WO2012067234A1 - 自動二輪車、及びその制御装置 - Google Patents

自動二輪車、及びその制御装置 Download PDF

Info

Publication number
WO2012067234A1
WO2012067234A1 PCT/JP2011/076688 JP2011076688W WO2012067234A1 WO 2012067234 A1 WO2012067234 A1 WO 2012067234A1 JP 2011076688 W JP2011076688 W JP 2011076688W WO 2012067234 A1 WO2012067234 A1 WO 2012067234A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control device
turning
wheel
value
Prior art date
Application number
PCT/JP2011/076688
Other languages
English (en)
French (fr)
Inventor
健司 福嶋
博介 井上
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP11841352.5A priority Critical patent/EP2641819B1/en
Priority to US13/988,117 priority patent/US9189454B2/en
Priority to JP2012544323A priority patent/JP5602875B2/ja
Publication of WO2012067234A1 publication Critical patent/WO2012067234A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4151Inclination sensors for sensing lateral inclination of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • B60T2210/22Banked curves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/04Automatic transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • F16H2061/163Holding the gear for delaying gear shifts under unfavorable conditions, e.g. during cornering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts

Definitions

  • the present invention relates to a motorcycle, and more particularly to a technique for detecting turning of a vehicle.
  • Japanese Unexamined Patent Application Publication No. 2009-127689 discloses an apparatus for detecting that a vehicle is turning in a motorcycle. When the vehicle turns with the steering wheel turned to the right or left, the front wheels move on a track outside the rear wheels. Japanese Patent Application Laid-Open No. 2009-127689 utilizes this fact and determines that the vehicle is turning when the rotational speed of the front wheels is faster than the rotational speed of the rear wheels.
  • An object of the present invention is to provide a motorcycle and a control device for the motorcycle that can appropriately detect turning of the vehicle, particularly when traveling at high speed.
  • the radius of curvature of the cross section of the tire attached to one of the front wheels and the rear wheels is larger than the radius of curvature of the cross section of the tire attached to the other wheel.
  • the control device includes: a sensor that detects the rotational speed of the one wheel; a sensor that detects the rotational speed of the other wheel; and a value corresponding to a bank angle of the vehicle that is higher than a threshold.
  • a turning determination unit that determines that the vehicle is turning.
  • the value corresponding to the bank angle of the vehicle is a value indicating a relative magnitude of the rotational speed of the one wheel with respect to the rotational speed of the other wheel. According to the present invention, it is possible to appropriately detect turning of the vehicle during high-speed traveling.
  • FIG. 1 is a side view of a motorcycle including a control device according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a configuration of the motorcycle. It is a figure for demonstrating the outline
  • the rear wheels in a state where the vehicle is banked are schematically shown.
  • a front tire and a rear tire are schematically shown.
  • a line A6 indicates a change in the bank angle with respect to the vehicle speed.
  • a line 6B indicates a change in the steering angle with respect to the vehicle speed.
  • It is a graph which shows the relationship between the difference between the rotational speed of a rear wheel and the rotational speed of a front wheel, and a vehicle speed.
  • It is a block diagram which shows the function of the said control apparatus. It is a figure which shows the example of the shift map used by the process of the said control apparatus. It is a flowchart which shows the example of the process performed in the said control apparatus. It is a figure for demonstrating the shift suppression process which the said control apparatus performs. It is a flowchart which shows the other example of the process performed in the said control apparatus.
  • FIG. 1 is a side view of a motorcycle 1 having a control device 10 as an example of an embodiment of the present invention.
  • the motorcycle 1 includes a front wheel 2F, a rear wheel 2R, and an engine unit 11.
  • the front wheel 2F is supported by the lower end of the front fork 4.
  • the upper part of the front fork 4 is connected to the steering shaft 5.
  • a steering 6 that is steered by a passenger is connected to the steering shaft 5.
  • the steering shaft 5 is rotatably supported by a vehicle body frame (not shown), and the steering 6, the front fork 4 and the front wheel 2F rotate left and right around the steering shaft 5 in accordance with the rider's steering.
  • the steering 6 is provided with a brake lever and an accelerator grip that are operated by a passenger.
  • the front wheel 2F and the rear wheel 2R are braked by operating the brake lever.
  • a seat 7 on which a passenger can sit on the rear side of the steering 6 is disposed.
  • the rear wheel 2 ⁇ / b> R is disposed behind the engine unit 11 and is driven by the power output from the engine unit 11.
  • FIG. 2 is a diagram schematically showing the configuration of the motorcycle 1.
  • the engine unit 11 includes an engine 12 and a transmission 13. Further, the engine unit 11 has a clutch 14 between the engine 12 and the transmission 13.
  • the engine 12 is provided with a throttle valve that controls the amount of air supplied to the engine 12, a fuel injection device that injects fuel supplied to the engine 12, an ignition plug that ignites the supplied fuel, and the like. These are controlled by the control device 10.
  • the engine unit 11 includes a shift actuator 13a for moving the transmission 13 and a clutch actuator 14a for moving the clutch 14.
  • the clutch actuator 14a engages the clutch 14 or releases the engagement of the clutch 14.
  • the transmission 13 is, for example, a gear-type transmission, and has a plurality of gear pairs corresponding to the respective shift stages. Each gear is moved by a shift actuator 13a. That is, the shift actuator 13a realizes a target gear position by engaging a gear pair or releasing the engagement of the gear pair.
  • the shift actuator 13a and the clutch actuator 14a are controlled by the control device 10.
  • the transmission 13 is not limited to this, and may be a belt-type transmission, for example.
  • the motorcycle 1 includes a front wheel sensor 9a, a rear wheel sensor 9b, a steering angle sensor 9c, and a brake sensor 9d. The output signal of each sensor is input to the control device 10.
  • the front wheel sensor 9a is a rotation sensor for detecting the rotation speed of the front wheel 2F (the rotation angle (number of rotations) per unit time).
  • the rear wheel sensor 9b is a sensor for detecting the rotation speed of the rear wheel 2R (the rotation angle (number of rotations) per unit time).
  • the front wheel sensor 9a and the rear wheel sensor 9b are attached to the front wheel 2F and the rear wheel 2R, respectively, and output a pulse signal having a frequency corresponding to their rotational speed.
  • the control device 10 calculates the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R based on the output signal of the front wheel sensor 9a and the output signal of the rear wheel sensor 9b.
  • the rear wheel sensor 9b may be provided on the output shaft of the transmission 13. Further, the rear wheel sensor 9 b may be provided on the input shaft of the transmission 13. In this case, the control device 10 calculates the rotational speed of the rear wheel 2R based on the gear ratio of the transmission 13 and the output signal
  • the steering angle sensor 9c is provided on the steering shaft 5 and outputs a signal corresponding to the steering angle (the rotation angle of the steering shaft 5).
  • the control device 10 detects the steering angle based on the output signal of the steering angle sensor 9c.
  • the brake sensor 9d is a sensor for detecting a passenger's brake operation, and is provided, for example, on a brake lever provided in the steering 6 and outputs an on / off signal according to the presence or absence of the brake operation.
  • the control device 10 detects the presence or absence of a brake operation based on the output signal of the brake sensor 9d.
  • the motorcycle 1 includes an engine rotation speed sensor 9e for detecting the engine rotation speed, and a throttle opening sensor for detecting the opening of the throttle valve (hereinafter referred to as the throttle opening).
  • a shift switch 9g that is operated by a passenger and outputs a shift command (shift-up command or shift-down command) to the control device 10
  • an accelerator operation sensor 9h that detects an operation amount of an accelerator grip provided on the steering wheel 6 It has. Output signals of these sensors are also input to the control device 10.
  • the shift switch 9g includes a shift up switch and a shift down switch.
  • the control device 10 includes a CPU (Central Processing Unit) and a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the control device 10 executes a program stored in the memory in the CPU, and controls the engine 12, the transmission 13, and the clutch 14. That is, the control device 10 controls the engine torque by adjusting the opening of the throttle valve, the fuel injection amount of the fuel injection device, and the ignition timing of the spark plug. Further, the control device 10 switches the gear ratio by moving the clutch actuator 14a and the shift actuator 13a.
  • the control device 10 determines whether or not the vehicle is turning based on the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R.
  • a motorcycle turns while banking at high speed. That is, the motorcycle turns with the vehicle body tilted.
  • the control device 10 calculates a value corresponding to the bank angle of the vehicle body based on the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R, and the vehicle is turning on condition that the value is higher than the threshold value.
  • the control apparatus 10 suppresses execution of shift control, when the vehicle is turning.
  • FIG. 3 schematically shows the rear wheel 2R in a state where the vehicle is banked.
  • FIG. 4 schematically shows a front tire 2f attached to the outer periphery of the front wheel 2F and a rear tire 2r attached to the outer periphery of the rear wheel 2R.
  • the description will be made assuming that the diameter of the front tire 2f and the diameter of the rear tire 2r are equal.
  • the vehicle When traveling straight, the vehicle stands upright, and the tops (the centers P0 of the tires 2f and 2r in the width direction) of the cross sections of the tires 2f and 2r (surfaces that include the plane including the axle A) are in contact with the ground.
  • the distance from the axle A to the ground contact point (portion in contact with the ground) of the tires 2f and 2r is the radius R of the tires 2f and 2r.
  • positions Pf1 and Pr1 shifted from the width direction center P0 of the tires 2f and 2r are in contact with the ground (see FIG. 3). Therefore, the distances Rf1, Rr1 from the axle A to the ground contact points of the tires 2f, 2r are smaller than the distance R when standing upright.
  • the reduction widths (R-Rr1, R-Rf1) of the distances Rf1, Rr1 from the axle A to the ground point are the curvature radii Cf, Cr of the tires 2f, 2r (tires 2f, 2r, 2r crown radius).
  • the radius of curvature Cr of the tire 2r of the rear wheel 2R that is the driving wheel is larger than the radius of curvature Cf of the tire 2f of the front wheel 2F that is the driven wheel.
  • ⁇ Rf Cf (1 ⁇ cos ⁇ )
  • ⁇ Rr Cr (1-cos ⁇ ) Since the curvature radius Cf of the rear tire 2r is larger than the curvature radius Cf of the front tire 2f, ⁇ Rr becomes larger than ⁇ Rf.
  • the decrease widths ⁇ Rf and ⁇ Rr increase as the bank angle ⁇ increases. Further, as the bank angle ⁇ increases, the difference in reduction width ( ⁇ Rr ⁇ Rf) also increases.
  • ⁇ r1 is the rotational speed of the rear wheel 2R when the vehicle is banked. As indicated by these equations, the rotational speed ⁇ r1 of the rear wheel 2R during banking and the rotational speed ⁇ f1 of the front wheel 2F during banking are higher than the rotational speeds ⁇ r and ⁇ f during straight travel, respectively. Further, the rotational speeds ⁇ r1 and ⁇ f1 increase as the bank angle ⁇ increases.
  • the reduction width ⁇ Rr for the rear wheel 2R is larger than the reduction width ⁇ Rf for the front wheel 2F. Therefore, the rate of increase in the rotational speed of the rear wheel 2R due to the movement of the grounding point at the time of banking is greater than the rate of increase in the rotational speed of the front wheel 2F.
  • FIG. 5 is a graph showing the relationship between the bank angle and the difference ( ⁇ r ⁇ f) between the rotational speed of the rear wheel 2R and the rotational speed of the front wheel 2F.
  • the bank angle increases, the difference between the rotational speed of the rear wheel 2R and the rotational speed of the front wheel 2F, that is, the relative rotational speed of the rear wheel 2R based on the rotational speed of the front wheel 2F.
  • a value ( ⁇ r ⁇ f) indicating a large size also increases.
  • the control device 10 provides that the value indicating the relative magnitude of the rotational speed of the rear wheel 2R with reference to the rotational speed of the front wheel 2F is higher than a threshold value (hereinafter referred to as a turning determination threshold value). It is determined that the vehicle is turning.
  • a threshold value hereinafter referred to as a turning determination threshold value
  • FIG. 6 is a diagram for explaining the degree of use of the rotation of the bank and the steering 6.
  • a line A6 shown in the figure shows a change in the bank angle with respect to the vehicle speed.
  • a line 6B indicates a change in the steering angle with respect to the vehicle speed.
  • FIG. 7 is a graph showing the relationship between the difference between the rotational speed ⁇ r of the rear wheel 2R and the rotational speed ⁇ f of the front wheel 2F ( ⁇ r ⁇ f) and the vehicle speed.
  • line A7 is a line showing the relationship between the difference in rotational speed caused by the bank and the vehicle speed.
  • Line B7 is a diagram showing the relationship between the difference in rotational speed caused by the rotation of the steering 6 and the vehicle speed.
  • Line C7 is a line indicating the sum of the value of line A7 and the value of line B7.
  • the motorcycle turns mainly by the rotation of the steering 6 at a low speed (in the description here, at a vehicle speed V1 or less). Therefore, at a low speed, the rotational speed of the front wheel 2F tends to be higher than the rotational speed of the rear wheel 2R. As a result, when the radius of the tire 2f and the radius of the tire 2r are equal, the difference in rotational speed ( ⁇ r ⁇ f) due to the steering angle of the steering 6 becomes a negative value as shown by a line B7. On the other hand, the difference in rotational speed due to the bank is 0 at low speed (see line A7). When the vehicle speed exceeds V1, the steering angle of the steering 6 gradually decreases as shown in FIG.
  • the rotational speed calculated from the output signal of the front wheel sensor 9a and the output signal of the rear wheel sensor 9b is a value obtained by adding together the influence of the rotation of the steering 6 and the influence of the bank. Therefore, the difference in rotational speed calculated in the control device 10 is a value indicated by a line 7C that is the sum of the line A7 and the line B7. Therefore, when the above-described turning determination threshold value used for the turning determination of the control device 10 is set to 0, for example, turning can be detected in an operation region where the vehicle speed is higher than V2. That is, according to this embodiment, turning can be detected appropriately at high speed.
  • FIG. 8 is a block diagram illustrating functions of the control device 10.
  • the control device 10 includes a shift control unit 10a, a turning determination unit 10b, and a shift suppression processing unit 10c. These are realized by the CPU executing a program stored in the memory of the control device 10.
  • the control device 10 includes a storage unit 19. The storage unit 19 is realized by a memory included in the control device 10.
  • the transmission control unit 10a executes control (hereinafter referred to as transmission control) for changing the transmission ratio of the transmission 13.
  • the shift control unit 10a includes an actuator driving unit 10e and a timing determination unit 10f.
  • the actuator driving unit 10e operates the clutch actuator 14a and the shift actuator 13a according to a predetermined procedure to shift up or down the gear position. Specifically, after the clutch actuator 14a disengages the clutch 14 by the clutch actuator 14a, the actuator drive unit 10e switches the gear pair for transmitting power to the gear pair of the gear stage corresponding to the shift command, and then the clutch 14 Engage again (shift control).
  • Timing determination unit 10f detects the timing at which shift control should be started.
  • the actuator drive unit 10e starts the above-described shift control when it is determined that the shift timing has arrived.
  • the processing of the timing determination unit 10f is performed as follows, for example.
  • the timing determination unit 10f detects the arrival of a shift timing based on a map (hereinafter referred to as a shift map) stored in advance in the storage unit 19 (automatic shift mode).
  • FIG. 9 is a diagram showing an example of a shift map.
  • each driving state (the driving state defined by the vehicle speed and the accelerator operation amount in the example of FIG. 9) is associated with one of the shift stages.
  • the timing determination unit 10f monitors the current driving state while the vehicle is traveling. Then, when the gear position corresponding to the current driving state is switched, the timing determination unit 10f determines that the shift timing has arrived.
  • the shift map defines shift lines L1 to L4 at which shift stages are switched. The timing determination unit 10f determines that the shift timing has arrived when the current driving state exceeds the shift lines L1 to L4.
  • the timing determination unit 10f may determine the shift timing based on, for example, a shift command from the passenger (specifically, operation of the shift switch 9g) (manual shift mode). That is, the timing determination unit 10f may determine that the shift timing has arrived when the shift switch 9g is turned on.
  • the automatic shift mode and the manual shift mode may be provided. Further, the automatic shift mode and the manual shift mode may be selectable by a passenger's switch operation.
  • the turning determination unit 10b determines whether the vehicle is turning based on the rotation speed of the front wheel 2F and the rotation speed of the rear wheel 2R. In the present embodiment, when the value obtained based on the rotation speed of the front wheel 2F and the rotation speed of the rear wheel 2R and corresponding to the bank angle of the vehicle is higher than the above-described turning determination threshold, the vehicle Is determined to be turning. More specifically, when the value indicating the relative magnitude of the rotational speed of the rear wheel 2R with respect to the rotational speed of the front wheel 2F (hereinafter referred to as a speed relative value) is higher than the turning determination threshold, the vehicle turns. It is judged that The turning determination unit 10b determines that the vehicle is turning when not only the conditions regarding the speed relative value but also other conditions (for example, conditions regarding the vehicle speed and the steering angle) are satisfied. May be.
  • the shift suppression processing unit 10c When it is determined that the vehicle is turning, the shift suppression processing unit 10c performs a process for suppressing the execution of shift control by the shift control unit 10a (hereinafter, shift suppression process).
  • FIG. 10 is a flowchart showing an example of processing executed by the turning determination unit 10b and the shift suppression processing unit 10c. The process shown in FIG. 10 is repeatedly executed while the vehicle is traveling.
  • control device 10 calculates the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R based on the output signal of the front wheel sensor 9a and the output signal of the rear wheel sensor 9b (S101).
  • the turning determination unit 10b calculates a value indicating the relative magnitude of the rotational speed of the rear wheel 2R with respect to the rotational speed of the front wheel 2F (that is, the speed relative value described above) (S102).
  • the coefficient k is a coefficient for compensating for the difference between the radius of the front tire 2f and the radius of the rear tire 2r.
  • a difference in rotational speed when the motorcycle 1 is traveling straight for example, ⁇ r ⁇ k ⁇ ⁇ f described above).
  • k Rf / Rr.
  • the speed relative value is a value corresponding to a result of subtracting the front wheel speed from the rear wheel speed (Vr ⁇ Vf) or a result of dividing the rear wheel speed by the front wheel speed (Vr / Vf).
  • Speed relative value ⁇ r ⁇ Rr ⁇ f ⁇ Rf
  • the relative speed value is not limited to a value obtained by subtracting the rotational speed of the front wheel 2F from the rotational speed of the rear wheel 2R.
  • the relative speed value may be a ratio of the rotational speed of the rear wheel 2R to the rotational speed of the front wheel 2F (for example, ⁇ r / (k ⁇ ⁇ f)).
  • the speed relative value is 1 when the vehicle is traveling straight.
  • the turn determination unit 10b determines whether or not the speed relative value is higher than the turn determination threshold Th1 after calculating the speed relative value in S102 (S103).
  • the coefficient k is used. Therefore, in the process of S103, in other words, whether or not the rotational speed of the rear wheel 2R is higher than the rotational speed of the front wheel 2F is higher than the turning determination threshold even if the difference in the radii of the tires 2f and 2r is taken into account. Judgment. In other words, the turning determination unit 10b determines whether a value corresponding to the rear wheel speed is higher than a value corresponding to the front wheel speed by a predetermined value or more.
  • the turning determination unit 10b determines that the vehicle is turning when the relative speed value is higher than the turning determination threshold Th1.
  • the turning determination threshold value Th1 is set to a value higher than the relative speed value calculated when the vehicle goes straight.
  • the speed relative value is ⁇ r ⁇ k ⁇ ⁇ f described above, for example, a value higher than 0 is set as the turning determination threshold value.
  • a value higher than 1 is set as the turning determination threshold value.
  • the speed relative value does not necessarily have to be calculated in S102 prior to the determination in S103.
  • the turning determination unit 10b adds the turning determination threshold value Th1 to the rotation speed (specifically, ⁇ f ⁇ k) of the front wheel 2F in S102, and in S103, the rear wheel 2R is greater than the result of the addition ( ⁇ f ⁇ k + Th1). It may be determined whether or not the rotation speed is high. That is, in the present invention, it is only necessary to determine whether or not the speed relative value is higher than the turning determination threshold value Th1 as a result, and the speed relative value does not necessarily have to be calculated in the processing of the turning determination unit 10b.
  • the shift suppression processing unit 10c When it is determined that the vehicle is turning in the process of the turning determination unit 10b, the shift suppression processing unit 10c performs a shift suppression process (S104).
  • a flag indicating whether the shift control is permitted or prohibited (hereinafter referred to as a shift prohibition flag) is stored in the storage unit 19 in advance. Then, the shift suppression processing unit 10c changes the shift prohibition flag to an on state (a state indicating shift prohibition) as shift suppression processing.
  • the transmission control unit 10a performs the following processing. That is, when the shift control unit 10a receives a shift command from the passenger (when the shift switch 9g is turned on) or when the shift stage obtained by referring to the shift map is switched, Confirm. Then, the shift control unit 10a does not start the shift control corresponding to the shift command or the like if the shift prohibition flag is on.
  • the shift suppression processing unit 10c may change the shift map shown in FIG. 9 to suppress shift control as shift suppression processing.
  • the shift suppression processing unit 10c may change the shift map so that the arrival of the shift timing is delayed.
  • the shift suppression processing unit 10c shifts the shift line so as to suppress shift control. That is, in the shift-up shift map, the shift line is shifted to the high speed side so that the shift up is performed at a higher speed than usual. In the shift-down shift map, the shift line is shifted to the low speed side so that the shift down is performed at a lower speed than usual.
  • the shift suppression process may be executed only when one of the modes is selected.
  • the shift suppression process may be executed only when the automatic shift mode is selected. In this way, the shift control according to the passenger's shift command is permitted even while the vehicle is turning.
  • the shift suppression processing unit 10c performs, for example, the following process: . That is, as shown in FIG. 10, the shift suppression processing unit 10c determines whether or not it is determined that the vehicle is turning in the previous process (specifically, the determination in the previous S102) (S105). This determination can be made, for example, by providing a flag indicating that the vehicle is turning when it is determined in S102 that the vehicle is turning. That is, in S104, the on / off state of the flag is confirmed. This flag may be, for example, the prohibition flag described above.
  • the shift suppression process is performed.
  • the unit 10c executes a process for releasing the suppression of the shift (hereinafter referred to as a suppression release process) (S106). That is, the shift suppression processing unit 10c sets, for example, a shift prohibition flag to an off state.
  • the shift suppression processing unit 10c returns the shift map to the original state. That is, the shift suppression processing unit 10c returns the shift line shown in FIG. 11 to the original position.
  • control device 10 ends the current process and starts the process of S101 again.
  • the turning determination unit 10b may determine whether another condition (hereinafter referred to as an additional condition) is satisfied. Then, the turning determination unit 10b may determine that the vehicle is turning when the above-described condition for the speed relative value is satisfied and the additional condition is satisfied.
  • an additional condition another condition
  • FIG. 12 is a flowchart showing another example of processing of the turning determination unit 10b.
  • the same reference numerals are assigned to the same processes as those in the flowchart of FIG.
  • the turning determination unit 10b determines whether or not the driving state of the vehicle satisfies the additional condition after the determination of S102 (S107).
  • the additional condition is, for example, a condition regarding a vehicle speed, an engine torque, a brake operation, or a steering angle of the steering 6.
  • the turning determination unit 10b determines whether or not the vehicle speed is higher than a predetermined threshold in S107. Then, the turning determination unit 10b determines that the vehicle is turning when the vehicle speed is higher than the threshold value. In this way, turning at high speed can be detected more accurately.
  • the front wheel speed ( ⁇ f ⁇ Rf) is used as the vehicle speed.
  • an average value of the front wheel speed and the rear wheel speed ( ⁇ r ⁇ Rr) may be used as the vehicle speed.
  • the turning determination unit 10b may determine whether the engine torque or the engine output calculated based on the engine torque is lower than a predetermined threshold. Then, the turning determination unit 10b may determine that the vehicle is turning when the engine torque or the engine output is lower than the threshold value.
  • the relative speed value may increase due to slight deformation of the tire 2r of the rear wheel 2R. According to the determination using such engine torque, the influence of the speed relative value generated by the deformation of the tire 2r during acceleration on the turning determination can be reduced.
  • the engine torque is obtained by referring to a map stored in advance in the storage unit 19.
  • the turning determination unit 10b refers to this map and corresponds to the detection values by the engine rotation speed sensor 9e and the throttle opening degree sensor 9f.
  • the engine torque to be calculated is calculated. Further, the engine output can be calculated as a product of the engine torque thus calculated and the engine speed.
  • the turning determination unit 10b may determine whether or not the brake operation is performed based on the output signal of the brake sensor 9d in S107. Then, the turning determination unit 10b may determine that the vehicle is turning when the brake operation is not performed.
  • the rotational speed of the rear wheel 2R may thereby be higher than the rotational speed of the front wheel 2F. For this reason, by making it an additional condition that the brake operation is not performed in this way, the detection of turning becomes further accurate. Note that it is only necessary to determine whether or not the brake operation is performed only for the front wheel 2F.
  • the turning determination unit 10b may determine whether or not the steering angle of the steering wheel 6 detected by the steering angle sensor 9c is higher than a predetermined threshold value in S107. Then, the turning determination unit 10b may determine that the vehicle is turning when the steering angle is higher than a threshold value.
  • the turning determination unit 10b of the control device 10 has a value (that is, a speed relative value) corresponding to the bank angle of the vehicle obtained based on the rotation speed of the front wheel 2F and the rotation speed of the rear wheel 2R. It is determined that the vehicle is turning on condition that it is higher than the turning determination threshold value.
  • the speed relative value indicates the relative magnitude of the rotational speed of the rear wheel 2R (the wheel to which the tire 2r having a relatively large curvature radius is attached) based on the rotational speed of the front wheel 2F. Value. Therefore, it is possible to appropriately detect turning especially at high speeds.
  • the shift suppression processing unit 10c performs a process of suppressing the shift control by the shift control unit 10a (that is, the shift suppression process described above). Thereby, the gear position can be maintained during turning.
  • the shift suppression process only in the automatic shift mode, it is possible to suppress a shift that is not intended by the passenger during the turn.
  • the turning determination unit 10b further determines whether or not the vehicle is turning based on the vehicle speed, the engine torque, the brake operation, or the steering angle of the steering. Thereby, the detection of turning becomes more accurate.
  • the present invention is not limited to the control device 10 described above, and various modifications can be made. Hereinafter, a modified example will be described.
  • the same conditions are used for the start determination of turning and the end determination of turning.
  • the turning determination unit 10b may use different conditions for the turning start determination and the turning end determination.
  • the condition used for the end determination of turning may be defined so as to be satisfied with a delay from the time when the condition used for the start determination of turning is not satisfied. In other words, hysteresis may be provided between the start determination condition and the end determination condition.
  • FIG. 13 is a flowchart showing an example of processing executed by the turning determination unit 10b having such a configuration. This process is repeatedly executed while the vehicle is traveling.
  • the same reference numerals are given to the same processes as those described above.
  • the control device 10 calculates the rotation speed of the front wheel 2F and the rotation speed of the rear wheel 2R (S101), and the turning determination unit 10b calculates a speed relative value based on these rotation speeds (S102).
  • the turning determination unit 10b determines whether or not the vehicle is already turning (S108). Specifically, the turn determination unit 10b stores, in the storage unit 19, a flag indicating that the vehicle is turning, for example, when it is determined that the vehicle is turning, as in S105 described above. This is possible. That is, in S108, the turning determination unit 10b confirms the on / off state of the flag. Here, when it is determined that the vehicle is not turning, the turning determination unit 10b determines whether or not the turning of the vehicle has started.
  • the turning determination unit 10b determines whether or not the speed relative value is higher than the turning determination threshold (S103, start determination). For example, S108 shown in FIG. 12 may be added to the start determination here.
  • the processes after S103 are the same as those in the flowchart of FIG.
  • the turning determination unit 10b determines whether or not the turning of the vehicle has ended (end determination). Specifically, the turning determination unit 10b determines whether or not the speed relative value (for example, ⁇ r ⁇ k ⁇ ⁇ f or ⁇ r / (k ⁇ ⁇ f)) is lower than a predetermined threshold (hereinafter, turning end determination threshold Th2). Is determined (S109).
  • the turning end determination threshold Th2 is a value lower than the turning determination threshold Th1 described above. According to such a determination process, it is determined that the turn has ended with a delay from the point in time when the start determination condition (speed relative value> turn determination threshold Th1) is not satisfied.
  • the shift suppression processing unit 10c executes the above-described suppression release process in which the shift suppression is canceled (S106).
  • the control device 10 ends the current process and starts again from the process of S101.
  • the turning determination unit 10b may determine whether or not the state in which the speed relative value is lower than the turning end determination threshold value Th2 has continued for a longer time than the predetermined time. Then, the turning determination unit 10b may determine that the turning has ended when the state continues for a predetermined time. Such a method can also delay the time point at which it is determined that the turn has ended. As a result, when the vehicle returns from turning to straight ahead, it is possible to suppress an upshift and to improve acceleration. Further, by making the predetermined time longer, it is possible to continue to determine that the vehicle is turning even after leaving the curved road. As a result, even if there is a short straight road between the curved road, the shift control can be suppressed without interruption.
  • the turning determination unit 10b described above determines whether or not the value indicating the relative magnitude of the rotational speed of the rear wheel 2R (that is, the speed relative value) is higher than the turning determination threshold value. However, the turning determination unit 10b may estimate the bank angle of the vehicle based on the steering angle detected by the steering angle sensor 9c, the rotational speed of the front wheel 2F, and the rotational speed of the rear wheel 2R. Then, on the condition that the estimated bank angle is larger than the threshold value, the turning determination unit 10b may determine that the vehicle is turning.
  • FIG. 14 is a flowchart showing an example of processing executed by the turning determination unit 10b having such a configuration. Also in the figure, the same reference numerals are assigned to the same processes as those described so far. In addition, the process of the same figure is repeatedly performed while the vehicle is traveling.
  • control device 10 calculates the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R (S101). Further, the control device 10 detects the steering angle of the steering 6 based on the output signal of the steering angle sensor 9c (S110).
  • the turning determination unit 10b calculates the bank angle of the vehicle based on the steering angle, the rotational speed of the front wheel 2F, and the rotational speed of the rear wheel 2R (S111). This process is executed as follows, for example.
  • a relative speed value between the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R calculated using the sensors 9a and 9b (here, ⁇ Sttl, for example, the above-described ⁇ r ⁇ k ⁇ ⁇ f or ⁇ r / (k ⁇ ⁇ f)) is a sum of a component (hereinafter, steering component ⁇ Ss) caused by the rotation of the steering 6 and a component (hereinafter, bank component) ⁇ Sb caused by the bank.
  • the turning determination unit 10b calculates a bank angle based on the bank component ⁇ Sb. For example, a map that associates the bank component ⁇ Sb with the bank angle is stored in the storage unit 19, and the turning determination unit 10 b refers to this map and calculates the bank angle corresponding to the calculated bank component ⁇ Sb.
  • the turning determination unit 10b determines whether or not the bank angle is larger than the threshold (S112).
  • the shift suppression processing unit 10c executes the shift suppression process (S104). If the bank angle is smaller than the threshold value, the processes of S105 and S106 are executed.
  • the shift suppression processing unit 10c described above executes the shift suppression process when it is determined that the vehicle is turning.
  • the shift suppression processing unit 10c may further execute a shift suppression process in accordance with a passenger's brake operation. In this form, for example, the following processing is executed.
  • the storage unit 19 stores a flag indicating that the brake is operated (hereinafter referred to as a brake flag) and a flag indicating that the vehicle is turning (hereinafter referred to as a turn flag). If any one of the flags is turned on (that is, if any one of the brake operation and the turning of the vehicle is performed), the shift suppression processing unit 10c performs the shift suppression processing. On the contrary, the shift suppression processing unit 10c executes the suppression release processing when both the brake flag and the turning flag are turned off.
  • a brake flag a flag indicating that the brake is operated
  • a turn flag a flag indicating that the vehicle is turning
  • the brake flag may be returned to the off state when a predetermined time (hereinafter referred to as a brake end delay time) has elapsed since the time when the brake operation is no longer detected.
  • the turning flag may be returned to the off state when a state in which the speed relative value is smaller than the turning determination threshold value has elapsed for a predetermined time (hereinafter, turning end delay time).
  • a brake end delay time a state in which the speed relative value is smaller than the turning determination threshold value has elapsed for a predetermined time.
  • FIG. 15 is a block diagram showing functions of the control device 10 of this embodiment.
  • the control device 10 further includes a brake determination unit 10g.
  • FIG. 16 is a flowchart illustrating an example of processing of the brake determination unit 10g. This process is also repeatedly executed while the vehicle is running.
  • the brake determination unit 10g determines whether or not the brake operation is performed based on the output signal of the brake sensor 9d (S201).
  • the brake determination unit 10g determines whether or not the brake flag is already on, that is, whether or not the brake operation has been performed in the previous process (S202). If the brake flag is already on, the brake determination unit 10g ends the current process as it is. On the other hand, when the brake flag is not in the on state in the determination in S202, the brake determination unit 10g switches the brake flag to the on state (S203).
  • the shift suppression processing unit 10c described above executes shift suppression processing in response to switching of the brake flag to the on state.
  • the brake determination unit 10g determines whether or not the brake flag is in the ON state, similarly to S202 (S204). Here, when the brake flag is in the OFF state, the brake determination unit 10g ends the current process as it is. On the other hand, if it is determined in S204 that the brake flag is in the on state, it is determined whether or not the brake end delay time has elapsed since the end of the previous brake operation (S205). If the brake end delay time has not yet elapsed, the brake determination unit 10g ends the current process without changing the state of the brake flag. On the other hand, when the brake end delay time has already elapsed, the brake determination unit 10g switches the brake flag to the off state (S206). At this time, if the turning flag is also set to the off state, the shift suppression processing unit 10c executes a suppression release process.
  • the process of the turning determination unit 10b is executed as follows, for example. That is, when the turning determination unit 10b determines that the vehicle is turning as a result of the process of S103 shown in FIG. 10, the turning flag is turned on. On the other hand, when it is determined that the vehicle is not turning as a result of the process of S103, the turning determination unit 10b checks whether or not the turning flag is in an on state. Here, when the turning flag is in the on state, the turning flag is switched to the off state when the turning end delay time has elapsed since the end of the immediately preceding turning.
  • the shift control suppression function works as follows. Before entering the curved road, a brake operation is performed, the brake flag is turned on, and the above-described shift suppression process is executed. Even if the brake is released immediately after the vehicle is banked after the brake operation is performed, the brake flag remains on until the brake end delay time elapses, so the shift suppression process continues. When the vehicle enters the curve road and banks, the turning flag is turned on.
  • the shift control is continuously suppressed. Further, as described above, the turning flag cannot be switched to the OFF state unless the turning end delay time has elapsed. Therefore, even if there is a short straight road between the two curved roads, the suppression of the shift control continues. After that, when the vehicle exits the second curved road and the turn end delay time has elapsed, the turn flag is switched to the off state. In addition, the brake is normally already released when taking off the curved road. Therefore, when the turn end delay time has elapsed, both the turn flag and the brake flag are turned off, the suppression release process is executed, and the shift by the shift control unit 10a is allowed.
  • FIG. 17 is a graph schematically showing the relationship between the speed relative value ( ⁇ r ⁇ k ⁇ ⁇ f) and the acceleration of the vehicle when traveling straight at a certain vehicle speed.
  • the horizontal axis is the velocity relative value
  • the vertical axis is the acceleration.
  • the velocity relative value is a value approximately proportional to the acceleration.
  • the relative speed value is a positive value. That is, when the acceleration is a positive value, the rotational speed of the rear wheel 2R is higher than the rotational speed of the front wheel 2F.
  • the relative speed value is also a negative value. That is, the rotational speed of the rear wheel 2R is lower than the rotational speed of the front wheel 2F.
  • the speed relative value becomes higher. In this case, the acceleration gradually decreases as the speed relative value increases.
  • the relative speed value is affected by the acceleration of the vehicle. That is, the speed relative value includes not only a component due to the bank of the vehicle but also a component due to acceleration of the vehicle (hereinafter, acceleration component). Therefore, the control device 10 may change the turning determination threshold according to the acceleration state of the vehicle in order to reduce the influence of the acceleration component when determining the turning. By doing so, the turning of the vehicle can be detected more accurately.
  • FIG. 18 is a flowchart showing an example of processing of the turning determination unit 10b in such a form.
  • the same reference numerals are given to the same processes as those described so far.
  • the turning determination unit 10b calculates the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R as before (S101), and based on these values, the relative speed value (in FIG. 18). ( ⁇ r ⁇ k ⁇ ⁇ f) is calculated (S102).
  • the turning determination unit 10b determines whether or not the vehicle is accelerating (S113). Specifically, the turning determination unit 10b determines whether or not a value corresponding to the acceleration is higher than a threshold value. For example, when an acceleration sensor is mounted on the vehicle, the turning determination unit 10b determines whether the vehicle is accelerating based on the output signal of the acceleration sensor. Further, the turning determination unit 10b may determine whether or not the vehicle is accelerating based on the differential value of the rotational speed of the front wheel 2F (the differential value of the vehicle speed). Further, the turning determination unit 10b may determine whether or not the vehicle is accelerating based on the engine torque or the accelerator opening.
  • a threshold value For example, when an acceleration sensor is mounted on the vehicle, the turning determination unit 10b determines whether the vehicle is accelerating based on the output signal of the acceleration sensor. Further, the turning determination unit 10b may determine whether or not the vehicle is accelerating based on the differential value of the rotational speed of the front wheel 2F (the differential value of the vehicle speed). Further, the turning determination
  • the turning determination unit 10b determines whether or not the speed relative value is higher than the first turning determination threshold (S114). When the speed relative value is higher than the first turning determination threshold, it is determined that the vehicle is turning, and the shift suppression processing unit 10c executes the shift suppression process (S104).
  • the turning determination unit 10b determines whether the relative speed value is higher than the second turning determination threshold value. Is determined (S115).
  • the shift suppression processing unit 10c executes the shift suppression process (S104).
  • the first turning determination threshold value that is higher than the second turning determination threshold value is used, so that the influence of the acceleration component of the speed relative value can be reduced in turning determination.
  • the turning determination unit 10b may calculate a turning determination threshold based on a value corresponding to the acceleration of the vehicle. Then, the turning determination unit 10b may perform the turning determination using the calculated turning determination threshold. In other words, the turning determination unit 10b may perform the turning determination using the turning determination threshold corrected based on the acceleration of the vehicle.
  • FIG. 19 is a flowchart showing an example of processing of the turning determination unit 10b in such a form.
  • the same reference numerals are given to the same processes as those described so far.
  • the turning determination unit 10b calculates a value corresponding to the acceleration of the vehicle (hereinafter referred to as an acceleration corresponding value) (S116).
  • the acceleration correspondence value may be acceleration itself, engine output, or driving force of the rear wheel 2R.
  • the turning determination unit 10b calculates a turning determination threshold based on the acceleration correspondence value (S117).
  • a map or a relational expression for associating the acceleration correspondence value with the correction value is stored in the storage unit 19 in advance.
  • the correction value is, for example, a speed relative value (vehicle component described above) when accelerating at the acceleration indicated by the acceleration corresponding value.
  • the turning determination unit 10b calculates a turning determination threshold (for example, correction value + initial value) used in the determination process based on the correction value and the initial value of the turning determination threshold.
  • the turning determination unit 10b determines whether or not the speed relative value calculated in S102 is higher than the turning determination threshold calculated in S117 (S103).
  • the speed relative value is higher than the turning determination threshold, it is determined that the vehicle is turning, and the shift suppression processing unit 10c executes the shift suppression process similarly to the process described so far (S104).
  • the speed relative value is not higher than the turning determination threshold value in the determination in S103, the processes in S105 and S106 are performed as before, and the current process is terminated.
  • FIG. 20 is a block diagram showing functions of the control device 10 in this embodiment.
  • the control device 10 of this embodiment has a traction control unit 10h.
  • the traction control unit 10h determines whether or not the rear wheel 2R is slipping based on the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R. For example, the traction control unit 10h determines whether or not the speed relative value is larger than a threshold value (hereinafter referred to as a slip determination threshold value).
  • a threshold value hereinafter referred to as a slip determination threshold value
  • the traction control unit 10h executes traction control (that is, control for reducing engine torque).
  • the slip determination threshold value and the turning determination threshold value are defined so that the shift is suppressed by the process of the shift suppression processing unit 10c even when the slip is generated. That is, the slip determination threshold and the turn determination threshold are set so that the turn determination unit 10b determines that the vehicle is turning before the slip of the rear wheel 2R is detected. For example, when the relative speed value is used in the slip determination, a value lower than the slip determination threshold is set as the turning determination threshold. By doing so, it is possible to prevent the shift control from being executed before the traction control is started. As a result, while the engine torque is being reduced by the traction control, the driving force change caused by the shift does not occur, and the traction control can be performed stably.
  • FIG. 21 is a flowchart showing an example of processing executed by the traction control unit 10h. This process is repeatedly executed while the vehicle is traveling.
  • the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R are calculated by the control device 10 (S301).
  • the traction control unit 10h calculates a speed relative value based on the calculated rotation speed (S302).
  • the traction control part 10h determines whether the slip has arisen based on this speed relative value.
  • the traction control unit 10h determines whether or not the absolute value of the speed relative value is larger than the slip determination threshold (S303).
  • the traction control unit 10h starts traction control.
  • the traction control unit 10h performs control to reduce engine torque (S304).
  • the traction control unit 10h performs, for example, reduction of the fuel injection amount of the fuel injection device provided in the engine 12, retardation of the ignition timing, reduction of the opening of the throttle valve, and the like.
  • the turning determination threshold is set to a value lower than the slip determination threshold. Therefore, in S303, when it is determined that the speed relative value is higher than the slip determination threshold, it is determined that the vehicle has already made a turn in the process of the turn determination unit 10b, and the shift suppression process (the shift prohibition flag is turned on). Switching to a state or changing the shift map).
  • the traction control unit 10h determines whether or not the slip of the rear wheel 2R has been reduced / eliminated. Specifically, the traction control unit 10h determines whether or not the absolute value of the speed relative value is smaller than a threshold value (hereinafter, slip end threshold value) (S305). Note that a value smaller than the slip determination threshold is set as the slip end threshold.
  • the traction control unit 10h ends the traction control. That is, the traction control unit 10h performs normal control on the engine torque and restores the engine torque (S306). If the absolute value of the speed relative value is not larger than the slip determination threshold value in S303, the determination in S305 is performed and the current process is terminated. In S305, if the absolute value of the speed relative value is not smaller than the slip end threshold, the current process is terminated without returning to the normal control for the engine torque.
  • the control device 10 may have a function of updating / correcting the coefficient k used in the processing of the turning determination unit 10b.
  • the coefficient k is a coefficient for compensating for the difference between the radius of the front tire 2f and the radius of the rear tire 2r.
  • the actual radius of the front tire 2f and the actual radius of the rear tire 2r may vary depending on wear of the tires 2f and 2r.
  • the relative speed value does not indicate a value indicating straight travel.
  • the control device 10 may have a function for solving such a problem.
  • FIG. 22 is a block diagram showing functions of the control device 10 having such a configuration. As shown in the figure, in this embodiment, the control device 10 further includes a coefficient update processing unit 10i. FIG. 23 is a flowchart illustrating an example of processing of the coefficient update processing unit 10i.
  • the coefficient update processing unit 10i first determines whether or not the coefficient k needs to be updated. In this example, the coefficient update processing unit 10i determines whether update is necessary in two stages. First, the coefficient update processing unit 10i determines whether or not the current coefficient k is appropriate (S401). For example, the time relative to the value in which the speed relative value indicates the straight traveling of the vehicle (hereinafter referred to as the straight traveling display value, 0 or 1 in the above example) (that is, the time when it can be determined that the vehicle is traveling straight by the current coefficient k ( Hereinafter, the coefficient update processing unit 10i determines whether or not the estimated straight traveling time)) continues longer than a predetermined time (hereinafter referred to as determination time). When the vehicle is traveling, the straight traveling time usually lasts longer than the turning time. Therefore, when the estimated straight traveling time continues longer than the determination time, the coefficient update processing unit 10i determines that the current coefficient k is appropriate, and ends the current process.
  • the straight traveling display value 0 or 1 in the above example
  • the coefficient update processing unit 10i determines whether or not the coefficient k should be updated (S402). That is, the coefficient update processing unit 10i determines whether or not the deviation of the coefficient k is caused by wear of the tires 2f and 2r. For example, in S402, the coefficient update processing unit 10i updates the coefficient k based on the time for which the speed relative value calculated using the current coefficient k maintains a constant value and the magnitude of the constant value. Determine whether or not.
  • the coefficient update processing unit 10i determines whether or not the time during which the speed relative value calculated using the current coefficient k maintains a constant value lasts longer than a predetermined time. In S402, the coefficient update processing unit 10i determines whether or not the constant value is close to the straight display value, that is, whether or not the value is within a predetermined range.
  • the coefficient update processing unit 10i calculates a coefficient k that is estimated to be appropriate. . Specifically, the coefficient update processing unit 10i calculates a coefficient (hereinafter referred to as the next coefficient k1) that matches the speed relative value with the straight display value during straight traveling (S403). The coefficient update processing unit 10i calculates the next coefficient k1 based on the rotational speed of the front wheel 2F and the rotational speed of the rear wheel 2R. For example, the coefficient update processing unit 10i detects when the vehicle is traveling straight on the basis of a change in relative speed value using the current coefficient k.
  • the coefficient update processing unit 10i detects when the vehicle is traveling straight on the basis of a change in relative speed value using the current coefficient k.
  • the process for obtaining the next coefficient k1 is not limited to this.
  • the coefficient update processing unit 10i continuously calculates the speed relative value based on the rotation speed of the front wheel 2F, the rotation speed of the rear wheel 2R, and the current coefficient k, and stores them in the storage unit 19. Also good.
  • the coefficient update process part 10i may produce
  • the coefficient update processing unit 10i may calculate the next coefficient k1 based on the speed relative value that maximizes the frequency.
  • the coefficient update processing unit 10i determines whether or not the next coefficient k1 calculated in S403 is within a predetermined appropriate range (S404). If the next coefficient k1 is within the appropriate range, the coefficient update processing unit 10i rewrites the current coefficient k to the next coefficient k1 and stores it in the storage unit 19 (S405). Thereafter, the turning determination unit 10b described above calculates a speed relative value using the rewritten coefficient k, and determines whether or not the vehicle is turning.
  • the coefficient update processing unit 10i may perform the following processing. That is, in S401, the coefficient update processing unit 10i determines whether or not the minimum value of the speed relative value calculated during a predetermined time (hereinafter, update determination time (for example, 10 seconds)) matches the straight display value. judge. For example, when the speed relative value is ⁇ r / (k ⁇ ⁇ f), the coefficient update processing unit 10i determines whether or not the minimum value of the speed relative value calculated during the update determination time is 1. When the speed relative value is ⁇ r ⁇ (k ⁇ ⁇ f), the coefficient update processing unit 10i determines whether or not the minimum value of the speed relative value calculated during the update determination time is zero. If the minimum value matches the straight-ahead display value, the coefficient update processing unit 10i ends the process.
  • update determination time for example, 10 seconds
  • the coefficient update processing unit 10i determines in S402 whether or not the coefficient k should be updated, that is, whether or not a deviation due to wear or the like has occurred. Specifically, the coefficient update processing unit 10i determines whether or not the minimum value is calculated when traveling straight ahead. When the minimum value is calculated during straight traveling, it can be determined that the coefficient k is deviated from the appropriate value. In this case, the coefficient update processing unit 10i calculates the next coefficient k1 using the rotation speeds ⁇ r and ⁇ f that are the basis of the minimum values (S403), and executes subsequent processes S404 and S405.
  • the process of S402 is executed as follows, for example.
  • the coefficient update processing unit 10i determines whether the steering angle at the time when the minimum value is calculated is smaller than a predetermined value. When the steering angle is smaller than the predetermined value, the coefficient update processing unit 10i determines that the minimum value is calculated during straight traveling.
  • the coefficient update processing unit 10i may determine whether the vehicle speed at the time when the minimum value is calculated is greater than a predetermined value. When the vehicle speed is greater than the predetermined value, the coefficient update processing unit 10i determines that the minimum value has been calculated during straight traveling. The vehicle travels on a curved road at a relatively low speed.
  • the coefficient update processing unit 10i may execute both the above-described determination regarding the steering angle and the above-described determination regarding the vehicle speed.
  • the coefficient update processing unit 10i may determine that the minimum value is calculated during straight traveling when the steering angle is smaller than a predetermined value and the vehicle speed is larger than the predetermined value.
  • the coefficient update processing unit 10i may determine whether or not the brake operation has not been performed at the time when the minimum value is calculated, together with the determination regarding the steering angle and the vehicle speed. When the brake operation is not performed, the coefficient update processing unit 10i updates the coefficient k in S403 to S405.
  • the coefficient update processing unit 10i may determine whether or not the absolute value of acceleration at the time when the minimum value is calculated is smaller than a predetermined value, together with the determination regarding the steering angle and the vehicle speed. Then, when the absolute value of the acceleration is smaller than the predetermined value, the coefficient update processing unit 10i may update the coefficient k in S403 to S405.
  • the coefficient update processing unit 10i stores the driving state (steering angle, vehicle speed, presence / absence of brake operation, acceleration) used in the determination of S402 in the storage unit 19 in association with the speed relative value during the update determination time. To do.
  • the driving state corresponding to the minimum value is read from the storage unit 19, and based on the read driving state, it is determined whether or not the timing at which the minimum value is obtained is during straight running.
  • the process of S402 may be executed as follows. That is, the coefficient update processing unit 10i may determine whether or not the time during which the speed relative value is maintained at the above-described minimum value (minimum value maintaining time) is longer than a predetermined time. A straight run generally lasts longer than a turn. Therefore, when the minimum value maintaining time is longer than the predetermined time, the coefficient update processing unit 10i may determine that the minimum value is calculated during straight traveling, and update the coefficient k in S403 to S405.
  • the coefficient update processing unit 10i first determines whether or not the vehicle is traveling straight ahead. This process can be performed using the steering angle and vehicle speed described above. At this time, as described above, it may be determined whether or not the brake operation is performed and whether or not the acceleration is smaller than a predetermined value. When the vehicle is traveling straight, the brake operation is not performed, and the absolute value of the acceleration is smaller than a predetermined value, the coefficient update processing unit 10i calculates the speed relative value during the straight traveling. Then, it is determined whether or not the obtained value matches a straight-ahead display value (for example, 0 or 1). If the value does not match the straight display value, the coefficient update processing unit 10i updates the coefficient k.
  • a straight-ahead display value for example, 0 or 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)
  • Regulating Braking Force (AREA)

Abstract

 車両の旋回を適切に検出できる自動二輪車の制御装置を提供する。 自動二輪車の制御装置には、前輪の回転速度を検出するセンサと、後輪の回転速度を検出するセンサとが設けられている。制御装置は、前輪の回転速度に対する後輪の回転速度の相対的な大きさを表す値をバンク角に応じた値として算出し、バンク角に応じた前記値が閾値よりも高いことを条件として、車両が旋回していると判断する。

Description

自動二輪車、及びその制御装置
 本発明は自動二輪車に関し、特に車両の旋回を検出するための技術に関する。
 特開2009-127689号公報には、自動二輪車において車両が旋回中であることを検出する装置が開示されている。ステアリングが右又は左に回された状態で車両が旋回する場合には、前輪は後輪よりも外側の軌道を移動する。特開2009-127689号公報はこのことを利用し、前輪の回転速度が後輪の回転速度よりも速い場合に、車両が旋回中であると判断している。
 しかしながら、自動二輪車は、車速が高い場合には、ステアリングを回転させることなく、車体を傾けることで、すなわちバンクによって旋回する。そのような場合には、前輪の軌道と後輪の軌道の差が小さいので、上記特許文献1の装置では車両の旋回を適切に検出できなかった。
 本発明の目的は、車両の旋回を特に高速走行時に適切に検出できる自動二輪車及びその制御装置を提供することにある。
 本発明に係る制御装置の自動二輪車では、前輪と後輪のうちの一方の車輪に取り付けられたタイヤの断面の曲率半径が他方の車輪に取り付けられたタイヤの断面の曲率半径よりも大きい。前記制御装置は、前記一方の車輪の回転速度を検出するセンサと、前記他方の車輪の回転速度を検出するセンサと、車両のバンク角に応じた値が閾値よりも高いことを条件として車両が旋回していると判断する旋回判定部と、を備える。車両のバンク角に応じた前記値は前記他方の車輪の回転速度に対する前記一方の車輪の回転速度の相対的な大きさを示す値である。本発明によれば、車両の旋回を高速走行時に適切に検出できる。
本発明の実施形態に係る制御装置を備えた自動二輪車の側面図である。 上記自動二輪車の構成を概略的に示す図である。 本発明の旋回判定の概要について説明するための図である。同図では、車両がバンクしている状態での後輪が概略的に示されている。 本発明の旋回判定の概要について説明するための図である。同図では、前タイヤと後タイヤとが概略的に示されている。 後輪の回転速度と前輪の回転速度との差と、バンク角との関係を示すグラフである。 バンクとステアリングの回転の利用の程度を説明する為の図である。線A6は車速に対するバンク角の変化を示している。また、線6Bは車速に対する操舵角の変化を示している。 後輪の回転速度と前輪の回転速度との差と、車速との関係を示すグラフである。 上記制御装置の機能を示すブロック図である。 上記制御装置の処理で用いられる変速マップの例を示す図である。 上記制御装置において実行される処理の例を示すフローチャートである。 上記制御装置が実行する変速抑制処理を説明する為の図である。 上記制御装置において実行される処理の他の例を示すフローチャートである。 上記制御装置において実行される処理の他の例を示すフローチャートである。 上記制御装置において実行される処理の他の例を示すフローチャートである。 本発明の他の形態に係る制御装置の機能を示すブロック図である。 図15に示す制御装置が備えるブレーキ判定部の処理の例を示すフローチャートである。 ある車速で直進する場合における速度相対値と、車両の加速度との関係を概略的に示すグラフである。 本発明のさらに他の形態に係る制御装置において実行される処理の例を示すフローチャートである。 図18の処理の他の例を示すフローチャートである。 本発明の他の形態に係る制御装置の機能を示すブロック図である。 図20に示す制御装置が備えるトラクション制御部が実行する処理の例を示すフローチャートである。 本発明の他の形態に係る制御装置の機能を示すブロック図である。 図22に示す制御装置が備える係数更新処理部の処理の例を示すフローチャートである。
 以下、本発明の一実施形態について図面を参照しながら説明する。図1は本発明の実施形態の例である制御装置10を備えた自動二輪車1の側面図である。
 自動二輪車1は前輪2Fと後輪2Rとエンジンユニット11とを備えている。前輪2Fはフロントフォーク4の下端で支持されている。フロントフォーク4の上部はステアリングシャフト5に連結されている。ステアリングシャフト5には、搭乗者によって操舵されるステアリング6が連結されている。ステアリングシャフト5は車体フレーム(不図示)によって回転可能に支持されており、ステアリング6とフロントフォーク4と前輪2Fは、搭乗者の操舵に応じてステアリングシャフト5を中心にして左右に回転する。ステアリング6には、搭乗者によって操作されるブレーキレバーやアクセルグリップが設けられている。前輪2F及び後輪2Rはブレーキレバーの操作によって制動される。ステアリング6の後方には、搭乗者が跨って座ることのできるシート7が配置されている。後輪2Rはエンジンユニット11の後方に配置され、エンジンユニット11から出力された動力によって駆動する。
 図2は自動二輪車1の構成を概略的に示す図である。
 エンジンユニット11はエンジン12と変速機13とを備えている。また、エンジンユニット11は、エンジン12と変速機13との間にクラッチ14を有している。エンジン12には、当該エンジン12に供給する空気量を制御するスロットルバルブや、エンジン12に供給する燃料を噴射する燃料噴射装置、供給された燃料に点火する点火プラグなどが設けられている。これらは制御装置10によって制御される。
 さらに、エンジンユニット11は変速機13を動かすシフトアクチュエータ13aとクラッチ14を動かすクラッチアクチュエータ14aとを備えている。クラッチアクチュエータ14aはクラッチ14を係合させたり、クラッチ14の係合を解除したりする。変速機13は例えばギア式の変速機であり、各変速段に対応した複数のギア対を有している。各ギアはシフトアクチュエータ13aによって動かされる。すなわち、シフトアクチュエータ13aは、ギア対を係合させたり、ギア対の係合を解除したりすることで、目標とする変速段を実現する。シフトアクチュエータ13aとクラッチアクチュエータ14aは制御装置10によって制御される。なお、変速機13はこれに限られず、例えばベルト式の変速機でもよい。また、自動二輪車1は前輪センサ9aと後輪センサ9bと操舵角センサ9cとブレーキセンサ9dとを備えている。各センサの出力信号は制御装置10に入力されている。
 前輪センサ9aは前輪2Fの回転速度(単位時間あたりの回転角(回転数))を検出するための回転センサである。後輪センサ9bは後輪2Rの回転速度(単位時間あたりの回転角(回転数))を検出するためのセンサである。前輪センサ9aと後輪センサ9bは前輪2Fと後輪2Rとにそれぞれ取り付けられ、それらの回転速度に応じた周波数のパルス信号を出力する。制御装置10は前輪センサ9aの出力信号と後輪センサ9bの出力信号とに基づいて前輪2Fの回転速度と後輪2Rの回転速度とをそれぞれ算出する。なお、後輪センサ9bは、変速機13の出力軸に設けられてもよい。また、後輪センサ9bは変速機13の入力軸に設けられてもよい。この場合には、制御装置10は変速機13の変速比と後輪センサ9bの出力信号とに基づいて、後輪2Rの回転速度を算出する。
 操舵角センサ9cはステアリングシャフト5に設けられ、操舵角(ステアリングシャフト5の回転角度)に応じた信号を出力する。制御装置10は操舵角センサ9cの出力信号に基づいて操舵角を検知する。
 ブレーキセンサ9dは搭乗者のブレーキ操作を検知するためのセンサであり、例えばステアリング6に設けられたブレーキレバーに設けられ、ブレーキ操作の有無に応じたオン/オフ信号を出力する。制御装置10はブレーキセンサ9dの出力信号に基づいてブレーキ操作の有無を検知する。
 また、図2に示す例では、自動二輪車1は、エンジン回転速度を検知するためのエンジン回転速度センサ9eと、スロットルバルブの開度(以下、スロットル開度)を検知するためのスロットル開度センサ9fと、搭乗者によって操作され制御装置10に変速指令(シフトアップ指令又はシフトダウン指令)を出力するシフトスイッチ9gと、ステアリング6に設けられたアクセルグリップの操作量を検出するアクセル操作センサ9hとを備えている。これらのセンサの出力信号も制御装置10に入力される。なお、シフトスイッチ9gとしてはシフトアップ用のスイッチとシフトダウン用のスイッチとが設けられる。
 制御装置10はCPU(Central Processing Unit)と、ROM(Read Only Memory)やRAM(Random Access Memory)などのメモリとを備えている。制御装置10はメモリに格納されたプログラムをCPUにおいて実行し、エンジン12、変速機13、及びクラッチ14を制御する。すなわち、制御装置10は、スロットルバルブの開度や、燃料噴射装置の燃料噴射量、点火プラグの点火タイミングを調整して、エンジントルクを制御する。また、制御装置10は、クラッチアクチュエータ14aとシフトアクチュエータ13aとを動かして変速比を切り換える。
 本実施形態では、制御装置10は、前輪2Fの回転速度と後輪2Rの回転速度とに基づいて、車両が旋回しているか否かを判定する。一般的に、自動二輪車は高速走行においてはバンクしながら旋回する。すなわち、自動二輪車は車体を傾けて旋回する。制御装置10は、前輪2Fの回転速度と後輪2Rの回転速度とに基づいて車体のバンク角に応じた値を算出し、当該値が閾値より高いことを条件として、車両が旋回していると判断する。そして、制御装置10は、車両が旋回している場合には、変速制御の実行を抑える。
 旋回判定の概要について説明する。図3は車両がバンクしている状態での後輪2Rを概略的に示している。図4は前輪2Fの外周に取り付けられた前タイヤ2fと後輪2Rの外周に取り付けられた後タイヤ2rとを概略的に示している。なお、ここでは説明の簡略化のために、前タイヤ2fの径と後タイヤ2rの径とが等しいものとして説明する。
 直進時には、車両は直立しており、タイヤ2f,2rの断面(車軸Aを含む面を切断面とする面)の頂部(タイヤ2f,2rの幅方向の中心P0)が地面に接する。この場合、車軸Aからタイヤ2f,2rの接地点(地面に接する部分)までの距離は、タイヤ2f,2rの半径Rとなる。一方、バンク時には、タイヤ2f,2rの幅方向中心P0からずれた位置Pf1,Pr1が地面に接する(図3参照)。そのため、車軸Aからタイヤ2f,2rの接地点までの距離Rf1,Rr1は、直立時の距離Rに比べて小さくなる。
 本願発明者の研究によれば、車軸Aから接地点までの距離Rf1,Rr1の減少幅(R-Rr1,R-Rf1)は、タイヤ2f,2rの断面の曲率半径Cf,Cr(タイヤ2f,2rのクラウン半径)に依存することが分かった。本実施形態の自動二輪車1では、駆動輪である後輪2Rのタイヤ2rの曲率半径Crは、従動輪である前輪2Fのタイヤ2fの曲率半径Cfよりも大きい。本願発明者の研究によれば、図4に示すように、後タイヤ2rの接地点Pr1から車軸Aまでの距離Rr1の減少幅ΔRr(ΔRr=R-Rr1)が、曲率半径Cfの小さい前タイヤ2fの接地点から車軸Aまでの距離Rf1の減少幅ΔRf(ΔRf=R-Rf1)よりも、大きくなる。すなわち、車両のバンク角がθである場合には、次の式が成立する。
ΔRf=Cf(1-cosθ)
ΔRr=Cr(1-cosθ)
後タイヤ2rの曲率半径Cfが、前タイヤ2fの曲率半径Cfよりも大きいので、ΔRrがΔRfよりも大きくなる。また、バンク角θが大きくなるに従って、減少幅ΔRf,ΔRrは大きくなる。さらに、バンク角θが大きくなるに従って、減少幅の差(ΔRr-ΔRf)も大きくなる。
 車両が直進している場合には、前輪2Fの回転速度と後輪2Rの回転速度は等しくなる。すなわち、前タイヤ2fの半径と後タイヤ2rの半径が等しいと仮定すると、車両が直進している場合には、次の式が成り立つ。
ωr-ωf=0
ここで、ωfは前輪センサ9aによって検知できる前輪2Fの回転速度であり、ωrは後輪センサ9bによって検知できる後輪2Rの回転速度である。
 ところが、実際の車速が直進時と同じであっても、車両がバンクしている時には、上述したように車軸Aからタイヤ2f,2rの接地点までの距離が減少するため、前輪2Fの回転速度と後輪2Rの回転速度とが上昇する。すなわち、直進時と同じ車速(R×ωr、R×ωf)で車両がバンクした場合には、次の式が成り立つ。
ωr1=R×ωr/(R-Cr(1-cosθ))
ωf1=R×ωf/(R-Cf(1-cosθ))
ここで、ωf1は車両がバンクしているときの前輪2Fの回転速度である。ωr1は車両がバンクしているときの後輪2Rの回転速度である。これらの式で示されるように、バンク時の後輪2Rの回転速度ωr1とバンク時の前輪2Fの回転速度ωf1は、直進時の回転速度ωr,ωfよりもそれぞれ高くなる。また、回転速度ωr1,ωf1は、バンク角θが大きくなるに従って高くなる。
 上述したように後輪2Rについての減少幅ΔRrは前輪2Fについての減少幅ΔRfよりも大きい。そのため、バンク時に接地点が動くことに起因する後輪2Rの回転速度の上昇率は、前輪2Fの回転速度の上昇率よりも大きくなる。また、上述したように、バンク角が大きくなるに従って減少幅の差(ΔRr-ΔRf)も大きくなる。そのため、バンク角が大きくなるに従って、後輪2Rの回転速度と前輪2Fの回転速度との差(ωr-ωf)も大きくなる。すなわち、タイヤ2fの半径とタイヤ2rの半径が等しいと仮定すると、車両がバンクしている場合には、次の式が成立する。
ωr-ωf=Δω>0
Δωはバンク角に応じて大きくなる。
 図5は後輪2Rの回転速度と前輪2Fの回転速度との差(ωr-ωf)と、バンク角との関係を示すグラフである。同図に示すように、バンク角が大きくなるに従って、後輪2Rの回転速度と前輪2Fの回転速度との差、すなわち、前輪2Fの回転速度を基準とする後輪2Rの回転速度の相対的な大きさを示す値(ωr-ωf)も大きくなる。そこで、本実施形態の制御装置10は、前輪2Fの回転速度を基準とする後輪2Rの回転速度の相対的な大きさを表す値が、閾値(以下、旋回判定閾値)より高いことを条件として、車両が旋回していると判断する。
 なお、後タイヤ2rの半径と前タイヤ2fの半径とが相違する場合には、タイヤ2r,2fの半径と回転速度ωr,ωfとの積である車輪速度について、同様のことが成り立つ。すなわち、後輪2Rのタイヤ2rの半径がRrであり、前輪2Fのタイヤ2fの半径がRfであるとすると、直進時には、次の関係が成り立つ。
ωr×Rr-ωf×Rf=0
ここで、ωr×Rrが後輪速度であり、ωf×Rfが前輪速度である。
バンク時には次の関係が成り立つ。
ωr×Rr-ωf×Rf>0
そして、この差はバンク角が大きくなるに従って増大する。すなわち、タイヤ2f,2rの半径Rf,Rrが同じ場合と相違する場合のいずれにおいても、車両のバンクを検知できる。
 なお、自動二輪車は、低速時においては、主にステアリング6の回転を利かせて旋回する。図6はバンクとステアリング6の回転の利用の程度を説明する為の図である。同図に示す線A6は車速に対するバンク角の変化を示している。また、線6Bは車速に対する操舵角の変化を示している。同図に示すように、自動二輪車は、低速時には(図6においては車速V1以下では)、バンクすることなく、ステアリング6の回転によって旋回する。車速がV1を越えると、ステアリング6の操舵角は徐々に小さくなる一方で、バンク角は徐々に大きくなる。そして、高速時においては、自動二輪車は主にバンクによって旋回する。
 ステアリング6が回転している場合、後輪2Rは前輪2Fの軌道よりも内側を通る。そのため、その場合には後輪2Rの回転速度は前輪2Fの回転速度よりも低くなる。
 図7は後輪2Rの回転速度ωrと前輪2Fの回転速度ωfとの差(ωr-ωf)と、車速との関係を示すグラフである。同図において、線A7はバンクに起因する回転速度の差と、車速との関係を示す線である。また、線B7はステアリング6の回転に起因する回転速度の差と、車速との関係を示す図である。線C7は線A7の値と線B7の値との和を示す線である。
 上述したように、自動二輪車は低速時には(ここでの説明では車速V1以下では)主にステアリング6の回転によって旋回する。そのため、低速時には、前輪2Fの回転速度が後輪2Rの回転速度に比較して高くなる傾向にある。その結果、タイヤ2fの半径とタイヤ2rの半径とが等しい場合には、線B7に示すように、ステアリング6の操舵角に起因する回転速度の差(ωr-ωf)は負の値となる。一方、バンクに起因する回転速度の差は、低速時には、0となる(線A7参照)。車速がV1を越えると、ステアリング6の操舵角は図6で示したように徐々に小さくなるため、ステアリング6の操舵角に起因する回転速度の差は線B7で示すように徐々に0に近づく。一方、車速がV1を越えるとバンク角は徐々に大きくなるので、線A7で示すように、バンクに起因する回転速度の差は徐々に大きくなる。
 前輪センサ9aの出力信号と後輪センサ9bの出力信号とから算出される回転速度は、ステアリング6の回転による影響とバンクによる影響とを合算した値となる。そのため、制御装置10において算出される回転速度の差は、線A7と線B7との和である線7Cで示される値となる。そのため、制御装置10の旋回の判定に用いる、上述した旋回判定閾値を例えば0と設定した場合には、車速がV2より高い運転領域で旋回が検出できる。すなわち、本実施形態によれば、高速時において旋回が適切に検出できる。
 以下、制御装置10が実行する処理について具体的に説明する。図8は制御装置10の機能を示すブロック図である。同図に示すように、制御装置10は、変速制御部10aと、旋回判定部10bと、変速抑制処理部10cと、を備えている。これらは、制御装置10のメモリに格納されたプログラムをCPUが実行することで実現される。また、制御装置10は記憶部19を備えている。記憶部19は制御装置10が備えるメモリによって実現される。
 変速制御部10aは変速機13の変速比を変える制御(以下、変速制御)を実行する。この例では、変速制御部10aはアクチュエータ駆動部10eと、タイミング判定部10fとを含んでいる。アクチュエータ駆動部10eは、予め定められた手順でクラッチアクチュエータ14aと、シフトアクチュエータ13aとを動作させて変速段をシフトアップ又はシフトダウンする。具体的には、アクチュエータ駆動部10eは、クラッチアクチュエータ14aによってクラッチ14の係合を解除した後に、動力を伝達するギア対を変速指令に応じた変速段のギア対に切り換え、その後、クラッチ14を再び係合させる(変速制御)。
 タイミング判定部10fは変速制御を開始するべきタイミングを検出する。アクチュエータ駆動部10eは変速タイミングが到来したと判断された時に上述の変速制御を開始する。タイミング判定部10fの処理は例えば次のようになされる。
 タイミング判定部10fは、記憶部19に予め格納されたマップ(以下、変速マップ)に基づいて変速タイミングの到来を検出する(自動変速モード)。図9は変速マップの例を示す図である。変速マップにおいては、各運転状態(図9の例においては車速とアクセル操作量とで規定される運転状態)が、いずれかの変速段に対応付けられている。タイミング判定部10fは、車両の走行中に、現在の運転状態を監視している。そして、現在の運転状態に対応する変速段が切り替わった時に、タイミング判定部10fは変速タイミングが到来したと判断する。図9を参照すると、変速マップには変速段が切り替わる変速線L1乃至L4が規定されている。タイミング判定部10fは現在の運転状態が変速線L1乃至L4を越えた時に変速タイミングが到来したと判断する。
 また、タイミング判定部10fは、例えば、搭乗者からの変速指令(具体的には、シフトスイッチ9gの操作)によって変速タイミングを判断してもよい(手動変速モード)。すなわち、タイミング判定部10fはシフトスイッチ9gがオンされた時に、変速タイミングが到来したと判断してもよい。
 なお、手動変速モードと自動変速モードのうちいずれか一方のみが設けられてもよい。また、自動変速モードと手動変速モードは、搭乗者のスイッチ操作によって選択可能とされてもよい。
 旋回判定部10bは前輪2Fの回転速度と後輪2Rの回転速度とに基づいて車両が旋回しているか否かを判定する。本実施形態では、前輪2Fの回転速度と後輪2Rの回転速度とに基づいて得られる値であって、車両のバンク角に応じた値が、上述の旋回判定閾値よりも高い場合に、車両が旋回していると判断される。より具体的には、前輪2Fの回転速度に対する後輪2Rの回転速度の相対的な大きさを示す値(以下において速度相対値とする)が、旋回判定閾値より高い場合に、車両が旋回していると判断される。なお、旋回判定部10bは、上記速度相対値についての条件だけでなく、さらに他の条件(例えば、車速や操舵角についての条件)が満たされたときに、車両が旋回していると判断してもよい。
 変速抑制処理部10cは、車両が旋回していると判断された場合に、変速制御部10aによる変速制御の実行を抑制するための処理(以下、変速抑制処理)を実行する。
 図10は旋回判定部10bと変速抑制処理部10cとが実行する処理の例を示すフローチャートである。なお、図10に示す処理は車両の走行中に繰り返し実行される。
 まず、制御装置10が、前輪センサ9aの出力信号と後輪センサ9bの出力信号とに基づいて、前輪2Fの回転速度と後輪2Rの回転速度とをそれぞれ算出する(S101)。
 次に、旋回判定部10bは、前輪2Fの回転速度に対する後輪2Rの回転速度の相対的な大きさを示す値(すなわち上述した速度相対値)を算出する(S102)。この例では、旋回判定部10bは、前タイヤ2fの半径と後タイヤ2rの半径との相違を加味して、速度相対値を算出する。具体的には、旋回判定部10bは、後輪2Rの回転速度と前輪2Fの回転速度のいずれか一方または双方にタイヤ2f,2rの半径の相違に応じた係数kを乗じた上で、後輪2Rの回転速度から前輪2Fの回転速度を差し引く。そして、旋回判定部10bはその結果(図10の例ではωr-k×ωf、ωr=後輪2Rの回転速度、ωf=前輪2Fの回転速度)を速度相対値とする。
 係数kは前タイヤ2fの半径と後タイヤ2rの半径との差を補償するための係数である。後輪2Rの回転速度と前輪2Fの回転速度のいずれか一方または双方に係数kを乗じることで、自動二輪車1が直進している場合に回転速度の差(例えば、上述したωr-k×ωf)は0となる。例えば、タイヤ2fの半径をRfとし、タイヤ2rの半径をRrとした場合には、
k=Rf/Rrとなる。
 このような係数kを用いて算出された速度相対値は、前輪速度(Vf=ωf×Rf)に対する後輪速度(Vr=ωr×Rr)の相対的な大きさを表す値となっている。換言すると、速度相対値は後輪速度から前輪速度を差し引いた結果(Vr-Vf)、又は後輪速度を前輪速度で割った結果(Vr/Vf)に対応した値となっている。
 なお、係数kとして半径Rf,Rr自体が用いられてもよい。すなわち、速度相対値は次の式によって算出されてもよい。
速度相対値=ωr×Rr-ωf×Rf
 また、速度相対値は、後輪2Rの回転速度から前輪2Fの回転速度を差し引いた値に限られない。例えば、速度相対値は、前輪2Fの回転速度に対する後輪2Rの回転速度の比(例えば、ωr/(k×ωf))でもよい。このように速度相対値として比を用いた場合には、速度相対値は車両が直進している場合に1となる。
 旋回判定部10bは、S102において速度相対値を算出した後、速度相対値が旋回判定閾値Th1より高いか否かを判定する(S103)。ここで説明する例では、係数kが用いられている。そのため、S103の処理では、換言すれば、タイヤ2f,2rの半径の相違を加味してもなお、後輪2Rの回転速度が前輪2Fの回転速度よりも旋回判定閾値以上に高いか否かを判定している。換言すると、旋回判定部10bは、後輪速度に対応する値が前輪速度に対応する値よりも所定値以上高いか否かを判定している。
 旋回判定部10bは、速度相対値が旋回判定閾値Th1よりも高い場合に、車両が旋回していると判断する。例えば、旋回判定閾値Th1は、車両の直進時に算出される速度相対値よりも高い値に設定される。速度相対値が上述したωr-k×ωfである場合には、例えば0よりも高い値が旋回判定閾値として設定される。また、速度相対値がωr/(k×ωf)である場合には、例えば1よりも高い値が旋回判定閾値として設定される。
 なお、S103の判定に先立って、必ずしもS102において速度相対値が算出されなくてもよい。例えば、旋回判定部10bは、S102において前輪2Fの回転速度(具体的にはωf×k)に旋回判定閾値Th1を加算し、S103において、その加算の結果(ωf×k+Th1)よりも後輪2Rの回転速度が高いか否かを判定してもよい。つまり、本発明においては、結果的に速度相対値が旋回判定閾値Th1よりも高いか否かが判定されれば足り、旋回判定部10bの処理において必ずしも速度相対値は算出されなくてもよい。
 旋回判定部10bの処理において車両が旋回していると判断された場合、変速抑制処理部10cは変速抑制処理を行う(S104)。
 例えば、変速制御が許容されているか禁止されているかを示すフラグ(以下、変速禁止フラグ)を記憶部19に予め格納しておく。そして、変速抑制処理部10cは、変速抑制処理として、変速禁止フラグをオン状態(変速の禁止を示す状態)に変える。
 これに対して変速制御部10aでは次のような処理がなされる。すなわち、変速制御部10aは、搭乗者から変速指令を受けたとき(シフトスイッチ9gがオンされた時)、或いは変速マップを参照して得られる変速段が切り替わった時に、まず変速禁止フラグの状態を確認する。そして、変速制御部10aは、変速禁止フラグがオン状態にあれば、変速指令等に対応した変速制御を開始しない。
 また、変速抑制処理部10cは、変速抑制処理として、図9に示す変速マップを、変速制御を抑制するように変更してもよい。換言すると、変速抑制処理部10cは、変速タイミングの到来が遅れるように変速マップを変更してもよい。例えば、図11に示すように、変速抑制処理部10cは変速制御を抑制するように変速線をシフトする。すなわち、シフトアップ用の変速マップにおいては、通常よりも高速においてシフトアップがなされるように変速線を高速側にシフトする。また、シフトダウン用の変速マップにおいては、通常よりも低速においてシフトダウンがなされるように変速線を低速側にシフトする。
 なお、変速制御として、上述した自動変速モードと手動変速モードの2種類が設けられている場合には、いずれか一方のモードが選択されている場合にのみ、変速抑制処理が実行されてもよい。例えば、自動変速モードが選択されている場合にのみ、変速抑制処理が実行されてもよい。こうすれば、車両の旋回中においても搭乗者の変速指令に応じた変速制御は許容されることとなる。
 S102の判定において、車両が旋回していないと判断された場合には、すなわち、速度相対値が旋回判定閾値Th1より高くない場合には、変速抑制処理部10cは、例えば、次の処理を行う。すなわち、図10に示すように、変速抑制処理部10cは、前回の処理(具体的には前回のS102の判定)において車両が旋回していると判断されたか否かを判定する(S105)。この判定は、例えば、S102において車両が旋回中であると判断された場合に、車両が旋回中であることを示すフラグを設けることによって可能となる。すなわち、S104では、そのフラグのオン/オフ状態を確認する。このフラグは例えば上述の禁止フラグであってもよい。
 前回の処理において車両が旋回していると判断されていた場合には、それまでの処理の結果、上述した変速禁止フラグがオン状態に設定されていたり、或いは、変速マップが変更されている。そのため、今回のS102の処理で車両が旋回中でないと判断され、且つ、前回のS102の処理において車両が旋回中であると判断されていた場合には(S105でyesの場合)、変速抑制処理部10cは変速の抑制を解除する処理(以下、抑制解除処理)を実行する(S106)。すなわち、変速抑制処理部10cは、例えば、変速禁止フラグをオフ状態にする。また、変速マップが変更されている場合には、変速抑制処理部10cは変速マップを元の状態に戻す。すなわち、変速抑制処理部10cは図11で示した変速線を元の位置に戻す。
 また、S105の処理において、前回の処理においても車両が旋回中でないと判断されていた場合には、制御装置10は今回の処理を終了し、再びS101の処理を開始する。
 なお、旋回判定部10bはS102の判定に加えて、さらに他の条件(以下、付加条件)が満たされているか否かを判定してもよい。そして、旋回判定部10bは、速度相対値についての上述した条件が満たされ、且つ、付加条件が満たされる場合に、車両が旋回していると判断してもよい。
 図12は旋回判定部10bの処理の他の例を示すフローチャートである。このフローチャートにおいては図10のフローチャートと同じ処理には同じ符合を付している。図12のフローチャートの例では、旋回判定部10bは、S102の判定の後に、車両の運転状態が付加条件を満たすか否かを判定している(S107)。ここで付加条件は、例えば、車速や、エンジントルク、ブレーキ操作、又はステアリング6の操舵角についての条件である。
 例えば、旋回判定部10bは、S107において、車速が予め定めた閾値より高いか否かを判定する。そして、旋回判定部10bは、車速がその閾値よりも高い場合に、車両が旋回していると判断する。こうすれば高速走行における旋回がより正確に検出できる。なお、旋回中には上述したようにタイヤ2r,2fの接地点がずれるため正確な車速の検知は難しい。車速には例えば前輪速度(ωf×Rf)が用いられる。また、車速には前輪速度と後輪速度(ωr×Rr)との平均値が用いられてもよい。
 また、旋回判定部10bは、エンジントルク又はエンジントルクに基づいて算出されるエンジン出力が、予め定めた閾値より低いか否かを判定してもよい。そして、旋回判定部10bは、エンジントルク又はエンジン出力がその閾値よりも低い場合に、車両が旋回していると判断してもよい。エンジントルクが高い場合には、後輪2Rのタイヤ2rが僅かに変形することに起因して、速度相対値が高くなる場合がある。このようなエンジントルクを利用した判定によれば、加速時にタイヤ2rの変形によって生じる速度相対値の、旋回判定に対する影響を低減できる。なお、エンジントルクは記憶部19に予め格納されたマップを参照することで得られる。このマップでは、例えばエンジン回転速度とスロットル開度とエンジントルクとが対応付けられており、旋回判定部10bはこのマップを参照し、エンジン回転速度センサ9eとスロットル開度センサ9fによる検出値に対応するエンジントルクを算出する。また、エンジン出力は、このようにして算出されるエンジントルクと、エンジン回転速度との積として算出され得る。
 さらに、旋回判定部10bは、S107において、ブレーキセンサ9dの出力信号に基づいて、ブレーキ操作がなされているか否かを判定してもよい。そして、旋回判定部10bは、ブレーキ操作がなされていない場合に、車両が旋回していると判断してもよい。前輪2Fにブレーキが掛けられている場合には、それによって後輪2Rの回転速度が前輪2Fの回転速度に比して高くなる場合がある。そのため、このようにブレーキ操作がなされていないことを付加条件とすることによって、さらに旋回の検出が正確になる。なお、ブレーキ操作がなされているか否かの判定は、前輪2Fについてだけ行われればよい。
 さらに、旋回判定部10bは、S107において、操舵角センサ9cによって検出されるステアリング6の操舵角が予め定める閾値より高いか否かを判定してもよい。そして、旋回判定部10bは、その操舵角が閾値より高い場合に、車両が旋回していると判断してもよい。
 なお、ここで説明した複数の付加条件のうち2つ又は3つが組み合わされてもよい。例えば、上述した車速についての付加条件とブレーキ操作についての付加条件の双方が満たされた場合に、車両が旋回していると判断されてもよい。
 以上説明したように、制御装置10の旋回判定部10bは、前輪2Fの回転速度と後輪2Rの回転速度とに基づいて得られる車両のバンク角に応じた値(すなわち速度相対値)が、旋回判定閾値よりも高いことを条件として、車両が旋回していると判断している。特に本実施形態では、速度相対値は、前輪2Fの回転速度を基準とする後輪2R(曲率半径が相対的に大きいタイヤ2rが取り付けられた車輪)の回転速度の相対的な大きさを示す値である。そのため、特に高速時において旋回を適切に検出できる。
 自動二輪車1では、車両が旋回していると判断された場合に、変速抑制処理部10cは変速制御部10aのよる変速制御を抑制する処理(すなわち上述した変速抑制処理)を行っている。これにより、旋回中においては変速段を維持できる。特に、自動変速モードの場合にのみ変速抑制処理が行われることによって、旋回中に搭乗者が意図しない変速がなされることを抑えることができる。
 また、図12の処理の例では、旋回判定部10bは、さらに車速、エンジントルク、ブレーキ操作、又はステアリングの操舵角に基づいて、車両が旋回しているか否かを判定している。これにより、旋回の検出がさらに正確になる。
 なお、本発明は以上説明した制御装置10に限られず、種々の変更が可能である。以下、変更例について説明する。
[終了判定と開始判定とが異なる例]
 以上説明した旋回判定部10bの処理においては、旋回の開始判定と旋回の終了判定とに同じ条件が利用されていた。しかしながら、旋回判定部10bは、旋回の開始判定と旋回の終了判定とに異なる条件を利用してもよい。そして、旋回の終了判定で用いられる条件は、旋回の開始判定で用いられる条件が満たされなくなった時点から遅れて充足されるように規定されてもよい。すなわち、開始判定の条件と終了判定の条件とにヒステリシスが設けられてもよい。
 図13はこのような形態の旋回判定部10bが実行する処理の例を示すフローチャートである。この処理は車両の走行中に繰り返し実行される。なお、このフローチャートにおいて、以上説明した処理と同一の処理には、同じ符合を付している。
 まず、制御装置10が前輪2Fの回転速度と後輪2Rの回転速度とを算出し(S101)、旋回判定部10bが、それらの回転速度に基づいて速度相対値を算出する(S102)。次に、旋回判定部10bは、既に車両が旋回中にあるか否かを判定する(S108)。具体的には、旋回判定部10bは、上述のS105と同様に、例えば、車両が旋回中していると判断された場合に、車両が旋回中であることを示すフラグを記憶部19に格納することによって、可能となる。すなわち、S108では、旋回判定部10bはそのフラグのオン/オフ状態を確認する。ここで、車両が旋回中にないと判断された場合には、旋回判定部10bは車両の旋回が開始しているか否かを判定する。すなわち、旋回判定部10bは速度相対値が旋回判定閾値よりも高いか否かを判定する(S103、開始判定)。ここでの開始判定には、例えば、図12で示したS108が加えられてもよい。S103以降の処理は図10のフローチャートと同様である。
 一方、車両が既に旋回中にあると判断された場合には、旋回判定部10bは車両の旋回が終了したか否かを判定する(終了判定)。具体的には、旋回判定部10bは、速度相対値(例えば、ωr-k×ωfや、ωr/(k×ωf))が所定の閾値(以下、旋回終了判定閾値Th2)より低いか否かを判定する(S109)。ここで、旋回終了判定閾値Th2は先に示した旋回判定閾値Th1よりも低い値である。このような判定処理によれば、開始判定の条件(速度相対値>旋回判定閾値Th1)が満たされなくなった時点から遅れて、旋回が終了したと判断される。
 旋回が終了したと判断された場合、変速抑制処理部10cが変速の抑制を解除する、上述した抑制解除処理を実行する(S106)。一方、速度相対値が旋回終了判定閾値Th2より高い場合には、旋回は未だ終了していないと判断される。その場合、制御装置10は今回の処理を終了し、再びS101の処理から開始する。
 なお、S109において、さらに速度相対値が旋回終了判定閾値Th2より低い状態が所定時間より長く継続しているか否かを、旋回判定部10bは判定してもよい。そして、旋回判定部10bは、その状態が所定時間より長く継続した場合に、旋回が終了したと判断してもよい。このような方法によっても、旋回が終了したと判断される時点を遅らせることができる。その結果、車両が旋回から直進に復帰するときに、シフトアップ変速がなされることを抑えることができ、加速性を向上できる。また、上記所定時間を長くすることでカーブ路を脱した後においても車両が旋回中であるとの判断を続けることができる。その結果、カーブ路とカーブ路との間に短い直線路がある場合であっても、途切れることなく変速制御を抑制できる。
[バンク角を推定する例]
 上述の旋回判定部10bは、後輪2Rの回転速度の相対的な大きさを示す値(すなわち速度相対値)が旋回判定閾値より高いか否かを判定していた。しかしながら、旋回判定部10bは、操舵角センサ9cによって検知される操舵角と、前輪2Fの回転速度と、後輪2Rの回転速度とに基づいて車両のバンク角を推定してもよい。そして、その推定されたバンク角が閾値よりも大きいことを条件として、旋回判定部10bは車両が旋回していると判断してもよい。
 図14はこのような形態の旋回判定部10bが実行する処理の例を示すフローチャートである。同図においても、これまで説明した処理と同一の処理には同一の符合を付している。なお、同図の処理も車両の走行中に繰り返し実行される。
 まず、制御装置10が、前輪2Fの回転速度と後輪2Rの回転速度とを算出する(S101)。また、制御装置10は、操舵角センサ9cの出力信号に基づいてステアリング6の操舵角を検知する(S110)。
 次に、旋回判定部10bは、操舵角と前輪2Fの回転速度と後輪2Rの回転速度とに基づいて車両のバンク角を算出する(S111)。この処理は、例えば次のように実行される。
 図7を参照して説明したように、センサ9a,9bを用いて算出される前輪2Fの回転速度と後輪2Rの回転速度との速度相対値(ここではΔSttlとする、例えば上述したωr-k×ωfや、ωr/(k×ωf))は、ステアリング6の回転に起因する成分(以下、ステアリング成分ΔSs)と、バンクに起因する成分(以下、バンク成分)ΔSbとの合算である。
 S111においては、旋回判定部10bは操舵角に基づいてステアリング成分ΔSsを算出する。例えば、ステアリング成分と操舵角とを対応付けるマップを記憶部19に格納しておいて、旋回判定部10bはこのマップを参照し、操舵角センサ9cで検知した操舵角に対応するステアリング成分ΔSsを算出する。また、旋回判定部10bは、S101で算出した前輪2Fの回転速度と後輪2Rの回転速度とに基づいて、速度相対値ΔSttlを算出する。そして、旋回判定部10bは、速度相対値ΔSttlとステアリング成分ΔSsとに基づいて、バンク成分ΔSbを算出する(ΔSb=ΔSttl-ΔSs)。旋回判定部10bは、このバンク成分ΔSbに基づいてバンク角を算出する。例えば、バンク成分ΔSbとバンク角とを対応付けるマップを記憶部19に格納しておいて、旋回判定部10bはこのマップを参照し、算出したバンク成分ΔSbに対応するバンク角を算出する。
 このようにバンク角を算出した後、旋回判定部10bは、そのバンク角が閾値より大きいか否かを判定する(S112)。
 ここでバンク角が閾値よりも大きい場合には、車両が旋回していると判断できる。この場合には、図10の処理と同様に、変速抑制処理部10cが変速抑制処理を実行する(S104)。また、バンク角が閾値よりも小さい場合には、S105、S106の処理を実行する。
[ブレーキ操作に起因する変速抑制処理を伴う例]
 以上説明した変速抑制処理部10cは、車両が旋回していると判断された時に、変速抑制処理を実行していた。変速抑制処理部10cは、さらに搭乗者のブレーキ操作に応じて、変速抑制処理を実行してもよい。この形態では、例えば次の処理が実行される。
 記憶部19にはブレーキが操作されていることを示すフラグ(以下、ブレーキフラグ)と、車両が旋回していることを示すフラグ(以下、旋回フラグ)とが格納されている。変速抑制処理部10cは、いずれか一方のフラグがオン状態となれば(すなわち、ブレーキ操作又は車両の旋回のうちいずれかがなされていれば)、変速抑制処理を行う。反対に、変速抑制処理部10cは、ブレーキフラグと旋回フラグの双方がオフ状態となったときに、抑制解除処理を実行する。
 また、このブレーキフラグは、ブレーキ操作が検知されなくなった時点から所定時間(以下、ブレーキ終了遅延時間)が経過した時に、オフ状態に戻されてもよい。また、旋回フラグは、速度相対値が旋回判定閾値より小さい状態が所定時間(以下、旋回終了遅延時間)経過した時に、オフ状態に戻されてもよい。こうすることで、車両が旋回していると判断され、尚かつ、ブレーキ操作が検出された場合には、ブレーキ操作遅延時間と旋回終了遅延時間のうち後に終了するタイミングで、変速抑制処理部10cは抑制解除処理を実行することとなる。
 図15はこの形態の制御装置10の機能を示すブロック図である。この形態では、制御装置10はさらにブレーキ判定部10gを備えている。図16はブレーキ判定部10gの処理の例を示すフローチャートである。なお、この処理も車両の走行中に繰り返し実行される。
 ブレーキ判定部10gは、ブレーキセンサ9dの出力信号に基づいてブレーキ操作がなされているか否かを判定する(S201)。ここで、ブレーキ操作がなされている場合には、ブレーキ判定部10gはブレーキフラグが既にオン状態にあるか否か、すなわち前回の処理でブレーキ操作がなされていたか否かを判定する(S202)。ここで、ブレーキフラグが既にオン状態にある場合には、ブレーキ判定部10gはそのまま今回の処理を終了する。一方、S202の判定においてブレーキフラグがオン状態にない場合には、ブレーキ判定部10gはブレーキフラグをオン状態に切り替える(S203)。上述の変速抑制処理部10cは、ブレーキフラグのオン状態への切り換えに応じて変速抑制処理を実行する。
 S201においてブレーキ操作がなされていない場合には、ブレーキ判定部10gは、S202と同様に、ブレーキフラグがオン状態にあるか否かを判定する(S204)。ここで、ブレーキフラグがオフ状態にある場合には、ブレーキ判定部10gは、そのまま今回の処理を終了する。一方、S204の判定において、ブレーキフラグがオン状態にある場合には、直前のブレーキ操作が終了した時点からブレーキ終了遅延時間が経過したか否かを判定する(S205)。ブレーキ終了遅延時間が未だ経過していない場合には、ブレーキ判定部10gはブレーキフラグの状態を変えることなく、今回の処理を終了する。一方、既にブレーキ終了遅延時間が経過している場合には、ブレーキ判定部10gはブレーキフラグをオフ状態に切り替える(S206)。この時、旋回フラグもオフ状態に設定されていれば、変速抑制処理部10cは抑制解除処理を実行する。
 また、この形態では、旋回判定部10bの処理は、例えば次のように実行される。すなわち、旋回判定部10bは、図10に示すS103の処理の結果、車両が旋回していると判断した場合には、旋回フラグをオン状態にする。一方、旋回判定部10bは、S103の処理の結果、車両が旋回していないと判断した場合には、旋回フラグがオン状態にあるか否かを確認する。ここで旋回フラグがオン状態にある場合には、直前の旋回が終了した時点から旋回終了遅延時間が経過した時に、旋回フラグをオフ状態に切り替える。
 このような形態によれば、カーブ路が連続する場合に、カーブ路に進入する直前から全てのカーブ路を完全に脱するまで、変速制御を抑えることが可能となる。例えば、自動二輪車1が右カーブ路と左カーブ路とが連続するS字状の道を走行する場合には、変速制御の抑制機能が次のように働く。カーブ路に進入する前に、ブレーキ操作がなされ、ブレーキフラグがオン状態となり、上述の変速抑制処理が実行される。ブレーキ操作がなされた後、車両がバンクする直前にブレーキが解除された場合であっても、ブレーキ終了遅延時間が経過するまで、ブレーキフラグはオン状態にあるので、変速抑制処理は継続する。車両がカーブ路に進入し、バンクした時、旋回フラグがオン状態とされる。そのため、カーブ路を走行している最中にブレーキが解除された場合であっても、変速制御の抑制は継続する。また、上述したように、旋回終了遅延時間が経過しなければ旋回フラグはオフ状態に切り換えられない。そのため、2つのカーブ路の間に短い直線路がある場合であっても、変速制御の抑制は継続する。その後、2つ目のカーブ路を脱し、旋回終了遅延時間が経過した時に、旋回フラグがオフ状態に切り換えられる。また、カーブ路を脱する時には、通常、既にブレーキは解除されている。そのため、旋回終了遅延時間が経過した時に、旋回フラグとブレーキフラグの双方がオフ状態となり、抑制解除処理が実行され、変速制御部10aによる変速が許容される。
[加速状態に応じて閾値を変更する例]
 車両の走行時には、後輪2Rの回転速度と前輪2Fの回転速度とに、車両の加速に起因する差が生じる。例えば加速時には、後タイヤ2rが地面に対して滑っていない場合であっても、地面との摩擦に起因して後タイヤ2rが僅かに変形する。その結果、後輪2Rの回転速度が前輪2Fの回転速度に比べて上昇する。図17は、ある車速で直進する場合における速度相対値(ωr-k×ωf)と、車両の加速度との関係を概略的に示すグラフである。横軸が速度相対値であり、縦軸が加速度である。同図に示すように、速度相対値は概ね加速度に比例した値となる。また、加速度が正の値の場合には速度相対値は正の値となる。すなわち、加速度が正の値の場合には、後輪2Rの回転速度が前輪2Fの回転速度よりも高くなる。一方、加速度が負の場合(すなわち減速時)には、速度相対値も負の値となる。すなわち、後輪2Rの回転速度が前輪2Fの回転速度よりも低くなる。なお、後輪2Rがスリップした場合には、さらに速度相対値が高くなる。この場合には速度相対値の上昇に伴って加速度は徐々に小さくなる。
 このように、速度相対値は車両の加速の影響を受ける。すなわち、速度相対値は、車両のバンクに起因する成分だけでなく、車両の加速に起因する成分(以下、加速成分)をも含む。そこで、制御装置10は、旋回判定に際して加速成分の影響を低減するために、車両の加速状態に応じて旋回判定閾値を変えてもよい。こうすることで、さらに正確に車両の旋回を検出できる。
 図18はこのような形態における旋回判定部10bの処理の例を示すフローチャートである。なお、この図においても、これまで説明した処理と同一の処理には同一の符合を付している。
 ここでは、第1の旋回判定閾値と、第1の旋回判定閾値よりも低い第2の旋回判定閾値とを車両の加速状態に応じて選択的に旋回判定閾値として使用する処理を例にして説明する。
 旋回判定部10bは、まず、これまでと同様に、前輪2Fの回転速度と、後輪2Rの回転速度とを算出し(S101)、それらの値に基づいて、速度相対値(図18においてはωr-k×ωf)を算出する(S102)。
 次に、旋回判定部10bは、車両が加速している最中か否かを判定する(S113)。具体的には、旋回判定部10bは、加速度に対応する値が閾値よりも高いか否かを判定する。例えば、車両に加速度センサを搭載している場合には、旋回判定部10bは加速度センサの出力信号に基づいて車両が加速しているか否かを判定する。また、旋回判定部10bは、前輪2Fの回転速度の微分値(車速の微分値)に基づいて、車両が加速しているか否かを判定してもよい。さらに、旋回判定部10bは、エンジントルクや、アクセル開度に基づいて車両が加速しているか否かを判定してもよい。
 車両が加速の最中である場合には、旋回判定部10bは速度相対値が第1の旋回判定閾値よりも高いか否かを判定する(S114)。速度相対値が第1の旋回判定閾値よりも高い場合には、車両が旋回していると判断され、変速抑制処理部10cが変速抑制処理を実行する(S104)。
 一方、S114の判定において車両が加速していない場合、すなわち車両が減速していたり、定常走行にある場合には、旋回判定部10bは速度相対値が第2の旋回判定閾値よりも高いか否かを判定する(S115)。ここで、速度相対値が第2の旋回判定閾値よりも高い場合には、車両が旋回していると判断され、変速抑制処理部10cが変速抑制処理を実行する(S104)。
 このように、車両が加速している場合には、第2の旋回判定閾値よりも高い第1の旋回判定閾値が使用されるので、旋回判定に際して、速度相対値の加速成分の影響を低減できる。
 また、旋回判定部10bは、車両の加速度に応じた値に基づいて、旋回判定閾値を算出してもよい。そして、旋回判定部10bは、算出した旋回判定閾値を使用して旋回判定を行ってもよい。換言すれば、旋回判定部10bは、車両の加速度に基づいて補正された旋回判定閾値を使用して旋回判定を行ってもよい。
 図19はこのような形態における旋回判定部10bの処理の例を示すフローチャートである。なお、この図においても、これまで説明した処理と同一の処理には同一の符合を付している。
 旋回判定部10bは車両の加速度に応じた値(以下、加速対応値)を算出する(S116)。ここで加速対応値は加速度自体でもよいし、エンジン出力や、後輪2Rの駆動力でもよい。次に、旋回判定部10bは加速対応値に基づいて旋回判定閾値を算出する(S117)。例えば、加速対応値と補正値とを対応付けるマップや関係式を、記憶部19に予め格納しておく。ここで補正値は、例えば、加速対応値で示される加速度で加速した場合の速度相対値(上述した車両成分)である。そして、旋回判定部10bは、この補正値と、旋回判定閾値の初期値とに基づいて、判定処理で使用する旋回判定閾値(例えば、補正値+初期値)を算出する。
 その後、旋回判定部10bは、S102で算出された速度相対値がS117で算出された旋回判定閾値よりも高いか否かを判定する(S103)。ここで、速度相対値が旋回判定閾値よりも高い場合には、車両が旋回していると判断され、これまで説明した処理と同様に、変速抑制処理部10cが変速抑制処理を実行する(S104)。一方、S103の判定において、速度相対値が旋回判定閾値よりも高くない場合には、これまでと同様に、S105、S106の処理を行った上で、今回の処理を終了する。
[トラクション制御を行う車両への適用]
 本発明はトラクション制御を実行する自動二輪車に適用されてもよい。図20はこの形態における制御装置10の機能を示すブロック図である。
 同図に示すように、この形態の制御装置10はトラクション制御部10hを有している。トラクション制御部10hは前輪2Fの回転速度と後輪2Rの回転速度とに基づいて後輪2Rがスリップしているか否かを判定する。例えば、トラクション制御部10hは速度相対値が閾値(以下において、スリップ判定閾値)よりも大きいか否かを判定する。そして、後輪2Rがスリップしている場合(例えば、速度相対値がスリップ判定閾値よりも高い場合)に、トラクション制御部10hはトラクション制御(すなわち、エンジントルクを低減する制御)を実行する。
 この形態では、スリップが生じている場合においても変速抑制処理部10cの処理によって変速が抑制されるように、スリップ判定閾値と旋回判定閾値とが規定されている。すなわち、後輪2Rのスリップが検出されるよりも前に旋回判定部10bによって車両が旋回していると判断されるように、スリップ判定閾値と旋回判定閾値とが設定されている。例えば、スリップ判定において速度相対値を使用する場合には、旋回判定閾値にはスリップ判定閾値よりも低い値が設定される。こうすることにより、トラクション制御が開始する前に、変速制御が実行されることを抑えることができる。その結果、トラクション制御によってエンジントルクを低減している最中に、変速に起因する駆動力変化が生じず、安定的にトラクション制御を行うことができる。
 図21はトラクション制御部10hが実行する処理の例を示すフローチャートである。この処理は車両の走行中に繰り返し実行される。
 まず、制御装置10によって前輪2Fの回転速度と後輪2Rの回転速度とが算出される(S301)。次に、トラクション制御部10hは算出された回転速度に基づいて速度相対値を算出する(S302)。そして、トラクション制御部10hは、この速度相対値に基づいてスリップが生じているか否かを判定する。具体的には、トラクション制御部10hは、速度相対値の絶対値がスリップ判定閾値よりも大きいか否かを判定する(S303)。ここで、速度相対値の絶対値がスリップ判定閾値よりも大きい場合には、トラクション制御部10hはトラクション制御を開始する。具体的には、トラクション制御部10hエンジントルクを低減する制御を行う(S304)。例えば、トラクション制御部10hは、例えば、エンジン12に設けられた燃料噴射装置の燃料噴射量の低減や、点火タイミングの遅角、スロットルバルブの開度の低減などを行う。
 上述したように、この形態では旋回判定閾値はスリップ判定閾値よりも低い値に設定されている。そのため、S303において、速度相対値がスリップ判定閾値よりも高いと判断された時には、旋回判定部10bの処理において既に車両が旋回していると判断されており、変速抑制処理(変速禁止フラグのオン状態へ切り替え、又は変速マップの変更)がなされている。
 S304の処理の後、トラクション制御部10hは後輪2Rのスリップが低減/解消されたか否かを判定する。具体的には、トラクション制御部10hは、速度相対値の絶対値が閾値(以下、スリップ終了閾値)より小さいか否かを判定する(S305)。なお、このスリップ終了閾値にはスリップ判定閾値よりも小さな値が設定される。ここで、速度相対値がスリップ終了閾値より小さい場合には、トラクション制御部10hはトラクション制御を終了する。すなわち、トラクション制御部10hはエンジントルクについて通常の制御を実行し、エンジントルクを復帰させる(S306)。なお、S303において速度相対値の絶対値がスリップ判定閾値より大きくない場合には、S305の判定を行って、今回の処理を終了する。また、S305において速度相対値の絶対値がスリップ終了閾値よりも小さくない場合には、エンジントルクについて通常の制御に戻ることなく、今回の処理を終了する。
[係数の更新処理]
 制御装置10は旋回判定部10bの処理で用いられる係数kを更新/修正する機能を有してもよい。係数kは、上述したように、前タイヤ2fの半径と後タイヤ2rの半径との差を補償するための係数である。しかしながら、前タイヤ2fの実際の半径と後タイヤ2rの実際の半径は、タイヤ2f,2rの摩耗によって変わる場合がある。その場合、車両が直進している場合であっても、速度相対値が直進を示す値を示さなくなる。例えば、速度相対値がωr-k×ωfである場合やωr/(k×ωf)である場合には、それらの値が直進時においても0又は1にならない。そこで、制御装置10は、そのような不具合を解消する機能を有してもよい。
 図22はこのような形態の制御装置10の機能を示すブロック図である。同図に示すように、この形態では制御装置10はさらに係数更新処理部10iを備えている。図23は係数更新処理部10iの処理の例を示すフローチャートである。
 図23に示すように、係数更新処理部10iは、まず、係数kの更新の要否を判定する。この例では、係数更新処理部10iは2段階で更新の要否を判定する。まず、係数更新処理部10iは、現在の係数kが適正か否かを判定する(S401)。例えば、速度相対値が車両の直進を示す値(以下、直進表示値とする、上述の例では0又は1)に一致する時間(すなわち、現在の係数kによって直進していると判断できる時間(以下、推定直進時間))が所定時間(以下、判定時間)より長く継続するか否かを、係数更新処理部10iは判定する。車両の走行時においては、通常、旋回している時間に比べると、直進している時間が長く続く。そこで、推定直進時間が判定時間より長く継続する場合には、係数更新処理部10iは、現在の係数kは適切であると判断して、今回の処理を終了する。
 一方、推定直進時間が判定時間より長く続かない場合には、現在の係数kが適切でない、すなわち現在の係数kがタイヤ2f,2rの半径の差を補償する適切な値からずれていると判断できる。この場合、係数更新処理部10iは係数kを更新すべきか否かを判定する(S402)。すなわち、係数更新処理部10iは係数kのずれがタイヤ2f,2rの摩耗等に起因するものかどうかを判定する。例えば、S402において、係数更新処理部10iは、現在の係数kを用いて算出される速度相対値が一定値を維持する時間と、当該一定値の大きさとに基づいて、係数kを更新するか否かを判定する。より具体的には、係数更新処理部10iは、現在の係数kを用いて算出される速度相対値が一定値を維持する時間が所定時間より長く続くか否かを判定する。また、係数更新処理部10iは、S402において、その一定値が直進表示値に近い値であるか否か、すなわち、予め定めた範囲内の値であるか否かを判定する。
 S402の判定において、現在の係数kのずれが、摩耗等に起因する更新処理の対象とするものであると判断した場合には、係数更新処理部10iは適切と推定される係数kを算出する。具体的には、係数更新処理部10iは、直進走行時に速度相対値を直進表示値に一致させる係数(以下、次係数k1)を算出する(S403)。係数更新処理部10iは、前輪2Fの回転速度と後輪2Rの回転速度とに基づいて、この次係数k1を算出する。例えば、係数更新処理部10iは、現在の係数kを用いた速度相対値の変化に基づいて車両の直進走行時を検出する。例えば、速度相対値が一定値を維持する時間が所定時間より長く続いている場合に、車両が直進している最中であると判断する。そして、係数更新処理部10iは、その直進走行時に算出された前輪2Fの回転速度と後輪2Rの回転速度とに基づいて次係数k1(例えばk1=ωr/ωf)を算出する。
 次係数k1を得るための処理はこれに限られない。例えば、係数更新処理部10iは、前輪2Fの回転速度と後輪2Rの回転速度と現在の係数kとに基づいて、継続的に速度相対値を算出し、それらを記憶部19に格納してもよい。そして、係数更新処理部10iは、速度相対値の度数分布を表すヒストグラムのデータを生成してもよい。そして、係数更新処理部10iは、度数が最大となる速度相対値に基づいて、次係数k1を算出してもよい。例えば、係数更新処理部10iは、度数が最大となる速度相対値の元となった回転速度ωf,ωrとに基づいて次係数k1(例えばk1=ωr/ωf)を算出してもよい。
 その後、係数更新処理部10iは、S403において算出された次係数k1が予め定めた適正範囲にあるか否かを判定する(S404)。次係数k1が適正範囲にある場合、係数更新処理部10iは現在の係数kを次係数k1に書き換えて記憶部19に格納する(S405)。その後は、上述した旋回判定部10bは、この書き換えられた係数kを用いて速度相対値を算出し、車両が旋回しているか否かを判定する。
 また、係数更新処理部10iは次の処理を行ってもよい。すなわち、係数更新処理部10iは、S401において、予め定める時間(以下、更新判定時間(例えば十秒))の間に算出される速度相対値の最小値が直進表示値に一致するか否かを判定する。例えば速度相対値がωr/(k×ωf)である場合、係数更新処理部10iは更新判定時間の間に算出される速度相対値の最小値が1であるか否かを判定する。また、速度相対値がωr-(k×ωf)である場合、係数更新処理部10iは更新判定時間の間に算出される速度相対値の最小値が0であるか否かを判定する。ここで、最小値が直進表示値に一致している場合、係数更新処理部10iはその処理を終了する。
 また、最小値が直進表示値に一致しない場合、係数kが適正値からずれている可能性がある。この場合、係数更新処理部10iは、S402において、係数kを更新するべきか否か、すなわち、摩耗等によるずれが生じているか否かを判定する。具体的には、係数更新処理部10iは最小値が直進走行時に算出されたか否かを判定する。最小値が直進走行時に算出されたものである場合、係数kが適正値からずれていると判断できる。この場合、係数更新処理部10iは、最小値のもととなった回転速度ωr,ωfを用いて次係数k1を算出し(S403)、その後の処理S404及びS405を実行する。
 S402の処理は例えば次のように実行される。係数更新処理部10iは、最小値が算出された時点での操舵角が所定値より小さいか否かを判定する。操舵角が所定値より小さい場合、係数更新処理部10iは、最小値が直進走行時に算出されたと判断する。また、係数更新処理部10iは、最小値が算出された時点での車速が所定値より大きい否かを判定してもよい。車速が所定値より大きい場合、係数更新処理部10iは、最小値が直進走行時に算出されたと判断する。車両は比較的低い速度で曲がり道を走行する。そこで、車速についての上記所定値を高く設定しておくことで、速度相対値の最小値が直進走行時に算出されたか否かを車速に基づいて判定できる。なお、係数更新処理部10iは、操舵角についての上述した判定と、車速についての上述した判定の双方を実行してもよい。係数更新処理部10iは、操舵角が所定値より小さく、且つ車速が所定値より大きい場合に、最小値が直進走行時に算出されたと判断してもよい。
 後輪2Rのブレーキ力が前輪2Fのブレーキ力よりも大きい場合、後輪2Rの回転速度が前輪2Fの回転速度よりも小さくなるために、速度相対値が直進表示値よりも小さくなる場合がある。反対に、前輪2Fのブレーキ力が後輪2Rのブレーキ力よりも大きい場合、そのブレーキ力の差が原因で速度相対値が直進表示値よりも大きくなる場合がある。そこで、係数更新処理部10iは、S402において、操舵角や車速についての判定とともに、最小値が算出された時点でブレーキ操作がなされていなかったか否かを判定してもよい。ブレーキ操作がなされていなかった場合に、係数更新処理部10iはS403~S405において係数kを更新する。
 また、車両が急加速又は急減速している場合には、後輪2R及び/又は前輪2Fのスリップが原因で速度相対値が直進表示値からずれる場合がある。そこで、係数更新処理部10iは、S402において、操舵角や車速についての判定とともに、最小値が算出された時点での加速度の絶対値が所定値よりも小さいか否かを判定してもよい。そして、加速度の絶対値が所定値よりも小さい場合に、係数更新処理部10iはS403~S405において係数kを更新してもよい。
 なお、係数更新処理部10iは、更新判定時間の間、S402の判定で利用される運転状態(操舵角や車速、ブレーキ操作の有無、加速度)を速度相対値に対応付けて記憶部19に格納する。そして、S402では最小値に対応する運転状態を記憶部19から読み出し、当該読み出した運転状態に基づいて、最小値が得られたタイミングが直進走行時であったか否かを判定する。
 また、S402の処理は次のように実行されてもよい。すなわち、係数更新処理部10iは速度相対値が上述の最小値を維持している時間(最小値維持時間)が所定時間よりも長いか否かを判定してもよい。直進走行は一般的に曲がり道の走行よりも長く続く。そこで、最小値維持時間が所定時間よりも長い場合、係数更新処理部10iは、最小値が直進走行時に算出されたものと判断し、S403~S405において係数kを更新してもよい。
 係数更新処理部10iの処理は以上説明したものに限られない。例えば、係数更新処理部10iは、まず車両が直進走行しているか否かを判定する。この処理は、上述した操舵角や車速を用いて行うことができる。この時、上述と同様に、ブレーキ操作の有無や、加速度が所定値より小さいか否かが判定されてもよい。車両が直進走行をしており、ブレーキ操作がなされておらず、且つ、加速度の絶対値が所定値よりも小さい場合に、係数更新処理部10iは、当該直進走行時の速度相対値を算出し、得られた値が直進表示値(例えば、0や1)に一致しているか否かを判定する。そして、その値が直進表示値に一致していない場合に、係数更新処理部10iは係数kを更新する。
 

Claims (17)

  1.  前輪と後輪のうちの一方の車輪に取り付けられたタイヤの断面の曲率半径が他方の車輪に取り付けられたタイヤの断面の曲率半径よりも大きな自動二輪車の制御装置であって、
     前記一方の車輪の回転速度を検出するセンサと、
     前記他方の車輪の回転速度を検出するセンサと、
     車両のバンク角に応じた値が閾値よりも高いことを条件として車両が旋回していると判断する旋回判定部と、を備え、
     車両のバンク角に応じた前記値は前記他方の車輪の回転速度に対する前記一方の車輪の回転速度の相対的な大きさを示す値である、
     ことを特徴とする自動二輪車の制御装置。
  2.  請求項1に記載の自動二輪車の制御装置において、
     前記旋回判定部は、さらに、車速、エンジントルク、ブレーキ操作、又はステアリングの操舵角の少なくとも1つに基づいて、車両が旋回しているか否かを判定する、
     ことを特徴とする自動二輪車の制御装置。
  3.  請求項1に記載の自動二輪車の制御装置において、
     前記旋回判定部は、車両のバンク角に応じた前記値についての前記条件である旋回判定条件とは異なる終了条件が成立した時に車両の旋回が終了したと判断し、
     前記終了条件は前記旋回判定条件が成立しなくなった時点から遅れて成立するように規定されている、
     ことを特徴とする自動二輪車の制御装置。
  4.  請求項1に記載の自動二輪車の制御装置において、
     変速機における変速比を変える制御を実行する変速制御部と、
     前記旋回判定部によって車両が旋回していると判断された場合に、前記変速制御部のよる制御の実行を抑制する変速抑制処理部と、をさらに備える、
     ことを特徴とする自動二輪車の制御装置。
  5.  請求項4に記載の自動二輪車の制御装置において、
     搭乗者によるブレーキ操作を検出するブレーキセンサをさらに備え、
     前記変速抑制処理部は、前記ブレーキ操作の検出に応じて、前記変速比を変える前記制御を抑制する、
     ことを特徴とする自動二輪車の制御装置。
  6.  請求項5に記載の自動二輪車の制御装置において、
     前記変速抑制処理部は、前記旋回判定部によって車両が旋回していると判断された場合に前記変速比を変える前記制御を所定の第1の期間抑制し、前記ブレーキ操作が検出された場合に前記変速比を変える前記制御を所定の第2の期間抑制し、
     前記変速抑制処理部は、車両が旋回していると判断され、且つ、前記ブレーキ操作が検出された場合には、前記第1の期間と前記第2の期間のうち後に終了するタイミングで、変速比を変える前記制御の抑制を解除する、
     ことを特徴とする自動二輪車の制御装置。
  7.  請求項1に記載の自動二輪車の制御装置において、
     ステアリングの操舵角を検知する操舵角センサをさらに備え、
     前記旋回判定部は、前記操舵角と前記一方の車輪の回転速度と前記他方の車輪の回転速度とに基づいて車両のバンク角を推定し、当該推定されたバンク角が前記閾値よりも大きいことを条件として、車両が旋回していると判断する、
     ことを特徴とする自動二輪車の制御装置。
  8.  請求項1に記載の自動二輪車の制御装置において、
     前記旋回判定部は車両の加速状態に応じて前記閾値を変える、
     ことを特徴とする自動二輪車の制御装置。
  9.  請求項8に記載の自動二輪車の制御装置において、
     前記旋回判定部は、前記閾値である第1の閾値と当該第1の閾値とは異なる第2の閾値とを、車両の加速状態に応じて選択的に使用して前記判定を行う、
     ことを特徴とする自動二輪車の制御装置。
  10.  請求項8に記載の自動二輪車の制御装置において、
     前記旋回判定部は車両の加速に応じた値に基づいて前記閾値を算出する、
     ことを特徴とする自動二輪車の制御装置。
  11.  請求項4に記載の自動二輪車の制御装置において、
     前記一方の車輪の回転速度と前記他方の車輪の回転速度と閾値とに基づいて前記後輪のスリップを検出するトラクション制御部をさらに備え、
     前記後輪のスリップが検出されるよりも前に前記旋回判定部によって車両が旋回していると判断されるように、前記旋回判定部の前記閾値と前記トラクション制御部の前記閾値は規定されている、
     ことを特徴とする自動二輪車の制御装置。
  12.  請求項1に記載の自動二輪車の制御装置において、
     前記旋回判定部は前記一方の車輪のタイヤの径と前記他方の車輪のタイヤの径との相違に応じた係数を利用して、前記一方の車輪の回転速度と前記他方の車輪の回転速度とを比較し、
     前記制御装置は、前記一方の車輪の回転速度と前記他方の車輪の回転速度とに基づいて前記一方の車輪のタイヤの径又は前記他方の車輪のタイヤの径が変わったか否かを判定し、それらが変わったと判断した場合に前記係数を更新する係数更新処理部をさらに有している、
     ことを特徴とする自動二輪車の制御装置。
  13.  請求項12に記載の自動二輪車の制御装置において、
     前記係数更新処理部は、前記係数と前記他方の車輪の回転速度と前記一方の車輪の回転速度とに基づいて、車両のバンク角に応じた前記値を算出し、算出した前記値と車両の直進走行時に算出されるべき値とを比較し、その比較結果に基づいて前記一方の車輪のタイヤの径又は前記他方の車輪のタイヤの径が変わったか否かを判定する、
     ことを特徴とする自動二輪車の制御装置。
  14.  請求項13に記載の自動二輪車の制御装置において、
     前記係数更新処理部は、車両のバンク角に応じた前記値の算出タイミングが車両の直進走行中であるか否かを判定し、その判定結果に基づいて前記一方の車輪のタイヤの径又は前記他方の車輪のタイヤの径が変わったか否かを判定する、
     ことを特徴とする自動二輪車の制御装置。
  15.  請求項13又は14に記載の自動二輪車の制御装置において、
     前記係数更新処理部は、車両のバンク角に応じた前記値の算出タイミングが車両の加速中及び/又はブレーキ操作中であるか否かを判定し、その判定結果に基づいて前記一方の車輪のタイヤの径又は前記他方の車輪のタイヤの径が変わったか否かを判定する、
     ことを特徴とする自動二輪車の制御装置。
  16.  請求項13に記載の自動二輪車の制御装置において、
     前記係数更新処理部は、車両のバンク角に応じた前記値が所定値に所定時間以上維持されるか否かを判定し、その判定結果に基づいて、前記一方の車輪のタイヤの径又は前記他方の車輪のタイヤの径が変わったか否かを判定する、
     ことを特徴とする自動二輪車の制御装置。
  17.  請求項1に記載の制御装置を備える自動二輪車。
     
     
     
PCT/JP2011/076688 2010-11-19 2011-11-18 自動二輪車、及びその制御装置 WO2012067234A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11841352.5A EP2641819B1 (en) 2010-11-19 2011-11-18 Automatic two-wheeled vehicle and control device therefor
US13/988,117 US9189454B2 (en) 2010-11-19 2011-11-18 Two-wheeled motor vehicle and control device therefor
JP2012544323A JP5602875B2 (ja) 2010-11-19 2011-11-18 自動二輪車、及びその制御装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-258959 2010-11-19
JP2010258959 2010-11-19
JP2011062420 2011-05-30
JPPCT/JP2011/062420 2011-05-30

Publications (1)

Publication Number Publication Date
WO2012067234A1 true WO2012067234A1 (ja) 2012-05-24

Family

ID=46084153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076688 WO2012067234A1 (ja) 2010-11-19 2011-11-18 自動二輪車、及びその制御装置

Country Status (4)

Country Link
US (1) US9189454B2 (ja)
EP (1) EP2641819B1 (ja)
JP (1) JP5602875B2 (ja)
WO (1) WO2012067234A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128994A (ja) * 2012-12-28 2014-07-10 Bridgestone Cycle Co 電動補助自転車
EP2837851A1 (en) 2013-08-13 2015-02-18 Yamaha Hatsudoki Kabushiki Kaisha Transmission apparatus and method for controlling the same
JP2015221641A (ja) * 2014-05-23 2015-12-10 株式会社シマノ 自転車用電動構成部品
JP2016137893A (ja) * 2016-04-04 2016-08-04 ヤマハ発動機株式会社 車速決定システム、安定制御システム及びそれを備えた鞍乗り型車両
WO2017082239A1 (ja) * 2015-11-09 2017-05-18 ヤマハ発動機株式会社 リーン車両
JPWO2018073912A1 (ja) * 2016-10-19 2019-08-29 川崎重工業株式会社 タイヤ力推定装置およびタイヤ力推定方法
WO2020162566A1 (ja) * 2019-02-06 2020-08-13 ヤマハ発動機株式会社 リーン車両
WO2020162572A1 (ja) * 2019-02-06 2020-08-13 ヤマハ発動機株式会社 リーン車両
WO2020162570A1 (ja) * 2019-02-06 2020-08-13 ヤマハ発動機株式会社 リーン車両

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5836558B2 (ja) * 2012-07-25 2015-12-24 ボッシュ株式会社 二輪車の転倒防止方法及び装置
JP6148592B2 (ja) * 2013-10-15 2017-06-14 ヤマハ発動機株式会社 車速決定システム、安定制御システム及びそれを備えた鞍乗り型車両
JP5908022B2 (ja) * 2014-05-13 2016-04-26 ヤマハ発動機株式会社 計測データ取得システム、計測データ取得システムを備えた鞍乗り型車両、方法およびコンピュータプログラム
JP5829307B2 (ja) * 2014-05-13 2015-12-09 ヤマハ発動機株式会社 安定制御システム、安定制御システムを備えた鞍乗り型車両、方法およびコンピュータプログラム
DE102015202115A1 (de) * 2015-02-06 2016-08-11 Robert Bosch Gmbh Verfahren zur Bestimmung des Schräglagenwinkels eines Zweirads
JP6622543B2 (ja) * 2015-10-07 2019-12-18 川崎重工業株式会社 ウィリー判定装置、乗物、および車輪浮上り量判定方法
US11358574B2 (en) * 2016-03-31 2022-06-14 Honda Motor Co., Ltd. Brake control device for motorcycle
TWI636917B (zh) * 2017-05-09 2018-10-01 摩特動力工業股份有限公司 ECVT (electronic stepless speed change) system and control method thereof
JP6991434B2 (ja) * 2017-05-24 2022-01-12 カワサキモータース株式会社 鞍乗型車両の制御装置
JP6819557B2 (ja) * 2017-11-28 2021-01-27 トヨタ自動車株式会社 車両安定制御装置
US10352438B1 (en) * 2018-03-19 2019-07-16 GM Global Technology Operations LLC Vehicle propulsion system and method for controlling a vehicle propulsion system
DE102020207152A1 (de) * 2019-07-08 2021-01-14 Shimano Inc. Steuervorrichtung und getriebesystem
JP7542362B2 (ja) * 2020-08-20 2024-08-30 株式会社Subaru 制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05637A (ja) * 1990-08-15 1993-01-08 Honda Motor Co Ltd 二輪車の制御装置
JP2007239809A (ja) * 2006-03-07 2007-09-20 Yamaha Motor Co Ltd 自動二輪車
JP2009127689A (ja) 2007-11-21 2009-06-11 Honda Motor Co Ltd 自動二輪車の変速制御装置
JP2010012903A (ja) * 2008-07-02 2010-01-21 Toshio Asaumi 自動二輪車のブレーキ制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473978B1 (en) 1990-08-15 1994-11-02 Honda Giken Kogyo Kabushiki Kaisha Two-wheeled vehicle control apparatus
EP0575991B1 (en) * 1992-06-24 2000-04-19 Honda Giken Kogyo Kabushiki Kaisha Brake control system
JP3580431B2 (ja) * 1992-06-29 2004-10-20 本田技研工業株式会社 目標スリップ率設定装置
US5691900A (en) * 1994-07-28 1997-11-25 Kelsey-Hayes Company Method and system for turning detection
US6268794B1 (en) * 2000-01-21 2001-07-31 Harley-Davidson Motor Company Group, Inc. Integrated security, tip-over, and turn signal system
US6313742B1 (en) * 2000-08-09 2001-11-06 International Truck & Engine Corp Method and apparatus for wheel condition and load position sensing
TW561262B (en) * 2001-10-19 2003-11-11 Yamaha Motor Co Ltd Tipping detecting device for a motorcycle
JP4726058B2 (ja) * 2005-09-22 2011-07-20 本田技研工業株式会社 自動変速制御装置
JP2007218269A (ja) * 2006-02-14 2007-08-30 Honda Motor Co Ltd 自動二輪車用変速機の制御方法
JP2007278850A (ja) * 2006-04-07 2007-10-25 Calsonic Kansei Corp 車両用速度表示機構
JP4879081B2 (ja) * 2007-04-27 2012-02-15 川崎重工業株式会社 乗り物
ES2399682T3 (es) * 2007-11-21 2013-04-02 Honda Motor Co., Ltd. Sistema de control de embrague para transmisión
EP2138366B1 (en) * 2008-06-26 2013-03-20 Kawasaki Jukogyo Kabushiki Kaisha Slip suppression control system for vehicle
JP5503243B2 (ja) * 2009-09-30 2014-05-28 本田技研工業株式会社 ハイブリッド式自動二輪車
JP5156717B2 (ja) * 2009-10-26 2013-03-06 日立オートモティブシステムズ株式会社 2輪車用ブレーキ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05637A (ja) * 1990-08-15 1993-01-08 Honda Motor Co Ltd 二輪車の制御装置
JP2007239809A (ja) * 2006-03-07 2007-09-20 Yamaha Motor Co Ltd 自動二輪車
JP2009127689A (ja) 2007-11-21 2009-06-11 Honda Motor Co Ltd 自動二輪車の変速制御装置
JP2010012903A (ja) * 2008-07-02 2010-01-21 Toshio Asaumi 自動二輪車のブレーキ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2641819A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128994A (ja) * 2012-12-28 2014-07-10 Bridgestone Cycle Co 電動補助自転車
EP2837851A1 (en) 2013-08-13 2015-02-18 Yamaha Hatsudoki Kabushiki Kaisha Transmission apparatus and method for controlling the same
JP2015036574A (ja) * 2013-08-13 2015-02-23 ヤマハ発動機株式会社 変速装置
US9440637B2 (en) 2013-08-13 2016-09-13 Yamaha Hatsudoki Kabushiki Kaisha Transmission apparatus
JP2015221641A (ja) * 2014-05-23 2015-12-10 株式会社シマノ 自転車用電動構成部品
WO2017082239A1 (ja) * 2015-11-09 2017-05-18 ヤマハ発動機株式会社 リーン車両
JP2016137893A (ja) * 2016-04-04 2016-08-04 ヤマハ発動機株式会社 車速決定システム、安定制御システム及びそれを備えた鞍乗り型車両
JPWO2018073912A1 (ja) * 2016-10-19 2019-08-29 川崎重工業株式会社 タイヤ力推定装置およびタイヤ力推定方法
WO2020162566A1 (ja) * 2019-02-06 2020-08-13 ヤマハ発動機株式会社 リーン車両
WO2020162572A1 (ja) * 2019-02-06 2020-08-13 ヤマハ発動機株式会社 リーン車両
WO2020162570A1 (ja) * 2019-02-06 2020-08-13 ヤマハ発動機株式会社 リーン車両

Also Published As

Publication number Publication date
JP5602875B2 (ja) 2014-10-08
JPWO2012067234A1 (ja) 2014-05-19
US9189454B2 (en) 2015-11-17
EP2641819A1 (en) 2013-09-25
EP2641819A4 (en) 2015-01-07
US20130245900A1 (en) 2013-09-19
EP2641819B1 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5602875B2 (ja) 自動二輪車、及びその制御装置
JP4230124B2 (ja) 車両運動制御装置
US6564140B2 (en) Vehicle dynamics control system and vehicle having the vehicle dynamics control system
EP2554449B1 (en) Road surface frictional coefficient estimation device, driving force distribution control device and four-wheel-drive vehicle
US8229640B2 (en) Drive force transmission apparatus, control method of drive force transmission apparatus, and limited slip differential
JPH08207607A (ja) 4輪駆動車のトラクション制御装置
JP2008018832A (ja) 車両運動制御装置
JPH082274A (ja) 車両のトルク配分制御装置
US10471952B2 (en) Method of controlling driving force
WO2010100760A1 (ja) 車両状態判定装置及び車両状態判定方法
JP6504223B2 (ja) 車両の駆動力制御方法
US9199650B2 (en) Vehicle driving force control device
JP2010285987A (ja) 二輪自動車のトラクション制御システムおよび制御方法
JP2017501068A (ja) ドライブラインおよびドライブラインの制御方法
JP4223136B2 (ja) 車両運動制御装置
JP2002030952A (ja) 前後輪駆動車両の駆動力制御装置
JP6791398B2 (ja) 車両の制御方法及び車両の制御装置
JP4532007B2 (ja) 車両運動制御装置
US11447112B2 (en) Vehicle attitude control system
JPWO2003091056A1 (ja) 駆動力伝達装置
JP4387607B2 (ja) 車両運動制御装置
JP3840061B2 (ja) 四輪駆動車
JP4443582B2 (ja) アンダーステア抑制装置
JP2006298094A (ja) 車両停止保持装置
JP7169201B2 (ja) リーン車両の制御装置及び転倒予測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544323

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011841352

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13988117

Country of ref document: US