WO2012067146A1 - 基材用金属箔 - Google Patents

基材用金属箔 Download PDF

Info

Publication number
WO2012067146A1
WO2012067146A1 PCT/JP2011/076400 JP2011076400W WO2012067146A1 WO 2012067146 A1 WO2012067146 A1 WO 2012067146A1 JP 2011076400 W JP2011076400 W JP 2011076400W WO 2012067146 A1 WO2012067146 A1 WO 2012067146A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
metal foil
containing metal
steel
Prior art date
Application number
PCT/JP2011/076400
Other languages
English (en)
French (fr)
Inventor
寺嶋 晋一
小林 孝之
将元 田中
正美 藤島
黒崎 将夫
真木 純
秀昭 須田
長崎 修司
Original Assignee
新日鉄マテリアルズ株式会社
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄マテリアルズ株式会社, 新日本製鐵株式会社 filed Critical 新日鉄マテリアルズ株式会社
Priority to CN201180054727.2A priority Critical patent/CN103210112B/zh
Priority to US13/885,278 priority patent/US9296180B2/en
Priority to JP2012508683A priority patent/JP5816615B2/ja
Publication of WO2012067146A1 publication Critical patent/WO2012067146A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite

Definitions

  • the present invention relates to a compound solar cell, a thin film solar cell, a hybrid solar cell in which a plurality of layers are laminated, and a metal foil that can be used as a base material for organic electroluminescence illumination.
  • Compound solar cells such as CIGS (Copper-Indium-Gallium-Selenium), CIS (Copper-Indium-Selenium), CdTe (Cadmium-Tellur), thin film solar cells such as amorphous Si, etc.
  • CIGS Copper-Indium-Gallium-Selenium
  • CIS Copper-Indium-Selenium
  • CdTe Cadmium-Tellur
  • thin film solar cells such as amorphous Si, etc.
  • a base called a base material is used for the purpose of strongly supporting the CIGS layer, CIS layer, CdTe layer, amorphous Si layer, organic EL layer, etc. .
  • the metal foil used for the substrate is required to have good corrosion resistance, surface smoothness, and elastoplastic deformation.
  • the above-mentioned corrosion resistance is required to enable the metal foil used as a base material to be exposed for a long period of time, which is said to be 20 years in an outdoor environment.
  • the above surface smoothness is required to avoid physical damage to the solar cell layer and the organic EL layer laminated on the base material due to the protruding defects present on the base material surface.
  • the surface of the base material is desirably a smooth surface having no protruding defects.
  • the above elasto-plastic deformability is required to enable winding of the metal foil for the base material into a roll shape, which was impossible with a hard glass base material.
  • manufacturing by Batch processing can be changed to continuous manufacturing by Roll to Roll processing, the manufacturing cost of solar cells and organic EL can be greatly reduced.
  • stainless steel (SUS) foil having excellent corrosion resistance is being promoted as a metal foil for a substrate.
  • a base material in which an organic film is further formed on a SUS foil may be used.
  • SUS foil is used as a metal foil for a substrate because it has excellent corrosion resistance.
  • SUS foil has the problem that the material is expensive.
  • the SUS foil since the SUS foil has high hardness and is not easy to roll, it also has a problem that the manufacturing cost increases. Therefore, compared with a glass base material, its use is not so wide at present.
  • ordinary steel (carbon steel) foil is less expensive than SUS and has a high plastic deformability, so that the manufacturing cost can be greatly reduced.
  • the ordinary steel foil as it is cannot satisfy the corrosion resistance required as a metal foil for a substrate. If a normal steel foil that satisfies the above-described properties required for the metal foil for the substrate can be used, the manufacturing costs of the solar cell and the organic EL can be greatly reduced. Therefore, the development is highly anticipated now.
  • One embodiment of the present invention has been made in view of the above circumstances, and simultaneously satisfies the corrosion resistance, surface smoothness, and elastic-plastic deformability required as a metal foil for a substrate of a solar cell or an organic EL.
  • An object is to provide an inexpensive metal foil for a substrate.
  • a metal foil for a base material includes a steel layer having a thickness of 10 to 200 ⁇ m, an alloy layer containing Fe and Al formed on the steel layer, and the alloy layer
  • a metal foil comprising: an Al-containing metal layer disposed on: a cut surface obtained by plane cutting the metal foil along a plate thickness direction so that a plate width direction orthogonal to a rolling direction is an observation surface
  • the cutting line of the surface of the Al-containing metal layer appears as a contour curve, and a straight line approximating the contour curve is a contour average straight line
  • the Al of the contour curve whose distance from the contour average straight line is more than 10 ⁇ m
  • the alloy layer has a thickness of 0.1 to 8 ⁇ m, and Al 7 Cu 2 Fe intermetallic compound or FeAl 3 based metal Including intercalation compounds.
  • the metal foil for a substrate according to (1) above further comprising a Cu layer having a thickness of 2 to 10 ⁇ m or a thickness of 2 to 10 ⁇ m between the steel layer and the alloy layer. You may have a Ni layer.
  • the metal foil for a substrate according to any one of (1) to (3) above further having a Cr layer having a thickness of 0.1 to 8 ⁇ m on the Al-containing metal layer, or The Ni layer may have a thickness of 0.1 to 8 ⁇ m.
  • the present invention compared to a glass substrate, it is less likely to break and is suitable for thinning, and in addition, corrosion resistance, surface smoothness, and elasticity required as a metal foil for a substrate. It is possible to provide an inexpensive metal foil for a substrate that simultaneously satisfies plastic deformability. Therefore, it is possible to manufacture low-cost, thin and light compound solar cells such as CIGS, CIS, and CdTe, thin-film solar cells such as amorphous Si, hybrid solar cells in which multiple layers are laminated, and organic EL lighting It becomes.
  • Al-containing plating is applied to ordinary steel.
  • an Al-containing metal layer is disposed on the steel layer. This Al-containing metal layer improves the corrosion resistance required as a metal foil for a substrate.
  • the Al-containing metal layer preferably has a composition containing 60 to 100% by mass of Al, 0 to 15% by mass of Si, and 0 to 40% by mass of Cu. This is because the plating process is simplified because the melting point of the plating bath is lowered with this composition. More preferably, the above Al-containing metal layer is formed for each component from the composition of 68.2 mass% Al-4.7 mass% Si-27.1 mass% Cu or 68 mass% Al-32 mass% Cu. The composition is within the range of 5% by mass. With this composition, the melting point of the plating bath further decreases.
  • the thickness of the Al-containing metal layer is preferably 0.1 to 30 ⁇ m.
  • the Al-containing metal layer has a thickness of 1 to 30 ⁇ m. More preferably, the thickness of the Al-containing metal layer is 3 to 30 ⁇ m. Most preferably, the Al-containing metal layer has a thickness of 8 to 30 ⁇ m.
  • an Fe—Al-based alloy phase for example, an intermetallic compound such as FeAl 3 , Fe 2 Al 8 Si, FeAl 5 Si
  • This alloy layer is very hard and brittle.
  • the metal foil subjected to Al-containing plating undergoes elasto-plastic deformation during handling or the like, this alloy layer cannot follow the deformation of the metal foil, and finally, peeling between the steel layer and the Al-containing metal layer, and Inducing cracks in the Al-containing metal layer.
  • Al-containing plating is applied to the normal steel foil, the corrosion resistance required as the metal foil for the base material can be satisfied, but the elastic-plastic deformability is not satisfied.
  • the alloy layer formed at the interface between the steel layer and the Al-containing metal layer has a thickness of 0.1 to 8 ⁇ m, and It is necessary to include an Al 7 Cu 2 Fe intermetallic compound or an FeAl 3 -based intermetallic compound.
  • the Al 7 Cu 2 Fe intermetallic compound or FeAl 3 -based intermetallic compound is preferably contained in the alloy layer in an area of 50% or more, more preferably 90% or more. preferable.
  • the FeAl 3 -based intermetallic compound refers to an element constituting the system (for example, an element constituting an Al-containing metal layer such as Si or Cu, or pre-plating such as Ni or Cu in the FeAl 3 intermetallic compound.
  • the FeAl intermetallic compound 3 group particularly, an intermetallic compound of FeAl 3 groups Cu is solid-solved, or, it is preferable Ni is an intermetallic compound of FeAl 3 groups were dissolved.
  • the Vickers hardness of the alloy layer is about 500 to 600 Hv, the element to be dissolved is not limited to Ni or Cu.
  • the alloy layer containing this Al 7 Cu 2 Fe intermetallic compound or FeAl 3 -based intermetallic compound has a Vickers hardness of 500 to 600 Hv.
  • the conventional hard and brittle alloy layer described above has a Vickers hardness of about 900 Hv.
  • the alloy layer is less than 0.1 ⁇ m, the above effect as a soft alloy layer cannot be obtained. If the thickness exceeds 8 ⁇ m, the diffusion of the elements constituting the system proceeds excessively, and Kirkendall voids are likely to occur, which is not preferable.
  • the thickness of the metal layer is 0.1 to 5 ⁇ m. In addition, the thickness of 3 to 8 ⁇ m is preferable because the corrosion resistance of the metal foil is further increased. The thickness of the metal layer is most preferably 3 to 5 ⁇ m because both effects can be obtained simultaneously.
  • the above-described effect of the alloy layer is not hindered.
  • the thickness of the Cu layer or Ni layer is less than 2 ⁇ m, the effect of improving the adhesion between the steel layer and the alloy layer cannot be obtained.
  • the thickness exceeds 10 ⁇ m, the above effect is saturated and the cost for forming the pre-plated film is increased, which is not preferable.
  • the thickness of the steel layer of the metal foil is 10 to 200 ⁇ m.
  • the thickness is preferably 10 to 150 ⁇ m.
  • the thickness is preferably 100 to 200 ⁇ m. It is most preferable that the thickness of the steel layer is 100 to 150 ⁇ m because both effects can be obtained simultaneously.
  • the metal foil for a solar cell or organic EL substrate satisfy the surface smoothness at the same time.
  • the surface of the Al-containing metal layer needs to be a smooth surface with a certain degree.
  • the cutting line of the surface of the Al-containing metal layer that appears on the cut surface obtained by cutting the metal foil along the plate thickness direction so that the plate width direction perpendicular to the rolling direction becomes the observation surface is defined as the contour curve.
  • the maximum point is a peak that is convex on the surface side of the Al-containing metal layer of the contour curve.
  • the minimum point of the contour curve (the extreme point concave on the surface of the Al-containing metal layer of the contour curve) causes physical damage to the solar cell layer and the organic EL layer laminated on the metal foil for the substrate. It doesn't matter if it exists because it doesn't give.
  • the locus of the contour curve may be obtained by image processing from the metal structure photograph of the cut surface, or the locus may be obtained manually.
  • the contour average straight line may be obtained similarly by applying a phase compensation filter by image processing.
  • the contour average straight line can be obtained from the coordinates of each extreme point by the least square method.
  • the surface of the Al-containing metal layer preferably has a glossiness of 75% or more compared to the silver mirror.
  • a glossiness of 75% or more compared to the silver mirror is preferable because transmitted light is used again for photoelectric conversion with high efficiency. More preferably, the glossiness is 80% or more of the silver mirror ratio.
  • the surface smoothness and glossiness of the metal foil described above can be achieved by using a mirror-shaped rolling roll during the second rolling process or by subjecting the metal foil after the second rolling process to skin pass rolling.
  • the manufacturing method according to the embodiment of the present invention will be described later in detail.
  • the AlN layer or the Al 2 O 3 layer acts as a barrier film, so that Fe atoms constituting the steel layer can be prevented from diffusing to reach the CIGS layer, the CIS layer, or the like.
  • the thickness of these layers is less than 0.01 ⁇ m, the above-mentioned effect cannot be obtained.
  • Generating an AlN layer with a thickness of more than 0.08 ⁇ m or an Al 2 O 3 layer with a thickness of more than 50 ⁇ m is not preferable because production costs increase.
  • the thickness of the Al 2 O 3 layer is too thick, the anodic oxide film is peeled off from the aluminum, so 50 ⁇ m or less is appropriate. More preferably, it is 15 ⁇ m or less.
  • the thickness is most preferably 0.08 ⁇ m or less.
  • the AlN layer or the Al 2 O 3 layer is a layer formed naturally, and the above-mentioned diffusion preventing effect cannot be obtained. Therefore, it is necessary to intentionally form it densely.
  • a Cr layer having a thickness of 0.1 to 8 ⁇ m or a Ni layer having a thickness of 0.1 to 8 ⁇ m may be provided on the surface of the Al-containing metal layer. Good.
  • the Cr layer or the Ni layer the same effects as those of the AlN layer and the Al 2 O 3 layer can be obtained.
  • the thickness of the Cr layer or the Ni layer is less than 0.1 ⁇ m, the above-described effect cannot be obtained. If the thickness exceeds 8 ⁇ m, the production cost increases.
  • the surface of the Al-containing metal layer has an inorganic skeleton mainly composed of siloxane bonds developed in a three-dimensional network structure with a thickness of 0.001 to 8 ⁇ m. Further, it may have a sol-gel layer in which at least one of the cross-linking oxygens of the skeleton is substituted with an organic group and / or a hydrogen atom.
  • the sol-gel layer By having the sol-gel layer, the same effects as those of the AlN layer and the Al 2 O 3 layer can be obtained. More preferably, when the thickness is 0.1 ⁇ m or more, the above-described effect may be further increased. When the thickness of the sol-gel layer is less than 0.001 ⁇ m, the above effect cannot be obtained. If the thickness exceeds 8 ⁇ m, the production cost increases.
  • a laminate layer composed of a plastic film selected from polyolefin, polyester, polyamide, polyimide having a thickness of 0.1 to 8 ⁇ m is formed on the surface of the Al-containing metal layer. You may have. Further, a heat resistant resin made of polyimide can be used instead of the laminate layer. By having the laminate layer or the heat resistant resin, the same effects as those of the AlN layer and the Al 2 O 3 layer can be obtained. If the thickness of the laminate layer is less than 0.1 ⁇ m, the above effect cannot be obtained. If the thickness exceeds 8 ⁇ m, the production cost increases.
  • a withstand voltage of 500 V or more can be ensured, and dielectric breakdown can be avoided. Even if dielectric breakdown does not occur, the presence of leakage current causes a decrease in photoelectric conversion efficiency of the solar cell module, but such leakage can be prevented by adopting the above structure.
  • the method of measuring the thickness and composition of each layer described above is a method of analyzing while digging in the film thickness direction from the surface of the metal foil by a sputtering method, or performing line analysis or point analysis on the cut surface in the film thickness direction of the metal foil.
  • the technique to do is effective. In the former method, when the measurement depth is increased, it takes too much measurement time, but in the latter method, it is relatively easy to measure the concentration distribution in the entire cross section, check reproducibility, and the like. If you want to improve the accuracy of analysis in line analysis or point analysis, it is also effective to narrow the analysis interval with line analysis or expand the analysis area with point analysis. is there.
  • Each layer is identified by measuring the value of a standard sample (that is, concentration 100%) in advance and discriminating a region where the concentration is 50% or more by the composition analysis.
  • EPMA Electron Probe Micro Analysis, Electron Probe Micro Analysis
  • EDX Energy Dispersive X-ray Analysis, Energy Dispersive X-Ray Analysis
  • AES Alger Electron Spectroscopy, Auger ElectroS
  • TEM Transmission Electron Microscope, Transmission Electron Microscope
  • the metal foil By making the metal foil have the above-described technical configuration, it is possible to simultaneously satisfy the corrosion resistance, surface smoothness, and elasto-plastic deformability required as a metal foil for a substrate. It can be used as a product.
  • a compound solar cell such as CIGS, CIS, CdTe, a thin film solar cell such as amorphous Si, a hybrid solar cell in which a plurality of layers are laminated, or An organic EL lighting circuit can be formed on the substrate.
  • the main components of the above-described CIGS and CIS are not particularly limited, and are preferably at least one compound semiconductor having a chalcopyrite structure.
  • the main components of the photoelectric conversion layer are the group Ib element and the group IIIb element. It is preferably at least one compound semiconductor containing a VIb group element.
  • the main component of the photoelectric conversion layer is at least one kind of Ib group element selected from Cu and Ag, Al, Ga, In, and the like. It is preferable that the semiconductor is at least one compound semiconductor containing at least one group IIIb element selected from more and at least one group VIb element selected from S, Se, Te and the like.
  • examples of the compound semiconductor include CuAlS 2 , CuGaS 2 , CuInS 2 , CuAlSe 2 , CuGaSe 2 , CuInSe 2 (CIS), AgAlS 2 , AgGaS 2 , AgInS 2 , AgAlSe 2 , AgGaSe 2 , AgInSe 2 , AgAlTe 2 , AgGaTe 2 , AgInTe 2 , Cu (In 1-x Ga x ) Se 2 (CIGS), Cu (In 1-x Al x ) Se 2 , Cu (In 1-x Ga x ) (S, Se) 2, Ag (In 1-x Ga x) Se 2 and Ag (In 1-x Ga x ) (S, Se) 2 or the like can be used.
  • This rolling method may be either hot or cold. If the thickness of the steel sheet is less than 200 ⁇ m, it is too thin to handle in the subsequent process. On the other hand, if the thickness of the steel sheet exceeds 500 ⁇ m, it is too thick and a load is applied to the subsequent process.
  • the steel plate after the first rolling treatment is subjected to a pre-plating treatment for applying Cu or Ni pre-plating, a plating treatment for applying Al-containing plating, and a second rolling treatment.
  • the order of these treatments is (1) pre-plating treatment, plating treatment, and second rolling treatment, (2) pre-plating treatment, second rolling treatment, and plating treatment, and (3) second rolling treatment, pre-treatment. Either plating treatment or plating treatment may be used.
  • an electrolytic plating method or an electroless plating method is performed using a Cu or Ni plating bath.
  • An alloy formed between a steel layer and an Al-containing metal layer during Al-containing plating when the initial thickness of the pre-plated film is 0.05 to 4 ⁇ m for both the Cu pre-plated film and the Ni pre-plated film The layer thickness is 0.1 to 8 ⁇ m.
  • the initial thickness of the pre-plated film is controlled to 1.5 to 2.5 ⁇ m. Good.
  • the initial thickness of the pre-plated film is determined based on 4 ⁇ m. It is only necessary to form a film thicker than the desired thickness.
  • the Cu or Ni pre-plated film having a thickness of 4 ⁇ m or less diffuses and disappears in the alloy layer formed during the Al-containing plating.
  • the pre-plated film formed to a thickness exceeding 4 ⁇ m remains by subtracting 4 ⁇ m from the film thickness to form a Cu layer or a Ni layer.
  • the component composition of the steel layer and the Al-containing metal layer may be adjusted as appropriate.
  • plating is performed using a plating bath containing 60 to 100% by mass of Al, 0 to 15% by mass of Si, and 0 to 40% by mass of Cu.
  • a plating bath containing 60 to 100% by mass of Al, 0 to 15% by mass of Si, and 0 to 40% by mass of Cu.
  • an electrolytic plating method and an electroless plating method can be used.
  • the melting point of the plating bath can be reduced. Therefore, it is set as the plating bath of the said composition.
  • an Al-containing plating bath having a composition within a range of ⁇ 5% by mass for each component from the composition of mass% Cu.
  • the rolling conditions may be normal rolling conditions. If the thickness of the metal foil is less than 10 ⁇ m, the metal foil for the substrate is too thin and the strength is insufficient. On the other hand, if the thickness of the metal foil exceeds 250 ⁇ m, it is too thick and too heavy as a metal foil for a substrate.
  • the surface roughness of the rolling mill is Ra 200 ⁇ m or less in the second rolling process. It is preferable to use a rolling roll having a mirror surface state. The reason why the surface roughness of the rolling roll is set to Ra 200 ⁇ m or less is to suitably control the surface of the Al-containing metal layer.
  • the metal foil after the second rolling treatment is brightened as a skin pass rolling treatment as necessary. It is preferable to perform finish rolling. In this skin pass rolling treatment, it is preferable to use a rolling roll having a mirror surface state with a surface roughness of Ra 1 ⁇ m or less. The reason why the surface roughness of the rolling roll is set to Ra 1 ⁇ m or less is to suitably control the surface of the Al-containing metal layer.
  • the thickness of the Al-containing metal layer of the metal foil after the second rolling process or the skin pass rolling process is preferably 0.1 to 30 ⁇ m. If the thickness is less than 0.1 ⁇ m, a sufficient corrosion resistance effect cannot be obtained, and if it exceeds 30 ⁇ m, it is necessary to plate a large amount of Al, which increases the production cost.
  • the Al-containing metal layer has a thickness of 1 to 30 ⁇ m. More preferably, the Al-containing metal layer has a thickness of 3 to 30 ⁇ m. Most preferably, the Al-containing metal layer has a thickness of 8 to 30 ⁇ m.
  • the metal foil is placed in an inert gas (argon, nitrogen, nitrogen + hydrogen, etc.) containing 10% by volume or 2% by volume of ammonia or hydrazine. This is a process of heating for up to 10 hours.
  • an inert gas argon, nitrogen, nitrogen + hydrogen, etc.
  • an anodizing process is performed using an Al-containing metal as an anodizing process. It is preferred to oxidize the layer surface.
  • treatment conditions conventionally known alumite sulfate, oxalate alumite, chromate alumite, or the like can be used. Of these, alumite sulfate is the most economical and industrially suitable.
  • the metal foil is thin and there is a risk of deformation of the metal foil during the anodizing treatment, it is necessary to immediately cool it with water after the anodizing treatment in order to maintain the flatness of the metal foil. is important.
  • a Cr layer or a Ni layer on the surface of the Al-containing metal layer it can be formed relatively easily by sputtering or vapor deposition.
  • an electrolytic plating method it is preferable to use an electrolytic plating method. Therefore, in order to form the Cr layer or the Ni layer in a dense state on the surface of the Al-containing metal layer of the metal foil after the second rolling process or the skin pass rolling process, it is preferable to perform plating as the electrolytic plating process.
  • the ratio of the hydrogen concentration [H] (mol / l) to the silicon concentration [Si] (mol / l) in the film obtained in the final baking step is 0.1 ⁇ [H] / [Si].
  • a sol is prepared such that ⁇ 10.
  • the prepared sol is applied to the surface of the Al-containing metal layer of the metal foil and dried. By baking after last drying, a metal foil with an inorganic-organic hybrid film coating can be produced.
  • a laminate composed of a plastic film selected from polyolefin, polyester, polyamide, polyimide, etc. is used to make contact with the Al-containing metal layer surface of the metal foil with a nylon adhesive, and then heated at a pressure of about 1 MPa.
  • the film can be formed by a heat laminating method for pressure bonding.
  • Example 1 In Experimental Example 1, as a first rolling process, a very low carbon steel was rolled hot and cold to obtain a rolled steel plate having a thickness of 300 ⁇ m.
  • a pre-plating treatment a pure Cu or pure Ni pre-plated film was formed on the rolled steel sheet by electrolytic plating.
  • a Watt bath was used as a plating bath for electrolytic Ni plating
  • a copper sulfate bath was used as a plating bath for electrolytic Cu plating.
  • the plating treatment the rolled steel plate after the pre-plating treatment was immersed in an Al-containing metal for 20 seconds to perform hot Al plating.
  • the rolled steel sheet after the plating treatment was rolled at a rolling reduction of 10 to 20% per pass to produce a metal foil.
  • Some metal foils were subjected to a skin pass rolling process after the second rolling process, if necessary.
  • the thicknesses of the pre-plated film and the Al-containing metal layer were determined in advance by calculation so that each layer after forming a foil had the thickness shown in Table 1.
  • the metal structure of the cut surface obtained by cutting the surface state of the metal foil and the state of each constituent layer along the plate thickness direction so that the plate width direction perpendicular to the rolling direction of the metal foil is the observation surface It was confirmed by observing.
  • the metal structure observation was performed at a magnification such that the observation visual field was within 20 ⁇ m in the plate width direction, and at least 15 visual fields were observed so that the total visual field in the plate width direction was 300 ⁇ m or more.
  • the contour curve and the contour average straight line were obtained by image analysis.
  • Each constituent layer was identified by energy dispersive X-ray analysis (EDX) of the cut surface.
  • the hardness of the alloy layer was measured with a Vickers hardness tester on the cut surface.
  • the corrosion resistance test was evaluated by a salt spray test (SST). When 5% NaCl water maintained at 35 ° C. is sprayed and corrosion cannot be confirmed visually for 400 hours or more, VG (Very Good), 300 hours or more G (Good), 100 hours or more NG (Not Good), Less than 100 hours was defined as B (Bad). NG and B were rejected.
  • SST salt spray test
  • the 180-degree contact bending test is performed by repeatedly performing 180-degree contact bending with a metal foil having an inner radius of zero and a bending angle of 180 °, and investigating the number of times the film peels or cracks. did.
  • the observation of peeling or cracking of the film was performed by observing the bending outer periphery of the metal foil with an optical microscope every cycle of 180-degree contact bending.
  • the number of processings at the time when peeling or cracking of the film was observed with an optical microscope was defined as the number of film breaks.
  • the number of film breaks was 3 or more, and it was judged that the elastic-plastic deformability was good.
  • the gloss measurement test was performed by using a gloss meter to make light incident on the metal foil at an incident angle of 60 ° and measuring the ratio of the silver mirror surface to the reflectance.
  • the glossiness was evaluated as less than 75% (NotGood), 75% to less than 80% as G (Good), 80 to less than 90% as VG (Very Good), and 90% or more as GG (Greatly Good). NG was rejected.
  • Comparative Example 1 does not have an alloy layer, the corrosion resistance and 180-degree adhesion bendability are insufficient.
  • Comparative Example 2 since the thickness of the alloy layer is more than 8 ⁇ m, voids are observed on the cut surface, and the 180-degree adhesive bendability is insufficient.
  • Comparative Example 3 is an example in which the alloy layer is a conventional hard and brittle alloy layer, so that the Vickers hardness of the alloy layer is 900 Hv and the 180-degree adhesive bendability is insufficient.
  • Comparative Example 4 is an example in which there is a local maximum point at which the distance from the contour average straight line exceeds 0.5 ⁇ m. The glossiness was also insufficient.
  • the AlN layer was produced by heat treatment using an inert gas containing ammonia.
  • the Al 2 O 3 layer was produced by sulfuric acid alumite treatment.
  • the Cr layer and the Ni layer were produced by sputtering.
  • a mixture of 10 mol of methyltriethoxysilane and 10 mol of tetraethoxysilane was used as a starting material for preparing the sol, and 20 mol of ethanol was added to this mixture and stirred well. Thereafter, while stirring, an aqueous solution of acetic acid in which 2 mol of acetic acid and 100 mol of water were mixed was added dropwise for hydrolysis. 100 mol of ethanol was added to the sol thus obtained to obtain a final sol.
  • Examples 32 to 63 all show excellent photoelectric conversion efficiency.
  • the examples in which the thicknesses of the AlN layer, the Al 2 O 3 layer, the Cr layer, the Ni layer, the sol-gel layer, and the laminate layer are optimally controlled show further excellent photoelectric conversion efficiency.
  • Examples 33 to 35 and Examples 53 to 55 since the thickness of the AlN layer is optimally controlled, even more excellent photoelectric conversion efficiency is exhibited.
  • Examples 37 to 39 the thickness of the Cr layer is optimally controlled, and thus further excellent photoelectric conversion efficiency is exhibited.
  • Examples 41 to 43 since the thickness of the Ni layer is optimally controlled, even more excellent photoelectric conversion efficiency is exhibited.
  • Examples 45 to 47 and Examples 49 to 51 the thickness of the Al 2 O 3 layer is optimally controlled, and thus further excellent photoelectric conversion efficiency is exhibited.
  • the thickness of the sol-gel layer is optimally controlled, so that further excellent photoelectric conversion efficiency is exhibited.
  • Examples 61 to 63 since the thickness of the laminate layer is optimally controlled, the photoelectric conversion efficiency is further improved.
  • the present invention compared to a glass substrate, it is less likely to break and is suitable for thinning, and in addition, corrosion resistance, surface smoothness, and elasticity required as a metal foil for a substrate. It is possible to provide an inexpensive metal foil for a substrate that simultaneously satisfies plastic deformability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Photovoltaic Devices (AREA)
  • Metal Rolling (AREA)

Abstract

 厚さが10~200μmである鋼層と、前記鋼層上に生成したFeとAlとを含有する合金層と、前記合金層上に配されたAl含有金属層と、を備える金属箔であって、前記Al含有金属層の表面の切断線を輪郭曲線とし、前記輪郭曲線を近似する直線を輪郭平均直線とするとき、前記輪郭曲線に前記輪郭平均直線からの距離が10μm超となる極大点が存在せず、前記合金層が、厚さ0.1~8μmであり、かつ、AlCuFe金属間化合物、又は、FeAl基の金属間化合物を含む。

Description

基材用金属箔
 本発明は、化合物系太陽電池、薄膜系太陽電池、それらを複数層積層させたハイブリッド型太陽電池、及び、有機エレクトロルミネセンス照明の基材として使用可能な金属箔に関する。
 本願は、2010年11月17日に、日本に出願された特願2010-257322号に基づき優先権を主張し、その内容をここに援用する。
 CIGS(Copper-Indium-Gallium-Selenium)、CIS(Copper- Indium-Selenium,)、CdTe(Cadmium-Tellur)等の化合物系太陽電池、アモルファスSi等の薄膜系太陽電池、それらを複数層積層させたハイブリッド型太陽電池、及び、有機EL(Electroluminescence)照明には、CIGS層、CIS層、CdTe層、アモルファスSi層や有機EL層等を強度的に支える目的で、基材と呼ばれる土台が使用される。
 従来、上記基材として、特許文献1に記載のように、ガラス基材が使用されることが多かった。しかし、ガラスは割れやすいので、一定の強度を確保するため、厚膜化する必要があった。ガラスを厚膜化すると、太陽電池や、有機EL照明そのものが重くなってしまう。
 一方、近年、上記基材として、ガラス基材に代わって、割れにくく、そして、薄膜化に適している金属箔を使用することが試みられている。基材用である金属箔には、耐食性、表面平滑性、及び、弾塑性変形性の何れもが良好であることが要求される。
 上記耐食性は、基材として用いる金属箔が、屋外環境で20年ともいわれる長期間曝されることを可能とするために必要とされる。
 上記表面平滑性は、基材表面に存在する突起状欠陥によって、基材上に積層される太陽電池層や有機EL層が、物理的な損傷を受けることを避けるために必要とされる。基材表面は、突起状欠陥を有さない平滑な表面であることが望まれる。
 上記弾塑性変形性は、硬質なガラス基材では不可能であった、基材用金属箔のロール形状への巻き取りを可能とするために必要とされる。その結果、Batch処理による製造を、Roll to Roll処理による連続的な製造へ変更できれば、太陽電池や有機ELの製造コストを大幅に低減できる。
 基材用金属箔として、一般的に、耐食性に優れるステンレス(SUS)箔の使用が進められている。特許文献2に記載されるように、SUS箔上に、更に有機被膜を形成した基材が使用されることもある。
 SUS箔は、優れた耐食性を有しているため、基材用金属箔として用いられる。しかし、SUS箔は、材料が高価であるという問題を有する。加えて、SUS箔は、硬度が高く圧延が容易ではないので、製造コストが高くなるという問題も有している。そのため、ガラス基材と比べると、現状、その使用はさほど広まっていない。
 一方、普通鋼(炭素鋼)箔は、SUSよりも、材料自体が安価であり、そして、高い塑性変形能を有しているので、製造コストも大幅に低減することができる。しかし、普通鋼箔そのままでは、基材用金属箔として要求される、耐食性を満足できない。基材用金属箔に要求される上記特性を満足する普通鋼箔が利用可能となれば、太陽電池及び有機ELの製造コストを大幅に低減することが可能となる。よって、現在、その開発が強く待望されている。
日本国特開2006- 80370号公報 日本国特開2006-295035号公報
 本発明の一実施態様は、上記事情に鑑みてなされたものであり、太陽電池や有機ELの基材用金属箔として要求される耐食性、表面平滑性、及び、弾塑性変形性を同時に満足する安価な基材用金属箔を提供することを目的とする。
 本発明の要旨は、以下のとおりである。
(1)本発明の一態様にかかる基材用金属箔は、厚さが10~200μmである鋼層と、前記鋼層上に生成したFeとAlとを含有する合金層と、前記合金層上に配されたAl含有金属層と、を備える金属箔であって:前記金属箔を圧延方向と直交する板幅方向が観察面となるように板厚方向に沿って平面切断した切断面に表れる、前記Al含有金属層の表面の切断線を輪郭曲線とし、前記輪郭曲線を近似する直線を輪郭平均直線とするとき、前記輪郭平均直線からの距離が10μm超となる前記輪郭曲線の前記Al含有金属層の表面側に凸である極大点が存在せず;前記合金層が、厚さ0.1~8μmであり、かつ、AlCuFe金属間化合物、又は、FeAl基の金属間化合物を含む。
(2)上記(1)に記載の基材用金属箔であって、前記鋼層と前記合金層との間に、さらに、厚さ2~10μmのCu層、又は、厚さ2~10μmのNi層を有してもよい。
(3)上記(1)又は(2)に記載の基材用金属箔であって、前記Al含有金属層の厚さが0.1~30μmであってもよい。
(4)上記(1)~(3)のいずれか一項に記載の基材用金属箔であって、前記Al含有金属層上に、さらに、厚さ0.01~0.08μmのAlN層、又は、厚さ0.01~50μmのAl層を有してもよい。
(5)上記(1)~(3)のいずれか一項に記載の基材用金属箔であって、前記Al含有金属層上に、さらに、厚さ0.1~8μmのCr層、又は、厚さ0.1~8μmのNi層を有してもよい。
(6)上記(1)~(3)のいずれか一項に記載の基材用金属箔であって、前記Al含有金属層上に、さらに、ゾルゲル層、及び、ラミネート層から選択される少なくとも1種の皮膜を有してもよい。
 本発明の上記態様によれば、ガラス基材と比較して、割れにくく、そして、薄膜化に適しており、加えて、基材用金属箔として要求される耐食性、表面平滑性、及び、弾塑性変形性を同時に満足する安価な基材用金属箔の提供が可能となる。したがって、低コストで薄型軽量のCIGS、CIS、CdTe等の化合物系太陽電池、アモルファスSi等の薄膜系太陽電池、それらを複数層積層させたハイブリッド型太陽電池、及び、有機EL照明の製造が可能となる。
 以下に本発明の好適な実施形態について詳細に説明する。初めに、基材用金属箔の技術構成と数値限定理由とについて詳細に説明する。
 普通鋼(炭素鋼)の耐食性を向上させるために、普通鋼にAl含有めっきを施す。このAl含有めっきにより、鋼層上にAl含有金属層が配される。このAl含有金属層により、基材用金属箔として要求される耐食性が向上する。
 上記Al含有金属層は、60~100質量%のAl、0~15質量%のSi、0~40質量%のCuを含有させた組成であると好ましい。これは、この組成でめっき浴の融点が低下するためにめっき工程が簡便となるからである。より好ましくは、上記Al含有金属層を、68.2質量%Al-4.7質量%Si-27.1質量%Cu、又は、68質量%Al-32質量%Cuという組成から各成分について±5質量%以内の範囲の組成とする。この組成では、めっき浴の融点がさらに低下する。また、上記Al含有金属層の厚さは、0.1~30μmであることが好ましい。0.1μm未満では、好適な耐食効果は得られず、30μm超では、Alを大量にめっきする必要があり、生産コストが高くなるためである。好ましくは、上記Al含有金属層の厚さを、1~30μmとする。より好ましくは、上記Al含有金属層の厚さを、3~30μmとする。最も好ましくは、上記Al含有金属層の厚さを、8~30μmとする。
 一般的に、Al含有めっきの際、鋼層とAl含有金属層との界面には、Fe-Al系合金相(例えば、FeAl,FeAlSi、FeAlSiなどの金属間化合物)が層状に形成される。この合金層は非常に硬くて脆い。Al含有めっきを施した金属箔がハンドリングなどの際に弾塑性変形すると、この合金層は、金属箔の変形に追随できず、最終的に、鋼層とAl含有金属層との剥離、及び、Al含有金属層の割れを誘発する。つまり、普通鋼箔にAl含有めっきを施せば、基材用金属箔として要求される耐食性を満足することができるが、弾塑性変形性は満足されない。
 基材用金属箔として要求される弾塑性変形性を満足するためには、鋼層とAl含有金属層との界面に生成する上記合金層が、厚さ0.1~8μmであり、かつ、AlCuFe金属間化合物、又は、FeAl基の金属間化合物を含む必要がある。このAlCuFe金属間化合物、又は、FeAl基の金属間化合物は、上記合金層中に、面積%で、50%以上を含まれることが好ましく、90%以上を含まれることがより好ましい。
 ここで、FeAl基の金属間化合物とは、FeAl金属間化合物中に、系を構成する元素(例えば、SiやCu等のAl含有金属層を構成する元素、NiやCu等のプレめっき膜を構成する元素、あるいはC、P、Cr、Ni、Mo等の鋼層を構成する元素)が固溶した金属間化合物や、上記の系を構成する元素と、Feと、Alとから新たな組成比で形成される金属間化合物を指す。このFeAl基の金属間化合物は、特に、Cuが固溶したFeAl基の金属間化合物、又は、Niが固溶したFeAl基の金属間化合物であることが好ましい。しかし、後述するように、この合金層のビッカース硬度が、500~600Hv程度となるならば、固溶する元素は、Ni又はCuに限定されない。
 上記のAlCuFe金属間化合物、又は、FeAl基の金属間化合物を含む合金層は、普通鋼にAl含有めっきを施す際に、後述するCu又はNiプレめっき膜と、鋼層と、Al含有金属層とから、系を構成する元素が拡散し、そして、Fe及びAlと合金化することで形成される。このように、上記のAlCuFe金属間化合物、又は、FeAl基の金属間化合物を含む合金層を好適に形成させるためには、Al含有めっきを施す前に、予め、普通鋼にCu又はNiプレめっきを施すことで、鋼層上にCu又はNiのプレめっき膜を形成しておくことが好ましい。ただ、上記合金層は、例えば、鋼層及びAl含有金属層を構成する元素の拡散によっても形成することができるので、Cu又はNiプレめっき膜が必須な技術構成ではない。
 このAlCuFe金属間化合物、又は、FeAl基の金属間化合物を含む合金層は、そのビッカース硬度が、500~600Hvとなる。上述した従来の硬くて脆い合金層は、そのビッカース硬度が、900Hv程度である。このように、合金層を比較的軟質である層へ制御することにより、金属箔の弾塑性変形性を向上させることが可能となる。また、上記合金層の厚さが0.1μm未満では、軟質合金層としての上記効果が得られない。その厚さが8μm超では、系を構成する元素の拡散が進行し過ぎて、カーケンダル(Kirkendall)ボイドが生じ易くなるので、好ましくない。
 金属箔の弾塑性変形性をさらに高めるには、上記金属層の厚さを0.1~5μmとすることが好ましい。また、その厚さを3~8μmとすると、金属箔の耐食性がさらに高まるので好適である。上記金属層の厚さを3~5μmとすると、両効果が同時に得られるので、最も好ましい。
 また、上記鋼層と、上記合金層との間に、Cu又はNiプレめっき膜を2~10μmの厚さで残存させて、Cu層又はNi層とすると、鋼層と合金層との間の密着性がさらに増して、弾塑性変形性が向上するので好ましい。この結果、プレス成形や深絞り等の際に過酷な加工を行っても、上記合金層の剥離が生じ難くなる。
 鋼層と合金層との間に、上記のCu層又はNi層が存在しても、上述した合金層が有する効果は妨げられない。但し、Cu層又はNi層の厚さが2μm未満であると、鋼層と合金層との間の密着性を向上する効果が得られない。また、その厚さが10μm超では、上記効果は飽和し、そして、プレめっき膜を形成させるコストも上昇するので、好ましくない。
 また、金属箔の鋼層の厚さは、10~200μmとする。厚さが10μm未満の箔を製造するには、高精度な装置を慎重に制御する必要が生じ、高コストとなってしまう。また、厚さが200μm超では、金属箔の重量が重くなってしまい、箔を使用するメリットが充分には得られない。基材の重量を軽減するためには、厚さが10~150μmであると好ましい。また、材料の強度を高めて、基材上に重量物を載置するためには、厚さが100~200μmであると好適である。上記鋼層の厚さを100~150μmとすると、両効果が同時に得られるので、最も好ましい。
 太陽電池や有機ELの基材用金属箔は、上記した耐食性、及び、弾塑性変形性に加えて、表面平滑性も同時に満足することが重要である。
 基材用金属箔として要求される表面平滑性を満足させるためには、Al含有金属層の表面が、一定度合の平滑面である必要がある。具体的には、金属箔を圧延方向と直交する板幅方向が観察面となるように板厚方向に沿って平面切断した切断面に表れる、Al含有金属層の表面の切断線を輪郭曲線とし、輪郭曲線を近似する直線を輪郭平均直線とするとき、この輪郭平均直線からの距離が10μm超となる上記輪郭曲線の極大点が存在しない必要がある。
 ここで、上記極大点とは、上記輪郭曲線のAl含有金属層の表面側に凸である極点である。なお、輪郭曲線の極小点(上記輪郭曲線のAl含有金属層の表面上で凹状の極点)は、基材用金属箔の上に積層される太陽電池層や有機EL層に物理的な損傷を与えることはないので、存在していても問題ではない。
 また、上記輪郭曲線は、上記切断面の金属組織写真から、画像処理によりその軌跡を求めても良いし、人手によりその軌跡を求めても良い。画像処理により輪郭曲線を求めた場合、同様に、画像処理により位相補償型フィルタを適用して、輪郭平均直線を求めれば良い。人手により輪郭曲線を求めた場合、各極点の座標から最小二乗法により輪郭平均直線を求めることができる。
 Al含有金属層表面に10μm超であるような突起状欠陥が存在すると、基材用金属箔の上に積層される太陽電池層や有機EL層に物理的な損傷を与える可能性がある。例えば、太陽電池では、基材上の太陽電池層が上記の損傷を受けると、その領域の光電変換効率が低下する恐れがある。
 また、充分な光電変換効率を得るためには、輪郭平均直線からの距離が5μm超である極大点が存在しないことが好ましい。さらに好ましくは1μm超である極大点が存在しないことである。
 上記Al含有金属層表面は、光沢度が銀鏡比75%以上であることが好ましい。例えば、太陽電池では、入射時に光電変換に寄与せず、基材である金属箔まで到達する太陽光が存在する。この透過光が、金属箔によって反射されることで、再度、光電変換に供用される。光沢度が銀鏡比75%以上であると、高効率で透過光が再度、光電変換に供用されるので好ましい。より好ましくは、光沢度が銀鏡比80%以上である。
 上記した金属箔の表面平滑性及び光沢度は、上記第2圧延処理時に鏡面状態の圧延ロールを用いること、又は、第2圧延処理後の金属箔にスキンパス圧延を施すことで達成される。本発明の実施形態に係る製造方法については、詳しく後述する。
 上記Al含有金属層の表面に、さらに、厚さ0.01~0.08μmのAlN層又は厚さ0.01~50μmのAl層を有することが好ましい。鋼層から太陽電池層や有機EL層等にFe原子が拡散すると、これらの層の機能を損なう恐れがある。例えば、鋼層から太陽電池のCIGS層やCIS層等にFe原子が拡散すると、バンドギャップを狭めることで、太陽電池の変換効率が低下するという不具合が生じる。上記AlN層又は上記Al層は、バリア膜として作用することで、鋼層を構成するFe原子が拡散して、CIGS層やCIS層等にまで到達することを防ぐことができる。但し、これらの層の厚さが0.01μm未満では、上述の効果が得られない。厚さ0.08μm超のAlN層や厚さ50μm超のAl層を生成することは、生産コストが上昇するので、好ましくない。Al層の膜厚が厚すぎるとアルミニウムから陽極酸化膜が剥離するため、50μm以下が適当である。より好ましくは、15μm以下である。アルミニウムの熱伸縮抑制および絶縁性の観点から、0.08μm以下であることが最も好ましい。また、AlN層又はAl層は自然に形成される層では上述の拡散防止効果は得られないので、意図的に緻密に形成させる必要がある。
 上記AlN層及びAl層の代わりに、上記Al含有金属層の表面に、厚さ0.1~8μmのCr層、又は、厚さ0.1~8μmのNi層を有してもよい。Cr層又はNi層を有することで、AlN層及びAl層と同様の効果を得ることができる。Cr層又はNi層の厚さが0.1μm未満では、上述の効果が得られない。厚さが8μm超では、生産コストが上昇する。
 上記AlN層及びAl層の代わりに、上記Al含有金属層の表面に、厚さ0.001~8μmの三次元網目構造状に発達したシロキサン結合を主骨格とした無機骨格を有し、この骨格の架橋酸素の少なくとも1個が有機基および/または水素原子で置換されたゾルゲル層を有してもよい。ゾルゲル層を有することで、AlN層及びAl層と同様の効果を得ることができる。より好ましくは、0.1μm以上の厚さとすると上述の効果がより増すので良い。ゾルゲル層の厚さが0.001μm未満では、上述の効果が得られない。厚さが8μm超では、生産コストが上昇する。
 上記AlN層及びAl層の代わりに、上記Al含有金属層の表面に、厚さ0.1~8μmのポリオレフィン、ポリエステル、ポリアミド、ポリイミドから選ばれるプラスティックフィルムなどから構成されるラミネート層を有してもよい。また、ラミネート層の代わりにポリイミドから成る耐熱樹脂も使用できる。ラミネート層又は耐熱樹脂を有することで、AlN層及びAl層と同様の効果を得ることができる。ラミネート層の厚さが0.1μm未満では、上述の効果が得られない。厚さが8μm超では、生産コストが上昇する。
 上記の構造とすることで、例えばCIGSの太陽電池セルが直列に接続されたモジュール回路において、500V以上の耐電圧が確保でき、絶縁破壊を回避できる。また、絶縁破壊に至らずとも、漏れ電流が存在すると太陽電池モジュールの光電変換効率低下の要因となるが、上記の構造とすることでそのような漏れを防止できる。
 上述の各層の厚さ及び組成を測定する方法は、スパッタ法により金属箔の表面から膜厚方向に掘り下げながら分析する手法や、金属箔の膜厚方向の切断面にて線分析又は点分析を行う手法が有効である。前者手法では、測定深さが大きくなると測定時間が掛かり過ぎるが、後者手法では、断面全体での濃度分布の測定や再現性の確認等を行うのが比較的容易である。線分析又は点分析で、分析の精度を向上させたい場合には、線分析にて分析間隔を狭くして分析したり、点分析にて分析領域を拡大して分析したりすることも有効である。各層の同定は、標準試料(即ち濃度100%)の値をあらかじめ測定しておき、上記組成分析でその濃度が50%以上となる領域を判別することで行う。これらの分析に用いる分析装置として、EPMA(電子線マイクロ分析、Electron Probe Micro Analysis)、EDX(エネルギー分散型X線分析、Energy Dispersive X-Ray Analysis)、AES(オージェ電子分光法、Auger Electron Spectroscopy)、TEM(透過型電子顕微鏡、Transmission Electron Microscope)等が利用できる。なお、各層厚さが上述した数値限定を満たすかどうかの判定は、各層の平均厚さによって評価される。局所的に各層厚さが数値限定を満たさない場合があったとしても、上記判定に考慮しない。
 金属箔を上述した技術構成とすることで、基材用金属箔として要求される耐食性、表面平滑性、及び、弾塑性変形性を同時に満足することが可能となり、太陽電池や有機ELの基材用として使用することが可能となる。
基材上に形成する光電変換層としては、CIGS、CIS、CdTe等の化合物系太陽電池、アモルファスSi等の薄膜系太陽電池、それらを複数層積層させたハイブリッド型太陽電池が使用でき、または、基材上には有機EL照明回路を形成することができる。特に、上記のCIGS、CISの主成分は特に制限されず、少なくとも1種のカルコパイライト構造の化合物半導体であることが好ましく、また、光電変換層の主成分は、Ib族元素とIIIb族元素とVIb族元素とを含む少なくとも1種の化合物半導体であることが好ましい。さらに、光吸収率が高く、高い光電変換効率が得られることから、上記光電変換層の主成分は、Cu及びAg等より選択された少なくとも1種のIb族元素と、Al、Ga及びIn等より選択された少なくとも1種のIIIb族元素と、S、Se、及びTe等から選択された少なくとも1種のVIb族元素とを含む少なくとも1種の化合物半導体であることが好ましい。具体的には、上記化合物半導体としては、CuAlS、CuGaS、CuInS、CuAlSe、CuGaSe、CuInSe(CIS)、AgAlS、AgGaS、AgInS、AgAlSe、AgGaSe、AgInSe、AgAlTe、AgGaTe、AgInTe、Cu(In1-xGa)Se(CIGS)、Cu(In1-xAl)Se、Cu(In1-xGa)(S,Se)、Ag(In1-xGa)Se及びAg(In1-xGa)(S,Se)等が使用できる。
 次に、本発明の実施形態に係る基材用金属箔の製造方法について詳細に説明する。
 任意成分の普通鋼(炭素鋼)板を、第1圧延処理として、200~500μmの厚さになるまで圧延を行う。この圧延方法は、熱間及び冷間のどちらであっても良い。鋼鈑の厚さが200μm未満では、薄すぎて後工程時のハンドリングが困難である。また、鋼鈑の厚さが500μm超では、厚すぎて後工程に負荷がかかりすぎる。
 後工程での生産性を考慮すると、第1圧延処理として、250~350μmの厚さになるまで圧延を行うことが好ましい。
 上記第1圧延処理後の鋼鈑に対して、Cu又はNiプレめっきを施すプレめっき処理、Al含有めっきを施すめっき処理、及び、第2圧延処理を行う。これらの処理の順番は、(1)プレめっき処理、めっき処理、そして、第2圧延処理、(2)プレめっき処理、第2圧延処理、そして、めっき処理、(3)第2圧延処理、プレめっき処理、そして、めっき処理、の何れでも良い。
 上記プレめっき処理として、Cu又はNiのめっき浴を用いて、電解めっき法や無電解めっき法を行う。Cuプレめっき膜、及び、Niプレめっき膜共に、プレめっき膜の初期厚さを0.05~4μmとすると、Al含有めっきの際に鋼層とAl含有金属層との間に形成される合金層の厚さが0.1~8μmとなる。例えば、Al含有めっきの際に形成される合金層の厚さを上記した最適な3~5μmに制御したい場合には、プレめっき膜の初期厚さを1.5~2.5μmに制御すればよい。
 また、鋼層と合金層との間に、Cu又はNiプレめっき膜を残存させて、Cu層又はNi層を配するためには、プレめっき膜の初期厚さを、4μmを基準として、残存させたい厚さの分だけ厚めに成膜しておけばよい。4μm以下の厚さのCu又はNiプレめっき膜は、Al含有めっきの際に形成される合金層に拡散して消失する。4μmを超えて成膜されたプレめっき膜は、その膜厚から4μmを引いた厚さだけ残存して、Cu層又はNi層となる。例えば、鋼層と合金層との間に、厚さ5μmのCu層又はNi層を存在させるには、プレめっき膜の初期厚さを4+5=9μmの厚さとしておけばよい。
 プレめっき処理を行わずに、上記合金層を形成させたい場合には、適宜、鋼層及びAl含有金属層の成分組成を調整すればよい。
 上記めっき処理として、60~100質量%のAl、0~15質量%のSi、及び、0~40質量%のCuを含有させためっき浴を用いてめっきする。このめっき方法として、電解めっき法及び無電解めっき法を用いることができる。0~15質量%のSi、及び、0~40質量%のCuを含有させることで、めっき浴の融点を低減させることができる。よって、上記組成のめっき浴とする。
 さらに、めっき浴の融点を低下させて、めっき工程を簡便とするためには、68.2質量%Al-4.7質量%Si-27.1質量%Cu、又は、68質量%Al-32質量%Cuという組成から各成分について±5質量%以内の範囲の組成であるAl含有めっき浴を用いることが好ましい。
 上記第2圧延処理として、10~250μmの厚さになるように、圧延を行う。この圧延条件は、通常の圧延条件でよい。金属箔の厚さが10μm未満では、基材用金属箔として薄すぎて、強度が不足する。また、金属箔の厚さが250μm超では、基材用金属箔として厚すぎて、重たすぎる。
 加えて、金属箔のAl含有金属層表面の突起状欠陥、及び、Al含有金属層表面の光沢度を制御するためには、この第2圧延処理で、上記圧延機に表面粗さがRa200μm以下の鏡面状態である圧延ロールを用いることが好ましい。上記圧延ロールの表面粗さをRa200μm以下とする理由は、Al含有金属層表面を好適に制御するためである。
 さらに、Al含有金属層表面の突起状欠陥、及び、Al含有金属層表面の光沢度を制御するために、必要に応じて、上記第2圧延処理後の金属箔を、スキンパス圧延処理として、ブライト仕上げ圧延を行うことが好ましい。このスキンパス圧延処理では、表面粗さがRa1μm以下の鏡面状態である圧延ロールを用いることが好ましい。上記圧延ロールの表面粗さをRa1μm以下とする理由は、Al含有金属層表面を好適に制御するためである。
 第2圧延処理又はスキンパス圧延処理後の上記金属箔のAl含有金属層の厚さは、0.1~30μmであることが好ましい。0.1μm未満では、充分な耐食効果は得られず、30μm超では、Alを大量にめっきする必要があり、生産コストが高くなるためである。好ましくは、上記Al含有金属層の厚さが、1~30μmである。より好ましくは、上記Al含有金属層の厚さが、3~30μmである。最も好ましくは、上記Al含有金属層の厚さが、8~30μmである。
 また必要に応じて、第2圧延処理又はスキンパス圧延処理後の上記金属箔のAl含有金属層表面に、AlN層を緻密な状態で形成させるため、加熱処理を行うことが好ましい。これは、上記金属箔を、アンモニア又はヒドラジンを10体積%±2体積%含有する不活性ガス(アルゴン、窒素、窒素+水素等)中に配置して、500~600℃の温度範囲で、1~10時間の加熱を行う処理である。
 同様に、第2圧延処理又はスキンパス圧延処理後の上記金属箔のAl含有金属層表面に、Al層を緻密な状態で形成させるため、陽極酸化処理として、陽極酸化法によりAl含有金属層表面を酸化させることが好ましい。処理条件は、従来から知られている硫酸アルマイト、しゅう酸アルマイト、又は、クロム酸アルマイト等が利用できるが、中でも硫酸アルマイトがもっとも経済的で工業的に適している。但し、上記金属箔が薄く、陽極酸化処理中に上記金属箔が変形する危険性があるため、陽極酸化処理が終了後、すみやかに水冷するのが上記金属箔の平たん度を維持する上で重要である。
 また、Al含有金属層の表面に、Cr層又はNi層を形成させるためには、スパッタ法や、蒸着法で比較的簡便に成膜することができる。しかし、緻密で均質なCr層又はNi層を形成させるには、電解めっき法を用いることが好ましい。よって、第2圧延処理又はスキンパス圧延処理後の上記金属箔のAl含有金属層表面に、Cr層又はNi層を緻密な状態で形成させるため、電解めっき処理として、めっきを施すことが好ましい。
 同様に、第2圧延処理又はスキンパス圧延処理後の上記金属箔のAl含有金属層表面に、ゾルゲル層を形成させるため、ゾルゲル層の成膜処理を行うことが好ましい。まず、最終的な焼き付け工程で得られる被膜中の水素濃度[H](mol/l)とシリコン濃度[Si](mol/l)との比が、0.1≦[H]/[Si]≦10となるようなゾルを調製する。次いで、調製したゾルを上記金属箔のAl含有金属層表面に塗布し、乾燥する。最後に乾燥した後に焼付けを行うことによって、無機有機ハイブリッド膜被覆を備える金属箔を製造することができる。
 同様に、第2圧延処理又はスキンパス圧延処理後の上記金属箔のAl含有金属層表面に、ラミネート層を形成させるため、ラミネート層の成膜処理を行うことが好ましい。ポリオレフィン、ポリエステル、ポリアミド、ポリイミドから選ばれるプラスティックフィルムなどから構成されるラミネートを用いてナイロン系接着剤で上記金属箔のAl含有金属層表面と接するようにした後に加熱し、1MPa程度の圧力で熱圧着する熱ラミネート法で成膜することができる。
 実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
 [実験例1]
 実験例1では、第一圧延処理として、極低炭素鋼を熱間及び冷間で圧延し、板厚300μmの圧延鋼鈑とした。プレめっき処理として、この圧延鋼鈑上に、電解めっき法により、純Cu又は純Niプレめっき膜を形成した。電解Niめっきのめっき浴としてはワット浴を、電解Cuめっきのめっき浴としては硫酸銅浴を用いた。めっき処理として、プレめっき処理後の圧延鋼鈑を、Al含有金属中に20秒間浸漬することで溶融Alめっきした。第2圧延処理として、めっき処理後の圧延鋼鈑を、各パスあたり10~20%の圧下率で圧延することで金属箔を製造した。一部の金属箔は必要に応じて、第二圧延処理後にスキンパス圧延処理を実施した。上記のプレめっき膜及びAl含有金属層の厚みは、箔化後の各層が表1に記載の厚みになる様、あらかじめ計算して決定した。
 上記製造した金属箔の、表面状態や、各構成層の状態を、金属箔の圧延方向と直交する板幅方向が観察面となるように板厚方向に沿って平面切断した切断面の金属組織を観察することで確認した。金属組織観察は、観察視野が板幅方向で20μm以内となる倍率で行い、板幅方向の合計視野が300μm以上となるように、少なくとも15視野以上を観察した。輪郭曲線及び輪郭平均直線は、画像解析により求めた。各構成層は、上記切断面をエネルギー分散型X線分析(EDX)することで同定した。合金層の硬度は、上記切断面をビッカース硬度計により測定した。これらの結果を表1に示す。表中、下線で示す数値は、本発明の範囲外であることを示す。切断面観察の際、ボイドと呼ばれる空隙が見られれば、表1にボイド「有」と示した。
 また、上記製造した金属箔を用いて、耐食試験、180度密着曲げ試験、及び、光沢度測定試験を行った。同様に、これらの結果を表1に示す。表中、下線で示す数値は、本発明の範囲外であることを示す。
 耐食試験は、塩水噴霧試験(SST)によって評価した。35℃に保持された5%NaCl水を噴霧し、400時間以上目視で腐食を確認できない場合をVG(Very Good)、300時間以上をG(Good)、100時間以上をNG(Not Good)、100時間未満をB(Bad)とした。そして、NGとBとを、不合格とした。
 更に過酷な耐食性試験として、150mm×70mmに切り出した金属箔に、50℃に保持された10%NaCl水を噴霧した。600時間経過しても金属箔表面が腐食していなければもっとも耐食性が良好であるとしてEG(Extremely Good)とした。500時間経過しても金属箔表面が腐食していなければGG(Greatly Good)とした。400時間経過しても金属箔表面が腐食していなければVG(Very Good)とした。300時間経過しても金属箔表面が腐食していなければG(Good)とした。100時間経過しても金属箔表面が腐食していなければNG(Not Good)とした。100時間未満で金属箔表面が腐食すればB(Bad)とした。そして、NGとBとを、不合格とした。
 180度密着曲げ試験は、金属箔に、内側半径が零で、曲げ角度が180°となる180度密着曲げ加工を繰り返して実施し、皮膜の剥離または亀裂が生じる加工回数を調査することで実施した。皮膜の剥離または亀裂の観察は、180度密着曲げ加工の1サイクル毎に、金属箔の曲げ外周部を光学顕微鏡で観察することで行った。皮膜の剥離または亀裂が、光学顕微鏡で観察された時点の加工回数を皮膜破壊回数とした。皮膜破壊回数は、3回以上で、弾塑性変形性が良好であると判断した。
 光沢度測定試験は、光沢度計を用いて、金属箔に、入射角60°で光を入射させ、銀鏡面の反射率に対する比率を測定することで実施した。光沢度は、75%未満を(NotGood)、75%以上80%未満をG(Good)、80以上90%未満をVG(Very Good)、90%以上をGG(Greatly Good)として評価した。そして、NGを不合格とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~31は、鋼層、Cu層又はNi層、合金層、及び、Al含有金属層の状態が、いずれも目標を達成しており、その結果、優れた耐食性、弾塑性変形性、表面平滑性、光沢度を示している。
 これに対し、比較例1~4は、鋼層、Cu層又はNi層、合金層、及び、Al含有金属層の状態のいずれかが目標を達成しておらず、その結果、耐食性、弾塑性変形性、表面平滑性、光沢度のいずれかが不十分となっている。
 比較例1は、合金層を有さないため、耐食性、180度密着曲げ性が不十分となった例である。
 比較例2は、合金層の厚さが8μm超であるため、切断面にボイドが観察され、180度密着曲げ性が不十分となった例である。
 比較例3は、合金層が従来の硬くて脆い合金層であるため、合金層のビッカース硬度が900Hvとなり、180度密着曲げ性が不十分となった例である。
 比較例4は、輪郭平均直線からの距離が0.5μm超となる極大点が存在した例である。光沢度も不十分となった。
 [実験例2]
 実験例2では、実験例1と同様に作製した金属箔に、AlN層、Al層、Cr層、Ni層、ゾルゲル層、及び、ラミネート層を形成させ、その膜厚を変化させることでCIGS光電変換効率を調べた。CIGS光電変換効率は、8%未満をNG(NotGood)、8%以上10%未満をG(Good)、10以上12%未満をVG(Very Good)、12%以上をGG(Greatly Good)として評価した。そして、NGを不合格とした。
 AlN層は、アンモニア含有する不活性ガスを用いた加熱処理により作製した。Al層は硫酸アルマイト処理により作製した。Cr層およびNi層はスパッタ法により作製した。
 ゾルゲル層の形成では、ゾル調製の出発原料として10モルのメチルトリエトキシシランと10モルのテトラエトキシシランの混合物を用い、この混合物に20モルのエタノールを加えて良く撹拌した。その後、撹拌しながら、2モルの酢酸と100モルの水を混合した酢酸水溶液を滴下し加水分解を行った。この様にして得たゾルに100モルのエタノールを加えて最終的なゾルを得た。ディップコーティング法によってめっき普通鋼箔の両面にこのゾルを塗布した後、空気中で100℃、1分間の乾燥を行った。その後、窒素雰囲気中で昇温速度10℃/分として室温から400℃まで昇温し、400℃で30分間焼き付けてゾルゲル層を得た。
 ラミネート層の形成では、ナイロン系接着剤をクレゾールとキシレンの質量比70:30の混合溶剤に15質量%の濃度で溶解し、その溶解物を樹脂に塗布した後、その樹脂を300℃に加熱されためっき普通鋼箔に1MPaの圧力で熱圧着することで熱ラミネートした。表2にその結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例32~63は、いずれも優れた光電変換効率を示している。特に、AlN層、Al層、Cr層、Ni層、ゾルゲル層、及び、ラミネート層の厚さが最適に制御されている実施例は、さらに優れた光電変換効率を示している。
 実施例33~35及び実施例53~55は、AlN層の厚さが最適に制御されているため、さらに優れた光電変換効率を示す。
 実施例37~39は、Cr層の厚さが最適に制御されているため、さらに優れた光電変換効率を示す。
 実施例41~43は、Ni層の厚さが最適に制御されているため、さらに優れた光電変換効率を示す。
 実施例45~47及び実施例49~51は、Al層の厚さが最適に制御されているため、さらに優れた光電変換効率を示す。
 実施例57~59は、ゾルゲル層の厚さが最適に制御されているため、さらに優れた光電変換効率を示す。
 実施例61~63は、ラミネート層の厚さが最適に制御されているため、さらに優れた光電変換効率を示す。
 本発明の上記態様によれば、ガラス基材と比較して、割れにくく、そして、薄膜化に適しており、加えて、基材用金属箔として要求される耐食性、表面平滑性、及び、弾塑性変形性を同時に満足する安価な基材用金属箔の提供が可能となる。

Claims (6)

  1.  厚さが10~200μmである鋼層と、前記鋼層上に生成したFeとAlとを含有する合金層と、前記合金層上に配されたAl含有金属層と、を備える金属箔であって:
     前記金属箔を圧延方向と直交する板幅方向が観察面となるように板厚方向に沿って平面切断した切断面に表れる、前記Al含有金属層の表面の切断線を輪郭曲線とし、前記輪郭曲線を近似する直線を輪郭平均直線とするとき、前記輪郭平均直線からの距離が10μm超となる前記輪郭曲線の前記Al含有金属層の表面側に凸である極大点が存在せず;
     前記合金層が、厚さ0.1~8μmであり、かつ、AlCuFe金属間化合物、又は、FeAl基の金属間化合物を含む;
    ことを特徴とする太陽電池及び有機エレクトロルミネセンスの基材用金属箔。
  2.  前記鋼層と前記合金層との間に、さらに、厚さ2~10μmのCu層、又は、厚さ2~10μmのNi層を有する
    ことを特徴とする請求項1に記載の金属箔。
  3.  前記Al含有金属層の厚さが0.1~30μmである
    ことを特徴とする請求項1に記載の金属箔。
  4.  前記Al含有金属層上に、さらに、厚さ0.01~0.08μmのAlN層、又は、厚さ0.01~50μmのAl層を有する
    ことを特徴とする請求項1に記載の金属箔。
  5.  前記Al含有金属層上に、さらに、厚さ0.1~8μmのCr層、又は、厚さ0.1~8μmのNi層を有する
    ことを特徴とする請求項1に記載の金属箔。
  6.  前記Al含有金属層上に、さらに、ゾルゲル層、及び、ラミネート層から選択される少なくとも1種の皮膜を有する
    ことを特徴とする請求項1に記載の金属箔。
PCT/JP2011/076400 2010-11-17 2011-11-16 基材用金属箔 WO2012067146A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180054727.2A CN103210112B (zh) 2010-11-17 2011-11-16 基材用金属箔
US13/885,278 US9296180B2 (en) 2010-11-17 2011-11-16 Metal foil for base material
JP2012508683A JP5816615B2 (ja) 2010-11-17 2011-11-16 基材用金属箔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010257322 2010-11-17
JP2010-257322 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012067146A1 true WO2012067146A1 (ja) 2012-05-24

Family

ID=46084069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076400 WO2012067146A1 (ja) 2010-11-17 2011-11-16 基材用金属箔

Country Status (5)

Country Link
US (1) US9296180B2 (ja)
JP (1) JP5816615B2 (ja)
CN (1) CN103210112B (ja)
TW (1) TWI558478B (ja)
WO (1) WO2012067146A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122075A (ja) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp 溶融Al系めっき鋼板とその製造方法
WO2014080765A1 (ja) * 2012-11-26 2014-05-30 東洋鋼鈑株式会社 フレキシブルデバイス用基板およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2971242B1 (en) * 2013-03-14 2020-05-13 United Technologies Corporation Corrosion protection material and method for protecting aluminum coatings
CN104073856A (zh) * 2014-06-26 2014-10-01 深圳惠科精密工业有限公司 一种金属件的氧化方法
CN114666978A (zh) * 2016-12-27 2022-06-24 昭和电工材料株式会社 带金属箔的伸缩性构件
CN108501471B (zh) * 2017-03-29 2019-08-06 东洋钢钣株式会社 电子设备用轧制接合体及电子设备用壳体
CN108355658B (zh) * 2018-02-09 2019-06-14 深圳市中金岭南科技有限公司 一种Fe合金/Al2O3催化剂载体材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281861A (ja) * 1985-06-04 1986-12-12 ア−ムコ、インコ−ポレ−テツド 耐酸化性鉄質母材箔とその製法
JPS6428349A (en) * 1987-07-24 1989-01-30 Nippon Steel Corp Manufacture of aluminum-plated steel sheet and steel foil using stainless steel as base material
JPH01150404A (ja) * 1987-12-07 1989-06-13 Nippon Steel Corp アルミニウムめっき不銹鋼箔の圧延方法
JP2002093573A (ja) * 2000-09-14 2002-03-29 Nisshin Steel Co Ltd 有機el素子用絶縁性封止部材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932700B2 (ja) * 1991-01-08 1999-08-09 大同特殊鋼株式会社 刃物材とその製造方法
AU696546B2 (en) 1995-02-24 1998-09-10 Nisshin Steel Company, Ltd. Hot-dip aluminized sheet, process for producing the sheet, and alloy layer control device
DE69602226T2 (de) * 1995-05-19 1999-08-19 Matsushita Electric Works Ltd Eisenlegierung mit Fe-Al Diffusionsschicht und Verfahren zu ihrer Herstellung
CN1209481A (zh) 1998-08-19 1999-03-03 重庆菲尔达技术公司 无废液排放的制纸浆方法
TWI237334B (en) * 2002-04-05 2005-08-01 Nippon Steel Corp A gold bonding wire for a semiconductor device and a method for producing the same
WO2004046406A1 (ja) 2002-11-20 2004-06-03 Nippon Steel Corporation 高Al含有ステンレス鋼板及び複層板、およびそれらの製造方法並びに、それらを用いてなるハニカム体及びその製造方法
CN1527071A (zh) 2003-09-23 2004-09-08 甘国工 有增强附着力的金属保护层的高反射镜及其制造方法
JP2006080370A (ja) 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd 太陽電池
JP2006295035A (ja) 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd 絶縁層が形成された太陽電池用基板およびその製造方法、ならびにそれを用いた太陽電池およびその製造方法
WO2010082678A1 (ja) 2009-01-16 2010-07-22 新日本製鐵株式会社 耐食性に優れる溶融Zn-Al-Mg-Si-Cr合金めっき鋼材
CN101817128B (zh) 2009-04-21 2012-01-11 兰州理工大学 一种低熔点铝基钎料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281861A (ja) * 1985-06-04 1986-12-12 ア−ムコ、インコ−ポレ−テツド 耐酸化性鉄質母材箔とその製法
JPS6428349A (en) * 1987-07-24 1989-01-30 Nippon Steel Corp Manufacture of aluminum-plated steel sheet and steel foil using stainless steel as base material
JPH01150404A (ja) * 1987-12-07 1989-06-13 Nippon Steel Corp アルミニウムめっき不銹鋼箔の圧延方法
JP2002093573A (ja) * 2000-09-14 2002-03-29 Nisshin Steel Co Ltd 有機el素子用絶縁性封止部材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122075A (ja) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp 溶融Al系めっき鋼板とその製造方法
WO2014080765A1 (ja) * 2012-11-26 2014-05-30 東洋鋼鈑株式会社 フレキシブルデバイス用基板およびその製造方法
JP2014107053A (ja) * 2012-11-26 2014-06-09 Toyo Kohan Co Ltd フレキシブルデバイス用基板およびその製造方法
CN104798440A (zh) * 2012-11-26 2015-07-22 东洋钢钣株式会社 挠性器件用基板及其制造方法

Also Published As

Publication number Publication date
CN103210112B (zh) 2015-10-21
CN103210112A (zh) 2013-07-17
JPWO2012067146A1 (ja) 2014-05-12
TW201240746A (en) 2012-10-16
US20130236737A1 (en) 2013-09-12
US9296180B2 (en) 2016-03-29
JP5816615B2 (ja) 2015-11-18
TWI558478B (zh) 2016-11-21

Similar Documents

Publication Publication Date Title
JP5816615B2 (ja) 基材用金属箔
JP6529553B2 (ja) ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法
US7989077B2 (en) Metal strip product
KR20200075778A (ko) 합금 코팅강판 및 그 제조방법
EP2925089B1 (en) Substrate for flexible devices and method for producing same
JP5932132B2 (ja) 鋼アルミニウム複合箔
TW201114588A (en) Copper foil for printed wiring board
JP5816617B2 (ja) 基材用金属箔及びその製造方法
JP5858698B2 (ja) 太陽電池用インターコネクタ材料、太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セル
WO2015022821A1 (ja) 全反射特性と耐食性に優れたAl被覆鋼板およびその製造法
KR20150013919A (ko) 구리층을 갖는 철계부스바 및 상기 철계부스바 제조방법
JP5916425B2 (ja) Cis太陽電池およびその製造方法
JP4054689B2 (ja) 表面外観性に優れた塗装溶融Al−Zn系合金めっき鋼板の製造方法
WO2013168666A1 (ja) 太陽電池用インターコネクタ材料、太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セル
KR20230076427A (ko) 블랙 버스바 및 그 제조방법
JP2000040837A (ja) 非晶質シリコン薄膜型太陽電池用絶縁基板の製造方法
JP2016113702A (ja) 陽極酸化処理用Al被覆鋼板およびその製造法
JP2015111621A (ja) 半導体素子形成用基板および半導体素子形成用基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012508683

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13885278

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842169

Country of ref document: EP

Kind code of ref document: A1