TW201114588A - Copper foil for printed wiring board - Google Patents

Copper foil for printed wiring board Download PDF

Info

Publication number
TW201114588A
TW201114588A TW099121184A TW99121184A TW201114588A TW 201114588 A TW201114588 A TW 201114588A TW 099121184 A TW099121184 A TW 099121184A TW 99121184 A TW99121184 A TW 99121184A TW 201114588 A TW201114588 A TW 201114588A
Authority
TW
Taiwan
Prior art keywords
atomic concentration
copper foil
printed wiring
wiring board
layer
Prior art date
Application number
TW099121184A
Other languages
Chinese (zh)
Other versions
TWI422484B (en
Inventor
Hideki Furusawa
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Publication of TW201114588A publication Critical patent/TW201114588A/en
Application granted granted Critical
Publication of TWI422484B publication Critical patent/TWI422484B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a copper foil for printed wiring boards, which has both excellent adhesion to an insulating substrate and excellent etching properties and is suitable for the formation of fine pitches. The copper foil for printed wiring boards comprises a copper foil base material and a coating layer that covers at least a part of the surface of the copper foil base material. The coating layer is composed of an intermediate layer comprising a metal alone or an alloy and a Cr layer laminated on the surface of the copper foil base material in this order. The coating layer contains Cr in an amount of 18 to 180 [μ]g/dm2, has a value calculated in accordance with the following formula: ∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx + ∫k(x)dx) of 10% or less and a value calculated in accordance with the following formula: ∫f2(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx + ∫k(x)dx) of 20% or more in a zone [0, 1.0], and also has a value calculated in accordance with the following formula: ?f1(x)dx/∫f2(x)dx of 0.1 to 1.0 inclusive in a zone [1.0, 2.5] wherein f1(x) represents the atomic concentration (%) of metal chromium, f2(x) represents the atomic concentration (%) of chromium oxide, f(x) represents the total atomic concentration (%) of chromium (wherein f(x) = f1(x)+ f2(x), g(x) represents the atomic concentration (%) of nickel, h(x) represents the atomic concentration (%) of copper, i(x) represents the atomic concentration (%) of oxygen, j(x) represents the atomic concentration (%) of carbon, and k(x) represents the total atomic concentration of other metals as measured by means of the depth direction analysis from the surface by XPS in the direction of depth (x: expressed in "nm")).

Description

201114588 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種印刷配線板用銅箔,特別是關於 種可撓性印刷配線板用銅箔。 【先前技術】 印刷配線板於這半個世紀以來發展快速,如今幾乎所 有電子設備中均有使用。隨著近年來電子設備之小型化、 :性能化需求之增大,搭載零件之高密度構裝化及訊號之 高頻化不斷發展,對於印刷配線板亦要求導激圖案之微細 化(細間距化)及高頻對應等。 印刷配線板通常係經過如下步驟來製造:將絕緣基板 接著於mi,製成覆銅積層板後,藉由#刻將導體圖案形 成於銅η®。因此,對於印刷配線板用銅落,係要求與絕 緣基板之接著性及蝕刻性。 提高與絕緣基板之接著性的技術,通常係實施稱為粗 化處理之於㈣表面形成凹凸的表面處理1如具有下述 方法:於電解銅箔之Μ面(袓® ),估田_ (才面)使用硫酸鋼酸性鑛浴, 電沉積複數個呈樹枝狀哎+姑· &々#工~ J仪狀次小球狀之銅而形成微細之凹凸, 並利用定準效應來改盖拉篓,卜4 & ,,丨上 不又〇接者性。於粗化處理後,為了進一 步提高接著特性,通常逸右·饮缺# 』、 進仃鉻馱處理或利用矽烷偶合劑之 處理等。 成錫 又,亦已知有於未實施粗化處 、鉻、銅、鐵、鈷 '鋅、鎳等 理之平滑的銅箔表面形 之金屬層或合金層的方 201114588 法。 接著於銅箔之絕緣基板大多係使用聚醯亞胺,因此通 常使用將與聚醯亞胺之接著強度較高之鉻被覆於銅箔表面 的方法。 又,研究、開發有如下技術:作為對平滑之銅箔表面 的表面處理,形成防止Cu原子向聚醯亞胺層擴散之第丨金 屬層,並於該第1金屬層上,以蝕刻性良好之程度較薄地 形成與絕緣基板之接著性良好的Cr層來作為第2金屬層, 藉此同時獲得與絕緣基板之良好接著性及良好蝕刻性。其 原因在於,若Cu原子或Cu氧化物向聚醯亞胺側擴散,則 接著界面附近之聚醯亞胺層會變得脆弱,而成為剝離之起 點。 於銅箔表面被覆鉻層之方法,具有濕式處理方法及乾 式處理方法等。其中’以濕式處理將鉻層被覆於表面之方 去,具有:於銅箔表面形成Zn層或Zn合金層,並且於該 層上形成鉻酸鹽層之方法;以及於銅箔表面形成不含以之 層,然後於該層上不形成鉻酸鹽層之方法。前者之例揭示 於專利文獻1 ’後者之例則揭示於專利文獻2 ^於Zn層或 zn合金層上形成鉻酸鹽層時,在Zn層或zn合金層中之h 與冷液中之Cr6+之間會發生取代反應,而析出^之氮氧化 物該方法中,Cr係以氫氧化物之狀態析出。因此,析出[Technical Field] The present invention relates to a copper foil for a printed wiring board, and more particularly to a copper foil for a flexible printed wiring board. [Prior Art] Printed wiring boards have developed rapidly in this half century and are now used in almost all electronic devices. With the recent miniaturization of electronic equipment and the increasing demand for performance, the high-density mounting of mounted components and the high-frequency of signals have been increasing, and the miniaturization of the guide pattern is required for printed wiring boards (fine pitch). And high frequency correspondence. The printed wiring board is usually manufactured by forming an insulating substrate next to mi to form a copper clad laminate, and then patterning the conductor pattern into copper η®. Therefore, the copper drop for the printed wiring board is required to have adhesion to the insulating substrate and etching property. The technique for improving the adhesion to the insulating substrate is usually performed by a surface treatment 1 called (b) surface-forming unevenness, which is referred to as a roughening treatment, as in the following method: in the surface of the electrolytic copper foil (袓®), estimated _ (才面) using a sulfuric acid steel acid mine bath, electrodepositing a plurality of dendritic 哎 + 姑 · & 々 #工~ J instrument-like small spherical copper to form fine bumps, and use the calibration effect to change the cover Pulling, Bu 4 & ,, is not yet connected. After the roughening treatment, in order to further improve the subsequent characteristics, it is usually treated with a right-handed drink, a chrome-tantalum treatment, or a treatment with a decane coupling agent. In addition, it is also known that the metal layer or the alloy layer of the surface of the smooth copper foil which is not roughened, chromium, copper, iron, cobalt 'zinc, nickel, etc. is known. Then, since the polyimide substrate of the copper foil is often made of polyimine, a method of coating the surface of the copper foil with chromium having a high bonding strength with polyimine is usually used. Further, research and development have been made as follows: as a surface treatment for the surface of a smooth copper foil, a second metal layer for preventing diffusion of Cu atoms into the polyimide layer is formed, and the etching property is good on the first metal layer. As a second metal layer, a Cr layer having good adhesion to an insulating substrate is formed to a small extent, and good adhesion to the insulating substrate and good etching property are simultaneously obtained. The reason for this is that if the Cu atom or the Cu oxide diffuses toward the polyimine side, the polyimide layer in the vicinity of the interface becomes weak and becomes the starting point of the peeling. The method of coating the surface of the copper foil with a chromium layer has a wet processing method, a dry processing method, and the like. Wherein 'the chromium layer is coated on the surface by wet treatment, having: forming a Zn layer or a Zn alloy layer on the surface of the copper foil, and forming a chromate layer on the layer; and forming a surface on the copper foil A method comprising a layer and then no chromate layer formed on the layer. An example of the former is disclosed in Patent Document 1 'The latter example is disclosed in Patent Document 2 ^ When forming a chromate layer on a Zn layer or a zn alloy layer, h in a Zn layer or a zn alloy layer and Cr6+ in a cold liquid In the method in which a substitution reaction occurs and a nitrogen oxide is precipitated, Cr is precipitated as a hydroxide. Therefore, precipitation

Cr之價數並非為〇價,而是與聚醯亞胺之接著性優異之 3價。 又’使用乾式處理之方法揭*於專利文獻3。於專利文 201114588 形成Ni — Cr合金層,然後於該 之氧化物層,藉此即使於銅箔 獻3記載有:於銅箔之表面 合金層之表面形成特定厚度 表 基 面平滑且定準效應較低 之狀態下,亦可大幅提升與樹脂 材之接著性。又,揭斧古l 狗不有如下之印刷配線基板用銅箔: 係於表面蒸鍍形成 WOnm之Ni—Cr合金層,然後於該 合金層之表面形成厚度〇·5〜“之。氧化物層,且最表 面之平均表面粗糙度RzJIS為2.0/zm以下。 [專利文獻1]日本特開2005 _ 344174號公報 [專利文獻2]日本特開2〇〇7_ 〇〇7937號公報 [專利文獻3]日本特開2〇〇7_ 2〇7812號公報 【發明内容】 上述各種先前技術中,就形成細間距之電路之觀點而 言,利用粗化處理提高接著性之方法並不佳。即,若由於 細間距化而使得導體間隔變窄時,則會有粗化處理部於利 用蝕刻形成電路後殘留在絕緣基板上,引起絕緣劣化之 虞。若為了防止該情形而欲蝕刻整個粗化表面時,則需要 較長之蝕刻時間,且無法維持特定之配線寬度。 就接著強度之觀點而言,與於粗化處理面積層聚醯亞 胺之方法相較之下,於平滑之銅箔表面積層聚醯亞胺之方 法較為不佳。其原因在於,粗化處理面由於定準效應而獲 得接著強度’相對於此,當不進行粗化處理時,則不會獲 得定準效應,並且,由於Cu原子會擴散於聚醯亞胺中,導 致界面附近之聚醯亞胺層變得脆弱,而使得該部分成為剝 201114588 離之起點。 、又’於乾式處理,例如設置Ni層或Ni—Cr合金層之 方法,與絕緣基板之接著性的基本特性具有大幅的改善* 間。前者係由於與聚醯亞胺等之接著性良好之Cr3+不存在 的緣故,而後者則是由於被膜中因與Ni共存’故Cr3 +之存 在比例較低的緣故。 π又二於以乾式處理設置Cr層之方法中,雖於室溫下可 獲得較高之接著強度,但於該積層體受到熱加工之情形 時’:層厚度較薄’則源自銅箔之CU原子會於Cr層中擴 散而侵入聚醯亞胺層内,使接著強度劣化。另-方面,若 Cr層厚至足夠防止子擴散之程度,則表面處理層之蝕 刻性較差。此係為了形成電路圖案而進行蝕刻處理後,& 殘存於絕緣基板上之被稱為「㈣殘留」之現象。 又,專利文獻1及2所記載之表面處理層,係以電鑛 =形成。此時,銅落本身係作用為電化學反應之電極。銅 落之表面具有油坑⑽pit)等凹凸’並且於表面附近存在數 百nm之夾雜物,因此該部分,電子之流動受到阻礙而不 易以均勻之厚度形成極薄之表面處理層,_以同時實現與 聚醯亞胺之接著性及钱刻性。 並且’本發明人等發現’為了使對與聚酿亞胺之接著 性有效之Cr附著於銅笛表面,必須於〜層或zn合金層上 形成鉻酸鹽層,但如專利文獻^記載般,於在Ni_Z“ 金層上形成有絡酸鹽層之情形時,接著界面附近之鉻氧化 物漠度變低,無法獲得高接㈣度。又,於如專利文獻2 201114588 所記載般,當不於Zn層或Zn合金層上形成鉻酸鹽層之情 形時,由於無法利用Zn與Cr“之間的取代反應’故Cr之 附著量存在極限。 因此本發明之課題,在於提供一種與絕緣基板之接 著性及蝕刻性兩者皆優異、且適合於細間距化之印刷配線 板用銅箔。 先則通常認為若使被覆層變薄,則會使接著強度下 降。然而,本發明人等經過潛心研究之結果,當以奈米級 之極薄之厚度均勻地設置Cr層時,與濕式鍍敷相較之下, 可提高接著界面附近之Cr氧化物之濃度,可獲得優異之與 絕緣基板之密合性。藉由使厚度為極薄,而削減蝕刻性低 之Cr之使用量,且被覆層均勻,因此對蝕刻性有利。又, 藉由將防止Cu原子擴散之層設置於上述Cr正下方,可提 供一種能夠耐於苛刻之使用環境之銅箱積層基板。 以上述見解為基礎所完成之本發明之一態樣,係一種 印刷配線板用銅羯,其具備有銅羯基材、與被覆該銅羯基 材表面之至少一部分之被覆層,被覆層係由自銅箔基材表 面依序積層之由金屬之單體或合金構成的中間層及心層所 構成,被覆層中’ Cr以l8〜18〇/zg/dm2之被覆量存在, 若將根據利用XPS之自表面起之深度方向分析所得的深度 方向(X:單位nm)之金屬鉻之原子濃度(%)設為f|(x),將氧 化物鉻之原子濃度(% )設為f2(x),將全體鉻之原子濃度(% ) 設為f⑴(f(X)=fl⑴+f*2⑴),將鎳之原子濃度(%)設為 g(x),將銅之原子濃度(%)設為h(x),將氧之原子濃度(%) 8 201114588 設為i(x) ’將碳之原子濃度(% )設為j(x),將其他金屬之原 子濃度之總和設為k(x),則於區間[〇,1 〇]内,^ h(x)dx/( S f(x)dx + 5 g(x)dx + S h(x)dx + ^ i(x)dx + S j(x)dx + S k(x)dx)為 10% 以下,$ f2(x)dx/($ f(x)dx+ $ g(x)dx+ S h(x)dx+ $ i(x)dx+ S j(x)dx+ $ k(x)dx)為 20% 以上,於區 間[1.0,2.5]内,滿足0.1$$!'1(\)心/$込(幻£1乂$1_0。 本發明之印刷配線板用銅箔之一實施形態中,Cr以30 〜145 yg/dm2之被覆量存在。 本發明之印刷配線板用銅箔之另一實施形態中,Cr以 36〜9〇eg/dm2之被覆量存在。 本發明之印刷配線板用銅箔之再另一實施形態中,Cr 以36〜75 a g/ dm2之被覆量存在。 本發明之印刷配線板用銅箔之再另一實施形態中,中 間層含有Ni、Mo、Ti、Zn、Co、V、Sn、Μη及Cr之至少 任一種。 本發明之印刷配線板用銅箔之再另一實施形態中,被 覆層係由自銅箔基材表面依序積層之由Ni、Mo、Ti、Zn及 Co之任一種構成的中間層及Cr層所構成,於該中間層, Ni、Mo、Ti、Zn 及 Co 之任一種以 15〜1030 " g/dm2 之被 覆量存在。 本發明之印刷配線板用銅箔之再另一實施形態中,於 中間層,Ni以15〜440 a g/dm2之被覆量存在,Mo以25 〜1030以g/dm2之被覆量存在,Ti以15〜140以g/dm2之 被覆量存在,Zn以15〜75〇eg / dm2之被覆量存在,或者 201114588The valence of Cr is not a valence, but a valence of excellent adhesion to polyimine. Further, the method of dry processing is disclosed in Patent Document 3. In the patent document 201114588, a Ni-Cr alloy layer is formed, and then the oxide layer is formed, thereby even if the copper foil is provided as follows: a surface of the surface of the copper foil is formed with a specific thickness surface smooth and constant effect In the lower state, the adhesion to the resin material can be greatly improved. In addition, the abalone is not a copper foil for printed wiring boards as follows: a Ni-Cr alloy layer of WOnm is formed by vapor deposition on the surface, and then a thickness of 〇·5~" is formed on the surface of the alloy layer. The average surface roughness RzJIS of the layer and the outermost surface is 2.0/zm or less. [Patent Document 1] JP-A-2005-344174 [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei 2-7-7937 [3] Japanese Patent Laid-Open Publication No. Hei 2-7-7782. SUMMARY OF THE INVENTION In the above various prior art, it is not preferable to improve the adhesion by the roughening treatment from the viewpoint of forming a fine pitch circuit. When the conductor spacing is narrowed due to the fine pitch, the roughening treatment portion remains on the insulating substrate after the circuit is formed by etching, and the insulation is deteriorated. If the entire roughened surface is to be etched in order to prevent this. In the case of a longer etching time, it is not possible to maintain a specific wiring width. From the viewpoint of strength, compared with the method of roughening the area of the layer of polyimide, on the surface of the smooth copper foil Laminated The method of quinone imine is relatively poor. The reason is that the roughening treatment surface obtains the bonding strength due to the quenching effect. In contrast, when the roughening treatment is not performed, the quasi-effect is not obtained, and, due to Cu The atom will diffuse into the polyimine, causing the polyimine layer near the interface to become weak, making this part the starting point for stripping 201114588. And 'drying treatment, such as Ni layer or Ni-Cr alloy The method of the layer has a significant improvement in the basic characteristics of the adhesion to the insulating substrate. The former is due to the absence of Cr3+ which is excellent in adhesion to polyimine, and the latter is due to Ni and Ni in the film. Coexistence 'There is a lower proportion of Cr3 +. π and 2 in the method of setting the Cr layer by dry treatment, although a higher bonding strength can be obtained at room temperature, the laminate is subjected to hot working. When 'the thickness of the layer is thinner', the CU atoms derived from the copper foil diffuse in the Cr layer and intrude into the polyimide layer to deteriorate the strength. On the other hand, if the Cr layer is thick enough to prevent sub-diffusion Degree, then Examples of poor etching of this layer of surface treatment system for forming a circuit pattern by etching treatment, & remains on the insulating substrate is referred to as the "residual iv" of the phenomenon. Further, the surface treatment layers described in Patent Documents 1 and 2 are formed by electric ore =. At this time, the copper itself acts as an electrode for the electrochemical reaction. The surface of the copper drop has irregularities such as oil pits (10) pits and there are inclusions of several hundred nm in the vicinity of the surface, so that the flow of electrons is hindered in this portion, and it is difficult to form an extremely thin surface treatment layer with a uniform thickness. Realize the adhesion with the polyimine and the money. Further, the present inventors have found that it is necessary to form a chromate layer on a layer of a layer or a zn alloy layer in order to adhere Cr to a surface of a copper horn which is effective for adhesion to a styrene, but as described in the patent document When a complex acid salt layer is formed on the Ni_Z "gold layer, the chromium oxide in the vicinity of the interface becomes low, and high (four) degrees cannot be obtained. Further, as described in Patent Document 2 201114588, When the chromate layer is not formed on the Zn layer or the Zn alloy layer, since the substitution reaction between Zn and Cr cannot be utilized, there is a limit in the amount of Cr attached. Therefore, an object of the present invention is to provide a copper foil for a printed wiring board which is excellent in both adhesion to an insulating substrate and etching property and which is suitable for fine pitch. First, it is generally considered that if the coating layer is made thinner, the strength of the bonding is lowered. However, as a result of intensive research by the present inventors, when the Cr layer is uniformly provided with a very thin thickness of the nanometer scale, the concentration of Cr oxide in the vicinity of the interface can be increased as compared with the wet plating. Excellent adhesion to an insulating substrate can be obtained. By making the thickness extremely thin, the amount of Cr having low etching property is reduced, and the coating layer is uniform, which is advantageous for etching property. Further, by providing a layer for preventing diffusion of Cu atoms directly under the Cr, it is possible to provide a copper-clad laminate substrate which can withstand a severe use environment. According to one aspect of the present invention, which is based on the above findings, a copper enamel for a printed wiring board comprising a copper ruthenium substrate and a coating layer covering at least a part of a surface of the copper ruthenium substrate, the coating layer The intermediate layer and the core layer composed of a single metal or alloy laminated from the surface of the copper foil substrate, wherein the Cr is present in a coating amount of 18 to 18 Å/zg/dm 2 , if The atomic concentration (%) of the metal chromium in the depth direction (X: unit nm) obtained by the depth direction analysis of the XPS is set to f|(x), and the atomic concentration (%) of the oxide chromium is set to f2. (x), the atomic concentration (%) of the total chromium is f(1) (f(X)=fl(1)+f*2(1)), and the atomic concentration (%) of nickel is set to g(x), and the atomic concentration of copper ( %) is set to h(x), and the atomic concentration of oxygen (%) 8 201114588 is set to i(x) 'The atomic concentration (%) of carbon is set to j(x), and the sum of the atomic concentrations of other metals is set. For k(x), then within the interval [〇,1 〇], ^ h(x)dx/( S f(x)dx + 5 g(x)dx + S h(x)dx + ^ i(x ) dx + S j(x)dx + S k(x)dx) is 10% or less, $ f2(x)dx/( $ f(x)dx+ $ g(x)dx+ S h(x)dx+ $ i(x)dx+ S j(x)dx+ $ k(x)dx) is 20% or more in the interval [1.0,2.5] It satisfies 0.1$$!'1(\)心/$込(幻£1乂$1_0. In one embodiment of the copper foil for a printed wiring board of the present invention, Cr is present in an amount of 30 to 145 yg/dm2 In another embodiment of the copper foil for a printed wiring board of the present invention, Cr is present in an amount of 36 to 9 〇eg/dm 2 . In still another embodiment of the copper foil for a printed wiring board of the present invention, Cr is In another embodiment of the copper foil for a printed wiring board of the present invention, the intermediate layer contains at least Ni, Mo, Ti, Zn, Co, V, Sn, Mn, and Cr. In still another embodiment of the copper foil for a printed wiring board of the present invention, the coating layer is formed of any one of Ni, Mo, Ti, Zn, and Co which are sequentially laminated from the surface of the copper foil substrate. The layer and the Cr layer are formed. In the intermediate layer, any one of Ni, Mo, Ti, Zn, and Co is present in an amount of 15 to 1030 " g/dm 2 . The copper foil for a printed wiring board of the present invention is further In one embodiment, in the intermediate layer, Ni is The coating amount of 15 to 440 ag/dm2 is present, Mo is present in a coating amount of 25 to 1030 in g/dm 2 , Ti is present in a coating amount of 15 to 140 in g/dm 2 , and Zn is coated in a coating of 15 to 75 〇 eg / dm 2 . Quantity exists, or 201114588

Co以25〜1030 /z g/dm2之被覆量存在。 本發明之印刷配線板用銅箔之再另一實施形態中,被 覆層係由自銅箔基材表面依序積層之由Ni、Zn、V、Sn、 Μη、Cr及Cu之至少任兩種之合金構成的中間層及Cr層所 構成,於該中間層,Ni、Zn、V、Sn、Μη及Cr之任兩種以 20〜170〇eg/dm2之被覆量存在。 本發明之印刷配線板用銅箔之再另一實施形態中,中 間層係以由Ni與Zn、V、Sn ' Μη及Cr之任一種構成之 N i合金所構成。 本發明之印刷配線板用銅箱之再另一實施形態中,中 間層係以由被覆量為15〜1000以g/dm2之Ni及5〜750 # g / dm2之Zn構成的Ni — Zn合金、由合計被覆量為2〇〜600 // g/ dm2之Ni及V構成之Ni ~ V合金、由合計被覆量為 18〜450以g/dm2之Ni及Sn構成之Ni - Sn合金、由被覆 量為15〜450 // g/dm2之Ni及5〜200 // g/dm2之Μη構成 的Ni—Μη合金、由被覆量為20〜440/zg/dim2之Ni及5 〜110 y g/ dm2之Cr構成的Ni - Cr合金所構成。 本發明之印刷配線板用銅箔之再另一實施形態中,中 間層係以由Cu與Zn及Ni之任一種或兩種構成之cu合金 所構成。 本發明之印刷配線板用銅箔之再另一實施形態中,中 間層係以Zn之被覆量為15〜750 β g/ dm2之Cu - Zn合 金、Ni被覆量為15〜440 // g/ dm2之Cu — Ni合金、或者 Ni被覆量為15〜1000 /z g/dm2且Zn被覆量為5〜750;czg 10 201114588 . / dm2之Cu - Ni - Zn合金所構成。 本發明之印刷配線板用銅猪之再另一實施形態中,若 利用穿透式電子顯微鏡觀察被覆層之剖面時,則最大厚度 為0.5〜12nm ’最小厚度為最大厚度之8〇%以上。 本發明之印刷配線板用銅箔之再另一實施形態中,當 進行疋相當聚醯亞胺硬化之熱處理時,若將根據利用xps 之自表面起之深度方向分析所得的深度方向(χ :單位nm) 之金屬鉻之原子濃度(%)設為fl(x),將氧化物鉻之原子濃度 (% )設為f2(X),將全體鉻之原子濃度(% )設為f(x)(f(x)= fi(x) + f2(x)),將鎳之原子濃度(% )設為g(x),將銅之原子濃度(% ) »又為h(x),將氧之原子濃度(% )設為ι(χ),將碳之原子濃度 (% )設為j(x),將其他金屬之原子濃度之總和設為k(x),則 於區間[〇, 1.0]内 M h(x)dx/( $ f(x)dx+ s h(x)dx + S i(x)dx + 5 j(x)dx + $ k(x)dx)為 i〇% 以下,s f2(x)dx/( $ f(x)dx + 5 g(x)dx + $ h(x)dx + $ i(x)dx + J j(x)dx+ $ k(x)dx)為20%以上,於區間tl 〇,2 5]内,滿足 0.1$ $ f](x)dx/ S f2(x)dx$ 1.0。 本發明之印刷配線板用銅箔之再另一實施形態中,該 印刷配線板用銅箔係經進行相當聚醢亞胺硬化之熱處理之 印刷配線板用銅箔,若將根據利用xps之自表面起之深度 方向刀析所得的深度方向(x :單位nm)之金屬鉻之原子濃度 (% )設為f〗(X),將氧化物鉻之原子濃度(% )設為,將全 體鉻之原子濃度(%)設為f(x)(f(x)=fl(x)+f2(x)),將鎳之原 子濃度(%)設為g(x),將銅之原子濃度(%)設為h(x),將氧 11 201114588 之原子濃度(%)設為i(x),將碳之原子濃度(%)設為j(x), 將其他金屬之原子濃度之總和設為k(x),則於區間[〇,1.0] 内,S h(x)dx/( $ f(x)dx+ $ g(x)dx+ $ h(x)dx+ $ i(x)dx + S j(x)dx+ S k(x)dx)為 10% 以下,$ f2(x)dx/( S f(x)dx+ $ g(x)dx+ $ h(x)dx+ $ i(x)dx+ $ j(x)dx+ $ k(x)dx)為 20% 以上,於區間[1.0,2.5]内,滿足0.1$$6(又)(1\/$£2(4<^ S 1.0。 本發明之印刷配線板用銅馆之再另一實施形態中,當 對於經由被覆層而形成有絕緣基板之印刷配線板用銅箔, 分析將絕緣基板自被覆層剝離後之被覆層的表面時,若將 根據利用XPS之自表面起之深度方向分析所得的深度方向 (X :單位nm)之金屬鉻之原子濃度(%)設為Α(χ),將氧化物 鉻之原子濃度(% )設為f2(x),將全體鉻之原子濃度(% )設為 fXxKfXxhfJxhf^x)) ’將鎳之原子濃度設為g(x),將 銅之原子濃度(% )設為h(x) ’將氧之原子濃度(% )設為 i(x) ’將碳之原子濃度(%)設為j(x),將其他金屬之原子濃 度之總和設為k(x),將金屬鉻之濃度為最大之自表層起的 距離設為F ’則於區間[0,F]内,滿足〇.1 $丨$ f2〇)dx$ 1.0,且 $ h(x)dx/( $ f(x)dx+ $ g(x)dx+ 丨 h(x)dx + $ i(x)dx+ $ j(x)dx+ $ k(x)dx)為 10% 以下。 本發明之印刷配線板用銅羯之再另一實施形態中,銅 绪基材為壓延銅〇 本發明之印刷配線板用銅结之再另一實施形態中,印 刷配線板為可撓性印刷配線板。 12 201114588 本發明之另一態樣,係一種具備有本發明之銅箱的覆 銅積層板。 本發明之覆銅積層板之一實施形態中,具有銅箱接著 於聚醯亞胺之結構。 本發明之再另一態樣,係一種將本發明之覆銅積層板 作為材料的印刷配線板。 根據本發明,可獲得與絕緣基板之接著性及蝕刻性兩 者皆優異、且適合於細間距化之印刷配線板用銅笛。又, 本發明亦可應用於電磁屏蔽、高頻屏蔽、及為了絕緣而向 金屬條積層聚醯亞胺或聚醢胺等樹脂之技術》 【實施方式】 (鋼箔基材) 可用於本發明之銅箔基材之形態並無特別限制,典型 的是能夠以壓延銅箔或電解銅箔之形態加以使用。通常, 電解銅落係將銅自硫酸銅鍍浴電解沈積至鈦或不鏽鋼之滾 筒上而製造,壓延銅编則是重複進行利用壓延輥之塑性加 工與熱處理而製造。於要求彎曲性之用途,大多使用壓延 銅羯。 鋼羯基材之材料,除通常使用作為印刷配線板之導體 以外,例如亦可使用如Co is present in a coating amount of 25 to 1030 / z g / dm 2 . In still another embodiment of the copper foil for a printed wiring board of the present invention, the coating layer is composed of at least two of Ni, Zn, V, Sn, Mn, Cr, and Cu which are sequentially laminated from the surface of the copper foil substrate. The intermediate layer and the Cr layer are composed of an alloy, and in the intermediate layer, any two of Ni, Zn, V, Sn, Μη, and Cr are present in an amount of 20 to 170 〇eg/dm 2 . In still another embodiment of the copper foil for a printed wiring board of the present invention, the intermediate layer is made of a Ni alloy composed of Ni, Zn, V, Sn', and Cr. In still another embodiment of the copper box for a printed wiring board of the present invention, the intermediate layer is a Ni-Zn alloy composed of Ni of 5 to 1000 g/dm 2 and Zn of 5 to 750 # g / dm 2 of a coating amount of 15 to 1000 a Ni-V alloy composed of Ni and V having a total coating amount of 2 〇 600 600 g/dm 2 , and a Ni - Sn alloy composed of Ni and Sn having a total coating amount of 18 to 450 g/dm 2 , A Ni-Μη alloy composed of Ni of 5 to 450 // g/dm 2 and Μ η of 5 to 200 // g/dm 2 coated with a coating amount of 20 to 440/zg/dim 2 and 5 to 110 yg/ It is composed of a Ni-Cr alloy composed of Cr of dm2. In still another embodiment of the copper foil for a printed wiring board of the present invention, the intermediate layer is composed of a cu alloy composed of one or both of Cu, Zn and Ni. In still another embodiment of the copper foil for a printed wiring board of the present invention, the intermediate layer is a Cu-Zn alloy having a coating amount of Zn of 15 to 750 β g/dm 2 and a Ni coating amount of 15 to 440 // g/ A Cu-Ni alloy of dm2 or a Cu-Ni-Zn alloy having a Ni coating amount of 15 to 1000 /zg/dm2 and a Zn coating amount of 5 to 750; czg 10 201114588 . / dm2. In still another embodiment of the copper pig for a printed wiring board according to the present invention, when the cross section of the coating layer is observed by a transmission electron microscope, the maximum thickness is 0.5 to 12 nm', and the minimum thickness is 8 % or more of the maximum thickness. In still another embodiment of the copper foil for a printed wiring board of the present invention, when the heat treatment for the hardening of the fluorene-polyimine is performed, the depth direction obtained by analyzing the depth direction from the surface by xps (χ: The atomic concentration (%) of the metal chromium in the unit nm) is set to fl(x), the atomic concentration (%) of the oxide chromium is set to f2 (X), and the atomic concentration (%) of the entire chromium is set to f(x). (f(x)= fi(x) + f2(x)), the atomic concentration (%) of nickel is set to g(x), and the atomic concentration (%) of copper is again h(x). The atomic concentration (%) of oxygen is set to ι (χ), the atomic concentration (%) of carbon is set to j(x), and the sum of the atomic concentrations of other metals is k(x), and the interval is [〇, 1.0]M h(x)dx/( $ f(x)dx+ sh(x)dx + S i(x)dx + 5 j(x)dx + $ k(x)dx) is i〇% or less, s f2(x)dx/( $ f(x)dx + 5 g(x)dx + $ h(x)dx + $ i(x)dx + J j(x)dx+ $ k(x)dx) More than 20%, within the interval tl 〇, 2 5], satisfy 0.1$ $ f](x)dx/ S f2(x)dx$ 1.0. In still another embodiment of the copper foil for a printed wiring board according to the present invention, the copper foil for a printed wiring board is a copper foil for a printed wiring board which is subjected to a heat treatment for hardening the polyimide, and is based on the use of xps. The atomic concentration (%) of the metal chromium in the depth direction (x: unit nm) obtained by the knife blade in the depth direction is f (X), and the atomic concentration (%) of the oxide chromium is set to be the entire chromium. The atomic concentration (%) is f(x)(f(x)=fl(x)+f2(x)), and the atomic concentration (%) of nickel is set to g(x), and the atomic concentration of copper ( %) is set to h(x), the atomic concentration (%) of oxygen 11 201114588 is i(x), the atomic concentration (%) of carbon is set to j(x), and the sum of the atomic concentrations of other metals is set. For k(x), then within the interval [〇, 1.0], S h(x)dx/( $ f(x)dx+ $ g(x)dx+ $ h(x)dx+ $ i(x)dx + S j(x)dx+ S k(x)dx) is below 10%, $ f2(x)dx/( S f(x)dx+ $ g(x)dx+ $ h(x)dx+ $ i(x)dx+ $ j(x)dx+ $ k(x)dx) is 20% or more, and within the interval [1.0, 2.5], it satisfies 0.1$$6 (again) (1\/$£2 (4<^ S 1.0. The present invention In still another embodiment of the copper pavilion for printed wiring boards When the surface of the coating layer from which the insulating substrate is peeled off from the coating layer is analyzed for the copper foil for printed wiring board in which the insulating substrate is formed through the coating layer, the depth obtained by analyzing the depth direction from the surface by XPS is analyzed. The atomic concentration (%) of the metal chromium in the direction (X: unit nm) is Α(χ), the atomic concentration (%) of the oxide chromium is set to f2(x), and the atomic concentration (%) of the entire chromium is set. fXxKfXxhfJxhf^x)) 'Set the atomic concentration of nickel to g(x), set the atomic concentration (%) of copper to h(x) ', set the atomic concentration of oxygen (%) to i(x) ' The atomic concentration (%) of carbon is set to j(x), the sum of the atomic concentrations of other metals is k(x), and the distance from the surface layer where the concentration of metallic chromium is the largest is set to F' in the interval [ Within 0,F], satisfy 〇.1 $丨$ f2〇)dx$ 1.0, and $ h(x)dx/( $ f(x)dx+ $ g(x)dx+ 丨h(x)dx + $ i (x)dx+ $ j(x)dx+ $ k(x)dx) is 10% or less. In still another embodiment of the copper plate for a printed wiring board according to the present invention, the copper substrate is a rolled copper wire. In still another embodiment of the copper wire for a printed wiring board of the present invention, the printed wiring board is flexibly printed. Wiring board. 12 201114588 Another aspect of the invention is a copper clad laminate having a copper box of the invention. An embodiment of the copper clad laminate of the present invention has a structure in which a copper box is followed by a polyimide. Still another aspect of the present invention is a printed wiring board using the copper clad laminate of the present invention as a material. According to the present invention, it is possible to obtain a copper flute for a printed wiring board which is excellent in both adhesiveness and etching property with an insulating substrate and which is suitable for fine pitch. Moreover, the present invention can also be applied to electromagnetic shielding, high-frequency shielding, and a technique of laminating a resin such as polyimide or polyamide to a metal strip for insulation. [Embodiment] (Steel foil substrate) can be used in the present invention The form of the copper foil substrate is not particularly limited, and it can be typically used in the form of a rolled copper foil or an electrolytic copper foil. Usually, the electrolytic copper is produced by electrolytically depositing copper from a copper sulfate plating bath onto a titanium or stainless steel drum, and the rolled copper is repeatedly produced by plastic working and heat treatment using a calender roll. Rolled matte is often used for applications where bending is required. The material of the steel ruthenium substrate can be used, for example, as a conductor of a printed wiring board.

圖案之精銅或無氧銅等高純度之銅 摻雜s: 合金、 者,本 13 201114588 金箔。 可用於本發明之銅羯基材之厚度亦 要適當調節為適合於印刷配線板用 、,、、別限制,只 為3〇/^以下,較佳為2〇心以下, 之情形時, 左右。 •的疋5〜20am 對於用於本發明之銅箔基材, 7+ 土二 _ ^ . 不進竹粗化處理較 W刖’ / m :利用特殊錄敷於表面附上微 未級之凹凸實施表面粗化處理,利用物理性 使其具有與樹脂之接著性。然而,一 而 高頻電特性…平滑之…好二二:就細間距及 麻地“ ’略粗化處理步驟,故亦具有提高經 別進行粗化處理之I 發月中所使用之猪係不特 (被覆層) 於銅羯基材之表面之至少一部分形成有被覆層。被覆 之部位並無㈣限制’通常為預定與絕緣基板接著之部 ^藉由被覆層之存在’以提升與絕緣基板之接著性。被 ,層係由自銅箱基材表面依序積層之中間層及&層所構 成。中間層較佳為含有Nl、M〇、Ti、Zn、c〇、v、Sn、Mn 及Cr之至少任一稀。中M s 植中間層亦可由金屬之單體所構成,例 車乂佳為由Νι、Μο、Τι、Zn及C〇之任一種所構成。中間 層亦可由合金所構成’例如較佳為由Ni、Zn、v、Sn'Mn、 。及Cu之至少任兩種之合金所構成。又,十間層亦可以由 14 201114588High-purity copper such as copper or oxygen-free copper doped s: alloy, this, 13 201114588 gold foil. The thickness of the copper-ruthenium substrate which can be used in the present invention is also appropriately adjusted to be suitable for the printed wiring board, and is not limited thereto, and is only 3 Å/cm or less, preferably 2 〇 or less, in the case of . • 疋5~20am For the copper foil substrate used in the present invention, 7+ soil _ ^ . No bamboo roughening treatment W刖' / m : special recording on the surface with micro-level bump The surface roughening treatment is carried out to make it adhere to the resin by physical properties. However, the high-frequency electrical characteristics... smoothing... Good two-two: in terms of fine pitch and hemp "'slightly roughening the processing steps, it also has the advantage of improving the pigs used in the roughing process. The coating layer is formed on at least a part of the surface of the copper matte substrate. The portion to be coated is not (4) restricted 'usually predetermined and the insulating substrate is followed by the presence of the coating layer' to lift and insulate the substrate. The layer is composed of an intermediate layer and a layer which are sequentially laminated from the surface of the copper box substrate. The intermediate layer preferably contains Nl, M〇, Ti, Zn, c〇, v, Sn, At least one of Mn and Cr is dilute. The middle M s intermediate layer may also be composed of a single metal, and the ruthenium is preferably composed of any one of Νι, Μο, Τι, Zn and C〇. The composition of the alloy is preferably composed of, for example, an alloy of at least two of Ni, Zn, v, Sn'Mn, and Cu. Further, the ten layers may also be 14 201114588

Ni與Zn、V、Sn、Mn& Cr之任—種構成之州合金 或亦可以纟Cu、與Zn及恥之任一種或兩種構成之Cu八 金所構成。通常’㈣與絕緣基板之間之接著力,若置^ 高溫環境下,則有下降之傾向’認為其係由鋼熱擴散至表 面,與絕緣基板反應所引起。本發明中,藉由預先將可有 效防止銅擴散的上述中間層設置於銅落基材上,而可防止 銅之熱擴散H於為了防止銅擴散所設置之各種中間 層中’雖然於Cu合金層含有錢使其擴散於表面之銅,但 因將銅加以合金化,故沒有擴散於表面,具有良好之接著 性’且亦不會對钮刻性造成不良影響。 又,藉由將與絕緣基板之接著性較上述中間層更優異 之cr層設置於該中間層上,可進一步提高與絕緣基板之接 著性。因存在中間層,故。層之厚度可較薄,因此可減少 2蝕刻性之不良影響。再者,本發明中所謂接著性,除指 常態下之接著性以外,亦指置於高溫下之後的接著性(耐= 吐)及置於尚濕度下之後的接著性(耐濕性)。 於本發明之印刷配線板用銅箔中,被覆層極薄且厚度 均勻。藉由為此種構成,而可提升與絕緣基板之接著性的 原因雖然不明確,但推測原因係由於在中間層上形成與樹 脂之接著性非常優異之Cr單層被膜作為最表面,故於酿亞 胺化時之高溫熱處理後(約35(rCT 30分鐘〜數小時左右) 亦保持具有高接著性之單層被膜結構。又,認為藉由使被 f層為極薄且以中間層與Cr之雙層結構來減少Cr之使用 量,使蝕刻性獲得提升。 15 201114588 具體而言,本發明 間層具有以下構成 (1)被覆層之鑑定 本發月中,銅泊素材之表面之至少一部分係以中間層 及Cl*層之順序加以被覆。該等被覆層之鑑^係 或AES等表面分析# 祈裝置自表層進行氬濺鍍,進行深度方 向之化千刀析’由於存在不同之檢測波峰而可鐘定中間層 及Cr層。又’根據各檢測波峰之位置,可確認被覆之順序。 (2)附著量 另一方面,該等中間層A Cr層由於非常薄,因此利用 XPS、AES不易進行準確之厚度之評估。因此,本發明中, 中間層及Cr層之厚度’係以每單位面積之被復金屬的重量 來加以評估。於本發明之被覆層,Cr以18〜180 vg/dm2 之被覆量存在。若Cr未達18yg/dm2,則無法獲得充分之 剝離強度,若Cr超過1 80 v g/ dm2,則會有蝕刻性明顯下 降之傾向。Cr之被覆量較佳為30〜145yg/dm2,更佳為 36 〜90/z g/dm2,再更佳為 36 〜75 v g/dm2。 又’當中間層由Ni、Mo、Ti ' Zn及Co之任一種所構 成時,較佳為在該中間層,Ni、Mo、Ti、Zn及Co之任一 種以15〜1030 yg/dm2之被覆量存在。此時,若被覆量未 達15// g/dm2,則無法獲得充分之剝離強度,若超過103〇 β g/ dm2,則會有蝕刻性明顯下降之傾向。 並且,此時,較佳為在中間層,Ni以1 5〜440 μ g/ dm2 之被覆量存在,Mo以25〜1030 μ g/ dm2之被覆量存在, Ti以15〜140 μ g/dm2之被覆量存在,Zn以15〜750 # g 16 201114588 / dm2之被覆量存在、或者c〇 量存在。 以25〜l〇3〇Ag/dm2之被覆A state alloy composed of Ni and Zn, V, Sn, Mn, and Cr may be composed of Cu octa composed of either or both of Cu, Zn, and shame. Usually, the adhesion between the (4) and the insulating substrate tends to decrease when placed in a high-temperature environment, which is considered to be caused by the thermal diffusion of steel to the surface and reaction with the insulating substrate. In the present invention, by disposing the intermediate layer capable of effectively preventing copper diffusion on the copper drop substrate in advance, it is possible to prevent thermal diffusion of copper H in various intermediate layers provided for preventing copper diffusion, although in the Cu alloy. The layer contains money to diffuse the copper on the surface, but since the copper is alloyed, it does not diffuse to the surface, has good adhesion, and does not adversely affect the button. Further, by providing a Cr layer which is more excellent in adhesion to the insulating substrate than the intermediate layer on the intermediate layer, the adhesion to the insulating substrate can be further improved. Because of the existence of the middle layer, so. The thickness of the layer can be thin, so that the adverse effects of 2 etching properties can be reduced. Further, the term "adhesiveness" in the present invention means, in addition to the adhesion in the normal state, the adhesion (resistance = spit) after being placed at a high temperature and the adhesion (moisture resistance) after being placed under a humidity. In the copper foil for a printed wiring board of the present invention, the coating layer is extremely thin and uniform in thickness. The reason why the adhesion to the insulating substrate can be improved by such a configuration is not clear, but it is presumed that the Cr single-layer film which is excellent in adhesion to the resin on the intermediate layer is the outermost surface, so After the high-temperature heat treatment in the imidization (about 35 (rCT 30 minutes to several hours), the single-layer film structure with high adhesion is also maintained. Further, it is considered that the layer being extremely thin and the intermediate layer is The double-layer structure of Cr reduces the amount of Cr used and improves the etching property. 15 201114588 Specifically, the interlayer of the present invention has the following constitutions: (1) Identification of the coating layer In the present month, at least the surface of the copper-plated material A part of the coating is coated in the order of the intermediate layer and the layer of Cl*. Surface analysis of the coatings such as AES or surface analysis of AES # 装置 装置 进行 进行 进行 进行 氩 氩 氩 氩 氩 氩 氩 氩 氩 氩 氩 氩 氩 氩 氩 氩 氩The intermediate layer and the Cr layer can be determined by detecting the peaks. Further, the order of the coating can be confirmed based on the position of each detection peak. (2) Adhesion amount On the other hand, since the intermediate layer A Cr layer is very thin, XPS is used. , AES is not easy to evaluate the thickness. Therefore, in the present invention, the thickness of the intermediate layer and the Cr layer is evaluated by the weight of the metal to be coated per unit area. In the coating layer of the present invention, Cr is 18 to 180. The coating amount of vg/dm2 is present. If Cr is less than 18 μg/dm2, sufficient peel strength cannot be obtained, and if Cr exceeds 180 vg/dm2, the etching property tends to be remarkably lowered. The coating amount of Cr is preferably 30 to 145 yg/dm 2 , more preferably 36 to 90/zg/dm 2 , still more preferably 36 to 75 vg/dm 2 . Further, when the intermediate layer is composed of any one of Ni, Mo, Ti ' Zn and Co, Preferably, in the intermediate layer, any of Ni, Mo, Ti, Zn, and Co is present in an amount of 15 to 1030 yg/dm 2 . In this case, if the amount of coating is less than 15/g/dm 2 , the coating cannot be obtained. When the sufficient peel strength exceeds 103 〇β g/dm 2 , the etching property tends to be remarkably lowered. Further, at this time, it is preferable that Ni is present in an amount of 15 to 440 μ g / dm 2 in the intermediate layer. Mo is present in a coating amount of 25 to 1030 μg/dm2, Ti is present in a coating amount of 15 to 140 μg/dm2, and Zn is in the range of 15 to 750 #g 16 201114588 / dm2 The coating amount, or present in an amount c〇. 25~l〇3〇Ag to cover / dm2 of

又’當中間層由 Nl、Zn、V、Sn、Mn、Cr&CuU 少任兩種之合金所構成時,較佳為在該中間層,Ni、Zn、V、Further, when the intermediate layer is composed of an alloy of two or more of Nl, Zn, V, Sn, Mn, Cr & CuU, it is preferred that the intermediate layer, Ni, Zn, V,

Sn、Μη、Cr之至少任雨錄ιν , 種乂 20〜i7〇〇eg/dm2之被覆量 存在。此時,若被覆量未违? 里木運20 “ g/ dm2,則無法獲得充分 之剝離強度,若超過17〇〇" 2 οι . υ M g/ dm,則會有蝕刻性明顯下 降之傾向。 又’當中間層以由Ni與Zn、v、Sn、Mn及^之任一 種構成之Ν!合金所構成時,較佳為該中間層以由被覆量為 B〜1000 /zg/dm^ 犯及 5〜75(^g/dm^ & 構成的 Ni—Zn合金、由合計被覆量為2〇〜6〇〇yg/dm22川及v 構成之Ni_V合金、由合計被覆量為18〜45〇e g/dm2之 Νι及Sn構成之Ni~Sn合金、由被覆量為15〜45〇以g/dm2 之Ni及5〜200// g/dm2之Μη構成的Ni—Μη合金、由被 覆量為 20 〜440#g/dm2 之 Ni 及 5〜llOyg/dn^i Cr 構 成的Ni- Cr合金所構成。 又’當中間層以由Cu、與Zn及Ni之任一種或兩種構 成之Cu合金所構成時,較佳為該中間層由Zn之被覆量為 15〜750从8/(11112之(:11一乙11合金、^被覆量為15〜440/^ /dm之Cu—Ni合金、或者Ni被覆量為15〜1000 /zg/dm2 且Ζπ被覆量為5〜750# g/ dm2之Cu — Ni — Zn合金所構 成0 (3)利用穿透式電子顯微鏡(TEM)之觀察 I!1 17 201114588 當利用穿透式電子顯微鏡觀察本發明之被覆層之刮面 時,為如下被覆層:最大厚度為0 5nm〜l2nm,較佳為丄〇 〜2·5_’最小厚度為最大厚度《卿以上,較佳為⑽ 以上’且參差不齊非常少。其原因在力,若被覆層厚度未 達〇_5nm’則於耐熱測試、耐濕測試中,剝離強度之劣化大, 若厚度超過Unm,則蝕刻性會下降。於厚度之最小值為最 大值之80%以上之情形時,該被覆層之厚度非常穩定,於 耐熱測試後亦幾乎不發生變化。利用te+m進行觀察時,不 :發現被覆層中之中間層及^層之明確的邊界,看起來為 單層(參照圖小根據本發明人之研究結果,認為於tem觀 察中所發現之被覆層係以Cr為主體之層,亦認為中間層存 在於。玄銅癌基材側。因&,本發明中,將tem冑察時之被 覆層的厚度定義為看起來為單層之被覆層的厚度。然而, 根據觀察部位之不$ ’亦存在被覆層之邊界不明確之處, 將此種部位自厚度之測定部位中排除。 遇為根據本發明之構成’自於可抑帝】Cu擴散,因此具 有穩定之厚度。本發明之銅镇係與聚醯亞胺膜接著,經過 财熱測試(於溫度15『C且空氣環境氣氛下之高溫環境下放 置168小時)後剝離樹脂之後,被覆層之厚度亦幾乎不發生 變化,最大厚度為〇.5〜12nm,最小厚度亦可維持最大厚度 之 80% 〇 & (4)被覆層表面之氧化狀態 首先,就提高接著強度而言,理想的是内部之銅未擴 散至被覆層最表面(自表面起〇〜丨〇nm之範圍)。因此本 18 201114588 發明之印刷配線板用㈣中,較佳為若將根據利用XPS之 自表面起之深度方向分析所得的深度方向(χ:單位㈣之金 屬鉻之原子濃度⑻設為f,(x),將氧化物鉻之原子濃度(%) 設為f2(x),將全體絡之原子濃度(%)設S f(x)(f(x)=f,⑴ + f2(X))將鎳之原子濃度㈤設為g⑴將銅之原子漢度(%) ^為1ΦΟ ’將氧之原子濃度(%)設為i(x),將碳之原子濃度 (%)設為j⑻’將其他金屬之原子濃度之總和設為k⑴則 於區間[〇, L0]内,S h(x)dx/n f⑴dx+ s g(x)dx+ s h(x)dx + S I(x)dx+ S j(x)dx+ s k(x)dx)為 10% 以下。 又,較佳為當進行完相當聚醯亞胺硬化之熱處理時, 若將根據利S XPS之自表面起之深度方向分析所得的深度 方向(X:單位nm)之金屬鉻之原子濃度(%)設為f|(x),將氧 化物鉻之原子濃度(% )設為f2(x),將全體鉻之原子濃度(% ) 設為f(x)(f(x)= f,⑴+ G⑴)’將鎳之原子濃度(% )設為 g(x),將銅之原子濃度(% )設為h(x),將氧之原子濃度) δ又為l(x),將碳之原子濃度)設為,將其他金屬之原 子濃度之總和設為k(x),則於區間[0,1.0]内,s h(x)dx/“ f(x)dx + $ g(x)dx + 5 h(x)dx + S i(x)dx + $ j(x)dx + $ k(x)dx)為 i〇% 以下。 又’理想的是’當對於經由被覆層而形成絕緣基板之 印刷配線板用銅箔,分析將絕緣基板自被覆層剝離後之被 覆層的表面時’若將根據利用XPS之自表面起之深度方向 分析所得的深度方向(x :單位nm)之金屬鉻之原子濃度(% ) 設為AU)’將氧化物鉻之原子濃度(%)設為f2(x),將全體 19 201114588 鉻之原子濃度(%)設為f(x)(f(x)= fi(x)+ f2(x)),將鎳之原子 濃度(% )設為g(x),將銅之原子濃度(% )設為h(x),將氧之 原子濃度(%)設為i(X),將碳之原子濃度(%)設為j(x),將 其他金屬之原子濃度之總和設為k(x),將金屬鉻之濃度最 大之自表層起之距離設為F,則於區間[〇, F]内,丨h(x)dx/〇 f(x)dx+ 5 g(x)dx+ $ h(x)dx+ 5 i(x)dx+ $ j(x)dx+ S k(x)dx)為 l〇% 以下。 又,於被覆層最表面,鉻存在金屬鉻與鉻氧化物兩者, 就防止内部之銅之擴散,且確保接著力之觀點而言,雖然 較佳為金屬鉻,但就獲得良好之蝕刻性而言,較佳則為鉻 氧化物。因此,就同時實現蝕刻性與接著力而言,較佳為 若將根據利用XPS之自表面起之深度方向分析所得的深度 方向(X:單位nm)之金屬鉻之原子濃度(%)設為fi(x),將氧 化物鉻之原子濃度(%)設為f2(x),將全體鉻之原子濃度 設為f(X)(f(X) = fjx) + f2(x)),將鎳之原子濃度)設為 g(X) ’將銅之原子濃度(%)設為h(x),將氧之原子濃度 設為i〇o,將碳之原子濃度(%)設為j(x)’將其他金屬"之^ 子濃度之總和設為k(x),則於區間[〇,1 .〇]内,s f2(x)dx/〇 f(x)dx+ S g(x)dx+ S h(x)dx+ S i(x)dx+ S j(x)dx+ s 1^(乂)(1\)為20%以上,於區間[1.〇,2.5]内,滿足〇1^5 f丨(x)dx/ $ f2(x)dx$ l.O。 又’較佳為,當進行完相當聚醯亞胺硬化夕也士 «又% <熱處理時, 若將根據利用XPS之自表面起之深度方向分_所得的深度 方向(X :單位nm)之金屬鉻之原子濃度(%)設為fi(x),將氧 201114588 化物鉻之原子濃度(%)設為f2(x) ’將全體鉻之原子濃度(%) 設為f(x)(f⑴=f,⑴+ f2(x)) ’將錄之原子濃度(% )設為 g(x),將銅之原子濃度(%)設為h(x),將氧之原子濃度(%) 設為i(x),將碳之原子濃度(%)設為j(x),將其他金屬之原 子濃度之總和設為k(x),則於區間[0, 10]内,s f2(x)dx/(s f(x)dx+ $ g(x)dx+ $ h(x)dx+ $ i(x)dx+ $ j(x)dx+ S k(x)dx)為20%以上’於區間n.〇,2 5]内,滿足〇 us fKx^x/ S f2(x)dxS 1.0。 又,理想的是,若為經進行相當聚醯亞胺硬化之熱處 理之印刷配線板用銅箔,且將根據利用XPS之自表面起之 深度方向分析所得的深度方向(x :單位nm)之金屬鉻之原子 濃度(%)設為fjx)’將氧化物鉻之原子濃度設為, 將全體鉻之原子濃度(%)設為f(x)(f(x)=fl(x)+f2(x)),將鎳 之原子濃度(%)設為g(x),將銅之原子濃度(%)設為h(x), 將氧之原子濃度(% )設為i(x),將碳之原子濃度(% )設為 j(x),將其他金屬之原子濃度之總和設為k(x),則於區間[〇, i-Ο]内 ’ f2(x)dx/n f(x)dx+ 丨 g(x)dx+ $ h(x)dx+ $ i(x)dx + 5】(\)(1\+$]^)(^)為20%以上,於區間[1〇,2.5]内, 滿足 O.iq fl(x)dx/s f2⑴dx^ i 〇。 鉻濃度及氧濃度分別係根據由利用XPS之自表面起之 木度方向刀析所得的Cr2p軌道及〇is軌道之波峰強度所算 出又,深度方向(X :單位nm)之距離係根據si02換算之 ;賤鑛速率所算出之距離。鉻濃度為氧化物鉻濃度與金屬鉻 濃度之合計值,可分離為氧化物鉻濃度與金屬鉻濃度而加 21 201114588 以分析。 (本發明之銅箔之製法) 本發明之印刷配線板用銅箱,可藉由錢銀法來形成。 即,可藉由激鑛法,以厚度為0.25〜5 〇·(較佳為〇 3〜 4-Onm,更佳為〇.5〜3.0nm之中間層)及厚度為〇25〜 2.5_(較佳為〇.4〜2_0nm’更佳為〇 5〜丨〇_)之^層依序 被覆銅fl基材表面之至少-部分,藉此來加以製造。若以 電鍍積層此種極薄之被膜,則厚度將會產生不均,於耐熱、 耐濕測試後剝離強度易下降。 此處所謂厚度,並非上述藉由xps或tem所決定之厚 度,而係根據錢鍵之成膜速度所導出之厚度。某種濺鍍條 件下之成膜速度係進行〇.1/zm(1〇〇nm)以上之濺鍍’可根據 錢鑛時間與濺㈣度之關係進行計測。計測完該缝條件 下之成膜速度,則根據所期望之厚度來設定濺鍍時間。再 者,濺鍍亦可連續或分批次進行,且能夠以本發明規定之 厚度均勻積層被覆層《濺鍍法,可列舉直流磁控濺鍍法。 (印刷配線板之製造) 可使用本發明之銅箔,依據常用方法製造印刷配線板 (PWB)。以下’表示印刷配線板之製造例。 首先,貼合銅羯與絕緣基板來製造覆銅積層板。積層 有銅箔之絕緣基板,只要具有可適用於印刷配線板之特性 者,則並無特別限制,例如用於剛性PWB時,可使用紙基 材驗樹脂、紙基材環氧樹脂、合成纖維布基材環氧樹脂、 玻璃布_紙複合基材環氧樹脂、玻璃布—玻璃不織布複合 22 201114588 基材環氧樹脂及玻璃布基材環氧樹脂等,用於FPC時,可 使用聚酯膜或聚醯亞胺膜等。 關於貼合之方法,於剛性PWB用之情形時,準備於玻 璃布等基材中含浸有樹脂,且使樹脂硬化至半硬化狀態為 止之預浸料。可藉由將預浸料與銅箔之具有被覆層之面叠 合進行加熱加壓來進行。 於可撓性印刷配線板(FPC)用之情形時,可使用環氧系 或丙烯酸系之接著劑,將聚醯亞胺膜或聚酯膜與銅箔之具 有被覆層之面接著(3層結構)。又,不使用接著劑之方法(2 層結構),可列舉··藉由將作為聚醯亞胺之前驅物之聚醯亞 胺清漆(聚醯胺酸清漆)塗佈於銅箔之具有被覆層之面,並進 行加熱而醯亞胺化的澆鑄法;或於聚醯亞胺膜上塗佈熱塑 性之聚醯亞胺,於其上#合銅落之具有被覆層之面,並進 行加熱加壓的層壓法。澆鑄法中,於塗佈聚醯亞胺清漆之 前預先塗佈熱塑性聚醯亞胺等增黏塗材亦有效。 本發明之銅箔之效果,會在採用澆鑄法製造Fpc時顯 著表現出來。即’當欲不使用接著劑來貼合銅羯與樹脂時, 特別要求銅fg與樹脂之接著性,本發明之銅箱之與樹脂、 特別是聚醯亞胺之接著性優異,因此可以說適合於利用堯 铸法之覆銅積層板之製造。 本發明之覆銅積層板可用於各種之印刷配線板 (PWB)’ i無特別限制,例如就導體圖案之層數之觀點而 言,可適用於單面PWB、兩面_、多層pwB(3層以上), 就絕緣基板材料之種類之觀點而言,可適用於剛性P·、 e;Sn, Μη, Cr, at least one of the rain recordings, the amount of coating 20~i7〇〇eg/dm2 exists. At this time, if the amount of coverage is not violated? If Limu transports 20 g/dm2, it will not be able to obtain sufficient peel strength. If it exceeds 17〇〇" 2 οι . υ M g/ dm, there will be a tendency for the etchability to decrease significantly. When Ni is composed of any of Zn, v, Sn, Mn, and ^, it is preferable that the intermediate layer is made of B~1000 /zg/dm^ and 5~75 (^g) /dm^ & Ni-Zn alloy composed of Ni_V alloy composed of a total coating amount of 2〇~6〇〇yg/dm22chuan and v, and a total coating amount of 18~45〇eg/dm2 of Νι and Sn A Ni-Sn alloy composed of Ni-Mn alloy having a coating amount of 15 to 45 Å and a thickness of g/dm 2 and Μ η of 5 to 200//g/dm 2 is coated with a amount of 20 to 440 #g/dm 2 . It is composed of a Ni-Cr alloy composed of Ni and 5 to llOyg/dn^i Cr. Further, when the intermediate layer is composed of a Cu alloy composed of any one or two of Cu, Zn, and Ni, it is preferably The intermediate layer is coated with Zn from 15 to 750 from 8/(11112 (:11-ethyl 11 alloy, ^-coated with a thickness of 15 to 440 / ^ / dm of Cu-Ni alloy, or Ni coating amount of 15 ~ Cu of 1000 /zg/dm2 and Ζπ is 5~750# g/dm2 —Ni—Formed by Zn alloy 0 (3) Observation by a transmission electron microscope (TEM) I!1 17 201114588 When the scratched surface of the coating layer of the present invention is observed by a transmission electron microscope, it is a coating layer as follows: The maximum thickness is 0 5 nm~l2 nm, preferably 丄〇~2·5_'minimum thickness is the maximum thickness "more than above, preferably (10) or more" and the unevenness is very small. The reason is in force, if the thickness of the coating layer is not In the heat resistance test and the moisture resistance test, the peel strength is greatly deteriorated, and when the thickness exceeds Unm, the etching property is lowered. When the minimum thickness is 80% or more of the maximum value, the coating is applied. The thickness of the layer is very stable and hardly changes after the heat resistance test. When observing with te+m, it is not: the clear boundary between the middle layer and the layer in the coating layer is found to be a single layer (refer to the small figure) According to the findings of the present inventors, it is considered that the coating layer found in the observation of tem is a layer mainly composed of Cr, and the intermediate layer is also considered to exist on the side of the substrate of the copper cation cancer. In the present invention, tem is The thickness of the coating at the time of inspection It is the thickness of the coating layer which appears to be a single layer. However, depending on the position of the observation site, there is also a ambiguity in the boundary of the coating layer, and such a portion is excluded from the measurement portion of the thickness. It constitutes 'self-suppressing emperor'. Cu diffuses and therefore has a stable thickness. The copper town of the present invention and the polyimide film are then subjected to a heat test (after standing at a temperature of 15 ° C and a high temperature environment under an air atmosphere for 168 hours), and then the thickness of the coating layer hardly occurs. Change, the maximum thickness is 〇5~12nm, and the minimum thickness can also maintain 80% of the maximum thickness. 〇& (4) Oxidation state of the surface of the coating layer First, in terms of improving the bonding strength, it is desirable that the internal copper is not diffused. To the outermost surface of the coating (from the surface 〇 ~ 丨〇 nm range). Therefore, in (4) of the printed wiring board of the invention of the present invention, it is preferable to set the atomic concentration (8) of the metal chromium in the depth direction (χ: unit (4) according to the depth direction from the surface by XPS to f, ( x), the atomic concentration (%) of the oxide chromium is set to f2 (x), and the atomic concentration (%) of the entire network is set to S f(x) (f(x)=f, (1) + f2(X)) Let the atomic concentration of nickel (five) be g(1) and the atomic degree of copper (%) ^ be 1ΦΟ ' set the atomic concentration of oxygen (%) to i(x), and the atomic concentration of carbon (%) to j(8)' The sum of the atomic concentrations of other metals is set to k(1) in the interval [〇, L0], S h(x)dx/n f(1)dx+ sg(x)dx+ sh(x)dx + SI(x)dx+ S j(x) Dx+ sk(x)dx) is 10% or less. Further, it is preferably an atomic concentration of metal chromium in the depth direction (X: unit nm) obtained by analyzing the depth direction from the surface of the S XPS when the heat treatment for the hardening of the polyimine is performed. ) is f|(x), the atomic concentration (%) of the oxide chromium is f2(x), and the atomic concentration (%) of the entire chromium is f(x)(f(x)=f, (1) + G(1))' The atomic concentration (%) of nickel is set to g(x), the atomic concentration (%) of copper is h(x), and the atomic concentration of oxygen is δ, which is 1 (x). The atomic concentration is set such that the sum of the atomic concentrations of other metals is k(x), then within the interval [0, 1.0], sh(x)dx/"f(x)dx + $g(x) Dx + 5 h(x)dx + S i(x)dx + $ j(x)dx + $ k(x)dx) is below i〇%. Also 'ideally' when forming insulation for the via layer When the surface of the coating layer from which the insulating substrate is peeled off from the coating layer is analyzed by the copper foil for the printed wiring board of the substrate, the metal in the depth direction (x: unit nm) obtained by analyzing the depth direction from the surface by XPS is analyzed. The atomic concentration of chromium (%) is set to AU)' (%) is set to f2(x), and the atomic concentration (%) of all 19 201114588 chromium is set to f(x)(f(x)= fi(x)+ f2(x)), and the atomic concentration of nickel ( %) is set to g(x), the atomic concentration (%) of copper is h(x), the atomic concentration (%) of oxygen is i(X), and the atomic concentration (%) of carbon is set to j. (x), the sum of the atomic concentrations of other metals is k(x), and the distance from the surface layer where the concentration of metal chromium is the largest is F, then 区间h(x) in the interval [〇, F] Dx/〇f(x)dx+ 5 g(x)dx+ $ h(x)dx+ 5 i(x)dx+ $ j(x)dx+ S k(x)dx) is l〇% or less. Also, in the coating layer On the outermost surface, chromium is present in both metallic chromium and chromium oxide, and in order to prevent the diffusion of copper inside, and to ensure the adhesion, although metal chromium is preferred, in terms of obtaining good etching properties, it is preferable. It is a chromium oxide. Therefore, in order to achieve both the etching property and the adhesion force, it is preferable to use the atomic concentration of the metal chromium in the depth direction (X: unit nm) obtained by analyzing the depth direction from the surface using XPS. (%) is set to fi(x), and the atomic concentration (%) of the oxide chromium is set to f2(x). The atomic concentration of all chromium is f(X)(f(X) = fjx) + f2(x)), and the atomic concentration of nickel is set to g(X) 'The atomic concentration (%) of copper is set to h (x), the atomic concentration of oxygen is i〇o, and the atomic concentration (%) of carbon is set to j(x)', and the sum of the concentrations of other metals is set to k(x). Within the interval [〇,1 .〇], s f2(x)dx/〇f(x)dx+ S g(x)dx+ S h(x)dx+ S i(x)dx+ S j(x)dx+ s 1^ (乂) (1\) is 20% or more, and within the interval [1.〇, 2.5], 〇1^5 f丨(x)dx/ $f2(x)dx$ lO is satisfied. Further, it is preferable that when the polyimine hardening is performed, the temperature is further determined according to the depth direction (X: unit nm) obtained by dividing the depth direction from the surface by XPS. The atomic concentration (%) of the metal chromium is set to fi(x), and the atomic concentration (%) of the oxygen of the oxygen 201114588 is set to f2(x) 'The atomic concentration (%) of the entire chromium is set to f(x) ( f(1)=f,(1)+ f2(x)) 'Set the atomic concentration (%) to g(x), the atomic concentration (%) of copper to h(x), and the atomic concentration of oxygen (%) When i(x) is set, the atomic concentration (%) of carbon is set to j(x), and the sum of the atomic concentrations of other metals is k(x), then in the interval [0, 10], s f2 ( x)dx/(sf(x)dx+ $ g(x)dx+ $ h(x)dx+ $ i(x)dx+ $ j(x)dx+ S k(x)dx) is 20% or more 'in interval n. 〇, 2 5], satisfy 〇us fKx^x/ S f2(x)dxS 1.0. Further, it is preferably a copper foil for a printed wiring board which is subjected to a heat treatment in which the polyimide is hardened, and a depth direction (x: unit nm) obtained by analysis in the depth direction from the surface by XPS is used. The atomic concentration (%) of the metal chromium is set to fjx)', the atomic concentration of the chromium oxide is set, and the atomic concentration (%) of the entire chromium is set to f(x)(f(x)=fl(x)+f2 (x)), the atomic concentration (%) of nickel is set to g(x), the atomic concentration (%) of copper is h(x), and the atomic concentration (%) of oxygen is i(x). When the atomic concentration (%) of carbon is set to j(x) and the sum of the atomic concentrations of other metals is k(x), then 'f2(x)dx/nf is in the interval [〇, i-Ο] ( x)dx+ 丨g(x)dx+ $ h(x)dx+ $ i(x)dx + 5](\)(1\+$]^)(^) is 20% or more in the interval [1〇, 2.5 Within , satisfy O.iq fl(x)dx/s f2(1)dx^ i 〇. The chromium concentration and the oxygen concentration are calculated from the peak intensities of the Cr2p orbital and the 〇is orbital obtained by knife-edge analysis from the surface of the surface by XPS, and the distance in the depth direction (X: unit nm) is converted according to si02. The distance calculated by the strontium rate. The chromium concentration is the sum of the oxide chromium concentration and the metal chromium concentration, which can be separated into the oxide chromium concentration and the metal chromium concentration by adding 21 201114588 for analysis. (Method for Producing Copper Foil of the Present Invention) The copper box for a printed wiring board of the present invention can be formed by a money silver method. That is, by the mineralization method, the thickness is 0.25 to 5 〇 · (preferably 〇 3 to 4-Onm, more preferably 中间. 5 to 3.0 nm of the intermediate layer) and the thickness is 〇 25 to 2.5 _ ( Preferably, the layer of 〇.4~2_0nm', more preferably 〇5~丨〇_), is sequentially coated with at least a portion of the surface of the copper fl substrate, thereby being manufactured. If such an extremely thin film is laminated by electroplating, the thickness will be uneven, and the peel strength will be easily lowered after the heat resistance and moisture resistance test. Here, the thickness is not the thickness determined by xps or tem described above, but is the thickness derived from the film formation speed of the money bond. The film formation rate under a certain sputtering condition is measured by sputtering of 〇.1/zm (1 〇〇 nm) or more depending on the relationship between the time of the money and the degree of splashing (four degrees). When the film formation speed under the slit condition is measured, the sputtering time is set in accordance with the desired thickness. Further, the sputtering can be carried out continuously or in batches, and the coating layer can be uniformly laminated with the thickness specified in the present invention. The sputtering method can be exemplified by a DC magnetron sputtering method. (Manufacturing of Printed Wiring Board) A printed wiring board (PWB) can be produced by a usual method using the copper foil of the present invention. The following 'is a manufacturing example of a printed wiring board. First, a copper enamel and an insulating substrate are bonded to each other to manufacture a copper clad laminate. An insulating substrate having a copper foil laminated thereon is not particularly limited as long as it has characteristics suitable for a printed wiring board. For example, when used for a rigid PWB, a paper substrate resin, a paper substrate epoxy resin, or a synthetic fiber can be used. Cloth substrate epoxy resin, glass cloth _ paper composite substrate epoxy resin, glass cloth - glass non-woven composite 22 201114588 substrate epoxy resin and glass cloth substrate epoxy resin, etc., for FPC, polyester can be used Membrane or polyimide membrane. In the case of the rigid PWB, the bonding method is prepared by impregnating a substrate such as a glass cloth with a resin and curing the resin to a semi-hardened state. This can be carried out by heating and pressurizing the prepreg and the surface of the copper foil having the coating layer. In the case of a flexible printed wiring board (FPC), an epoxy-based or acrylic-based adhesive may be used to bond the polyimide film or the polyester film to the surface of the copper foil having the coating layer (3 layers). structure). In addition, a method (two-layer structure) in which an adhesive is not used is exemplified by coating a polyimide varnish (poly-proline varnish) which is a polyimide precursor before coating on a copper foil. The surface of the layer is heated and the imidization is casted; or the thermoplastic polyimide is coated on the polyimide film, and the surface of the coating layer is heated and heated. Pressurized lamination method. In the casting method, it is also effective to apply a tackifying coating material such as a thermoplastic polyimide after precoating the polyimide varnish. The effect of the copper foil of the present invention is remarkably exhibited when the FPC is produced by a casting method. In other words, when the copper matte and the resin are to be bonded without using an adhesive, the adhesion between the copper fg and the resin is particularly required, and the copper box of the present invention is excellent in adhesion to a resin, particularly polyimine, so that it can be said that It is suitable for the manufacture of copper-clad laminates using the bismuth casting method. The copper clad laminate of the present invention can be used for various printed wiring boards (PWB)', and is not particularly limited. For example, in terms of the number of layers of the conductor pattern, it can be applied to one-sided PWB, two-sided _, and multi-layered pwB (three layers). The above) is applicable to the rigidity P·, e from the viewpoint of the type of the insulating substrate material;

Lil 23 201114588 可撓性pwb(fpc)、剛性一可挽性觸。 由覆銅積層板製造印品丨 知之方㈣… 線板之步驟採用從業者所周 ° ’列如可將蝕刻阻劑僅塗佈於覆鋼積層板之 銅岛面之作為導體圖案的必要部分,將㈣液噴 面’藉此除去多餘銅落而形成導體圖案,然後剝離:除去 姓刻阻劑而露出導體圖案。 [實施例] 以下,表示本發明之實施例,但該等實施例係為了更 好地理解本發明所提供者,並非刻意限定本發明。 (例1 :實施例1〜4 4) 作為實施例1〜6及8〜44之銅箔基材,準備厚度18 以111之壓延銅箔(日礦金屬製C1100)。壓延銅箔之表面粗糙 度(Rz)為〇.7“m。又,作為實施例7之銅箔基材,準備厚 度18#m之無粗化處理之電解銅箔。電解鋼箔之表面粗糙 度(Rz)為 1 ·5 μ m。 用於藏鑛之各種單體(a〜e)使用純度為3N者。又,以 下述順序製作各種合金(f〜丨)。首先,於電解銅或鎳中分別 添加表1(滅鑛乾材之合金成分[質量% ])所示之組成之元 素,於高頻熔解爐中鑄造錠,以600〜900t對其實施熱壓 延。進而,以500〜85(TC均質化退火3小時後’除去表層 之氧化層’使用作為濺鍍用之靶材。 24 201114588 [表l]Lil 23 201114588 Flexible pwb (fpc), rigid and pullable. The production of printed products from copper-clad laminates (4)... The steps of the wire-plates are carried out by the practitioners. The etch resists can be applied only to the copper islands of the steel-clad laminates as a necessary part of the conductor pattern. The (four) liquid spray surface is used to remove excess copper to form a conductor pattern, and then peeled off: the last name resist is removed to expose the conductor pattern. EXAMPLES The examples of the invention are shown below, but the examples are intended to provide a better understanding of the invention and are not intended to limit the invention. (Example 1 : Examples 1 to 4 4) As the copper foil substrates of Examples 1 to 6 and 8 to 44, a rolled copper foil (C1100 made of Nippon Mining Metal) having a thickness of 18 was prepared. The surface roughness (Rz) of the rolled copper foil was 〇7"m. Further, as the copper foil substrate of Example 7, an electrolytic copper foil having a thickness of 18#m without roughening treatment was prepared. The surface of the electrolytic steel foil was rough. The degree (Rz) is 1 · 5 μ m. The various monomers (a to e) used for the ore mining use a purity of 3 N. Further, various alloys (f 丨 丨) are produced in the following order. First, in electrolytic copper or An element of the composition shown in Table 1 (alloy component of the ore-killing dry material [% by mass]) was added to the nickel, and the ingot was cast in a high-frequency melting furnace, and hot rolled at 600 to 900 t. Further, 500 ~85 (after removing the oxide layer of the surface layer after 3 hours of TC homogenization annealing), it is used as a target for sputtering. 24 201114588 [Table l]

Cu Ni Mo Ti Zn Co V Sn Cr Μη a 一 100 -— — — 一 — — — b — 一 100 一 — 一 一 一 一 — c 一 — — 100 — — 一 一 一 — d — 一 一 — 100 —- _ 一 — — e —— — 一 * —— 100 _ 一 — — f — 97 一 — 一 3 一 一 — g — 80 '—' — 一 _ 20 — — h —— 80 一 一 — 一 一 一 20 — i — 85 一 一 — 一 一 一 一 15 j 80 20 — 一 一 一 _ — — k 70 — — — 30 一 — 一 一 一 1 64 18 18 一 一 — — 對於該銅络之單面,以下述條件利用逆向濺鍍,預先 除去附著於銅箔基材表面之較薄之氧化膜,藉由對a〜丨及 Cr單層之靶材進行濺鍍,而依序形成中間層及心層。被覆 層之厚度係藉由調整成膜時間而改變。 •裝置:批次式濺鍍裝置(ULVAC公司,型號mns — 6000) •極限真空度:1.0xl〇_5pa •濺鍍壓:〇.2Pa •逆向濺鑛功率:1〇〇W •靶材: 中間層=a〜1 Cr層用=Cr(純度3N)Cu Ni Mo Ti Zn Co V Sn Cr Μ a a 100 - - - - one - - - b - one 100 one - one one one one - c one - 100 - one one one - d - one one - 100 - - _ 一— — e —— — 一 — —— 100 _ 一 — — f — 97 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 20 — i — 85 一一一一一一一一 15 j 80 20 — 一一一 _ — — k 70 — — — 30 一 — 一 一 一 1 64 18 18 一 一 — — For the single side of the copper, Reverse sputtering is used to remove a thin oxide film adhering to the surface of the copper foil substrate in advance, and the intermediate layer and the core layer are sequentially formed by sputtering a target of a to 丨 and Cr single layer. . The thickness of the coating layer is changed by adjusting the film formation time. • Device: Batch Sputter (ULVAC, Model mns - 6000) • Ultimate Vacuum: 1.0xl〇_5pa • Sputter Pressure: 〇.2Pa • Reverse Splash Power: 1〇〇W • Target: Intermediate layer = a ~ 1 Cr layer = Cr (purity 3N)

•濺錢功率:50W 成骐速度.對於各靶材,以固定時間成膜約〇2#m, 維利定器測定厚度,算出單位時間之藏鑛速率。• Splash power: 50W into a sputum speed. For each target, a film is formed at a fixed time of about #2#m, and the thickness is measured by a viiliizer to calculate the mine rate per unit time.

S 25 201114588 對於設置有被覆層之銅箔,根 胺膜* (1)對於7cmx7cm之鋼箔,使用 ’根據以下順序接著聚醯亞 //m之方式塗佈宇部興產製^ (2)於空氣下利用乾燥機以 脂之銅箔乾燥3 〇分鐘。 (3)於氮氣流量設定為1〇L/min 使用敷料器,以乾燥體為25 UVarnish ~ A(聚醯亞胺清漆)。 以13(TC將(1)中所得之附有樹 之高溫加熱爐中,以 350C之溫度醯亞胺化3〇分鐘。 又,與上述聚醯亞胺膜之接著測試不同地,作為「耐 熱測試」’不於設有被覆層之銅羯上接著聚醯亞胺膜,而 直接於氮氣環境下以350。(:之溫度加熱2小時。 <附著量之測定> 將50mm X 5 0mm之銅箔表面之被膜溶解於混合有 HN〇3(2重量% )與hC1(5重量% )之溶液中,利用lcp發光 分光分析裝置(SII NanoTechnology股份有限公司製,SFC — 3100),對該溶液中之金屬濃度進行定量,算出每單位面 積之金屬量(M g/ dm2”再者,本發明中,將Cu合金作為 靶材時之Cu與其他金屬之附著量、及將Cr合金作為靶材 時之Cr與其他金屬之附著量係使用於相同條件下於丁丨箱上 成膜時之分析值。 <利用XPS之測定> 將製作被覆層之縱深分析圖時之XPS之運轉條件示於 以下。 •裝置:XPS測定裝置(ULVAC - PHI公司,型號 26 201114588 5600MC) •極限真空度:3 8xl〇-7pa X射線.單色A1K α或非單色MgK α,X射線功率 為300W,檢測面積為8〇〇 " ,試料與檢測器所成之角度 為45° •離子束:離子種類為Ar+,加速電壓為3kv,掃描面 積為3mmx3mm,濺鍍速率為2 〇nm/min(Si〇2換算) •於XPS之測定結果中,氧化物鉻與金屬鉻之分離係 使用ULVAC公司製分析軟體Muhi pak ν7·3.1來進行。 •測定係對如下被膜進行分析,即,於利用濺鍍成膜 後,實施較測定接著強度時之聚醯亞胺硬化條件(35〇〇c χ3〇 分鐘)更苛刻之條件之熱處理(35〇〇c χ12〇分),在此狀態下繼 而剝離絕緣基板後之被膜。 <利用ΤΕΜ之測定> 將利用ΤΕΜ觀察被覆層時之τεμ之測定條件示於以 下。後述表中所示之厚度係對於觀察視野中所拍攝之被覆 層整體之厚度’針對1個視野測定50nm間之厚度之最大 值、最小值’求出任意選擇之3個視野之最大值與最小值, 以百分率求出最大值及最小值相對於最大值之比例。又, 表中,「耐熱測試後」之TEM觀察結果係根據上述順序, 於測試片之被覆層上接著聚醯亞胺膜之後,將測試片置於 下述高溫環境下,依照90°剝離法(JIS C 6471 8.1),自所得 之測試片剝離聚醯亞胺膜後的TEM像。圖1中,例示地表 系實施例17之利用TEM之成膜後之觀察照片。根據圖1 fl: 27 201114588 無法確認中間層。其原因在於,該部分為銅合金層而無法 與母材之㈣加以區別。圖丨中所確認者推測為&層。本 發明中,測量僅與母材之邊界明確之層的厚度。 •裝置.TEM(日立製作所公司,型號H9〇〇〇nar) •加速電壓:300kV •倍率:300000倍 •觀察視野:60nmx60nm <接著性評估> 對於以上述方式積層有聚醯亞胺之銅箔,於剛積層後 (常態)、於溫度15〇t之空氣環境下之高溫環境下放置168 小時後(耐熱性)' 及於溫度401且相對濕度95%之空氣環 境下之高濕環境下放置96小時後(耐濕性)3種條件下測定 剝離強度。剝離強度係依據90。剝離法(JIS C 6471 8.1)而測 定。 <蝕刻性評估> 於以上述方式製作之銅箔之該被覆層上貼附白膠帶, 浸潰於蝕刻液(氣化銅二水合物、氣化銨、氨水、液溫5〇〇c ) 中7分鐘。其後,利用ICP發光分光分析裝置,對附著於 膠帶上之蝕刻殘渣之金屬成分進行定量,以下述基準進行 評估。 X :蝕刻殘渣為140 y g/ dm2以上 △:蝕刻殘渣為70 // g/ dm2以上、未達14〇 # g/ dm2 〇:蝕刻殘渣未達70 μ g/ dm2 (例2 :比較例1〜2 8) 28 201114588 於例1中使用之壓延銅荡基材之單面’改變濺鍍時間 而形成後述表之厚度之被膜。對於設置有被覆層之銅箔j 根據與例1相同之順序接著聚醯亞胺膜。 (例3 :比較例29) 對例1中使用之壓延銅羯基材之單面,分別於以下條 件下實施日本特開2005 - 344174號公報中所揭示之鍍吣 一 Zn處理、鉻酸處理及矽烷偶合劑處理。 [鍵Ni — Zn處理] •硫酸鎳 1.5g/l(Ni換算) •焦磷酸鋅 0.5g/l(Zn換算) ♦焦磷酸鉀 200g/l • pH 值 9S 25 201114588 For the copper foil provided with the coating layer, the root amine film* (1) For the steel foil of 7cmx7cm, use the method of 'polymerization according to the following sequence to the next step.> (2) Dry in a copper foil with grease for 3 〇 minutes using a dryer. (3) The flow rate of nitrogen gas was set to 1 〇L/min using an applicator, and the dry body was 25 UVarnish ~ A (polyimine varnish). It is imidized by a temperature of 350 C for 3 minutes in a high-temperature furnace with a tree obtained in (1) by TC (TC), and is different from the subsequent test of the above polyimide film. The test "' is not on the copper layer with the coating layer and then the polyimide film, and is heated directly under a nitrogen atmosphere at 350. (: temperature is heated for 2 hours. <Measurement of adhesion amount) 50 mm X 50 mm The film on the surface of the copper foil was dissolved in a solution in which HN〇3 (2% by weight) and hC1 (5% by weight) were mixed, and this was measured by an lcp luminescence spectroscopic analyzer (SFC-3100, manufactured by SII NanoTechnology Co., Ltd.). The metal concentration in the solution is quantified, and the amount of metal per unit area (M g / dm 2 ) is calculated. Further, in the present invention, the adhesion amount of Cu to other metals when the Cu alloy is used as a target, and the Cr alloy as a target The amount of adhesion of Cr to other metals in the case of the material is the analysis value when the film is formed on the crucible box under the same conditions. <Measurement by XPS> Operating conditions of XPS when the depth analysis map of the coating layer is prepared Shown below. • Device: XPS measuring device (ULVAC - PH Company I, Model 26 201114588 5600MC) • Ultimate vacuum: 3 8xl〇-7pa X-ray. Monochrome A1K α or non-monochromatic MgK α, X-ray power is 300W, detection area is 8〇〇", sample and test The angle formed by the device is 45°. • The ion beam: the ion type is Ar+, the acceleration voltage is 3kv, the scanning area is 3mmx3mm, and the sputtering rate is 2 〇nm/min (Si〇2 conversion). • In the measurement result of XPS, The separation between the oxide chromium and the metal chromium was carried out by using the analysis software Muhi pak ν7·3.1 manufactured by ULVAC Co., Ltd. • The measurement system analyzed the following film, that is, after the film formation by sputtering, the polymerization was performed at the same time as the measurement of the strength. The heat treatment (35〇〇c χ12〇) of the more severe conditions of the sulphide hardening condition (35〇〇c χ3〇 minutes), and then the film after the insulating substrate is peeled off in this state. <Measurement using ΤΕΜ> The measurement conditions of τεμ when the coating layer is observed by ΤΕΜ are shown below. The thickness shown in the table below is the maximum thickness of the coating layer measured in the observation field of view, and the maximum thickness of 50 nm is measured for one field of view. Minimum 'To find the maximum and minimum values of the three fields of view that are arbitrarily selected, and to calculate the ratio of the maximum value and the minimum value to the maximum value in percentage. In addition, in the table, the TEM observation results after "heat resistance test" are based on the above sequence. After the polyimide film was coated on the coating layer of the test piece, the test piece was placed under the following high temperature environment, and the polyimide film was peeled off from the obtained test piece according to the 90° peeling method (JIS C 6471 8.1). After the TEM image. In Fig. 1, an observation photograph of the film of Example 17 after film formation by TEM is exemplified. According to Figure 1 fl: 27 201114588 Unable to confirm the middle layer. The reason is that this portion is a copper alloy layer and cannot be distinguished from the (4) of the base material. The person confirmed in the figure is presumed to be the & layer. In the present invention, the thickness of the layer which is only defined by the boundary of the base material is measured. • Device. TEM (Hitachi, Ltd., model H9〇〇〇nar) • Accelerating voltage: 300kV • Magnification: 300,000 times • Observation field: 60nmx60nm <Adhesion evaluation> Copper with polyimine layer laminated in the above manner Foil, after 168 hours (normal), in a high temperature environment at a temperature of 15 〇t, after 168 hours (heat resistance) and in a high humidity environment at an air temperature of 401 and a relative humidity of 95% The peel strength was measured under three conditions of leaving after 96 hours (moisture resistance). Peel strength is based on 90. It was measured by a peeling method (JIS C 6471 8.1). <Erosion Evaluation> A white tape was attached to the coating layer of the copper foil produced as described above, and immersed in an etching solution (vaporized copper dihydrate, vaporized ammonium, ammonia, liquid temperature, 5 〇〇c) ) 7 minutes. Thereafter, the metal component of the etching residue adhering to the tape was quantified by an ICP emission spectroscopic analyzer, and evaluated based on the following criteria. X: etching residue is 140 yg/dm2 or more △: etching residue is 70 // g/dm2 or more, less than 14 〇# g/dm2 〇: etching residue is less than 70 μg/dm2 (Example 2: Comparative Example 1~ 2 8) 28 201114588 The film of the thickness of the surface to be described later is formed by changing the sputtering time on one side of the rolled copper substrate used in Example 1. The copper foil j provided with the coating layer was subjected to a polyimide film in the same order as in Example 1. (Example 3: Comparative Example 29) The ruthenium-plated Zn treatment and the chromic acid treatment disclosed in JP-A-2005-344174 were carried out on the single surface of the rolled copper ruthenium substrate used in Example 1 under the following conditions. And decane coupling agent treatment. [Key Ni - Zn treatment] • Nickel sulfate 1.5g/l (in terms of Ni) • Zinc pyrophosphate 0.5g/l (in terms of Zn) ♦ Potassium pyrophosphate 200g/l • pH 9

•浴溫 40°C •電流密度 5A/dm2 [鉻酸處理] • Cr03 lg/1• Bath temperature 40 ° C • Current density 5 A / dm 2 [chromic acid treatment] • Cr03 lg / 1

•浴溫 35°C •電流密度 8A/dm2 [矽烷偶合劑處理] •T—胺基丙基三乙氧基石夕炫 塗佈5g/1之溶液 (例4 :比較例30) 對例1中所使用之壓延銅箔基材之單面,分別於以下 條件下實施日本特開2007— 007937號公報所揭示之鍍州 處理、鉻酸處理及矽烷偶合劑處理。 29 201114588 [鍍Ni處理] • NiS04/7H20 300g/l(以 Ni2 +計) • H3BO3 4〇g/l •浴溫 25 °C •電流密度 1 ·0A/ dm2 [鉻酸處理] • Cr03 lg/1 •浴溫 25〇C •電流密度 2.0A/ dm2 [矽烷偶合劑處理] • 3_胺基丙基三乙氧基矽烷 塗佈0.3%之溶液 將例1〜4之各測定結果示於表2〜7。 30 201114588 [表2] 成膜方法 附著量(Ag/dm2) 被膜構成• Bath temperature 35 ° C • Current density 8 A / dm 2 [decane coupling agent treatment] • T-aminopropyl triethoxy sulphur coating 5 g / 1 solution (Example 4: Comparative Example 30) On one side of the rolled copper foil substrate used, the plating treatment, the chromic acid treatment, and the decane coupling agent treatment disclosed in JP-A-2007-007937 were carried out under the following conditions. 29 201114588 [Ni plating treatment] • NiS04/7H20 300g/l (in Ni2+) • H3BO3 4〇g/l • Bath temperature 25 °C • Current density 1 ·0A/ dm2 [chromic acid treatment] • Cr03 lg/ 1 • Bath temperature 25〇C • Current density 2.0A/dm2 [矽 偶 coupling agent treatment] • 3_Aminopropyl triethoxy decane coating 0.3% solution The results of each of Examples 1 to 4 are shown in the table. 2 to 7. 30 201114588 [Table 2] Film formation method Adhesion amount (Ag/dm2)

CuCu

NiNi

Mo TiMo Ti

Zn Co V Sn MnZn Co V Sn Mn

Cr 第1層 第2層 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 y施例9 實施例10 實施例11 實施例12 ϋ例13 —例14 涵例15 實施例丨6 #施例17 實施例18 實施例19 實施例20 T施例21 —實施例22 實施例23 實施例24 實施例25 實施例26 實施例27 實施例28 一實施例29 實施例30 —ϋ例 31 ^>例 32 實施例33 實施例34 實施例35 實施例36 實施例37 _實施例38 —ϋ例 39 實施例40 實施例41 實施例42 實施例43 實施例44 比較例1 比較例2 比較例3 比較例4 —比較例5 比較例6 比較例7 比較例8 比較例9 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延 壓延Έϋ 壓延Έϋ Έμ 壓延 壓延 壓延 壓延 ―瘦延 43 91 89 92 93 18 91 434 28 1010 18 61 80 18 66 730 28 88 1005 18 142 18 438 19 87 364 20 170 440 20 81 445 21 722 18 19 66 21 195 72 16 234 2013 83 220 3420 17 200 4149 45 431 18 120Cr layer 1 layer 2 embodiment 1 embodiment 2 embodiment 3 embodiment 4 embodiment 5 embodiment 6 embodiment 7 y embodiment 9 embodiment 10 embodiment 11 Example 15 Example # 6 Example 17 Example 18 Example 19 Example 20 T Example 21 - Example 22 Example 23 Example 24 Example 25 Example 26 Example 27 Example 28 Example 29 Example 30 - Example 31 ^> Example 32 Example 33 Example 34 Example 35 Example 36 Example 37 - Example 38 - Example 39 Example 40 Example 41 Example 42 Example 43 Example 44 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 - Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering calendering Calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, calendering, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling, rolling 18 91 434 28 1010 18 61 80 18 66 730 28 88 1005 18 142 18 438 19 87 364 20 170 440 20 81 445 21 722 18 19 66 21 195 72 16 234 2013 83 220 3420 17 200 4149 45 431 18 120

87 ~90~ ~45\ IF 20 1050 12 T50 16 740 42 740 12 21 68 85 178 70 68^ 72" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 77 98 182 72 72 72 72 72 72 J72ΊΪ 72 72 72 ~Ί2Is Ϊ83 35_ 36 36 3687 ~90~ ~45\ IF 20 1050 12 T50 16 740 42 740 12 21 68 85 178 70 68^ 72" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 77 98 182 72 72 72 72 72 72 J72ΊΪ 72 72 72 ~Ί2Is Ϊ83 35_ 36 36 36

NiNi

TiTi

ZnZn

CoCo

Ni — ZnNi — Zn

Ni-VNi-V

Ni-SnNi-Sn

Ni-CrNi-Cr

Ni —MnNi — Mn

Cu-NiCu-Ni

Cu一ZnCu-Zn

Cu-Ni-ZnCu-Ni-Zn

NiNi

TiTi

ZnZn

CrCr

Cr 31 201114588 比較例10 壓延 — — - — 770 — — — — 108 比較例11 壓延 - — - - - 20 — — — 36 Co 比較例丨2 壓延 — - — - - 1040 — - - 108 比較例U 壓延 — 12 - - 4 — — — - 36 Ni-Zn 比較例14 壓延 - 1020 — — 770 - — 一 - 108 比較例15 壓延 — 13 - - - - 3 — — 36 Ni-V 比較例丨6 壓延 — 510 - - - - 180 - — 108 比較例17 壓延 - 14 3 36 Ni-Sn 比較例18 壓延 — 405 — - — — — 75 - 108 比較例19 壓延 — 15 39 Ni-Cr 比較例20 壓延 — 450 Ϊ25 比較例21 壓延 — 14 4 36 Ni-Mn 比較例22 壓延 — 460 205 108 比較例23 壓延 68 13 36 Cu-Ni 比較例24 壓延 2117 458 108 比較例25 壓延 68 — — — 13 - — - — 36 Cu —Zn 比較例26 壓延 3950 - - — 770 - - — - 108 比較例27 壓延 27 14 - - 3 - - - - 36 Cu-Ni-Zn 比較例28 壓延 4700 1051 - — 766 — — - — 108 比較例29 電鍍 壓延 - 370 - — 81 — - — - 21 Ni層或Ni合金層 鉻酸鹽 比較例30 壓延 — 220 21 [表3] TEM觀察 剝離強度(kN/m). Ab fit 蝕刻殘渣 (μ. g/dm2) 剛成膜後 耐熱測試後 被覆層最大厚度 (nm) 最小值/最大值 (%) 被t層最大厚度 (nm) 最小值/最大值 (%) 常態 耐熱 耐濕 實施例1 0.6 82 0.5 82 1.10 1.05 1.05 〇 <20 實施例2 1.9 83 2.0 84 1.41 1.35 1.37 〇 <20 實施例3 2.1 84 2.3 85 1.51 1.45 1.40 〇 35 實施例4 3.1 85 3.1 85 1.63 1.55 1.51 Δ 78 實施例5 3.5 86 3.4 87 1.77 1.72 1.67 Δ 129 實施例6 1.2 83 1.1 83 1.43 1.42 1.38 〇 <20 實施例7 1.9 83 2.0 84 1.41 1.35 1.37 〇 <20 實施例8 5.8 94 5.7 93 1.45 1.40 1.35 〇 <20 實施例9 1.3 83 1.2 83 1.21 1.05 1.03 〇 <20 實施例10 2.0 84 2.1 86 1.44 1.38 1.35 〇 <20 實施例丨1 11 97 11 96 1.51 1.45 1.42 〇 <20 實施例12 1.4 85 1.5 86 1.23 1.18 1.15 〇 <20 實施例13 2.6 87 2.5 86 1.43 1.38 1.32 〇 <20 實施例14 1.9 87 2.0 87 1.45 1.42 1.40 〇 <20 實施例15 1.2 83 1.1 84 1.10 1.05 1.02 〇 <20 實施例16 1.9 86 2.0 85 1.42 1.40 1.31 〇 <20 實施例17 11 95 12 95 1.44 1.35 1.32 〇 <20 實施例18 1.4 86 1.5 87 1.21 1.05 1.03 〇 <20 實施例19 1.8 85 1.9 87 1.46 1.38 1.33 〇 <20 實施例20 12 96 12 96 1.45 1.42 1.40 〇 <20 實施例21 1.8 87 1.9 87 1.40 1.32 1.30 〇 <20 實施例22 3.1 89 3.0 91 1.42 1.35 1.32 〇 <20 實施例23 II 97 11 96 1.50 1.46 1.43 〇 <20 實施例24 1.4 84 1.5 85 1.21 1.05 1.03 〇 <20 實施例25 3.0 90 3.1 91 1.44 1.40 1.34 〇 <20 實施例26 8.8 95 8.9 96 1.45 1,40 1.38 〇 <20 實施例27 1.4 84 1,5 85 1.23 1.08 1.02 〇 <20 32 201114588Cr 31 201114588 Comparative Example 10 Calender — — — — 770 — — — — 108 Comparative Example 11 Calender — — — — — 20 — — — 36 Co Comparative Example 压 2 Calender — — — — — 1040 — — — 108 Comparative Example U Calendering - 12 - - 4 - - - - 36 Ni-Zn Comparative Example 14 Calendering - 1020 - 770 - - One - 108 Comparative Example 15 Calendering - 13 - - - - 3 - 36 Ni-V Comparative Example 丨 6 Calendering — 510 — — — — 180 — — 108 Comparative Example 17 Calendering - 14 3 36 Ni-Sn Comparative Example 18 Calendering — 405 — — — — — 75 — 108 Comparative Example 19 Calendering — 15 39 Ni-Cr Comparative Example 20 Calendering— 450 Ϊ25 Comparative Example 21 Calendering - 14 4 36 Ni-Mn Comparative Example 22 Calendering - 460 205 108 Comparative Example 23 Calendering 68 13 36 Cu-Ni Comparative Example 24 Calendering 2117 458 108 Comparative Example 25 Calendering 68 — — — 13 — — — 36 Cu—Zn Comparative Example 26 Calendering 3950 - - 770 - - - - 108 Comparative Example 27 Calendering 27 14 - - 3 - - - - 36 Cu-Ni-Zn Comparative Example 28 Calendering 4700 1051 - — 766 — — - - 1 08 Comparative Example 29 Electroplating calendering - 370 - 81 - - - - 21 Ni layer or Ni alloy layer chromate Comparative Example 30 Calendering - 220 21 [Table 3] Peel strength (kN/m) by TEM observation. Ab fit Etching residue (μ. g/dm2) Maximum thickness (nm) of the coating after heat resistance test immediately. Minimum/maximum (%) Maximum thickness (nm) of the t layer Minimum/maximum (%) Normal heat and humidity resistance Example 1 0.6 82 0.5 82 1.10 1.05 1.05 〇 <20 Example 2 1.9 83 2.0 84 1.41 1.35 1.37 〇 <20 Example 3 2.1 84 2.3 85 1.51 1.45 1.40 〇35 Example 4 3.1 85 3.1 85 1.63 1.55 1.51 Δ 78 Example 5 3.5 86 3.4 87 1.77 1.72 1.67 Δ 129 Example 6 1.2 83 1.1 83 1.43 1.42 1.38 〇 <20 Example 7 1.9 83 2.0 84 1.41 1.35 1.37 〇 <20 Example 8 5.8 94 5.7 93 1.45 1.40 1.35 〇 < 20 Example 9 1.3 83 1.2 83 1.21 1.05 1.03 〇 < 20 Example 10 2.0 84 2.1 86 1.44 1.38 1.35 〇 < 20 Example 丨 1 11 97 11 96 1.51 1.45 1.42 〇 < 20 Example 12 1.4 85 1.5 86 1.23 1.18 1.15 〇<20 Example 13 2.6 87 2.5 86 1.43 1.3 8 1.32 〇 <20 Example 14 1.9 87 2.0 87 1.45 1.42 1.40 〇 <20 Example 15 1.2 83 1.1 84 1.10 1.05 1.02 〇 <20 Example 16 1.9 86 2.0 85 1.42 1.40 1.31 〇 <20 Example 17 11 95 12 95 1.44 1.35 1.32 〇 <20 Example 18 1.4 86 1.5 87 1.21 1.05 1.03 〇 <20 Example 19 1.8 85 1.9 87 1.46 1.38 1.33 〇 <20 Example 20 12 96 12 96 1.45 1.42 1.40 〇 <20 Example 21 1.8 87 1.9 87 1.40 1.32 1.30 〇 <20 Example 22 3.1 89 3.0 91 1.42 1.35 1.32 〇 <20 Example 23 II 97 11 96 1.50 1.46 1.43 〇 <20 Example 24 1.4 84 1.5 85 1.21 1.05 1.03 〇 <20 Example 25 3.0 90 3.1 91 1.44 1.40 1.34 〇 <20 Example 26 8.8 95 8.9 96 1.45 1,40 1.38 〇<20 Example 27 1.4 84 1,5 85 1.23 1.08 1.02 〇<20 32 201114588

33 201114588 [表4] XPS表面分析 [0, 1] [1 - 2.5] [〇 - Π Cu(%) 氧化物Cr(%) f,(x)dx/f2(x)dx F Cu(%) f,(x)dx/ f2(x)dx ① ② ① ② ① ② ③ 實施例1 0.2 0.3 21 20 0.2 0.1 3.4 4.2 0.1 實施例2 0.3 0.2 34 35 0.5 0.3 4.4 3.9 0.4 實施例3 0.3 0.2 37 37 0.5 0.4 4.3 3.9 0.5 實施例4 0.4 0.3 38 41 0.7 0.6 4.2 3.8 0.7 實施例5 0.3 0.3 37 40 0.8 0.7 4.5 3.6 0.8 實施例6 0.3 0,4 36 39 0.2 0.2 4.3 3.9 0.2 實施例7 0.3 0.2 34 35 0.5 0.3 4.4 3.9 0.4 實施例8 0.4 0.4 38 41 0.3 0.3 4.2 4.0 0.3 實施例9 0.2 0.7 37 37 0.4 0.3 4.2 4.2 0.2 實施例10 0.2 0.3 37 39 0.4 0.3 4.7 3.8 0.3 實施例丨1 0.4 0.3 37 38 0.3 0.3 4.9 3.9 0.3 實施例12 0.2 0.6 36 39 0.4 0.3 3.4 4.5 0.3 實施例13 0.3 0.3 38 40 0.5 0.4 4.8 3.8 0.2 實施例14 0.4 0.5 38 39 0.4 0.4 4.7 3.5 0.3 實施例15 0,3 0.6 36 37 0.4 0.2 3.3 4.3 0.2 實施例16 0.4 0.4 38 41 0.5 0.3 4.2 3.9 0.2 實施例17 0.3 0.4 38 39 0.5 0.4 4.3 3.5 0.3 實施例18 0.3 0.7 37 38 0.3 0.2 4.2 4.6 0.2 實施例19 0.3 0.2 35 38 0.4 0.4 4.4 3.7 0.3 實施例20 0.3 0.3 36 38 0.4 0.3 4.6 3.8 0.2 實施例21 0.2 0.8 37 39 0.4 0.2 4.6 4.8 0.2 實施例22 0.3 0.3 34 35 0.5 0.4 4.4 3.8 0.3 實施例23 0.4 0.4 40 39 0.4 0.3 5.0 3.9 0.2 實施例24 0.3 0.8 38 38 0.3 0.2 4.1 3.7 0.2 實施例25 0.2 0.2 33 34 0.4 0.3 4.6 3.8 0.3 實施例26 0.4 0.5 35 37 0.4 0.3 4.6 3.6 0.2 實施例27 0.4 0.7 37 37 0.3 0.2 3.8 4.5 0.2 實施例28 0.3 0.3 37 37 0.4 0.4 4.7 3.9 0.2 實施例29 0.3 0.3 36 38 0.4 0.3 4.9 3.9 0.3 實施例30 0.3 0.7 37 38 0.3 0.3 4.2 4.4 0.3 實施例31 0.3 0.3 37 38 0.5 0.4 4.9 3.7 0.3 實施例32 0.2 0.4 35 39 0.4 0.3 4.8 3.5 0.2 實施例33 0.2 0.6 36 37 0.2 0.2 3.6 4.6 0.3 實施例34 0.2 0.3 36 38 0.4 0.3 4.6 3.8 0.2 實施例35 0.3 0.5 37 38 0.4 0.3 5.0 3.9 0.2 實施例36 5.3 8.1 36 38 0.3 0.2 3.5 7.7 0.1 實施例37 5.4 6.1 35 39 0.4 0.4 4.1 6.9 0.3 實施例38 5.3 5.5 37 38 0.5 0.4 4.6 6.1 0.3 實施例39 6.1 8.9 37 41 0.3 0.2 3.8 8.5 0.2 實施例40 6.1 7.1 38 40 0.5 0.4 4.7 7.6 0.3 實施例41 5.5 5.8 39 38 0.4 0.3 4.8 7.6 0.3 實施例42 5.0 8.0 38 40 0.3 0.2 3.7 8.8 0.1 實施例43 5.4 5.5 38 41 0.5 0.3 4.8 7.8 0.3 實施例44 5.5 5.7 39 40 0.4 0.4 6.1 7.9 0.3 比較例1 0.3 0.4 0.1 0.0 1.2 0.0 比較例2 0.2 0.3 38 40 0.3 0.2 4.1 3.8 0.3 比較例3 0.3 0.4 35 41 0.2 0.1 3.8 4.2 0.5 比較例4 3.2 36 31 0.1 0.1 1.2 m 0.5 比較例5 0.8 32 33 0.2 0.0 2.8 0.0 比較例6 0.4 37 38 0.6 0.5 3.8 | 2.9 | 0.4 比較例7 0.7 31 32 0.2 0.0 2.9 34 201114588 比較例8 0.5 0.4 37 37 0.5 0.4 3.5 3.0 I 0.3 比較例9 0.3 30 29 0.2 0.1 2.5 0.0 比較例10 0.5 0.4 34 33 0.6 0.4 3.9 0.2 比較例11 0.4 29 30 0.2 0.1 2.4 0.1 比較例12 0.5 36 38 0.4 0.4 4.0 mam 0.3 比較例13 0.3 30 31 0.1 0.1 2.5 0.0 比較例14 0.4 37 38 0.6 0.4 3.5 0.2 比較例15 0.4 31 31 0.3 0.1 2.3 0.1 比較例16 0.3 38 39 0.5 0.3 3.8 0.2 比較例17 0.5 29 31 0.3 0.1 2.3 0.0 比較例18 0.3 ·Β· 37 38 0.6 0.5 3.4 0.3 比較例19 0.5 30 31 0.2 0.0 2.6 0.0 比較例20 0.4 1· 36 39 0.5 0.4 3.9 0.3 比較例21 0.5 28 30 0.3 0.1 2.5 0.0 比較例22 0.3 37 38 0.4 0.3 3.7 0.2 比較例23 4.2 28 29 0.2 0.0 2,5 0.0 比較例24 4.9 36 37 0.5 0.4 4.4 0.3 比較例25 5.1 29 29 0.2 0.0 2.4 0.0 比較例26 5.4 35 38 0.4 0.3 4.9 0.2 比較例27 5.8 31 32 0.2 0.0 2.3 0.0 比較例28 6.1 6.6 37 38 0.5 0.3 5.9 0.2 比較例29 0.4 0.4 0.0 0.0 比較例30 0.5 0.5 0.0 0.0 35 201114588 [表5] 成骐方法 銅箔 附著5 「("g/dm2) 被膜構成 Cu Ni Mo Ti Zn Co V Sn Mn Cr 第1層 第2層 比較例1 濺鍍 壓延 — 87 15 Ni Cr 比較例2 壓延 - 90 183 比較例3 壓延 - 451 141 比較例4 壓延 — 13 35 比較例5 壓延 - — 20 — — — — — — 36 Mo 比較例6 壓延 — - 1050 108 比較例7 壓延 - - — 12 - — - — - 36 Ti 比較例8 壓延 — — - 150 - — — - — 108 比較例9 壓延 - — - — 12 — — - — 36 Zn 比較例丨0 壓延 — - - - 770 — — - - 108 比較例11 壓延 — — - - - 20 — - — 36 Co 比較例12 壓延 - - - - — 1040 — — — 108 比較例13 壓延 — 12 — - 4 - — - — 36 Ni-Zn 比較例丨4 壓延 — 1020 - - 770 - — — - 108 比較例15 壓延 - 13 - - - - 3 - - 36 Ni-V 比較例16 壓延 - 510 — — — - 180 - — 108 比較例17 壓延 - 14 3 36 Ni —Sn 比較例丨8 壓延 — 405 - — — — - 75 - 108 比較例丨9 壓延 - 15 • 39(4) Ni-Crf 比較例20 壓延 — 450 125(112) 比較例2丨 ®延 — 14 4 36 Ni —Mn 比較例22 壓延 — 460 205 108 比較例23 壓延 68 13 36 Cu-Ni 比較例24 壓延 2117 458 108 比較例25 壓延 68 - - — 13 - - — - 36 Cu —Zn 比較例26 1延 3950 - — — 770 - - - — 108 比較例27 壓延 27 14 - - 3 - - - — 36 Cu —Ni —Zn 比較例28 壓延 4700 1051 — - 766 - — - — 108 比較例29 電鍍 壓延 - 370 - — 81 - - - — 21 Ni層或Ni合金層 鉻酸鹽 比較例30 壓延 - 220 21 *比較例19、20之Cr附著量之括號内的數值為中間層之Cr附著量 36 201114588 [表6] TEM觀察 剝離強度(kN/m) 剛成膜後 耐熱測試後 被覆層最大厚度 (nm) 最小值/最大值 (%) 82 被覆層最大厚度 (nm) 最小值/最大值 (%) 83 比較例 1.2 1 比較例: 3.6 85 3.7 比較例3 6.7 89 6.9 比較例4 0.6 81 0.5 比較例 0.7 0.7 比較例1 12 96 12 比較例 0.7 81 比較例 4.9 92 5.0 比較例 0.5 81 比較例10 11 95 11 比較例11 0.7 81 0.7 比較例12 12 94 12 比較例13 0.5 82 0.5 比較例14 12 94 12 比較例15 0.5 81 比較例16 7.0 91 7.2 比較例17 0.6 0.6 比較例18 5.8 89 5.8 比較例19 0.6 81 0.5 比較例20 6.4 87 6.3 比較例21 0.6 81 0.6 比較例22 8.6 92 8.7 比較例23 0.7 82 0.7 比較例24 1.4 1.4 比較例25 0.7 0.6 比較例26 1.4 81 1.5 比較例27 0.6 0.7 比較例28 1.4 81 1.5 比較例29 3.7 比較例30 3.733 201114588 [Table 4] XPS surface analysis [0, 1] [1 - 2.5] [〇- Π Cu (%) oxide Cr (%) f, (x) dx / f2 (x) dx F Cu (%) f, (x) dx / f2 (x) dx 1 2 1 2 1 2 3 Example 1 0.2 0.3 21 20 0.2 0.1 3.4 4.2 0.1 Example 2 0.3 0.2 34 35 0.5 0.3 4.4 3.9 0.4 Example 3 0.3 0.2 37 37 0.5 0.4 4.3 3.9 0.5 Example 4 0.4 0.3 38 41 0.7 0.6 4.2 3.8 0.7 Example 5 0.3 0.3 37 40 0.8 0.7 4.5 3.6 0.8 Example 6 0.3 0,4 36 39 0.2 0.2 4.3 3.9 0.2 Example 7 0.3 0.2 34 35 0.5 0.3 4.4 3.9 0.4 Example 8 0.4 0.4 38 41 0.3 0.3 4.2 4.0 0.3 Example 9 0.2 0.7 37 37 0.4 0.3 4.2 4.2 0.2 Example 10 0.2 0.3 37 39 0.4 0.3 4.7 3.8 0.3 Example 丨 1 0.4 0.3 37 38 0.3 0.3 4.9 3.9 0.3 Example 12 0.2 0.6 36 39 0.4 0.3 3.4 4.5 0.3 Example 13 0.3 0.3 38 40 0.5 0.4 4.8 3.8 0.2 Example 14 0.4 0.5 38 39 0.4 0.4 4.7 3.5 0.3 Example 15 0,3 0.6 36 37 0.4 0.2 3.3 4.3 0.2 Example 16 0.4 0.4 38 41 0.5 0.3 4.2 3.9 0.2 Example 17 0.3 0.4 38 39 0.5 0.4 4.3 3.5 0.3 Example 18 0.3 0.7 37 38 0.3 0.2 4.2 4.6 0.2 Example 19 0.3 0.2 35 38 0.4 0.4 4.4 3.7 0.3 Example 20 0.3 0.3 36 38 0.4 0.3 4.6 3.8 0.2 Example 21 0.2 0.8 37 39 0.4 0.2 4.6 4.8 0.2 Example 22 0.3 0.3 34 35 0.5 0.4 4.4 3.8 0.3 Example 23 0.4 0.4 40 39 0.4 0.3 5.0 3.9 0.2 Example 24 0.3 0.8 38 38 0.3 0.2 4.1 3.7 0.2 Example 25 0.2 0.2 33 34 0.4 0.3 4.6 3.8 0.3 Example 26 0.4 0.5 35 37 0.4 0.3 4.6 3.6 0.2 Example 27 0.4 0.7 37 37 0.3 0.2 3.8 4.5 0.2 Example 28 0.3 0.3 37 37 0.4 0.4 4.7 3.9 0.2 Example 29 0.3 0.3 36 38 0.4 0.3 4.9 3.9 0.3 Example 30 0.3 0.7 37 38 0.3 0.3 4.2 4.4 0.3 Example 31 0.3 0.3 37 38 0.5 0.4 4.9 3.7 0.3 Example 32 0.2 0.4 35 39 0.4 0.3 4.8 3.5 0.2 Example 33 0.2 0.6 36 37 0.2 0.2 3.6 4.6 0.3 Example 34 0.2 0.3 36 38 0.4 0.3 4.6 3.8 0.2 Example 35 0.3 0.5 37 38 0.4 0.3 5.0 3.9 0.2 Example 36 5.3 8.1 36 38 0.3 0.2 3.5 7.7 0.1 Example 37 5.4 6.1 35 39 0.4 0.4 4.1 6.9 0.3 Example 38 5.3 5.5 37 38 0.5 0.4 4.6 6.1 0.3 Example 39 6.1 8.9 37 41 0.3 0.2 3.8 8.5 0.2 Example 40 6.1 7 .1 38 40 0.5 0.4 4.7 7.6 0.3 Example 41 5.5 5.8 39 38 0.4 0.3 4.8 7.6 0.3 Example 42 5.0 8.0 38 40 0.3 0.2 3.7 8.8 0.1 Example 43 5.4 5.5 38 41 0.5 0.3 4.8 7.8 0.3 Example 44 5.5 5.7 39 40 0.4 0.4 6.1 7.9 0.3 Comparative Example 1 0.3 0.4 0.1 0.0 1.2 0.0 Comparative Example 2 0.2 0.3 38 40 0.3 0.2 4.1 3.8 0.3 Comparative Example 3 0.3 0.4 35 41 0.2 0.1 3.8 4.2 0.5 Comparative Example 4 3.2 36 31 0.1 0.1 1.2 m 0.5 Comparative Example 5 0.8 32 33 0.2 0.0 2.8 0.0 Comparative Example 6 0.4 37 38 0.6 0.5 3.8 | 2.9 | 0.4 Comparative Example 7 0.7 31 32 0.2 0.0 2.9 34 201114588 Comparative Example 8 0.5 0.4 37 37 0.5 0.4 3.5 3.0 I 0.3 Comparative Example 9 0.3 30 29 0.2 0.1 2.5 0.0 Comparative Example 10 0.5 0.4 34 33 0.6 0.4 3.9 0.2 Comparative Example 11 0.4 29 30 0.2 0.1 2.4 0.1 Comparative Example 12 0.5 36 38 0.4 0.4 4.0 mam 0.3 Comparative Example 13 0.3 30 31 0.1 0.1 2.5 0.0 Comparative Example 14 0.4 37 38 0.6 0.4 3.5 0.2 Comparative Example 15 0.4 31 31 0.3 0.1 2.3 0.1 Comparative Example 16 0.3 38 39 0.5 0.3 3.8 0.2 Comparative Example 17 0.5 29 31 0.3 0.1 2.3 0.0 Comparative Example 18 0.3 ·Β· 37 38 0.6 0.5 3.4 0.3 Comparative Example 19 0 .5 30 31 0.2 0.0 2.6 0.0 Comparative Example 20 0.4 1· 36 39 0.5 0.4 3.9 0.3 Comparative Example 21 0.5 28 30 0.3 0.1 2.5 0.0 Comparative Example 22 0.3 37 38 0.4 0.3 3.7 0.2 Comparative Example 23 4.2 28 29 0.2 0.0 2, 5 0.0 Comparative Example 24 4.9 36 37 0.5 0.4 4.4 0.3 Comparative Example 25 5.1 29 29 0.2 0.0 2.4 0.0 Comparative Example 26 5.4 35 38 0.4 0.3 4.9 0.2 Comparative Example 27 5.8 31 32 0.2 0.0 2.3 0.0 Comparative Example 28 6.1 6.6 37 38 0.5 0.3 5.9 0.2 Comparative Example 29 0.4 0.4 0.0 0.0 Comparative Example 30 0.5 0.5 0.0 0.0 35 201114588 [Table 5] Curing method Copper foil adhesion 5 "("g/dm2) Film constitutes Cu Ni Mo Ti Zn Co V Sn Mn Cr 1st layer 2nd layer Comparative example 1 Sputtering calendering - 87 15 Ni Cr Comparative Example 2 Calendering - 90 183 Comparative Example 3 Calendering - 451 141 Comparative Example 4 Calendering - 13 35 Comparative Example 5 Calendering - 20 - — — — — — 36 Mo Comparative Example 6 Calendering — - 1050 108 Comparative Example 7 Calendering - - 12 - - - - - 36 Ti Comparative Example 8 Calendering — — 150 — — — — — 108 Comparative Example 9 Calendering — — — — 12 — — - — 36 Zn Comparative Example 丨 0 Calendering - - - - 770 - - - - 108 Comparative Example 11 Calendering — — — — — 20 — — — 36 Co Comparative Example 12 Calendering - - - - - 1040 — — — 108 Comparative Example 13 Calendering— 12 — — 4 — — — — 36 Ni-Zn Comparative Example 压 4 Calender — 1020 - - 770 - — — - 108 Comparative Example 15 Calendering - 13 - - - - 3 - - 36 Ni-V Comparative Example 16 Calendering - 510 — — — — 180 — — 108 Comparative Example 17 Calendering - 14 3 36 Ni —Sn Comparative Example 丨8 Calendering — 405 — — — — — 75 — 108 Comparative Example 丨9 Calendering - 15 • 39(4) Ni-Crf Comparison Example 20 Calendering - 450 125 (112) Comparative Example 2 丨® Extension - 14 4 36 Ni - Mn Comparative Example 22 Calendering - 460 205 108 Comparative Example 23 Calendering 68 13 36 Cu-Ni Comparative Example 24 Calendering 2117 458 108 Comparative Example 25 Calendering 68 - - 13 - - - 36 Cu - Zn Comparative Example 26 1 Extension 3950 - - 770 - - - - 108 Comparative Example 27 Calendering 27 14 - - 3 - - - - 36 Cu - Ni - Zn Comparative Example 28 Calendering 4700 1051 — - 766 - — — — 108 Comparative Example 29 Electroplating Calendering - 370 - 81 - - - - 21 Ni layer or Ni alloy layer chromate Comparative Example 30 Calendering - 220 21 * The values in the brackets of the Cr adhesion amount of Comparative Examples 19 and 20 are the Cr adhesion amount of the intermediate layer 36 201114588 [Table 6] Peel strength by TEM observation (kN/m) Maximum thickness (nm) of the coating layer after heat resistance test Immediately/maximum (%) 82 Maximum thickness of coating layer (nm) Minimum/maximum (%) 83 Comparative Example 1.2 1 Comparative Example: 3.6 85 3.7 Comparative Example 3 6.7 89 6.9 Comparative Example 4 0.6 81 0.5 Comparative Example 0.7 0.7 Comparative Example 1 12 96 12 Comparative Example 0.7 81 Comparative Example 4.9 92 5.0 Comparative Example 0.5 81 Comparative Example 10 11 95 11 Comparison Example 11 0.7 81 0.7 Comparative Example 12 12 94 12 Comparative Example 13 0.5 82 0.5 Comparative Example 14 12 94 12 Comparative Example 15 0.5 81 Comparative Example 16 7.0 91 7.2 Comparative Example 17 0.6 0.6 Comparative Example 18 5.8 89 5.8 Comparative Example 19 0.6 81 0.5 Comparative Example 20 6.4 87 6.3 Comparative Example 21 0.6 81 0.6 Comparative Example 22 8.6 92 8.7 Comparative Example 23 0.7 82 0.7 Comparative Example 24 1.4 1.4 Comparative Example 25 0.7 0.6 Comparative Example 26 1.4 81 1.5 Comparative Example 27 0.6 0.7 Comparative Example 28 1.4 81 1.5 Comparative Example 29 3.7 Comparative Example 30 3.7

4.0 4.0 常態 87 95 92 96 81 94 81 93 82 91 81 90 81 88 91 81 81 81 81 824.0 4.0 Normal 87 95 92 96 81 94 81 93 82 91 81 90 81 88 91 81 81 81 81 82

1.071.07

S 37 201114588 [表7] L Ί XPS表面分析 Γ0 * 11 π, 25] [0 F] Cu(%) 氣化物Cr(%) ifi(x)dx/if2(x)dx F Jf,(x)dx/if2(x)dx (Β) (A) (A) (B) C) 比較例1 0.3 0.4 0.1 0.0 1.2 , , 0.0 比較例2 0.2 0.3 38 40 0.3 0.2 4.1 3.8 0.3 比較例3 0,3 0.4 35 41 0.2 0.1 3.8 4.2 0.5 比較例4 3.2 36 31 0.1 0.1 1.2 0.5 比較例5 0.8 32 33 0.2 0.0 2.8 0.0 比較例6 0.4 0.5 37 38 0.6 0.5 3.8 0.4 比較例7 0.7 31 32 0.2 0.0 2.9 1 i 0.0 比較例8 0.5 0.4 37 37 0.5 0.4 3.5 0.3 比較例9 0.3 30 29 0.2 0.1 2.5 1 ' j i 0.0 比較例10 0.5 0.4 34 33 0.6 0.4 3.9 0,2 比較例11 0.4 29 30 0.2 0.1 2.4 , ' 0.1 比較例12 0.5 36 38 0.4 0.4 4.0 H·· 0.3 比較例13 0.3 30 31 0.1 0.1 2.5 ! , 0.0 比較例14 0.4 37 38 0.6 0.4 3.5 0.2 比較例15 0.4 31 31 0.3 0.1 2.3 0.1 比較例16 0.3 0.4 38 39 0.5 0.3 3.8 0.2 比較例17 0.5 29 31 0.3 0.1 2.3 0.0 比較例18 0.3 ΜΣΜ 37 38 0.6 0.5 3.4 memm 0.3 比較例19 0.5 30 31 0.2 0.0 2.6 f 0.0 比較例20 0.4 XI 36 39 0.5 0.4 3.9 mmm 0.3 比較例21 0.5 28 30 0.3 0.1 2.5 0.0 比較例22 0,3 37 38 0.4 0.3 3.7 0.2 比較例23 4.2 28 29 0.2 0.0 2.5 1 0.0 比較例24 4.9 36 37 0.5 0.4 4.4 0.3 比較例25 5.1 29 29 0.2 0.0 2.4 ::: 0.0 比較例26 5.4 1 6.0 35 38 0.4 0.3 4.9 0.2 比較例27 5.8 31 32 0.2 0.0 2.3 : 0.0 比較例28 6.1 6.6 37 38 0.5 0.3 5.9 0.2 比較例29 0.4 0.4 0.0 0.0 比較例30 0.5 0.5 0.0 0.0 i (B) 相當聚醢亞胺硬化之熱處理後(350。〇丨20分錢) (C) 剝離絕蝝基板後 實施例1〜3、6〜44均具有良好之剝離強度及蝕刻性。 又,實施例4及5雖蝕刻性較上述實施例稍差,但剝離強 度良好。 又,圖2中,表示實施例17之銅箔(聚醯亞胺清漆硬化 相當之熱處理後)之利用XPS所得的縱深分析圖。於心層 内,於表層存在氧化物Cr層’於其正下方存在金屬&層。 38 201114588 因氧化物Cr及金屬Cr之濃度最大之自表層起之距離彼此 不同’因此可以說兩者分離為2層β於自表層起1ηιη之範 圍内’與電鍍之情形不同,氧化物Cr之原子濃度比超過20 %。於其他實施例中,於表層附近,氧化物Cr之原子濃度 比亦超過20%。又,於任一實施例中,均未確認cu原子擴 散至表層。推測其係於Cr層之正下方設置有用以防止cu 原子之擴散之中間層的效果。 比較例1,係Cr之被覆量小於18 y g/ dm2,剝離強度 不良。 比較例2,係Cr之被覆量超過180 # g/ dm2,蝕刻性 不良。 比較例3〜28’係Cr之被覆量雖處於18〜I80y g/dm2 之範圍内,但由於用於中間層之各種元素之被覆量,導致 各種剝離強度或蝕刻性不良。 比較例29及30各自中,耐熱、耐濕剝離強度不良。 根據圖3及4所示之比較例2〇及3〇之銅羯之利用xps所 得的縱深分析圖,推測其原因在於自表層起〇〜lnm之範圍 内之3價之Cr量較少。 【圖式簡單說明】 圖1,係實施例1之銅箔(成膜後)之TEM照片(剖面)。 圖2,係實施例17之銅箔(相當聚醯亞胺清漆硬化之熱 處理後)之利用XPS所得的縱深分析圖。 、、' 圖3 ’係比較例29之銅箔(電鍍後)之利用xps所得的 39 201114588 縱深分析圖。 圖4,係比較例30之銅箔(電鍍後)之利用XPS所得的 縱深分析圖。 【主要元件符號說明】 無 40S 37 201114588 [Table 7] L Ί XPS surface analysis Γ0 * 11 π, 25] [0 F] Cu(%) vaporization Cr(%) ifi(x)dx/if2(x)dx F Jf,(x) Dx/if2(x)dx (Β) (A) (A) (B) C) Comparative Example 1 0.3 0.4 0.1 0.0 1.2 , , 0.0 Comparative Example 2 0.2 0.3 38 40 0.3 0.2 4.1 3.8 0.3 Comparative Example 3 0, 3 0.4 35 41 0.2 0.1 3.8 4.2 0.5 Comparative Example 4 3.2 36 31 0.1 0.1 1.2 0.5 Comparative Example 5 0.8 32 33 0.2 0.0 2.8 0.0 Comparative Example 6 0.4 0.5 37 38 0.6 0.5 3.8 0.4 Comparative Example 7 0.7 31 32 0.2 0.0 2.9 1 i 0.0 Comparative Example 8 0.5 0.4 37 37 0.5 0.4 3.5 0.3 Comparative Example 9 0.3 30 29 0.2 0.1 2.5 1 ' ji 0.0 Comparative Example 10 0.5 0.4 34 33 0.6 0.4 3.9 0, 2 Comparative Example 11 0.4 29 30 0.2 0.1 2.4 , ' 0.1 Comparative Example 12 0.5 36 38 0.4 0.4 4.0 H·· 0.3 Comparative Example 13 0.3 30 31 0.1 0.1 2.5 ! , 0.0 Comparative Example 14 0.4 37 38 0.6 0.4 3.5 0.2 Comparative Example 15 0.4 31 31 0.3 0.1 2.3 0.1 Comparative Example 16 0.3 0.4 38 39 0.5 0.3 3.8 0.2 Comparative Example 17 0.5 29 31 0.3 0.1 2.3 0.0 Comparative Example 18 0.3 ΜΣΜ 37 38 0.6 0.5 3.4 memm 0.3 Comparative Example 19 0.5 30 31 0.2 0.0 2.6 f 0.0 Comparative Example 20 0. 4 XI 36 39 0.5 0.4 3.9 mmm 0.3 Comparative Example 21 0.5 28 30 0.3 0.1 2.5 0.0 Comparative Example 22 0,3 37 38 0.4 0.3 3.7 0.2 Comparative Example 23 4.2 28 29 0.2 0.0 2.5 1 0.0 Comparative Example 24 4.9 36 37 0.5 0.4 4.4 0.3 Comparative Example 25 5.1 29 29 0.2 0.0 2.4 ::: 0.0 Comparative Example 26 5.4 1 6.0 35 38 0.4 0.3 4.9 0.2 Comparative Example 27 5.8 31 32 0.2 0.0 2.3 : 0.0 Comparative Example 28 6.1 6.6 37 38 0.5 0.3 5.9 0.2 Comparison Example 29 0.4 0.4 0.0 0.0 Comparative Example 30 0.5 0.5 0.0 0.0 i (B) After heat treatment of the polyimine hardening (350. 〇丨 20 cents) (C) After peeling off the substrate, Examples 1 to 3 and 6 to 44 all have good peel strength and etching property. Further, in Examples 4 and 5, although the etching property was slightly inferior to that of the above examples, the peeling strength was good. Further, Fig. 2 shows a depth analysis chart obtained by XPS of the copper foil of Example 17 (after heat treatment in which the polyimide varnish is cured). In the core layer, an oxide Cr layer is present in the surface layer, and a metal & layer is present immediately below it. 38 201114588 The concentration of oxide Cr and metal Cr is the largest from the surface layer. Therefore, it can be said that the two are separated into two layers β in the range of 1ηηη from the surface layer. The atomic concentration ratio exceeds 20%. In other embodiments, the atomic concentration ratio of oxide Cr is also more than 20% in the vicinity of the surface layer. Further, in any of the examples, it was not confirmed that the cu atoms were diffused to the surface layer. It is presumed that it is provided under the Cr layer to provide an intermediate layer for preventing diffusion of cu atoms. In Comparative Example 1, the coating amount of Cr was less than 18 μg/dm 2 and the peel strength was poor. In Comparative Example 2, the coating amount of Cr was more than 180 # g/dm2, and the etching property was poor. In Comparative Examples 3 to 28', the coating amount of Cr was in the range of 18 to I80 μg/dm2, but various coating strengths and etching properties were caused by the coating amount of various elements used for the intermediate layer. In each of Comparative Examples 29 and 30, heat resistance and wet peeling strength were poor. According to the depth analysis chart obtained by xps of the comparative examples 2 and 3 of the comparative examples shown in Figs. 3 and 4, it is presumed that the reason is that the amount of trivalent Cr in the range from 表 to 1 nm from the surface layer is small. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a TEM photograph (cross section) of a copper foil (after film formation) of Example 1. Fig. 2 is a depth analysis chart obtained by XPS of the copper foil of Example 17 (after heat treatment of hardening of the polyimide varnish). , 'Fig. 3' is a 39 201114588 depth analysis chart obtained by using xps in the copper foil of Comparative Example 29 (after plating). Fig. 4 is a depth analysis chart obtained by XPS of the copper foil of Comparative Example 30 (after plating). [Main component symbol description] None 40

Claims (1)

201114588 七、申請專利範圍: 1. 一種印刷配線板用銅箔,其係具備銅箔基材與被覆該 銅箔基材表面之至少一部分之被覆層, 被覆層係由自銅治基材表面依序積層之由金屬之單體 或合金構成的中間層及Cr層所構成, 被覆層中Cr以18〜180// g/dm2之被覆量存在, 若將根據利用XPS之自表面起之深度方向分析所得的 深度方向(X :單位nm)之金屬鉻之原子濃度(%)設為fi(x), 將氧化物絡之原子濃度(% )設為f2 (X ),將全體鉻之原子濃度 (% ) δ史為f(X)(f(x)=厂⑴+ f2(x)),將鎳之原子濃度(% )設為 g(X),將銅之原子濃度(% )設為h(X),將氧之原子濃度(% ) δ史為i(x) ’將碳之原子濃度(% )設為j(x),將其他金屬之原 子濃度之總和設為k(x),則於區間[0,1.0]内,$ h(x)dx/( $ f(x)dx + $ g(x)dx + $ h(x)dx + $ i(x)dx + $ j(x)dx + J k(x)dx)為 10% 以下,$ f2(x)dx/(S f(x)dx+ $ g(x)dx+ S h(x)dx+ $ i(x)dx+ $ j(x)dx+ $ k(x)dx)為 20% 以上,於區 間[1.0,2.5]内,滿足 0.1 $ $ fJxWx/ $ f2(x)dx$ 1.0。 2. 如申請專利範圍第1項之印刷配線板用銅箔,其中, Cr以30〜145#g/ dm2之被覆量存在。 3. 如申請專利範圍第2項之印刷配線板用銅箔,其中, Cr以36〜90 v g/ dm2之被覆量存在。 4. 如申請專利範圍第3項之印刷配線板用銅箔,其中, Cr以36〜75 y g/ dm2之被覆量存在。 5. 如申請專利範圍第1項之印刷配線板用銅箔,其中, 201114588 中間層含有Ni、Mo、Ti ' Zn、Co、V、Sn、Μη及Cr中之 至少任一種。 6·如申請專利範圍第5項之印刷配線板用銅箔,其中’ 被覆層係由自銅箔基材表面依序積層之由Ni、Mo、Ti、Zn 及Co之任一種構成的中間層及Cr層所構成,於該中間層, Ni、Mo、Ti、Zn 及 Co 之任一種以 15 〜1030μ g/ dm2 之被 覆量存在。 7. 如申請專利範圍第6項之印刷配線板用銅箔,其中, 於中間層,Ni以1 5〜440 # g/ dm2之被覆量存在,Mo以 25〜1030 μ g/dm2之被覆量存在,Ti以15〜140 # g/dm2 之被覆量存在,Ζιι以15〜750 # g/dm2之被覆量存在,或 者Co以25〜103 0 // g/dm2之被覆量存在。 8. 如申請專利範圍第5項之印刷配線板用銅箔,其中, 被覆層係由自銅箔基材表面依序積層之由Ni、Zn、v、Sn、 Μη、Cr及Cu之至少任兩種之合金構成的中間層及Cr層所 構成’於該中間層,Ni、Zn、V、Sn、Μη及Cr之任兩種以 20〜170〇eg/dm2之被覆量存在。 9. 如申請專利範圍第8項之印刷配線板用銅箔,其中, 中間層係以由Ni與Zn、V、Sn、Μη及Cr之任一種構成之 Ni合金所構成。 10. 如申請專利範圍第9項之印刷配線板用銅箔,其 中,中間層係以由被覆量為15〜1000"8/(11112之川及5 〜75 0 " g / dm之Zn構成的Ni—Zn合金、由合計被覆量為 20〜600 eg/dm2之Ni及V構成之Ni_v合金、由合計被 42 201114588 覆量為18〜45〇vg / dm2之Ni及Sn構成之Ni — Sn合金、 由被覆量為15〜450 /z g/dm2之Ni及5〜200 /z g/dm2之 Μη構成的Ni- Μη合金、由被覆量為20〜440^ g/dm2之 Ni及5〜11 〇 μ g/ dm2之Cr構成的Ni - Cr合金所構成。 11. 如申請專利範圍第8項之印刷配線板用銅箔,其 中’中間層係以由Cu與Zn及Ni之任一種或兩種構成之 Cu合金所構成。 12. 如申請專利範圍第11項之印刷配線板用銅箔,其 中’中間層係以Zn之被覆量為15〜750 μ g/ dm2之Cu — Zn合金、Ni被覆量為15〜440μ g/dm2之Cu-Ni合金、 或者Ni被覆量為15〜1000// g/ dm2且Zn被覆量為5〜750 以g/ dm2之Cu — Ni - Zn合金所構成。 1 3.如申請專利範圍第1項之印刷配線板用銅箔,其 中’若利用穿透式電子顯微鏡觀察被覆層之剖面時,則最 大厚度為0.5〜12nm,最小厚度為最大厚度之80%以上。 14 _如申請專利範圍第1項之印刷配線板用銅箔其 中,當進行完相當聚醯亞胺硬化之熱處理時,若將根據利 用XPS之自表面起之深度方向分析所得的深度方向(χ :單 位nm)之金屬鉻之原子濃度(%)設為Μχ),將氧化物鉻之原 子濃度設為f2(x),將全體鉻之原子濃度(%)設為f(x)(f(x) 二[#)+600),將鎳之原子濃度(%)設為g(x),將銅之原 子濃度(%)設為h(X),將氧之原子濃度(%)設為ί(χ),將碳 之原子濃度(%)設為j(x),將其他金屬之原子濃度之總和設 為 則於區間[0,1.0]内,u⑴dx/nf(x)dx+Sg(x)dx (!; 43 201114588 + $ h(x)dx+ $ i(x)dx+ $ j(x)dx+ $ k(x)dx)為 10% 以下, l f2(x)dx/( $ f(x)dx+ S g(x)dx + $ h(x)dx + S i(x)dx + $ j(x)dx+ $ k(x)dx)為 20% 以上,於區間[1.0,2.5]内,滿足 〇·1 S S fiWdx/ S f2(x)dx$ 1.0。 1 5.如申請專利範圍第1項之印刷配線板用銅箔,其係 經進行相當聚醯亞胺硬化之熱處理之印刷配線板用銅箔, 若將根據利用XPS之自表面起之深度方向分析所得的深度 方向(X :單位nm)之金屬鉻之原子濃度(% )設為fjx),將氧 化物鉻之原子濃度(% )設為f2(x) ’將全體鉻之原子濃度(% ) 設為f(x)(f(x) = fjx) + f2(x)),將鎳之原子濃度(% )設為 g(x),將銅之原子濃度(%)設為h(x),將氧之原子濃度(%) 設為i(x) ’將碳之原子濃度(%)設為j(x),將其他金屬之原 子濃度之總和設為k(x),則於區間[0,1 ·〇]内,$ h(x)dx/( $ f(x)dx + $ g(x)dx + S h(x)dx + $ i(x)dx + $ j(x)dx + $ k(x)dx)為 i〇% 以下,S f2(x)dx/(5 f(x)dx+ v g(x)dx+ $ h(x)dx+ $ i(x)dx+ $ j(x)dx+ $ k(x)dx)為 20% 以上,於區 間[1.0,2·5]内’滿足 0.1 $ $ fKxWx/ S f2(x)dx$ 1.0。 1 6.如申請專利範圍第1項之印刷配線板用鋼箔,其 中’當對於經由被覆層而形成有絕緣基板之印刷配線板用 銅箱’分析將絕緣基板自被覆層剝離後之被覆層的表面 時’若將根據利用XPS之自表面起之深度方向分析所得的 深度方向(X :單位nm)之金屬鉻之原子濃度(%)設為fi(x), 將氧化物鉻之原子濃度(% )設為f2(x)’將全體鉻之原子濃度 (%)设為f(X)(f(x)=f|(x)+f2(x)),將鎳之原子濃度(%)設為 201114588 g(x),將銅之原子濃度(% )設為h(x) ’將氧之原子濃度(% ) 設為i(X),將碳之原子濃度(%)設為j(x),將其他金屬之原 子濃度之總和設為k(x) ’將金屬鉻之濃度為最大之自表層 起的距離設為F,則於區間[〇,F]内,滿足(Mg $ fi(x)dx/ S f2(x)dx$ 1.0,且 $ h(x)dx/( $ f(x)dx+ $ g(x)dx+ $ h(x)dx + S i(x)dx+ Sj(x)dx+ ^ k(x)dx)為 10% 以下。 1 7 ·如申請專利範圍第1項之印刷配線板用銅箔,其 中,銅基材為壓延銅络。 18. 如申請專利範圍第1項之印刷配線板用銅箔,其 中,印刷配線板為可撓性印刷配線板。 19. 一種覆銅積層板’其具備有申請專利範圍第1項之 鋼箔。 20. 如申請專利範圍第19項之覆銅積層板,其具有銅箔 接著於聚醯亞胺之結構。 2 1 · —種印刷配線板,其將申請專利範圍第19或2〇項 之覆銅積層板作為材料。 八、圖式: (如次頁) 45201114588 VII. Patent application scope: 1. A copper foil for a printed wiring board, comprising a copper foil substrate and a coating layer covering at least a part of a surface of the copper foil substrate, wherein the coating layer is made of a copper substrate The sequential layer is composed of an intermediate layer composed of a metal monomer or an alloy and a Cr layer, and Cr is present in the coating layer at a coating amount of 18 to 180//g/dm2, and the depth direction from the surface from the surface using XPS is used. The atomic concentration (%) of the metal chromium in the depth direction (X: unit nm) obtained by the analysis is set to fi(x), and the atomic concentration (%) of the oxide network is set to f2 (X), and the atomic concentration of the entire chromium is set. (%) The history of δ is f(X)(f(x)=factory(1)+f2(x)), the atomic concentration (%) of nickel is set to g(X), and the atomic concentration (%) of copper is set to h(X), the atomic concentration of oxygen (%) δ is i(x) 'The atomic concentration (%) of carbon is set to j(x), and the sum of atomic concentrations of other metals is set to k(x) , within the interval [0,1.0], $ h(x)dx/( $ f(x)dx + $ g(x)dx + $ h(x)dx + $ i(x)dx + $ j( x)dx + J k(x)dx) is below 10%, $ f2(x)dx/(S f(x)dx+ $ g(x)dx+ S h(x)dx+ $ i(x)d x+ $ j(x)dx+ $ k(x)dx) is 20% or more, within the range [1.0, 2.5], satisfying 0.1 $ $ fJxWx/ $ f2(x)dx$ 1.0. 2. The copper foil for a printed wiring board according to the first aspect of the invention, wherein Cr is present in an amount of 30 to 145 #g/dm2. 3. The copper foil for a printed wiring board according to the second aspect of the invention, wherein Cr is present in an amount of 36 to 90 v g/dm 2 . 4. The copper foil for a printed wiring board according to the third aspect of the invention, wherein Cr is present in an amount of 36 to 75 y g/dm 2 . 5. The copper foil for a printed wiring board according to the first aspect of the invention, wherein the intermediate layer of 201114588 contains at least one of Ni, Mo, Ti'Zn, Co, V, Sn, Μn and Cr. 6. The copper foil for a printed wiring board according to item 5 of the patent application, wherein the 'coating layer is an intermediate layer composed of any one of Ni, Mo, Ti, Zn and Co which are sequentially laminated from the surface of the copper foil substrate. And a Cr layer, in which one of Ni, Mo, Ti, Zn, and Co is present in an amount of 15 to 1030 μg/dm 2 . 7. The copper foil for a printed wiring board according to item 6 of the patent application, wherein, in the intermediate layer, Ni is present in a coating amount of 15 to 440 #g/dm2, and Mo is coated in an amount of 25 to 1030 μg/dm2. In the presence of Ti, Ti is present in an amount of 15 to 140 #g/dm2, Ζι is present in a coating amount of 15 to 750 #g/dm2, or Co is present in an amount of 25 to 103 0 // g/dm2. 8. The copper foil for a printed wiring board according to claim 5, wherein the coating layer is composed of at least Ni, Zn, v, Sn, Mn, Cr, and Cu laminated from the surface of the copper foil substrate. The intermediate layer and the Cr layer of the two alloys constitute 'in the intermediate layer, and any two of Ni, Zn, V, Sn, Μη, and Cr are present in an amount of 20 to 170 〇eg/dm 2 . 9. The copper foil for a printed wiring board according to the eighth aspect of the invention, wherein the intermediate layer is made of a Ni alloy composed of Ni and any of Zn, V, Sn, Μη and Cr. 10. The copper foil for a printed wiring board according to the ninth aspect of the patent application, wherein the intermediate layer is composed of Zn consisting of 15~1000"8/(11112 Sichuan and 5~75 0 " g / dm) a Ni—Zn alloy, a Ni—v alloy composed of Ni and V with a total coating amount of 20 to 600 eg/dm 2 , and Ni—Sn consisting of Ni and Sn which are collectively covered by 42 201114588 and having a thickness of 18 to 45 〇vg / dm 2 Alloy, Ni-Mn alloy consisting of Ni with a coating amount of 15 to 450 /zg/dm2 and Μη of 5 to 200 /zg/dm2, Ni with a coating amount of 20 to 440 g/dm2 and 5 to 11 〇 A copper foil for a printed wiring board according to the eighth aspect of the invention, wherein the intermediate layer is made of any one or two of Cu, Zn and Ni. A copper foil for a printed wiring board according to the eleventh aspect of the invention, wherein the intermediate layer is a Cu-Zn alloy or Ni-coated with a coating amount of Zn of 15 to 750 μg/dm 2 . A Cu-Ni alloy having an amount of 15 to 440 μg/dm 2 or a Cu-Ni-Zn alloy having a Ni coating amount of 15 to 1000 / g/dm 2 and a Zn coating amount of 5 to 750 in g/dm 2 is used. 3. A copper foil for a printed wiring board according to the first aspect of the invention, wherein when the cross section of the coating layer is observed by a transmission electron microscope, the maximum thickness is 0.5 to 12 nm, and the minimum thickness is 80% or more of the maximum thickness. For example, in the copper foil for a printed wiring board according to the first aspect of the patent application, when the heat treatment for hardening of the polyimine is performed, the depth direction obtained by analyzing the depth direction from the surface using XPS (χ: unit) The atomic concentration (%) of the metal chromium of nm is set to Μχ), the atomic concentration of the chromium oxide is f2 (x), and the atomic concentration (%) of the entire chromium is set to f(x) (f(x) Two [#)+600), the atomic concentration (%) of nickel is set to g(x), the atomic concentration (%) of copper is set to h(X), and the atomic concentration (%) of oxygen is set to ί ( χ), the atomic concentration (%) of carbon is set to j(x), and the sum of the atomic concentrations of other metals is set in the interval [0, 1.0], u(1)dx/nf(x)dx+Sg(x) Dx (!; 43 201114588 + $ h(x)dx+ $ i(x)dx+ $ j(x)dx+ $ k(x)dx) is below 10%, l f2(x)dx/( $ f(x) Dx+ S g(x)dx + $ h(x)dx + S i(x)dx + $ j(x)dx+ $ k(x)dx) is 20% or more, and satisfies 〇·1 S S fiWdx/ S f2(x)dx$ 1.0 in the interval [1.0, 2.5]. (1) The copper foil for a printed wiring board according to the first aspect of the invention, which is a copper foil for a printed wiring board which is subjected to a heat treatment for hardening the polyimide, and which is to be subjected to a depth direction from the surface by using XPS. The atomic concentration (%) of the metal chromium in the depth direction (X: unit nm) obtained by the analysis is set to fjx), and the atomic concentration (%) of the oxide chromium is set to f2(x) 'The atomic concentration of the entire chromium (%) ) Set f(x)(f(x) = fjx) + f2(x)), set the atomic concentration (%) of nickel to g(x), and set the atomic concentration (%) of copper to h(x). ), the atomic concentration (%) of oxygen is set to i(x) 'The atomic concentration (%) of carbon is set to j(x), and the sum of the atomic concentrations of other metals is k(x). Within [0,1 ·〇], $ h(x)dx/( $ f(x)dx + $ g(x)dx + S h(x)dx + $ i(x)dx + $ j(x) Dx + $ k(x)dx) is i〇% or less, S f2(x)dx/(5 f(x)dx+ vg(x)dx+ $ h(x)dx+ $ i(x)dx+ $ j(x ) dx+ $ k(x)dx) is above 20%, and satisfies 0.1 $ $ fKxWx/ S f2(x)dx$ 1.0 in the interval [1.0, 2·5]. 1. The steel foil for a printed wiring board according to the first aspect of the invention, wherein the coating layer for peeling off the insulating substrate from the coating layer is analyzed for a copper box for a printed wiring board in which an insulating substrate is formed via a coating layer. The atomic concentration of the chromium oxide is set to fi(x) according to the atomic concentration (%) of the metal chromium in the depth direction (X: unit nm) obtained by analyzing the depth direction from the surface of the XPS. (%) is set to f2(x)' to set the atomic concentration (%) of the entire chromium to f(X)(f(x)=f|(x)+f2(x)), and the atomic concentration of nickel (%) ) is set to 201114588 g(x), and the atomic concentration (%) of copper is h(x) 'The atomic concentration (%) of oxygen is set to i(X), and the atomic concentration (%) of carbon is set to j. (x), the sum of the atomic concentrations of other metals is set to k(x) 'The distance from the surface layer where the concentration of metal chromium is the largest is F, and it is satisfied in the interval [〇, F] (Mg $ Fi(x)dx/ S f2(x)dx$ 1.0, and $ h(x)dx/( $ f(x)dx+ $ g(x)dx+ $ h(x)dx + S i(x)dx+ Sj (x) dx+ ^ k(x)dx) is 10% or less. 1 7 · Copper foil for printed wiring board according to item 1 of the patent application, The copper base material is a copper foil for a printed wiring board according to the first aspect of the invention, wherein the printed wiring board is a flexible printed wiring board. There is a steel foil of the first application of the patent scope. 20. A copper clad laminate according to claim 19, which has a copper foil followed by a polyimine structure. 2 1 · a printed wiring board, which will Apply the copper clad laminate of item 19 or 2 of the patent scope as the material. 8. Pattern: (if the next page) 45
TW099121184A 2009-06-30 2010-06-29 Printed wiring board with copper foil TWI422484B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156121 2009-06-30

Publications (2)

Publication Number Publication Date
TW201114588A true TW201114588A (en) 2011-05-01
TWI422484B TWI422484B (en) 2014-01-11

Family

ID=43410646

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099121184A TWI422484B (en) 2009-06-30 2010-06-29 Printed wiring board with copper foil

Country Status (5)

Country Link
JP (1) JP4682271B2 (en)
KR (1) KR101203436B1 (en)
CN (1) CN102124823B (en)
TW (1) TWI422484B (en)
WO (1) WO2011001552A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084384A1 (en) * 2012-11-30 2014-06-05 Jx日鉱日石金属株式会社 Carrier-supported copper foil
TWI623639B (en) * 2016-01-04 2018-05-11 Jx Nippon Mining & Metals Corp Surface treatment copper foil

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672764B2 (en) * 2010-05-13 2015-02-18 大日本印刷株式会社 Wiring circuit laminate, suspension substrate using the same, and manufacturing method thereof
JP5808114B2 (en) * 2011-02-16 2015-11-10 Jx日鉱日石金属株式会社 Copper foil for printed wiring board, laminate and printed wiring board
JP5346054B2 (en) * 2011-03-18 2013-11-20 Jx日鉱日石金属株式会社 Copper foil for printed wiring board and laminated board using the same
JP6111017B2 (en) * 2012-02-03 2017-04-05 Jx金属株式会社 Copper foil for printed wiring board, laminate using the same, printed wiring board, and electronic component
JP5854872B2 (en) * 2012-02-15 2016-02-09 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board
JP5228130B1 (en) * 2012-08-08 2013-07-03 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5997080B2 (en) * 2013-03-05 2016-09-21 Jx金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6357336B2 (en) * 2014-03-31 2018-07-11 三井金属鉱業株式会社 Electrolytic copper foil, electrolytic copper foil with carrier foil and printed wiring board
JP6135815B1 (en) * 2016-09-29 2017-05-31 東洋インキScホールディングス株式会社 Printed wiring boards and electronic devices
JP7330172B2 (en) * 2018-04-27 2023-08-21 Jx金属株式会社 Surface treated copper foil, copper clad laminate and printed wiring board
CN114481245B (en) * 2022-02-24 2022-09-16 广东盈华电子科技有限公司 Surface treatment process of reverse electrolytic copper foil for flexible copper clad laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749611B2 (en) * 2002-12-05 2010-07-06 Gbc Metals, L.L.C. Peel strength enhancement of copper laminates
JP2005344174A (en) * 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
JP4429979B2 (en) 2005-06-29 2010-03-10 古河電気工業株式会社 Ultra-thin copper foil with carrier and method for producing ultra-thin copper foil with carrier
JP4683640B2 (en) * 2006-01-31 2011-05-18 Jx日鉱日石金属株式会社 Copper foil for printed wiring board and printed wiring board using the same
JP4683646B2 (en) * 2006-03-31 2011-05-18 Jx日鉱日石金属株式会社 Copper or copper alloy foil for printed circuit boards
JP4677381B2 (en) * 2006-08-08 2011-04-27 Jx日鉱日石金属株式会社 Metal materials for printed wiring boards

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084384A1 (en) * 2012-11-30 2014-06-05 Jx日鉱日石金属株式会社 Carrier-supported copper foil
TWI623639B (en) * 2016-01-04 2018-05-11 Jx Nippon Mining & Metals Corp Surface treatment copper foil

Also Published As

Publication number Publication date
JP4682271B2 (en) 2011-05-11
WO2011001552A1 (en) 2011-01-06
TWI422484B (en) 2014-01-11
JPWO2011001552A1 (en) 2012-12-10
CN102124823A (en) 2011-07-13
KR20110063804A (en) 2011-06-14
CN102124823B (en) 2013-03-06
KR101203436B1 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
TW201114588A (en) Copper foil for printed wiring board
JP5367613B2 (en) Copper foil for printed wiring boards
JP4961023B2 (en) Copper foil for printed wiring boards
TWI500363B (en) A copper foil, a carrier copper foil, and a printed wiring board
TW201106816A (en) Copper foil for printed wiring boards
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2011210994A (en) Copper foil for printed wiring board, and laminate using the same
JP2011014647A (en) Copper foil for printed wiring board
JP2010239095A (en) Copper foil for printed wiring board
JP5345924B2 (en) Copper foil for printed wiring boards
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5506368B2 (en) Copper foil for environmentally friendly printed wiring boards
JP2011014651A (en) Copper foil for printed wiring board
JP2014193591A (en) Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
JPWO2013118416A1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, and copper-clad laminate
JP2010258398A (en) Copper foil for printed circuit board
JP4799710B1 (en) Copper foil for printed wiring boards
JP2010258399A (en) Copper foil for printed circuit board
JP2011012297A (en) Copper foil for printed circuit board
JP2011009453A (en) Copper foil for printed wiring board
JP2011014653A (en) Copper foil for printed wiring board
TWI408049B (en) Copper foil for printed wiring board
JP2011014654A (en) Copper foil for printed wiring board
JP2011014642A (en) Copper foil for printed circuit board
JP2011014633A (en) Copper foil for printed wiring board