와 상대운동을 하여 로커암(6)이 왕복 운동할 수 있도록 하는 로커암 샤프트(10)로서, 상기 로커암 부시(11)와 접하는 로커암 샤프트(10)의 외면(20) 중 적어도 일부분에 복수 개의 홈 형태의 요철(21)이 형성되어 있는 로커암 샤프트(10)를 제공한다.
한편, 상기 요철은 로커암 샤프트(10)의 외면(20) 전체에 형성될 수도 있지만, 로커암 샤프트(10) 외면(20)의 일부에만 형성될 수도 있다. 즉, 상기 요철(21)은 로커암 샤프트(10)의 외면(20) 전체에 형성될 필요없이 로커암 부시(11)와의 접촉이 많은 부분에만 형성되어도 된다.
본 발명의 일례에 따르면, 상기 로커암 샤프트(10)의 외면(20) 중에서 상기 요철(21)이 형성되어 있는 영역의 비율은 전체 로커암 샤프트(10)의 외면(20) 면적의 20% 내지 50%에 해당하는 것이 가능하다.
본 발명의 다른 일례에 따르면, 상기 요철(21)은 도 3에서 보는 바와 같이, 상기 로커암(6)을 매개로 하여 연결된 밸브가 50% 개방되었을 때 로커암 부시(11)와 최대 선 접촉 하중이 발생하는 로커암 샤프트(10)의 해당 부분(30)을 중심으로 양쪽에 형성되도록 할 수 있다(40 참조). 이때, 상기 요철이 형성되는 부위는, 상기 최대 선접촉 하중이 발생하는 부분의 중심을 기준으로 중심각이 72° 내지 180°인 부채꼴의 호에 해당하는 부분에 형성되도록 할 수 있다.
한편, 본 발명의 일례에 따르면, 상기 요철(21)이 형성되어 있는 영역 중에서 상기 요철(21) 부분이 차지하는 표면적 합의 비율은 5% 내지 30%만큼이 되도록 할 수 있다. 이는 파선 형태의 요철을 예시하고 있는 도 6을 참고하면 쉽게 이해될 수 있다.
본 발명의 일례에 따르면, 도 6에서 보는 바와 같이, 상기 요철(21)은 파선 형태이며, 상기 파선의 긴 변이 로커암 샤프트(10)의 축방향과 평행하게 배치된 것이 가능하다. 상기 파선 형태의 요철에서, 상기 파선의 깊이는 10 내지 30㎛이고, 상기 파선의 긴 변 길이는 100 내지 500㎛의 범위로 할 수 있다. 이 경우, 상기 파선이 형성되어 있는 영역에서 파선 부분이 차지하는 표면적의 비율은 5% 내지 30%이다. 상기 파선이 형성되어 있는 영역에서 파선 부분이 차지하는 표면적의 비율을 밀도라고도 할 수 있는데, 여기서 "밀도" 라는 표현은 "파선 배치의 조밀도"로 이해하면 될 것이다. 상기 밀도는 아래 계산식 1과 같이 계산될 수 있다.
<계산식 1>
밀도 = (La X Lb)/{(La+Lc)X(Lb+Ld)}
여기서 La는 파선의 짧은 변의 길이(두께)이며, Lb는 파선의 긴변의 길이이며, Lc는 두께 방향에서의 파선 사이의 간격이며, Ld는 길이방향에서의 파선 사이의 간격이다.
또한, 본 발명의 또 다른 실시예에 따른 상기 요철(21)은 원형의 요홈으로 마련되는 것을 특징으로 한다.
바람직하게는, 상기 요철(21)은 상기 로커암(6)을 매개로 하여 연결된 밸브가 50%개방되었을 때 로커암 부시(11)와 최대 선접촉 하중이 발생하는 로커암 샤프트(10)의 해당부분을 중심으로 양쪽에 형성되며, 상기 요철(21)이 형성되는 부위는, 상기 최대 선접촉 하중이 발생하는 부분(30)을 중심으로 하여 중심각이 72° 내지 180°인 부채꼴의 호에 해당하는 부분에 형성되는 것을 특징으로 한다.
또한, 상기 요철(21)은 원형의 요홈으로 마련되되, 상기 요홈의 직경은 100μm으로 마련되는 것을 특징으로 한다.
또한, 상기 요철(21)은 원형의 요홈으로 마련되되, 상기 요홈의 깊이는 10~20μm으로 마련되는 것을 특징으로 한다.
또한, 상기 요철(21)은 원형의 요홈으로 마련되되, 상기 요홈의 간격은 350μm ~ 450μm으로 마련되는 것을 특징으로 한다.
본 발명은 또한 상기 설명한 로커암 샤프트(10) 및 상기 로커암 샤프트(10)가 수납되는 로커암 부시(11)를 포함하는 로커암 샤프트-부시 조립체를 제공한다.
본 발명은 또한 상기 로커암 샤프트-부시 조립체를 포함하는 로커암을 제공한다.
본 발명에 따르면, 로커암 샤프트의 표면에 미세요철을 형성함으로써 로커암 샤프트와 로커암 부시의 마모를 현저하게 감소시킬 수 있다. 본 발명에서는 마모 개선 효과를 극대화시키기 위하여 미세요철의 형상과 크기 및 위치를 최적화 하여, 과도한 제조비용이나 시간을 들이지 않고도 마모 저감 효과를 극대화할 수 있다.
도 1은 본 발명에 의한 로커암 샤프트(10)와 로커암 부시(11)가 적용되는 밸브 트레인의 일례를 도시한 것이다.
도 2는 도 1에서 상기 로커암 샤프트와 로커암 부시의 단면을 보여주는 도면이다.
도 3은 본 발명에 의한 로커암 샤프트(10)와 로커암 부시(11)가 적용되는 로커암(6)에서 실런더의 밸브가 50% 개방되었을 때 로커암 부시(11)와 최대 선접촉 하중이 발생하는 로커암 샤프트(10) 부분(30)을 나타내는 도면이다.
도 4는 본 발명의 일례에 따른 로커암 샤프트(10)에 대한 사시도이다.
도 5는 로커암 샤프트(10)에 요철이 형성되지 않은 경우와 비교하여 요철이 형성된 경우의 마모량 감소율을 보여주는 도면으로서, 각도로 표시된 요철 형성 영역과 마모량 감소와의 관계를 보여준다.
도 6은 요철이 파선형태로 형성된 본 발명의 일 실시예에 대한 것으로서, 파선 형태의 요철 부위에 대한 확대도이다.
도 7은 로커암 샤프트와 로커암 부시의 접촉영역 크기에 관한 설명도이다.
도 8은 요철이 원형 요홈 형태로 형성된 본 발명의 다른 실시예에 대한 것으로 원형 요홈 형태의 요철부위에 대한 확대도이다.
<도면의 주요 참조 부호에 대한 설명>
2: 캠 5: 캠 종동자
6: 로커암 10: 로커암 샤프트
11: 로커암 부시 12: 미세 구멍이 형성되지 않은 마찰 영역
20: 로커암 샤프트의 외면 21: 요철
30: 합력의 방향 중심 41: 요철형성 영역
D: 간극
M: 축의 상대 운동
이하 도면을 참고하여 본 발명을 보다 상세히 설명한다.
본 발명은 윤활제를 매개로 상대 운동을 하는 두 표면 중 적어도 한 표면에 미세 요철을 가공하여 마찰 및 마모를 저감하는 기술에 관한 것이다.
두 표면이 평행하다면 액체 윤활제를 매개로 상기 두 표면이 상대운동을 할지라도 그 윤활제 안에는 유체 동압이 발생하지 않는다는 것은 유체윤활 이론으로부터 잘 알려진 사실이다. 예외의 경우도 있지만, 유체 동압은 일반적으로 유막 두께가 미끄럼 방향에 따라 감소하는 쐐기효과가 있을 때 발생한다. 동압 스러스트 베어링과 저널 베어링을 예로 들면, 스러스트 베어링은 조립 오차를 통해 그리고 저널 베어링은 편심률을 통해 이 쐐기 효과를 발생시킨다.
하지만, 일반적으로 기계공작물은 미세한 굴곡이나 표면 조도에 의한 표면 굴곡을 가지고 있다. 이로 인해 두 표면이 평행하게 상대 운동을 할지라도 미끄럼 방향에 따라 국부적으로 유막 두께가 감소하는 영역이 존재하며, 이 영역에서 발생하는 유막압력은 두 표면 사이의 윤활성을 개선시킨다. 반면, 미끄럼 방향에 따라 유막두께가 증가하는 영역 또한 존재하는 데 이 영역에서는 일반적으로 기포가 발생하여 주변 압력과 유사한 압력을 갖게 된다. 따라서, 상대 운동을 하는 두 표면 중 적어도 한 표면에 다수의 미세 요철을 가공하면 그 두 표면이 평행하게 상대운동을 할지라도 두 면 사이에 유체 동압이 발생하고 이로 인해 윤활성을 개선시킬 수 있다. 또한 상기와 같은 표면 미세 요철은 마모 입자 포획이나 미세 오일 저장소 역할을 한다.
이에 본 발명에서는, 로커암 부시(11) 내부에 수납되어 상기 로커암 부시(11)와 상대운동을 하여 로커암(6)이 왕복운동할 수 있도록 하는 로커암 샤프트(10)의 외면(20) 중 적어도 일부분에 복수 개의 홈 형태의 요철(21)을 형성하였다.
한편 보다 효율적인 마찰 및 마모 감소를 위해서는 상기 요철의 형태, 규격 및 배열 방법 등도 역시 중요하다. 마찰 및 마모가 최소가 되도록 하는 요철의 형태, 배열 및 규격은 두 면의 접촉 형태, 하중, 미끄럼 속도 등의 운전 조건에 따라 크게 영향을 받는다. 예를 들어, 접촉부의 형태가 선 형상인 것과 점 형상인 것 그리고 면 형상인 것은 마찰 및 마모를 최소로 하기 위한 요철의 형태 및 배열 방법이 달라진다.
이에 본 발명에서는 상기 로커암 샤프트(10)과 로커암 부시(11)의 동작 특성에 맞도록 요철의 형태, 규격 및 배열 등을 최적화하였다. 또한 불필요한 부분에 요철을 형성할 경우 제조비용의 상승을 초래하기 때문에, 본 발명에서는 최적의 영역에만 요철을 형성하도록 하였다.
본 발명의 다양한 실시예에 대한 일례로서 도 4 및 도 6에서는 로커암 샤프트(10)의 표면에, 상기 로커암 샤프트(10)의 마찰 운동 방향에 수직한 방향으로 나란한 파선 형태로 요철을 형성하였다. 여기서 상기 로커암 샤프트(10)의 마찰 운동 방향에 수직한 방향은 로커암 샤프트(10)의 축 방향이라고 할 수 있다.
한편, 상기 요철은 로커암 샤프트(10)과 로커암 부시(11) 사이에서 마모를 가속시키는 마모입자를 포획하고, 윤활제가 부족한 상황에서 윤활제를 공급하는 기능을 하고, 로커암 샤프트(10)과 로커암 부시(11) 사이의 유막압력을 증대시키는 역할을 하여 마모를 저감 시키기에 유리하다.
상기에서도 설명한 바와 같이, 불필요한 부분에 요철을 형성할 경우 제조비용의 상승을 초래하기 때문에, 최적의 영역에만 요철을 형성하는 것이 중요하다. 본 발명에 따르면, 상기 로커암 샤프트(10)의 외면(20) 전체 영역 중에서 20 내지 50% 정도의 영역에만 요철(21)이 형성되어도 충분한 마모 저감 효과를 나타낼 수 있다. 그렇다면, 어느 부분에 요철을 형성하느냐 하는 것이 중요하다.
이와 관련하여, 도 1에 도시된 로커암 샤프트(10)과 로커암 부시(11)는 그 특성상 특정 영역에서만 접촉을 하게 된다. 그 접촉영역의 원주방향 중심은 도 2에서 보는 바와 같이 로커암에 작용하는 힘의 합력의 방향을 따라 로커암 샤프트(10)과 로커암 부시(11)가 접촉하는 중심이 된다. 이를 중심으로 로커암 샤프트(10)과 로커암 부시(11)는 도 2에 “M”으로 표시된 화살표와 같이 운동한다.
이에 본 발명의 일례에서는, 상기 로커암에 의하여 조절되는 밸브의 열림량이 50%일 때를 기준으로 로커암에 작용하는 힘의 합력의 방향 중심(30)을 계산하고 이를 중심으로 미세 요철의 가공영역을 정하여 미세 요철 가공의 효율을 극대화 하였다(도 3 참조).
본 발명의 일례에 따르면, 도 3에서 보는 바와 같이, 상기 로커암(6)을 매개로 하여 연결된 밸브가 50% 개방되었을 때 로커암 부시(11)와 최대 선접촉 하중이 발생하는 로커암 샤프트(10)의 해당 부분(30)을 중심으로 양쪽에 요철이 형성되도록 할 수 있다. 이 때, 상기 요철이 형성되는 부위는, 상기 최대 선접촉 하중이 발생하는 중심부(30)를 중심으로 하여 중심각이 72° 내지 180°인 부채꼴의 호에 해당하는 부분(40)에 형성되도록 한다.
구체적으로, 도 2에서 보는 바와 같이 로커암 샤프트(10)의 외경과 로커암 부시(11)의 내경의 차이로 인하여 로커암 샤프트(10)과 로커암 부시(11) 사이에는 간극(D)이 존재한다. 상기 간극(D)에 따라 로커암 샤프트(10)과 로커암 부시(11)의 접촉 영역의 크기가 달라질 수 있다. 따라서, 상기 접촉영역을 고려한 요철 형성 영역은 로커암 샤프트(10)과 로커암 부시(11) 사이에 작용하는 하중과 로커암 샤프트(10)와 로커암 부시(11)의 탄성변형을 고려해 계산하여야 한다. 예컨대 로커암 샤프트(10)과 로커암 부시(11) 사이의 간극(D)이 10㎛일 때는 로커암 샤프트(10)와 로커암 부시(11) 180°의 영역에서 접촉이 일어나며, 상기 간극이 50㎛일 때는 약 72°정도의 영역에서 접촉이 발생한다.
이와 같이, 로커암 샤프트(10)과 로커암 부시(11)의 운전특성과 물리적 현상을 분석하여 상기 요철의 가공영역을 결정한 것이다.
도 5는 로커암 샤프트(10)에 요철이 형성되지 않은 경우와 비교하여, 요철이 형성된 면적대비 마모량 감소율 측정결과이다. 여기서 각도는, 로커암 샤프트(10)의 단면에서 보았을 때, 부채꼴의 호 형태로 형성된 요철 형성 영역(40)의 범위에 해당하는 각도이며, 요철의 구조는 하기 표 1에 개시된 실시예 10의 규격을 따랐다. 도 5에서 보면, 요철 형성 영역(40)에 대응하는 호의 각도가 72° 미만인 경우에는 마모량 감소의 효과가 크지 않기 때문에 요철(21) 형성 영역의 각도를 72°이상으로 한다. 한편 각도가 180°를 초과하더라도 마모량 감소의 효과가 더 이상 증가하지 않는다는 것을 알 수 있는 바, 굳이 180°이상의 범위까지 요철을 형성하여 추가적인 제조비용과 시간을 소모할 필요는 없을 것이다.
도 6에 도시된 본 발명의 일례에서는 상기 요철(21)이 파선 형태이며, 상기 파선의 긴 변이 로커암 샤프트(10)의 축 방향과 평행하게 배치되어 있다. 상기 파선 형태의 요철은 가공이 용이하여 경제적이고, 마모입자의 포획, 윤활제 공급, 유막 압력 증대 효과가 우수하다.
여기서, 상기 파선의 깊이는 10 내지 30㎛이고, 상기 파선의 긴 변 길이는 100 내지 500㎛의 범위로 할 수 있다. 이 경우, 상기 파선이 형성되어 있는 영역에서 파선 부분이 차지하는 표면적의 비율은 5 내지 30%이다. 상기 파선이 형성되어 있는 영역에서 파선 부분이 차지하는 표면적의 비율을 밀도라고도 할 수 있는데, 여기서 "밀도" 라는 표현은 "파선 배치의 조밀도"로 이해하면 될 것이다. 상기 밀도는 아래 계산식 1과 같이 계산될 수 있다.
<계산식 1>
밀도 = (La X Lb)/{(La+Lc)X(Lb+Ld)}
여기서 La는 파선의 짧은 변의 길이(두께)이며, Lb는 파선의 긴변의 길이이며, Lc는 두께 방향에서의 파선 사이의 간격이며, Ld는 길이방향에서의 파선 사이의 간격이다.
상기 요철(21)이 형성되어 있는 영역 중에서 상기 요철(21) 부분이 차지하는 표면적 합의 비율은 5 내지 30%만큼이 되도록 할 수 있다. 이는 파선 형태의 요철을 예시하고 있는 도 6을 참고하면 쉽게 이해될 수 있다. 참고로 도 6에서 Le는 요철의 깊이이다. 상기와 같은 정도로 파선 형태의 요철이 형성될 경우, 마모입자 포획, 윤활제 공급, 유막 압력 증대 효과가 뛰어나다.
본 발명에서는, 파선 형태의 요철에 의한 로커암 샤프트(10)과 로커암 부시(11) 사이의 마모 개선 효과를 확인하기 위하여 상기 파선형태의 요철의 짧은 변의 길이(La), 긴변의 길이(Lb), 두께 방향에서의 파선 사이의 간격(Lc), 길이방향에서의 파선 사이의 간격(Ld)을 설계변수로 하여 아래 표와 같이 변수에 대해 마모 시험을 수행하였다. 비교예로서는 요철이 형성되지 않은 경우를 예를 들었다.
여기서 밀도는 상기 계산식 1에 개시된 바와 같이 구해진 것이다.
표 1
Lb(㎛) Le(㎛) 밀도(%) 마모량(㎛)
실시예 1 100 10 5 3.93
실시예 2 100 20 13 2.86
실시예 3 100 30 21 5.13
실시예 4 300 10 13 3.05
실시예 5 300 20 21 3.33
실시예 6 300 30 5 3.52
실시예 7 500 10 21 3.01
실시예 8 500 20 5 3.74
실시예 9 500 30 13 3.43
실시예10 300 20 13 2.57
비교예 - - - 7.05
시험 계획법에 기초하여 상기 표 1의 시험을 설계하고 시험을 수행하여 마모량을 표기하였다. 여기서의 미세요철 가공 범위는 180°였다. 마모량(Wear) 측정은 통상적으로 실시되는 마모깊이로 측정하였다.
상기 표 1에서 비교예는 미세요철을 가공하지 않은 것에 대한 시험결과인데, 실시예 10과 비교예를 비교할 경우, 실시예 10은 비교예 대비 마모량이 60% 이상 감소하였다. 다른 실시예에서도 마모 개선효과가 뛰어났다. 즉, 50%의 밸브 열림량 때 로커암 부시가 로커암 샤프트에 미치는 힘의 방향을 중심으로 180도의 영역에서 로커암 샤프트(10)의 외주면에 긴변의 길이 0.3mm, 깊이 0.02mm, 밀도 13%의 파선홈 형태의 요철을 가공하면 가공하면 마모가 60% 이상 감소될 수 있음을 확인하였다.
도 8은 본 발명의 또 다른 실시예에 따른 로커암 샤프트(10)의 외주면에 마련된 원형의 요홈을 나타낸다. 도 8에 도시된 바와 같이, 본 발명에 의한 미세요철은 마찰이 발생하는 습동면에 직사각형 배열을 가지는 원형의 미세요철을 특징으로 한다.
상기 요홈의 직경은 100㎛ 내지 150㎛으로 마련되며, 상기 요홈의 깊이는 10㎛ 내지 20㎛으로 마련되고, 상기 요홈의 간격은 350㎛ 내지 450㎛으로 마련될 수 있다.
일반적으로 내연기관에서 로커암 조립체의 작동환경은 로커암 부시가 로커암 샤프트의 중심축을 중심으로 삽입된 상태에서 습동면 상에서 직선 왕복 운동의 형태를 가진다. 왕복운동을 하는 습동면상에 형성된 윤활면은 그 물리적인 특성상 운동방향이 바뀌는 영역에서 윤활성능이 떨어지게 되고 이로 인해 윤활면의 마모 발생을 촉진시킨다.
그러나, 본 발명의 또 다른 실시예에 따른 원형의 요홈이 마련된 로커암 샤프트는 상기 원형 요홈에 의해 왕복운동을 하는 로커암 조립체 윤활면의 윤활성능을 크게 개선시켜 마모 발생량을 현저하게 감소시킬 수 있다.
본 발명은 로커암 샤프트의 표면에 미세요철을 형성함으로써, 과도한 제조비용이나 시간을 들이지 않고 마모 저감 효과를 얻을 수 있는 로커암 샤프트에 적용될 수 있다.

Claims (12)

  1. 로커암 부시(11) 내부에 수납되어 윤활제를 매개로 하여 상기 로커암 부시(11)와 상대운동을 하여 로커암(6)이 왕복운동할 수 있도록 하는 로커암 샤프트(10)로서,
    상기 로커암 부시(11)와 접하는 로커암 샤프트(10)의 외면(20) 중 적어도 일부분에 복수개의 홈 형태의 요철(21)이 형성되어 있는 것을 특징으로 하는 로커암 샤프트(10).
  2. 제 1항에 있어서,
    상기 요철(21)은, 상기 로커암(6)을 매개로 하여 연결된 밸브가 50% 개방되었을 때 로커암 부시(11)와 최대 선접촉 하중이 발생하는 로커암 샤프트(10)의 해당 부분(30)을 중심으로 양쪽에 형성되며,
    상기 요철이 형성되는 부위는, 상기 최대 선접촉 하중이 발생하는 부분(30)을 중심으로 하여 중심각이 72° 내지 180°인 부채꼴의 호에 해당하는 부분에 형성되는 것을 특징으로 하는 로커암 샤프트(10).
  3. 제 1항에 있어서, 상기 로커암 샤프트(10)의 외면(20) 중에서 상기 요철(21)이 형성되어 있는 영역의 비율은 전체 로커암 샤프트(10)의 외면(20) 면적의 20 내지 50%에 해당하는 것을 특징으로 하는 로커암 샤프트(10).
  4. 제 1항에 있어서, 상기 요철(21)이 형성되어 있는 영역 중에서 상기 요철(21) 부분이 차지하는 표면적 합의 비율은 5 내지 30%에 해당하는 것을 특징으로 하는 로커암 샤프트(10).
  5. 제 1항에 있어서, 상기 요철(21)은 파선 형태이며, 상기 파선의 긴 변이 로커암 샤프트(10)의 축방향과 평행하게 배치된 것을 특징으로 하는 로커암 샤프트(10).
  6. 제 5항에 있어서,
    상기 파선의 깊이(Le)는 10 내지 30㎛이고, 상기 파선의 긴 변 길이(Lb)는 100 내지 500㎛이며,
    상기 파선이 형성되어 있는 영역에서 파선 부분이 차지하는 표면적의 비율은 5 내지 30%인 것을 특징으로 하는 로커암 샤프트(10).
  7. 제1항에 있어서,
    상기 요철(21)은 원형의 요홈으로 마련되는 것을 특징으로 하는 로커암 샤프트(10).
  8. 제 7항에 있어서,
    상기 요철(21)은 상기 로커암(6)을 매개로 하여 연결된 밸브가 50%개방되었을 때 로커암 부시(11)와 최대 선접촉 하중이 발생하는 로커암 샤프트(10)의 해당부분을 중심으로 양쪽에 형성되며,
    상기 요철(21)이 형성되는 부위는, 상기 최대 선접촉 하중이 발생하는 부분(30)을 중심으로 하여 중심각이 72° 내지 180°인 부채꼴의 호에 해당하는 부분에 형성되는 것을 특징으로 하는 로커암 샤프트(10).
  9. 제7항에 있어서,
    상기 요철(21)은 원형의 요홈으로 마련되되, 상기 요홈의 직경은 100μm내지 150μm으로 마련되는 것을 특징으로 하는 로커암 샤프트(10).
  10. 제7항에 있어서,
    상기 요철(21)은 원형의 요홈으로 마련되되, 상기 요홈의 깊이는 10μm 내지 20μm으로 마련되는 것을 특징으로 하는 로커암 샤프트(10).
  11. 제7항에 있어서,
    상기 요철(21)은 원형의 요홈으로 마련되되, 상기 요홈의 간격은 350μm 내지 450μm으로 마련되는 것을 특징으로 하는 로커암 샤프트(10).
  12. 제1항 내지 제11항 중 어느 한 항에 의한 로커암 샤프트(10); 및
    상기 로커암 샤프트(10)가 수납되는 로커암 부시(11); 를 포함하는 로커암 샤프트-부시 조립체.
PCT/KR2011/008760 2010-11-18 2011-11-16 내마모성이 개선된 로커암 샤프트 및 이를 포함하는 로커암 샤프트-부시 조립체 WO2012067426A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180055665.7A CN103221646B (zh) 2010-11-18 2011-11-16 改善耐磨性的摇臂轴及包括该摇臂轴的摇臂轴套筒组件
EP11840978.8A EP2642093B1 (en) 2010-11-18 2011-11-16 Rocker arm shaft with improved abrasion resistance and rocker arm shaft/bush assembly comprising same
US13/988,075 US20130239741A1 (en) 2010-11-18 2011-11-16 Rocker Arm Shaft with Improved Abrasion Resistance and Rocker Arm Shaft/Bush Assembly Comprising Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0114826 2010-11-18
KR20100114826 2010-11-18
KR1020110118847A KR101843196B1 (ko) 2010-11-18 2011-11-15 내마모성이 개선된 로커암 샤프트 및 이를 포함하는 로커암 샤프트-부시 조립체
KR10-2011-0118847 2011-11-15

Publications (2)

Publication Number Publication Date
WO2012067426A2 true WO2012067426A2 (ko) 2012-05-24
WO2012067426A3 WO2012067426A3 (ko) 2012-07-12

Family

ID=46270008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008760 WO2012067426A2 (ko) 2010-11-18 2011-11-16 내마모성이 개선된 로커암 샤프트 및 이를 포함하는 로커암 샤프트-부시 조립체

Country Status (5)

Country Link
US (1) US20130239741A1 (ko)
EP (1) EP2642093B1 (ko)
KR (1) KR101843196B1 (ko)
CN (1) CN103221646B (ko)
WO (1) WO2012067426A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150055367A (ko) * 2013-11-13 2015-05-21 현대중공업 주식회사 선박 엔진용 로커암 축

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE339649C (de) * 1917-05-30 1921-07-30 Josef Desenberg Gleitflaeche mit zahlreichen, quer zur Gleitrichtung verlaufenden Aussparungen
DE2305834C3 (de) * 1973-02-07 1980-04-10 Daimler-Benz Ag, 7000 Stuttgart Einrichtung zum Schmieren eines Lagers für vorzugsweise Kipphebel an Kraftfahrzeugen
DE3024306A1 (de) * 1980-06-27 1982-01-21 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8500 Nürnberg Gleitlager fuer oszillierende schwenkbewegungen
US4896635A (en) * 1988-12-27 1990-01-30 Ford Motor Company Friction reducing rocker arm construction
JP3150551B2 (ja) * 1994-12-06 2001-03-26 日産ディーゼル工業株式会社 ロッカアーム用ブッシュ
DE19700339C2 (de) * 1996-01-30 2001-06-13 Federal Mogul Wiesbaden Gmbh Haupt- oder Pleuellagerelement
WO2000040840A1 (en) * 1999-01-05 2000-07-13 Marimuthu Ramu Thiyagarajan A low cost new internal combustion engine with increased mechanical efficiency, fuel saver and pollution controlled
US7318847B2 (en) * 2002-04-25 2008-01-15 Oerlikon Trading Ag, Trubbach Structured coating system
JP4103602B2 (ja) * 2003-01-20 2008-06-18 日産自動車株式会社 摺動部材、クランクシャフト、および可変圧縮比エンジン
DE102004002759A1 (de) * 2004-01-20 2005-08-04 Daimlerchrysler Ag Brennkraftmaschine
GB2410313B (en) * 2004-01-22 2007-08-08 Ford Global Tech Llc An engine and a method of making same
US7270482B2 (en) * 2004-02-05 2007-09-18 Nissan Motor Co., Ltd. Sliding device
JP2006322331A (ja) * 2005-05-17 2006-11-30 Isuzu Motors Ltd ロッカーアームの潤滑構造
JP2007023817A (ja) * 2005-07-13 2007-02-01 Nissan Diesel Motor Co Ltd エンジンのロッカーアーム
JP2007177677A (ja) * 2005-12-27 2007-07-12 Ntn Corp ロッカーアームおよびロッカーシャフト
JP5228303B2 (ja) * 2006-01-24 2013-07-03 日産自動車株式会社 低摩擦摺動部材、その製造装置並びに製造方法
CN201246196Y (zh) * 2008-09-02 2009-05-27 姜福奎 带滑轮的汽车发动机上凸轮轴摇臂
US8813698B2 (en) * 2009-03-06 2014-08-26 Toyota Jidosha Kabushiki Kaisha Variable valve apparatus of internal combustion engine
US8123413B2 (en) * 2009-12-30 2012-02-28 General Electric Company Surface textured rollers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2642093A4

Also Published As

Publication number Publication date
EP2642093B1 (en) 2016-03-16
CN103221646A (zh) 2013-07-24
EP2642093A2 (en) 2013-09-25
EP2642093A4 (en) 2014-06-25
KR20120053961A (ko) 2012-05-29
WO2012067426A3 (ko) 2012-07-12
CN103221646B (zh) 2016-01-20
US20130239741A1 (en) 2013-09-19
KR101843196B1 (ko) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2012060487A1 (ko) 내벽면에 요철이 형성된 실린더
JP2006144700A (ja) 内燃機関用エンジンのピストン及び内燃機関用エンジンのピストンとピストンリングの組合せ
US5746167A (en) Valve lifter
CN102741510A (zh) 发动机的润滑装置
WO2012067426A2 (ko) 내마모성이 개선된 로커암 샤프트 및 이를 포함하는 로커암 샤프트-부시 조립체
EP1731732A3 (en) Mass balancing system for internal combustion engine
CA2363415A1 (en) Lubricating structure in internal combustion engine
KR20170123259A (ko) 내연 기관
CN109989846A (zh) 分体式钢顶钢裙活塞
WO2011078533A2 (ko) 한계하중을 증가시킬 수 있도록 구조가 개선된 캠 종동자
WO2016089125A1 (ko) 크랭크샤프트용 커넥팅로드 베어링
JP4049591B2 (ja) オフセット内燃機関のピストン冷却構造
KR101724998B1 (ko) 엔진의 오일 리크 저감형 윤활 장치
GB2574274A (en) Double acting piston engines
CN212928017U (zh) 一种转子发动机的滚轮密封结构
CN1187577A (zh) 用于一种装配有配气气门的内燃机的配气机构
US6418898B2 (en) Valve operating system in internal combustion engine
KR20230038564A (ko) 내연 기관용 로터리 밸브들을 갖는 헤드 조립체
KR101605564B1 (ko) 한계하중을 증가시킬 수 있도록 구조가 개선된 캠 종동자
KR20110026739A (ko) 내벽면에 요철이 형성된 실린더
JP6398934B2 (ja) 内燃機関のクランクシャフト支持構造
CN112648038A (zh) 一种摇臂轴及摇臂总成
CN1403725A (zh) 张紧器的推进力给予装置
US11371609B2 (en) Systems, devices, and/or methods for improving engine efficiency
KR20120070064A (ko) 로커암 부싱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840978

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13988075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011840978

Country of ref document: EP