WO2012067125A1 - Probe unit - Google Patents

Probe unit Download PDF

Info

Publication number
WO2012067125A1
WO2012067125A1 PCT/JP2011/076334 JP2011076334W WO2012067125A1 WO 2012067125 A1 WO2012067125 A1 WO 2012067125A1 JP 2011076334 W JP2011076334 W JP 2011076334W WO 2012067125 A1 WO2012067125 A1 WO 2012067125A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
small
probe
plunger
hole
Prior art date
Application number
PCT/JP2011/076334
Other languages
French (fr)
Japanese (ja)
Inventor
風間 俊男
浩平 広中
重樹 石川
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2012544267A priority Critical patent/JPWO2012067125A1/en
Publication of WO2012067125A1 publication Critical patent/WO2012067125A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips

Definitions

  • the present invention relates to a probe unit that houses a conductive probe that inputs and outputs signals in an electrical characteristic inspection of a semiconductor integrated circuit or the like.
  • a probe unit in which a plurality of conductive probes are accommodated at predetermined positions is used corresponding to the external electrode installation pattern of the semiconductor integrated circuit.
  • the probe unit includes a probe holder provided with a plurality of holes through which the contact probe is inserted, and both ends of the conductive probe held by the probe holder are connected to a semiconductor integrated circuit and a circuit board that outputs a test signal. By contacting each of the electrodes, the semiconductor integrated circuit and the circuit board are electrically connected (see, for example, Patent Document 1).
  • a probe capable of flowing a large current of about 10 to 20 A has been required in the case of inspecting a semiconductor for a control system of an automobile.
  • the probe diameter may be increased.
  • the maximum diameter or pitch of the semiconductor electrodes is 1 mm or less, there is a problem that the diameter of the probe has to be made rather thin, and as a result, the allowable current becomes small.
  • a probe with a small diameter is necessary, and the allowable current has to be reduced.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a probe unit capable of suppressing a reduction in allowable current due to a narrowed probe diameter.
  • each of the probe units according to the present invention is formed using a conductive material, and is connected to the first tip portion having a substantially needle shape and the first tip portion.
  • a first plunger having a first base end on the same axis, a second front end whose tip is directed in a direction opposite to the front end of the first plunger, and a length in the axial direction compared to the first base end
  • a second plunger having a long second base end on the same axis, one end in the longitudinal direction encompassing the first base end, and the other end including the second base end.
  • a plurality of large-diameter probes that are telescopically stretchable, a plurality of small-diameter probes that are each formed using a conductive material and have a diameter smaller than the diameter of the large-diameter probe, and the plurality of large-diameter probes A plurality of large hole portions held in the hole, and having a diameter smaller than that of the large hole portion, communicating with any of the plurality of large hole portions, and receiving the end portion of the small diameter probe in contact with the second tip portion.
  • a large-diameter probe holder through which a set of the large-hole portion and the reception-hole portion communicating with each other passes in the thickness direction, and the plurality of small-diameter probes are individually retained.
  • a small-diameter probe holder that is provided on the large-diameter probe holder so that each small-hole portion communicates with one of the plurality of receiving-hole portions.
  • a central axis in a longitudinal direction of the large hole portion and the small hole portion is different, and the plurality of small hole portions have two distances between the center axes of two adjacent small hole portions corresponding to the two small hole portions, respectively.
  • the second base end portion enters the inside of the tightly wound portion when a load at the time of inspection is applied to at least the small-diameter probe.
  • the tip of the second plunger forms a plane substantially perpendicular to the longitudinal direction of the large-diameter probe.
  • the large-diameter probe holder is laminated on the first substrate, the first substrate holding the tip portion of the first plunger exposed, and the first substrate. And a second substrate that is stacked on the small-diameter probe holder and receives the end of the small-diameter probe held by the small-diameter probe holder.
  • the probe unit according to the present invention is characterized in that, in the above invention, the small-diameter probe holder is formed by laminating two substrates that expose and hold either one end of the small-diameter probe. To do.
  • the probe unit according to the present invention is characterized in that, in the above invention, the large-diameter probe holder and the small-diameter probe holder have an insulating property at least in contact with the large-diameter probe and / or the small-diameter probe. To do.
  • the probe unit since a pair of probes is configured by combining a large-diameter probe and a small-diameter probe in a state in which the axes are shifted from each other, it is possible to cope with the narrowing of the pitch to be inspected. In addition, it is not necessary to reduce the diameter of both ends of the probe. Therefore, it is possible to suppress a decrease in allowable current due to the narrowing of the probe.
  • FIG. 1 is a diagram showing a configuration of a main part of a probe unit according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the positional relationship between the large hole portion and the small hole portion.
  • FIG. 3 is a diagram showing an outline of assembly of the probe unit according to the embodiment of the present invention.
  • FIG. 4 is a perspective view schematically showing the overall configuration of the probe unit according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a state at the time of inspection of the probe unit according to the embodiment of the present invention.
  • FIG. 1 is a partial cross-sectional view showing a configuration of a main part of a probe unit according to an embodiment of the present invention.
  • a probe unit 1 shown in FIG. 1 is a device used when an electrical characteristic test is performed on a semiconductor integrated circuit to be inspected, and between the semiconductor integrated circuit and a circuit board that outputs a test signal to the semiconductor integrated circuit. Is an apparatus for electrically connecting the two.
  • the probe unit 1 has a plurality of large-diameter probes 2 each having one end in contact with an electrode provided on a circuit board, each one in contact with the large-diameter probe 2, and the other end in contact with an electrode of a semiconductor integrated circuit.
  • the large-diameter probe 2 is formed using a conductive material, and has a first needle 21 having a substantially needle shape, a spring member 22 that is an elastic member that has one end attached to the first plunger 21 and is elastic in the longitudinal direction, The other end of the spring member 22 is attached and the second plunger 23 has a tip directed in a direction opposite to the tip of the first plunger 21.
  • the first plunger 21, the spring member 22, and the second plunger 23 have the same center axis in the longitudinal direction.
  • the first plunger 21 has a tip portion 21a (first tip portion) having a sharp end, a flange portion 21b having a diameter larger than the diameter of the tip portion 21a, and a direction opposite to the tip portion 21a via the flange portion 21b. It protrudes and has a cylindrical shape having a diameter that is smaller than the diameter of the flange portion 21b and slightly larger than the inner diameter of the spring member 22, and has a boss portion 21c into which the end of the spring member 22 is press-fitted, and a diameter of the boss portion 21c.
  • a base end portion 21d (first base end portion) having a cylindrical shape that is smaller and smaller in diameter than the inner diameter of the spring member 22 and enters the inside of the spring member 23.
  • the spring member 22 is wound in a state where the end portion is press-fitted into the boss portion 21c of the first plunger 21, and the wire constituting the spring member 22 is in close contact with the coarse winding portion 22b. And a tightly wound portion 22 a that is press-fitted into the second plunger 23.
  • the coarsely wound portion 22b and the tightly wound portion 22a are connected to each other and have the same diameter.
  • the second plunger 23 has a columnar tip portion 23a (second tip portion) and a columnar shape having a diameter smaller than the diameter of the tip portion 23a and slightly larger than the inner diameter of the spring member 22, and a tightly wound portion.
  • the outer diameter of the tip portion 23 a is slightly larger than the outer diameter of the spring member 22.
  • the length of the base end portion 23c is arbitrarily set as long as it is longer than the length of the base end portion 21d and does not come into contact with the first plunger 21 even if the large-diameter probe 2 has the maximum stroke. Is possible.
  • the distal end surface of the distal end portion 23a that forms the upper surface of the second plunger 23 in FIG. 1 is a plane orthogonal to the longitudinal direction of the large-diameter probe 2, and the small-diameter probe 3 contacts this plane.
  • the small-diameter probe 3 is provided with a distal end portion 31 and a proximal end portion 32 each having a sharp end, and a flange having a diameter larger than that of the distal end portion 31 and the proximal end portion 32. Part 33.
  • the diameter of the distal end portion 31 and the diameter of the proximal end portion 32 are substantially equal, and those diameters are smaller than the outer diameter of the large diameter probe 2.
  • the distal end of the base end portion 32 is in contact with the distal end portion 23a of the second plunger 23 of the large diameter probe 2 as described above.
  • the small-diameter probe 3 is disposed at a position offset from the large-diameter probe 2 so that its central axis is parallel to and different from the central axis of the large-diameter probe 2.
  • the large-diameter probe holder 4 is formed by laminating a first substrate 41 and a second substrate 42 formed of an insulating material such as resin, machinable ceramic, or silicon in the thickness direction (vertical direction in FIG. 1). Become.
  • the large diameter probe holder 4 has a plurality of large hole portions 4a for individually holding a plurality of large diameter probes 2 and a diameter smaller than that of the large hole portion 4a and communicates with any of the plurality of large hole portions 4a.
  • 3 has a plurality of receiving hole portions 4b for receiving the base end portion 32 in contact with the large-diameter probe 2. A set of the large hole portion 4a and the receiving hole portion 4b communicating with each other penetrates the large diameter probe holder 4 in the thickness direction.
  • the central axes in the longitudinal direction of the large hole portion 4a and the receiving hole portion 4b communicating with each other are parallel and different.
  • the distance d between the central axis of the large hole portion 4a and the central axis of the receiving hole portion 4b is set to be smaller than the radius of the circle forming the distal end surface of the distal end portion 23a.
  • the first substrate 41 is provided with a plurality of first hole portions 41a that form part of the large hole portions 4a.
  • the first hole 41a is a cylindrical small-diameter hole 411a that can be inserted through the tip 21a of the first plunger 21, and a cylindrical large-diameter hole that is larger in diameter than the small-diameter hole 411a and coaxial with the small-diameter hole 411a. 412a.
  • the diameter of the small diameter hole 411 a is smaller than the diameter of the flange portion 21 b of the first plunger 21.
  • the small-diameter hole 411a prevents the first plunger 21 from coming off while the front end portion 21a of the first plunger 21 is exposed.
  • the maximum diameter of the large-diameter hole 412a is larger than the maximum diameter of the large-diameter probe 2.
  • the second substrate 42 forms a plurality of receiving hole portions 4b and a part of the large hole portion 4a, and communicates with the corresponding receiving hole portions 4b to penetrate the second substrate 42 in the thickness direction.
  • a hole 42a is provided.
  • the diameter of the second hole portion 42a is equal to the diameter of the large diameter hole 412a.
  • Each of the plurality of second holes 42a is coaxially connected to one of the plurality of large-diameter holes 412a at an end different from the end communicating with the receiving hole 4b.
  • the small-diameter probe holder 5 is formed by laminating a third substrate 51 and a fourth substrate 52, which are respectively formed using an insulating material similar to that of the large-diameter probe holder 4, in the thickness direction (vertical direction in FIG. 1).
  • the small-diameter probe holder 5 is provided with a plurality of small holes 5a that hold the plurality of small-diameter probes 3 in a state in which the small-diameter probes 3 are individually removed and penetrate in the thickness direction.
  • the small-diameter probe holder 5 is stacked on the large-diameter probe holder 4 so that each of the plurality of small hole portions 5a communicates coaxially with any of the plurality of receiving hole portions 4b.
  • the third substrate 51 is provided with a plurality of third hole portions 51a that form part of the small hole portions 5a.
  • the third hole 51a has a cylindrical small diameter hole 511a having a circular cross section through which the tip 31 of the small diameter probe 3 can be inserted, and a cylindrical shape having a diameter larger than that of the small diameter hole 511a and coaxial with the small diameter hole 511a.
  • a large-diameter hole 512a The diameter of the small diameter hole 511a is smaller than the diameter of the flange portion 33 of the small diameter probe 3.
  • the diameter of the large-diameter hole 512 a is large enough to accommodate the flange portion 33 of the small-diameter probe 3 and has the same size as the flange portion 33.
  • the third substrate 51 prevents the small-diameter probe 3 from coming off while the tip 31 of the small-diameter probe 3 is exposed.
  • the fourth substrate 52 is provided with a plurality of fourth hole portions 52a that communicate with the corresponding third hole portions 51a to form the small hole portions 5a.
  • the fourth hole 52a is a cylindrical small diameter hole 521a through which the proximal end portion 32 of the small diameter probe 3 can be inserted, and a cylindrical large diameter hole having a diameter larger than that of the small diameter hole 521a and coaxial with the small diameter hole 521a. 522a.
  • the small diameter hole 521a communicates with the receiving hole 4b.
  • the diameter of the small diameter hole 521a is equal to the diameter of the receiving hole portion 4b.
  • the diameter of the large diameter hole 522a is equal to the diameter of the large diameter hole 512a.
  • Each of the plurality of large diameter holes 522a is in coaxial communication with any one of the plurality of large diameter holes 512a.
  • the fourth substrate 52 prevents the small-diameter probe 3 from coming off while the proximal end portion 32 of the small-diameter probe 3 is exposed.
  • the large hole portion 4a, the receiving hole portion 4b, and the small hole portion 5a are formed by performing drilling, etching, punching molding, or processing using laser, electron beam, ion beam, wire discharge, or the like. .
  • the large-diameter probe holder 4 and the small-diameter probe holder 5 include the surface of the substrate made of a conductive material (including portions corresponding to the side surfaces of the large hole portion 4a, the receiving hole portion 4b, and the small hole portion 5a) as insulating materials. It is also possible to have a structure covered with the above.
  • FIG. 2 is a diagram schematically showing a positional relationship between the large hole portion 4a and the small hole portion 5a, and more specifically a diagram showing a positional relationship between the large diameter hole 412a and the small diameter hole 511a.
  • the center axis distance H of the large diameter hole 412a is greater than the center axis distance h of the small diameter hole 511a.
  • the distance between the central axis of the large diameter hole 412a and the central axis of the small diameter hole 511a is the distance between the central axis of the large hole portion 4a and the central axis of the receiving hole portion 4b. Equal to the distance d.
  • FIG. 3 is a diagram showing an outline of assembly of the probe unit 1.
  • the large-diameter probe holder 4 and the small-diameter probe holder 5 are provided with positioning openings, and positioning pins are provided in the large-diameter probe holder 4 and the small-diameter probe holder 5 corresponding to the opening. If both are positioned by insertion, the assembly of the probe unit 1 can be performed more easily and quickly.
  • FIG. 4 is a perspective view showing an overall configuration of the probe unit 1 and an outline of electrical characteristic inspection of a semiconductor integrated circuit using the probe unit 1.
  • a holder member 6 is provided on the outer periphery of the large-diameter probe holder 4 and the small-diameter probe holder 5 to prevent the semiconductor integrated circuit 100 from being displaced during inspection.
  • a circuit board 200 having a circuit for outputting a test signal is attached to the bottom surface side of the holder member 6.
  • FIG. 5 is a partial cross-sectional view showing a configuration of a main part of the probe unit 1 when the semiconductor integrated circuit 100 is inspected.
  • the large-diameter probe 2 receives an upward force in the drawing by contacting the electrode 201 of the circuit board 200.
  • the small-diameter probe 3 receives a downward force in the figure by contacting the electrode 101 of the semiconductor integrated circuit 100. Therefore, the spring member 22 of the large-diameter probe 2 is contracted along the longitudinal direction as compared with the state where the small-diameter probe 3 is not in contact with the electrode 101 of the semiconductor integrated circuit 100.
  • An inspection signal generated when inspecting the semiconductor integrated circuit 100 passes through the first plunger 21 of the large-diameter probe 2, the tightly wound portion 22 a, and the second plunger 23 via the electrode 201 of the circuit board 200, and then passes through the small-diameter probe 3. It reaches the electrode 101 of the semiconductor integrated circuit 100 via the route.
  • the first plunger 21 and the second plunger 23 are conducted through the tightly wound portion 22a, so that the electrical signal conduction path can be minimized. Therefore, it is possible to prevent a signal from flowing to the rough winding portion 22b during inspection, and to reduce and stabilize the inductance and resistance.
  • the small-diameter probe 3 When the probe unit 1 repeats the inspection, the small-diameter probe 3 repeatedly contacts and separates from the electrode 101 every inspection, and therefore, the tip 31 may be worn or the small-diameter probe 3 may be damaged by long-term use. is there. In such a case, in this embodiment, since the small diameter probe holder 5 can be removed from the large diameter probe holder 4, only the small diameter probe 3 can be easily replaced.
  • a set of probes is configured by combining a large-diameter probe and a small-diameter probe in a state where their axes are shifted from each other.
  • it is not necessary to reduce the diameter of both ends of the probe. Therefore, it is possible to suppress a decrease in allowable current due to the narrowing of the probe.
  • the deterioration with time is severe, and the small diameter probe, which is the largest cause of the increase in the contact resistance value, can be replaced independently of the large diameter probe, so that maintenance can be easily performed. It becomes.
  • the large-diameter probe holder can be used as it is unless there is a particular problem. Therefore, a large-diameter probe can be saved and it is economical.
  • the processing is easier than the case where the large diameter probe and the small diameter probe are offset and integrally formed.
  • the probe does not have an axisymmetric shape. For this reason, when housing the integrally formed probe in the probe holder, positioning must be performed while paying attention to the position of the hole through which the portion corresponding to the small diameter probe is inserted, and it takes time to house the probe. There was a problem.
  • the large-diameter probe and the small-diameter probe are separated so that each probe has an axisymmetric shape, so that each probe can be easily accommodated in the probe holder. it can.
  • the second base end portion of the second plunger is made longer than the first base end portion of the first plunger, thereby being orthogonal to the longitudinal direction of the second plunger when a load is applied.
  • the rotation around the shaft can be suppressed. Therefore, the second plunger can be smoothly moved up and down without the flange portion or the second base end portion of the second plunger being caught by the probe holder or the spring member.
  • the lateral load applied to the tightly wound portion of the spring member (the rotational load due to the inclination of the second plunger caused by the deviation of the axes of the large diameter probe and the small diameter probe) is 2 Since the base end of the plunger is long, it decreases and the tight winding of the tightly wound portion during the stroke is maintained. For this reason, there exists an effect that the electrical resistance value of a close_contact
  • the probe unit according to the present invention is useful for inspection of electrical characteristics of a semiconductor integrated circuit such as an IC chip.

Abstract

This probe unit is provided with: a plurality of large-diameter probes; a plurality of small-diameter probes each having a diameter that is smaller than that of the large-diameter probes; a large-diameter probe holder that is provided with a plurality of large holes, which individually hold the plurality of large-diameter probes, penetrating in the direction of thickness, and that houses in the state of the end of a small-diameter probe contacting a large-diameter probe at one end of each large hole; and a small-diameter probe holder that is provided with a plurality of small holes, which individually hold the plurality of small-diameter probes in a removal-preventing state, and that is stacked onto the large-diameter probe holder in a manner so that the direction of thickness thereof matches the direction of thickness of the large-diameter holder. The center axis in the lengthwise direction of interconnecting large holes and small holes differ from each other, and the plurality of small holes include those that are such that the distance between the center axes of two adjacent small holes is smaller than the distance between the center axes of the two large holes with which the small holes respectively interconnect.

Description

プローブユニットProbe unit
 本発明は、半導体集積回路等の電気特性検査で信号の入出力を行う導電性プローブを収容するプローブユニットに関するものである。 The present invention relates to a probe unit that houses a conductive probe that inputs and outputs signals in an electrical characteristic inspection of a semiconductor integrated circuit or the like.
 ICチップなどの半導体集積回路の電気特性検査においては、その半導体集積回路が有する外部電極の設置パターンに対応して、複数の導電性プローブを所定の位置に収容したプローブユニットが用いられる。プローブユニットは、コンタクトプローブを挿通する孔部が複数設けられたプローブホルダを備えており、このプローブホルダが保持する導電性プローブの両端部が、半導体集積回路および検査用信号を出力する回路基板の電極とそれぞれ接触することにより、半導体集積回路と回路基板との間を電気的に接続する(例えば、特許文献1を参照)。 In the inspection of electrical characteristics of a semiconductor integrated circuit such as an IC chip, a probe unit in which a plurality of conductive probes are accommodated at predetermined positions is used corresponding to the external electrode installation pattern of the semiconductor integrated circuit. The probe unit includes a probe holder provided with a plurality of holes through which the contact probe is inserted, and both ends of the conductive probe held by the probe holder are connected to a semiconductor integrated circuit and a circuit board that outputs a test signal. By contacting each of the electrodes, the semiconductor integrated circuit and the circuit board are electrically connected (see, for example, Patent Document 1).
特開2002-107377号公報JP 2002-107377 A
 ところで、近年では、自動車の制御システム用半導体などの検査を行う場合などにおいて、電流値が10~20A程度の大電流を流すことが可能なプローブが要求されるようになってきている。この要求に応えるには、プローブの径を太くすればよい。しかしながら、半導体の電極の最大径またはピッチが1mm以下であるような場合には、むしろプローブの径を細くしなければならず、結果的に許容電流が小さくなってしまうという問題があった。また、4端子測定のように1つの端子に2本のプローブが必要な検査の場合にも細い径のプローブが必要であり、許容電流を小さくせざるを得なかった。 By the way, in recent years, a probe capable of flowing a large current of about 10 to 20 A has been required in the case of inspecting a semiconductor for a control system of an automobile. In order to meet this requirement, the probe diameter may be increased. However, in the case where the maximum diameter or pitch of the semiconductor electrodes is 1 mm or less, there is a problem that the diameter of the probe has to be made rather thin, and as a result, the allowable current becomes small. Also, in the case of inspection that requires two probes per terminal as in the four-terminal measurement, a probe with a small diameter is necessary, and the allowable current has to be reduced.
 本発明は、上記に鑑みてなされたものであって、プローブの細径化に起因する許容電流の低下を抑制することが可能なプローブユニットを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a probe unit capable of suppressing a reduction in allowable current due to a narrowed probe diameter.
 上述した課題を解決し、目的を達成するために、本発明に係るプローブユニットは、各々が導電性材料を用いて形成され、略針状をなす第1先端部および該第1先端部に連なる第1基端部を同軸上に有する第1プランジャと、先端が前記第1プランジャの先端と相反する方向を指向する第2先端部および前記軸方向の長さが前記第1基端部に比して長い第2基端部を同軸上に有する第2プランジャと、長手方向の一端部が前記第1基端部を包括するとともに他端部が前記第2基端部を包括して前記第1および第2プランジャに取り付けられ、前記第1プランジャ側で密着巻きされる密着巻き部と前記第2プランジャ側で所定ピッチで巻回される粗巻き部とを有し、当該長手方向に沿って伸縮自在なコイル状のバネ部材と、を有し、長手方向に沿って伸縮自在である複数の大径プローブと、各々が導電性材料を用いて形成され、前記大径プローブの径よりも小さい径を有する複数の小径プローブと、前記複数の大径プローブを個別に保持する複数の大孔部と、前記大孔部よりも径が小さく、前記複数の大孔部のいずれかと連通し、前記小径プローブの端部を前記第2先端部と接触した状態で受容する複数の受容孔部とを有し、互いに連通する前記大孔部および前記受容孔部の組が厚さ方向に貫通する大径プローブホルダと、前記複数の小径プローブを個別に抜け止めした状態で保持する複数の小孔部が厚さ方向に貫通して設けられ、各小孔部が前記複数の受容孔部のいずれかと連通するように前記大径プローブホルダに積層された小径プローブホルダと、を備え、互いに連通する前記大孔部および前記小孔部の長手方向の中心軸は異なり、前記複数の小孔部には、隣接する二つの小孔部の中心軸間距離が該二つの小孔部にそれぞれ対応する二つの大孔部の中心軸間距離より小さいものが含まれ、前記第2基端部は、少なくとも小径プローブに検査時の荷重が加わった場合に、前記密着巻き部の内部へ進入することを特徴とする。 In order to solve the above-described problems and achieve the object, each of the probe units according to the present invention is formed using a conductive material, and is connected to the first tip portion having a substantially needle shape and the first tip portion. A first plunger having a first base end on the same axis, a second front end whose tip is directed in a direction opposite to the front end of the first plunger, and a length in the axial direction compared to the first base end A second plunger having a long second base end on the same axis, one end in the longitudinal direction encompassing the first base end, and the other end including the second base end. A tightly wound portion attached to the first and second plungers and tightly wound on the first plunger side, and a coarsely wound portion wound at a predetermined pitch on the second plunger side, along the longitudinal direction A coil-shaped spring member that is stretchable, and has a longitudinal direction A plurality of large-diameter probes that are telescopically stretchable, a plurality of small-diameter probes that are each formed using a conductive material and have a diameter smaller than the diameter of the large-diameter probe, and the plurality of large-diameter probes A plurality of large hole portions held in the hole, and having a diameter smaller than that of the large hole portion, communicating with any of the plurality of large hole portions, and receiving the end portion of the small diameter probe in contact with the second tip portion. A large-diameter probe holder through which a set of the large-hole portion and the reception-hole portion communicating with each other passes in the thickness direction, and the plurality of small-diameter probes are individually retained. A small-diameter probe holder that is provided on the large-diameter probe holder so that each small-hole portion communicates with one of the plurality of receiving-hole portions. Before and communicate with each other A central axis in a longitudinal direction of the large hole portion and the small hole portion is different, and the plurality of small hole portions have two distances between the center axes of two adjacent small hole portions corresponding to the two small hole portions, respectively. The second base end portion enters the inside of the tightly wound portion when a load at the time of inspection is applied to at least the small-diameter probe. And
 また、本発明に係るプローブユニットは、上記発明において、前記第2プランジャの先端は、前記大径プローブの長手方向と略直交する平面をなすことを特徴とする。 In the probe unit according to the present invention as set forth in the invention described above, the tip of the second plunger forms a plane substantially perpendicular to the longitudinal direction of the large-diameter probe.
 また、本発明に係るプローブユニットは、上記発明において、前記大径プローブホルダは、前記第1プランジャの先端部を表出させて保持する第1基板と、前記第1基板に積層されるとともに前記小径プローブホルダに積層され、前記小径プローブホルダが保持する前記小径プローブの端部を受容する第2基板と、を有することを特徴とする。 In the probe unit according to the present invention, in the above invention, the large-diameter probe holder is laminated on the first substrate, the first substrate holding the tip portion of the first plunger exposed, and the first substrate. And a second substrate that is stacked on the small-diameter probe holder and receives the end of the small-diameter probe held by the small-diameter probe holder.
 また、本発明に係るプローブユニットは、上記発明において、前記小径プローブホルダは、前記小径プローブのいずれか一方の端部をそれぞれ表出させて保持する二つの基板が積層されて成ることを特徴とする。 The probe unit according to the present invention is characterized in that, in the above invention, the small-diameter probe holder is formed by laminating two substrates that expose and hold either one end of the small-diameter probe. To do.
 また、本発明に係るプローブユニットは、上記発明において、前記大径プローブホルダおよび前記小径プローブホルダは、少なくとも前記大径プローブおよび/または前記小径プローブと接触する部分が絶縁性を有することを特徴とする。 The probe unit according to the present invention is characterized in that, in the above invention, the large-diameter probe holder and the small-diameter probe holder have an insulating property at least in contact with the large-diameter probe and / or the small-diameter probe. To do.
 本発明に係るプローブユニットによれば、大径プローブと小径プローブを互いの軸線をずらした状態で組み合わせることによって一組のプローブを構成しているため、検査対象のピッチの狭小化に対応させる場合にも、プローブの両方の端部を細径化しないで済む。したがって、プローブの細径化に起因する許容電流の低下を抑制することが可能となる。 According to the probe unit according to the present invention, since a pair of probes is configured by combining a large-diameter probe and a small-diameter probe in a state in which the axes are shifted from each other, it is possible to cope with the narrowing of the pitch to be inspected. In addition, it is not necessary to reduce the diameter of both ends of the probe. Therefore, it is possible to suppress a decrease in allowable current due to the narrowing of the probe.
図1は、本発明の一実施の形態に係るプローブユニットの要部の構成を示す図である。FIG. 1 is a diagram showing a configuration of a main part of a probe unit according to an embodiment of the present invention. 図2は、大孔部と小孔部との位置関係を模式的に示す図である。FIG. 2 is a diagram schematically showing the positional relationship between the large hole portion and the small hole portion. 図3は、本発明の一実施の形態に係るプローブユニットの組み立ての概要を示す図である。FIG. 3 is a diagram showing an outline of assembly of the probe unit according to the embodiment of the present invention. 図4は、本発明の一実施の形態に係るプローブユニットの全体構成を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing the overall configuration of the probe unit according to the embodiment of the present invention. 図5は、本発明の一実施の形態に係るプローブユニットの検査時の状態を示す図である。FIG. 5 is a diagram showing a state at the time of inspection of the probe unit according to the embodiment of the present invention.
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. The drawings referred to in the following description only schematically show the shape, size, and positional relationship so that the contents of the present invention can be understood. That is, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing.
 図1は、本発明の一実施の形態に係るプローブユニットの要部の構成を示す部分断面図である。同図に示すプローブユニット1は、検査対象である半導体集積回路の電気特性検査を行う際に使用する装置であって、半導体集積回路と半導体集積回路へ検査用信号を出力する回路基板との間を電気的に接続する装置である。プローブユニット1は、各々の一端が回路基板に設けられた電極と接触する複数の大径プローブ2と、各々の一端が大径プローブ2と接触するとともに他端が半導体集積回路の電極と接触し、大径プローブ2の径よりも小さい径を有する複数の小径プローブ3と、複数の大径プローブ2を抜け止めした状態で保持する大径プローブホルダ4と、大径プローブホルダ4に着脱自在に積層され、複数の小径プローブ3を抜け止めした状態で保持する小径プローブホルダ5と、を備える。 FIG. 1 is a partial cross-sectional view showing a configuration of a main part of a probe unit according to an embodiment of the present invention. A probe unit 1 shown in FIG. 1 is a device used when an electrical characteristic test is performed on a semiconductor integrated circuit to be inspected, and between the semiconductor integrated circuit and a circuit board that outputs a test signal to the semiconductor integrated circuit. Is an apparatus for electrically connecting the two. The probe unit 1 has a plurality of large-diameter probes 2 each having one end in contact with an electrode provided on a circuit board, each one in contact with the large-diameter probe 2, and the other end in contact with an electrode of a semiconductor integrated circuit. A plurality of small-diameter probes 3 having a diameter smaller than that of the large-diameter probe 2, a large-diameter probe holder 4 that holds the plurality of large-diameter probes 2 in a state where the large-diameter probes 2 are prevented from being detached, and a large-diameter probe holder 4 are detachable. And a small-diameter probe holder 5 that holds the plurality of small-diameter probes 3 in a state where they are prevented from coming off.
 大径プローブ2は導電性材料を用いて形成され、略針状をなす第1プランジャ21と、一端が第1プランジャ21に取り付けられ、長手方向に伸縮自在な弾性部材であるバネ部材22と、バネ部材22の他端を取り付けるとともに先端が第1プランジャ21の先端と相反する方向を指向する第2プランジャ23とを有する。図1に示す状態で、第1プランジャ21、バネ部材22および第2プランジャ23は、長手方向の中心軸が一致している。 The large-diameter probe 2 is formed using a conductive material, and has a first needle 21 having a substantially needle shape, a spring member 22 that is an elastic member that has one end attached to the first plunger 21 and is elastic in the longitudinal direction, The other end of the spring member 22 is attached and the second plunger 23 has a tip directed in a direction opposite to the tip of the first plunger 21. In the state shown in FIG. 1, the first plunger 21, the spring member 22, and the second plunger 23 have the same center axis in the longitudinal direction.
 第1プランジャ21は、先鋭端を有する先端部21a(第1先端部)と、先端部21aの径よりも大きい径を有するフランジ部21bと、フランジ部21bを介して先端部21aと反対方向に突出し、フランジ部21bの径よりも小さくかつバネ部材22の内径よりも若干大きい径を有する円柱状をなし、バネ部材22の端部が圧入されるボス部21cと、ボス部21cの径よりも小さくかつバネ部材22の内径よりも小さい径を有し、バネ部材23の内部に進入している円柱状をなす基端部21d(第1基端部)と、を備える。 The first plunger 21 has a tip portion 21a (first tip portion) having a sharp end, a flange portion 21b having a diameter larger than the diameter of the tip portion 21a, and a direction opposite to the tip portion 21a via the flange portion 21b. It protrudes and has a cylindrical shape having a diameter that is smaller than the diameter of the flange portion 21b and slightly larger than the inner diameter of the spring member 22, and has a boss portion 21c into which the end of the spring member 22 is press-fitted, and a diameter of the boss portion 21c. A base end portion 21d (first base end portion) having a cylindrical shape that is smaller and smaller in diameter than the inner diameter of the spring member 22 and enters the inside of the spring member 23.
 バネ部材22は、第1プランジャ21のボス部21cに端部が圧入される粗巻き部22bと、バネ部材22を構成する線材が粗巻き部22bよりも密着した状態で巻回され、その端部が第2プランジャ23に圧入される密着巻き部22aとを有する。粗巻き部22bと密着巻き部22aとはつながっており、互いの径は等しい。 The spring member 22 is wound in a state where the end portion is press-fitted into the boss portion 21c of the first plunger 21, and the wire constituting the spring member 22 is in close contact with the coarse winding portion 22b. And a tightly wound portion 22 a that is press-fitted into the second plunger 23. The coarsely wound portion 22b and the tightly wound portion 22a are connected to each other and have the same diameter.
 第2プランジャ23は、円柱状をなす先端部23a(第2先端部)と、先端部23aの径よりも小さくかつバネ部材22の内径よりも若干大きい径を有する円柱状をなし、密着巻き部22aの端部が圧入されるボス部23bと、ボス部23bよりも径が小さくかつバネ部材22の内径よりも小さい径を有し、バネ部材23の内部に進入している基端部23c(第2基端部)と、を備える。先端部23aの外径はバネ部材22の外径よりも若干大きい。 The second plunger 23 has a columnar tip portion 23a (second tip portion) and a columnar shape having a diameter smaller than the diameter of the tip portion 23a and slightly larger than the inner diameter of the spring member 22, and a tightly wound portion. A boss portion 23b into which the end portion of 22a is press-fitted, and a base end portion 23c having a diameter smaller than that of the boss portion 23b and smaller than the inner diameter of the spring member 22 and entering the inside of the spring member 23 ( 2nd base end part). The outer diameter of the tip portion 23 a is slightly larger than the outer diameter of the spring member 22.
 なお、本実施の形態において、基端部23cの長さは、基端部21dの長さより長く、大径プローブ2が最大ストロークしても第1プランジャ21と接触しない範囲であれば任意に設定することが可能である。また、図1で第2プランジャ23の上面をなす先端部23aの先端面は、大径プローブ2の長手方向と直交する平面であり、この平面には小径プローブ3が接触する。 In the present embodiment, the length of the base end portion 23c is arbitrarily set as long as it is longer than the length of the base end portion 21d and does not come into contact with the first plunger 21 even if the large-diameter probe 2 has the maximum stroke. Is possible. Further, the distal end surface of the distal end portion 23a that forms the upper surface of the second plunger 23 in FIG. 1 is a plane orthogonal to the longitudinal direction of the large-diameter probe 2, and the small-diameter probe 3 contacts this plane.
 小径プローブ3は、各々が先鋭端を有する先端部31および基端部32と、先端部31と基端部32との間に設けられ、先端部31や基端部32よりも径が大きいフランジ部33とを有する。先端部31の径と基端部32の径はほぼ等しく、それらの径は大径プローブ2の外径よりも小さい。基端部32の先端は、上記の如く大径プローブ2の第2プランジャ23の先端部23aと接触している。小径プローブ3は、その中心軸が大径プローブ2の中心軸と平行でありかつ異なるように大径プローブ2に対してオフセットした位置に配置されている。 The small-diameter probe 3 is provided with a distal end portion 31 and a proximal end portion 32 each having a sharp end, and a flange having a diameter larger than that of the distal end portion 31 and the proximal end portion 32. Part 33. The diameter of the distal end portion 31 and the diameter of the proximal end portion 32 are substantially equal, and those diameters are smaller than the outer diameter of the large diameter probe 2. The distal end of the base end portion 32 is in contact with the distal end portion 23a of the second plunger 23 of the large diameter probe 2 as described above. The small-diameter probe 3 is disposed at a position offset from the large-diameter probe 2 so that its central axis is parallel to and different from the central axis of the large-diameter probe 2.
 大径プローブホルダ4は、樹脂、マシナブルセラミック、シリコンなどの絶縁性材料を用いてそれぞれ形成された第1基板41と第2基板42が厚さ方向(図1の上下方向)に積層されて成る。大径プローブホルダ4は、複数の大径プローブ2を個別に保持する複数の大孔部4aと、大孔部4aよりも径が小さく、複数の大孔部4aのいずれかと連通し、小径プローブ3の基端部32を大径プローブ2と接触した状態で受容する複数の受容孔部4bとを有する。互いに連通する大孔部4aおよび受容孔部4bの組は、大径プローブホルダ4を厚さ方向に貫通する。また、互いに連通する大孔部4aおよび受容孔部4bの長手方向の中心軸は平行でありかつ異なっている。大孔部4aの中心軸と受容孔部4bの中心軸との距離dは、先端部23aの先端面をなす円の半径よりも小さく設定される。このように距離dを設定することにより、互いに連通する大孔部4aおよび受容孔部4bにそれぞれ挿通される大径プローブ2および小径プローブ3を確実に接触させることができる。 The large-diameter probe holder 4 is formed by laminating a first substrate 41 and a second substrate 42 formed of an insulating material such as resin, machinable ceramic, or silicon in the thickness direction (vertical direction in FIG. 1). Become. The large diameter probe holder 4 has a plurality of large hole portions 4a for individually holding a plurality of large diameter probes 2 and a diameter smaller than that of the large hole portion 4a and communicates with any of the plurality of large hole portions 4a. 3 has a plurality of receiving hole portions 4b for receiving the base end portion 32 in contact with the large-diameter probe 2. A set of the large hole portion 4a and the receiving hole portion 4b communicating with each other penetrates the large diameter probe holder 4 in the thickness direction. The central axes in the longitudinal direction of the large hole portion 4a and the receiving hole portion 4b communicating with each other are parallel and different. The distance d between the central axis of the large hole portion 4a and the central axis of the receiving hole portion 4b is set to be smaller than the radius of the circle forming the distal end surface of the distal end portion 23a. By setting the distance d in this way, the large-diameter probe 2 and the small-diameter probe 3 inserted through the large hole portion 4a and the receiving hole portion 4b communicating with each other can be reliably brought into contact with each other.
 第1基板41には、大孔部4aの一部をなす第1孔部41aが複数設けられている。第1孔部41aは、第1プランジャ21の先端部21aを挿通可能な円筒状の小径孔411aと、小径孔411aよりも径が大きく、かつ小径孔411aと同軸をなす円筒状の大径孔412aとを有する。小径孔411aの径は、第1プランジャ21のフランジ部21bの径よりも小さい。小径孔411aは、第1プランジャ21の先端部21aを表出させた状態で第1プランジャ21を抜け止めしている。また、大径孔412aの最大径は大径プローブ2の最大径よりも大きい。 The first substrate 41 is provided with a plurality of first hole portions 41a that form part of the large hole portions 4a. The first hole 41a is a cylindrical small-diameter hole 411a that can be inserted through the tip 21a of the first plunger 21, and a cylindrical large-diameter hole that is larger in diameter than the small-diameter hole 411a and coaxial with the small-diameter hole 411a. 412a. The diameter of the small diameter hole 411 a is smaller than the diameter of the flange portion 21 b of the first plunger 21. The small-diameter hole 411a prevents the first plunger 21 from coming off while the front end portion 21a of the first plunger 21 is exposed. The maximum diameter of the large-diameter hole 412a is larger than the maximum diameter of the large-diameter probe 2.
 第2基板42には、複数の受容孔部4bと、大孔部4aの一部をなし、対応する受容孔部4bと連通して第2基板42を厚さ方向に貫通する複数の第2孔部42aとが設けられている。第2孔部42aの径は大径孔412aの径と等しい。複数の第2孔部42aの各々は、受容孔部4bに連通する端部と異なる端部で複数の大径孔412aのいずれかと同軸的に連通している。 The second substrate 42 forms a plurality of receiving hole portions 4b and a part of the large hole portion 4a, and communicates with the corresponding receiving hole portions 4b to penetrate the second substrate 42 in the thickness direction. A hole 42a is provided. The diameter of the second hole portion 42a is equal to the diameter of the large diameter hole 412a. Each of the plurality of second holes 42a is coaxially connected to one of the plurality of large-diameter holes 412a at an end different from the end communicating with the receiving hole 4b.
 小径プローブホルダ5は、大径プローブホルダ4と同様の絶縁性材料を用いてそれぞれ形成される第3基板51および第4基板52が厚さ方向(図1の上下方向)に積層されて成る。小径プローブホルダ5には、複数の小径プローブ3を個別に抜け止めした状態で保持し、厚さ方向に貫通する複数の小孔部5aが設けられている。小径プローブホルダ5は、複数の小孔部5aの各々が、複数の受容孔部4bのいずれかと同軸的に連通するように大径プローブホルダ4に積層されている。 The small-diameter probe holder 5 is formed by laminating a third substrate 51 and a fourth substrate 52, which are respectively formed using an insulating material similar to that of the large-diameter probe holder 4, in the thickness direction (vertical direction in FIG. 1). The small-diameter probe holder 5 is provided with a plurality of small holes 5a that hold the plurality of small-diameter probes 3 in a state in which the small-diameter probes 3 are individually removed and penetrate in the thickness direction. The small-diameter probe holder 5 is stacked on the large-diameter probe holder 4 so that each of the plurality of small hole portions 5a communicates coaxially with any of the plurality of receiving hole portions 4b.
 第3基板51には、小孔部5aの一部をなす第3孔部51aが複数設けられている。第3孔部51aは、小径プローブ3の先端部31を挿通可能な円形断面を有する円筒状の小径孔511aと、小径孔511aよりも径が大きく、かつ小径孔511aと同軸をなす円筒状の大径孔512aとを有する。小径孔511aの径は小径プローブ3のフランジ部33の径よりも小さい。また、大径孔512aの径は、小径プローブ3のフランジ部33を収容可能な大きさであってフランジ部33と同程度の大きさを有している。第3基板51は、小径プローブ3の先端部31を表出させた状態で小径プローブ3を抜け止めしている。 The third substrate 51 is provided with a plurality of third hole portions 51a that form part of the small hole portions 5a. The third hole 51a has a cylindrical small diameter hole 511a having a circular cross section through which the tip 31 of the small diameter probe 3 can be inserted, and a cylindrical shape having a diameter larger than that of the small diameter hole 511a and coaxial with the small diameter hole 511a. A large-diameter hole 512a. The diameter of the small diameter hole 511a is smaller than the diameter of the flange portion 33 of the small diameter probe 3. The diameter of the large-diameter hole 512 a is large enough to accommodate the flange portion 33 of the small-diameter probe 3 and has the same size as the flange portion 33. The third substrate 51 prevents the small-diameter probe 3 from coming off while the tip 31 of the small-diameter probe 3 is exposed.
 第4基板52には、対応する第3孔部51aと連通して小孔部5aを構成する第4孔部52aが複数設けられている。第4孔部52aは、小径プローブ3の基端部32を挿通可能な円筒状の小径孔521aと、小径孔521aよりも径が大きく、かつ小径孔521aと同軸をなす円筒状の大径孔522aとを有する。小径孔521aは受容孔部4bと連通している。小径孔521aの径は受容孔部4bの径と等しい。また、大径孔522aの径は大径孔512aの径と等しい。複数の大径孔522aの各々は、複数の大径孔512aのいずれかと同軸的に連通している。第4基板52は、小径プローブ3の基端部32を表出させた状態で小径プローブ3を抜け止めしている。 The fourth substrate 52 is provided with a plurality of fourth hole portions 52a that communicate with the corresponding third hole portions 51a to form the small hole portions 5a. The fourth hole 52a is a cylindrical small diameter hole 521a through which the proximal end portion 32 of the small diameter probe 3 can be inserted, and a cylindrical large diameter hole having a diameter larger than that of the small diameter hole 521a and coaxial with the small diameter hole 521a. 522a. The small diameter hole 521a communicates with the receiving hole 4b. The diameter of the small diameter hole 521a is equal to the diameter of the receiving hole portion 4b. The diameter of the large diameter hole 522a is equal to the diameter of the large diameter hole 512a. Each of the plurality of large diameter holes 522a is in coaxial communication with any one of the plurality of large diameter holes 512a. The fourth substrate 52 prevents the small-diameter probe 3 from coming off while the proximal end portion 32 of the small-diameter probe 3 is exposed.
 大孔部4a、受容孔部4bおよび小孔部5aは、ドリル加工、エッチング、打抜き成形を行うか、あるいはレーザ、電子ビーム、イオンビーム、ワイヤ放電等を用いた加工を行うことによって形成される。 The large hole portion 4a, the receiving hole portion 4b, and the small hole portion 5a are formed by performing drilling, etching, punching molding, or processing using laser, electron beam, ion beam, wire discharge, or the like. .
 なお、大径プローブホルダ4および小径プローブホルダ5は、導電性材料から成る基板の表面(大孔部4a、受容孔部4bおよび小孔部5aの側面に対応する部分も含む)を絶縁性材料によって被覆した構成とすることも可能である。 The large-diameter probe holder 4 and the small-diameter probe holder 5 include the surface of the substrate made of a conductive material (including portions corresponding to the side surfaces of the large hole portion 4a, the receiving hole portion 4b, and the small hole portion 5a) as insulating materials. It is also possible to have a structure covered with the above.
 図2は、大孔部4aと小孔部5aとの位置関係を模式的に示す図であり、より具体的には大径孔412aと小径孔511aとの位置関係を示す図である。大径孔412aの中心軸間距離Hは、小径孔511aの中心軸間距離hよりも大きい。また、連通する大孔部4aと小孔部5aにおいて、大径孔412aの中心軸と小径孔511aの中心軸の距離は、大孔部4aの中心軸と受容孔部4bの中心軸との距離dに等しい。このように大孔部4aと小孔部5aとの位置関係を設定することにより、検査対象と接触する小径プローブ3側のピッチを大径プローブ2側のピッチよりも狭小化することができる。 FIG. 2 is a diagram schematically showing a positional relationship between the large hole portion 4a and the small hole portion 5a, and more specifically a diagram showing a positional relationship between the large diameter hole 412a and the small diameter hole 511a. The center axis distance H of the large diameter hole 412a is greater than the center axis distance h of the small diameter hole 511a. In the communicating large hole portion 4a and small hole portion 5a, the distance between the central axis of the large diameter hole 412a and the central axis of the small diameter hole 511a is the distance between the central axis of the large hole portion 4a and the central axis of the receiving hole portion 4b. Equal to the distance d. By setting the positional relationship between the large hole portion 4a and the small hole portion 5a in this way, the pitch on the small diameter probe 3 side in contact with the inspection object can be made narrower than the pitch on the large diameter probe 2 side.
 図3は、プローブユニット1の組み立ての概要を示す図である。プローブユニット1を組み立てる際には、大径プローブホルダ4の第2基板42と小径プローブホルダ5の第4基板52とが対向するようにして2つのプローブホルダを組み合わせた後、ネジ等を用いて締結する。なお、大径プローブホルダ4および小径プローブホルダ5に位置決め用の開口部をそれぞれ設けておき、大径プローブホルダ4の開口部とこの開口部に対応する小径プローブホルダ5の開口部に位置決めピンを挿入することによって両者の位置決めを行うようにすれば、プローブユニット1の組み立てを一段と容易にかつ迅速に行うことができる。 FIG. 3 is a diagram showing an outline of assembly of the probe unit 1. When assembling the probe unit 1, after combining the two probe holders so that the second substrate 42 of the large-diameter probe holder 4 and the fourth substrate 52 of the small-diameter probe holder 5 face each other, screws or the like are used. Conclude. The large-diameter probe holder 4 and the small-diameter probe holder 5 are provided with positioning openings, and positioning pins are provided in the large-diameter probe holder 4 and the small-diameter probe holder 5 corresponding to the opening. If both are positioned by insertion, the assembly of the probe unit 1 can be performed more easily and quickly.
 図4は、プローブユニット1の全体構成と、プローブユニット1を用いた半導体集積回路の電気特性検査の概要を示す斜視図である。プローブユニット1には、検査の際に半導体集積回路100の位置ずれが生じるのを抑制するホルダ部材6が、大径プローブホルダ4および小径プローブホルダ5の外周に設けられている。ホルダ部材6の底面側には、検査用信号を出力する回路を備えた回路基板200が取り付けられる。 FIG. 4 is a perspective view showing an overall configuration of the probe unit 1 and an outline of electrical characteristic inspection of a semiconductor integrated circuit using the probe unit 1. In the probe unit 1, a holder member 6 is provided on the outer periphery of the large-diameter probe holder 4 and the small-diameter probe holder 5 to prevent the semiconductor integrated circuit 100 from being displaced during inspection. A circuit board 200 having a circuit for outputting a test signal is attached to the bottom surface side of the holder member 6.
 図5は、半導体集積回路100の検査時におけるプローブユニット1の要部の構成を示す部分断面図である。図5に示す状態で、大径プローブ2は回路基板200の電極201と接触することによって図で上向きの力を受ける。一方、小径プローブ3は、半導体集積回路100の電極101と接触することによって図で下向きの力を受ける。したがって、大径プローブ2のバネ部材22は、小径プローブ3が半導体集積回路100の電極101と接触していない状態よりも長手方向に沿って縮んでいる。 FIG. 5 is a partial cross-sectional view showing a configuration of a main part of the probe unit 1 when the semiconductor integrated circuit 100 is inspected. In the state shown in FIG. 5, the large-diameter probe 2 receives an upward force in the drawing by contacting the electrode 201 of the circuit board 200. On the other hand, the small-diameter probe 3 receives a downward force in the figure by contacting the electrode 101 of the semiconductor integrated circuit 100. Therefore, the spring member 22 of the large-diameter probe 2 is contracted along the longitudinal direction as compared with the state where the small-diameter probe 3 is not in contact with the electrode 101 of the semiconductor integrated circuit 100.
 半導体集積回路100の検査時に生じる検査用信号は、回路基板200の電極201を介して大径プローブ2の第1プランジャ21、密着巻き部22a、第2プランジャ23を経由した後、小径プローブ3を経由して半導体集積回路100の電極101へ到達する。このように、大径プローブ2では、第1プランジャ21と第2プランジャ23が密着巻き部22aを介して導通するため、電気信号の導通経路を最小にすることができる。したがって、検査時に粗巻き部22bへ信号が流れるのを防止し、インダクタンスおよび抵抗の低減および安定化を図ることができる。 An inspection signal generated when inspecting the semiconductor integrated circuit 100 passes through the first plunger 21 of the large-diameter probe 2, the tightly wound portion 22 a, and the second plunger 23 via the electrode 201 of the circuit board 200, and then passes through the small-diameter probe 3. It reaches the electrode 101 of the semiconductor integrated circuit 100 via the route. Thus, in the large-diameter probe 2, the first plunger 21 and the second plunger 23 are conducted through the tightly wound portion 22a, so that the electrical signal conduction path can be minimized. Therefore, it is possible to prevent a signal from flowing to the rough winding portion 22b during inspection, and to reduce and stabilize the inductance and resistance.
 プローブユニット1が検査を繰り返し行うと、小径プローブ3は検査のたびに電極101との接触、離間を繰り返すため、長期にわたる使用によって先端部31が磨耗したり小径プローブ3が破損したりすることがある。このような場合、本実施の形態では、小径プローブホルダ5を大径プローブホルダ4から取り外すことができるため、小径プローブ3のみを簡単に交換することができる。 When the probe unit 1 repeats the inspection, the small-diameter probe 3 repeatedly contacts and separates from the electrode 101 every inspection, and therefore, the tip 31 may be worn or the small-diameter probe 3 may be damaged by long-term use. is there. In such a case, in this embodiment, since the small diameter probe holder 5 can be removed from the large diameter probe holder 4, only the small diameter probe 3 can be easily replaced.
 以上説明した本発明の一実施の形態によれば、大径プローブと小径プローブを互いの軸線をずらした状態で組み合わせることによって一組のプローブを構成しているため、検査対象のピッチの狭小化に対応させる場合にも、プローブの両方の端部を細径化しないで済む。したがって、プローブの細径化に起因する許容電流の低下を抑制することが可能となる。 According to the embodiment of the present invention described above, a set of probes is configured by combining a large-diameter probe and a small-diameter probe in a state where their axes are shifted from each other. In the case of corresponding to the above, it is not necessary to reduce the diameter of both ends of the probe. Therefore, it is possible to suppress a decrease in allowable current due to the narrowing of the probe.
 また、本実施の形態によれば、経時劣化が激しく、接触抵抗値の増加の最大要因である小径プローブを大径プローブとは独立に交換することができるため、メインテナンスを簡単に行うことが可能となる。加えて、小径プローブのみを交換するので、大径プローブホルダ側は特に問題がなければそのまま使用を続けることができる。したがって、大径プローブを節約することができ、経済的である。 Further, according to the present embodiment, the deterioration with time is severe, and the small diameter probe, which is the largest cause of the increase in the contact resistance value, can be replaced independently of the large diameter probe, so that maintenance can be easily performed. It becomes. In addition, since only the small-diameter probe is replaced, the large-diameter probe holder can be used as it is unless there is a particular problem. Therefore, a large-diameter probe can be saved and it is economical.
 また、本実施の形態によれば、大径プローブの第2プランジャと小径プローブとを別に加工するため、大径プローブと小径プローブとをオフセットして一体成形するよりも加工が容易である。 Further, according to the present embodiment, since the second plunger of the large diameter probe and the small diameter probe are processed separately, the processing is easier than the case where the large diameter probe and the small diameter probe are offset and integrally formed.
 大径プローブと小径プローブとをオフセットして一体成形した場合には、プローブが軸対称な形状をなしていない。このため、一体成形したプローブをプローブホルダへ収容する際には、小径プローブに対応する部分を挿通する孔部の位置に留意して位置決めを行わなければならず、プローブの収容に手間がかかるという問題があった。これに対して、本実施の形態においては、大径プローブと小径プローブとを分離し、各プローブが軸対称な形状をなすようにしたため、各プローブのプローブホルダへの収容を容易に行うことができる。 When the large-diameter probe and small-diameter probe are offset and integrally molded, the probe does not have an axisymmetric shape. For this reason, when housing the integrally formed probe in the probe holder, positioning must be performed while paying attention to the position of the hole through which the portion corresponding to the small diameter probe is inserted, and it takes time to house the probe. There was a problem. In contrast, in the present embodiment, the large-diameter probe and the small-diameter probe are separated so that each probe has an axisymmetric shape, so that each probe can be easily accommodated in the probe holder. it can.
 また、本実施の形態によれば、第2プランジャの第2基端部を第1プランジャの第1基端部より長くすることによって、荷重が加わった場合の第2プランジャの長手方向と直交する軸の回りの回転を抑制することができる。したがって、第2プランジャのフランジ部または第2基端部がプローブホルダまたはバネ部材に引っかかることなく、第2プランジャを円滑に上下動させることができる。 Further, according to the present embodiment, the second base end portion of the second plunger is made longer than the first base end portion of the first plunger, thereby being orthogonal to the longitudinal direction of the second plunger when a load is applied. The rotation around the shaft can be suppressed. Therefore, the second plunger can be smoothly moved up and down without the flange portion or the second base end portion of the second plunger being caught by the probe holder or the spring member.
 また、本実施の形態によれば、バネ部材の密着巻き部にかかる横荷重(大径プローブと小径プローブとの軸線がずれていることに起因する第2プランジャの傾きによる回転荷重)は、第2プランジャの基端部が長いため減少し、ストローク時の密着巻き部の密巻きが維持される。このため、密着巻き部の電気抵抗値が安定するという効果を奏する。 Further, according to the present embodiment, the lateral load applied to the tightly wound portion of the spring member (the rotational load due to the inclination of the second plunger caused by the deviation of the axes of the large diameter probe and the small diameter probe) is 2 Since the base end of the plunger is long, it decreases and the tight winding of the tightly wound portion during the stroke is maintained. For this reason, there exists an effect that the electrical resistance value of a close_contact | adherence winding part is stabilized.
 以上の説明からも明らかなように、本発明は、ここでは記載していない様々な実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。 As is apparent from the above description, the present invention can include various embodiments and the like not described herein, and within the scope not departing from the technical idea specified by the claims. Various design changes can be made.
 以上のように、本発明に係るプローブユニットは、ICチップなどの半導体集積回路の電気特性検査に有用である。 As described above, the probe unit according to the present invention is useful for inspection of electrical characteristics of a semiconductor integrated circuit such as an IC chip.
 1 プローブユニット
 2 大径プローブ
 3 小径プローブ
 4 大径プローブホルダ
 4a 大孔部
 4b 受容孔部
 5 小径プローブホルダ
 5a 小孔部
 6 ホルダ部材
 21 第1プランジャ
 21a、23a、31 先端部
 21b、33 フランジ部
 21c、23b ボス部
 21d、23c、32 基端部
 22 バネ部材
 22a 密着巻き部
 22b 粗巻き部
 23 第2プランジャ
 41 第1基板
 41a 第1孔部
 42 第2基板
 42a 第2孔部
 51 第3基板
 51a 第3孔部
 52 第4基板
 52a 第4孔部
 100 半導体集積回路
 101、201 電極
 200 回路基板
 411a、511a、521a 小径孔
 412a、512a、522a 大径孔
DESCRIPTION OF SYMBOLS 1 Probe unit 2 Large diameter probe 3 Small diameter probe 4 Large diameter probe holder 4a Large hole part 4b Receiving hole part 5 Small diameter probe holder 5a Small hole part 6 Holder member 21 1st plunger 21a, 23a, 31 Tip part 21b, 33 Flange part 21c, 23b Boss portion 21d, 23c, 32 Base end portion 22 Spring member 22a Adhesion winding portion 22b Coarse winding portion 23 Second plunger 41 First substrate 41a First hole portion 42 Second substrate 42a Second hole portion 51 Third substrate 51a Third hole 52 Fourth substrate 52a Fourth hole 100 Semiconductor integrated circuit 101, 201 Electrode 200 Circuit board 411a, 511a, 521a Small diameter hole 412a, 512a, 522a Large diameter hole

Claims (5)

  1.  各々が導電性材料を用いて形成され、略針状をなす第1先端部および該第1先端部に連なる第1基端部を同軸上に有する第1プランジャと、先端が前記第1プランジャの先端と相反する方向を指向する第2先端部および前記軸方向の長さが前記第1基端部に比して長い第2基端部を同軸上に有する第2プランジャと、長手方向の一端部が前記第1基端部を包括するとともに他端部が前記第2基端部を包括して前記第1および第2プランジャに取り付けられ、前記第1プランジャ側で密着巻きされる密着巻き部と前記第2プランジャ側で所定ピッチで巻回される粗巻き部とを有し、当該長手方向に沿って伸縮自在なコイル状のバネ部材と、を有し、長手方向に沿って伸縮自在である複数の大径プローブと、
     各々が導電性材料を用いて形成され、前記大径プローブの径よりも小さい径を有する複数の小径プローブと、
     前記複数の大径プローブを個別に保持する複数の大孔部と、前記大孔部よりも径が小さく、前記複数の大孔部のいずれかと連通し、前記小径プローブの端部を前記第2先端部と接触した状態で受容する複数の受容孔部とを有し、互いに連通する前記大孔部および前記受容孔部の組が厚さ方向に貫通する大径プローブホルダと、
     前記複数の小径プローブを個別に抜け止めした状態で保持する複数の小孔部が厚さ方向に貫通して設けられ、各小孔部が前記複数の受容孔部のいずれかと連通するように前記大径プローブホルダに積層された小径プローブホルダと、
     を備え、
     互いに連通する前記大孔部および前記小孔部の長手方向の中心軸は異なり、
     前記複数の小孔部には、隣接する二つの小孔部の中心軸間距離が該二つの小孔部にそれぞれ対応する二つの大孔部の中心軸間距離より小さいものが含まれ、
     前記第2基端部は、少なくとも小径プローブに検査時の荷重が加わった場合に、前記密着巻き部の内部へ進入することを特徴とするプローブユニット。
    A first plunger, each of which is formed using a conductive material and has a substantially needle-like shape, and a first plunger that is coaxially connected to the first distal end, and a distal end of the first plunger. A second plunger having a second distal end portion directed in a direction opposite to the distal end and a second proximal end portion having a longer axial length than the first proximal end portion on the same axis, and one longitudinal end portion A tightly wound portion that includes a first base end portion and a second end portion that covers the second base end portion and is attached to the first and second plungers and tightly wound on the first plunger side And a coiled spring member that is stretchable along the longitudinal direction, and that is stretchable along the longitudinal direction. A plurality of large diameter probes,
    A plurality of small diameter probes each formed using a conductive material and having a diameter smaller than the diameter of the large diameter probe;
    A plurality of large hole portions for individually holding the plurality of large diameter probes; a diameter smaller than the large hole portion; A large-diameter probe holder having a plurality of receiving hole portions that are received in contact with the distal end portion, and a set of the large hole portion and the receiving hole portion communicating with each other in the thickness direction;
    A plurality of small hole portions that hold the plurality of small diameter probes in a state in which the plurality of small diameter probes are individually prevented from penetrating in the thickness direction, and each small hole portion communicates with one of the plurality of receiving hole portions. A small diameter probe holder stacked on a large diameter probe holder;
    With
    The central axis in the longitudinal direction of the large hole part and the small hole part communicating with each other is different,
    The plurality of small holes include ones in which the distance between the central axes of two adjacent small holes is smaller than the distance between the central axes of the two large holes corresponding to the two small holes, respectively.
    The probe unit characterized in that the second base end portion enters the inside of the tightly wound portion at least when a load at the time of inspection is applied to the small-diameter probe.
  2.  前記第2プランジャの先端は、前記大径プローブの長手方向と略直交する平面をなすことを特徴とする請求項1記載のプローブユニット。 The probe unit according to claim 1, wherein the tip of the second plunger forms a plane substantially perpendicular to the longitudinal direction of the large-diameter probe.
  3.  前記大径プローブホルダは、
     前記第1プランジャの先端部を表出させて保持する第1基板と、
     前記第1基板に積層されるとともに前記小径プローブホルダに積層され、前記小径プローブホルダが保持する前記小径プローブの端部を受容する第2基板と、
     を有することを特徴とする請求項1または2記載のプローブユニット。
    The large-diameter probe holder is
    A first substrate that exposes and holds the tip of the first plunger;
    A second substrate stacked on the first substrate and stacked on the small-diameter probe holder and receiving an end of the small-diameter probe held by the small-diameter probe holder;
    The probe unit according to claim 1, comprising:
  4.  前記小径プローブホルダは、
     前記小径プローブのいずれか一方の端部をそれぞれ表出させて保持する二つの基板が積層されて成ることを特徴とする請求項1~3のいずれか一項記載のプローブユニット。
    The small diameter probe holder is
    The probe unit according to any one of claims 1 to 3, wherein two substrates that respectively expose and hold one end of the small-diameter probe are stacked.
  5.  前記大径プローブホルダおよび前記小径プローブホルダは、少なくとも前記大径プローブおよび/または前記小径プローブと接触する部分が絶縁性を有することを特徴とする請求項1~4のいずれか一項記載のプローブユニット。 The probe according to any one of claims 1 to 4, wherein the large-diameter probe holder and the small-diameter probe holder have an insulating property at least in contact with the large-diameter probe and / or the small-diameter probe. unit.
PCT/JP2011/076334 2010-11-17 2011-11-15 Probe unit WO2012067125A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544267A JPWO2012067125A1 (en) 2010-11-17 2011-11-15 Probe unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010257232 2010-11-17
JP2010-257232 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012067125A1 true WO2012067125A1 (en) 2012-05-24

Family

ID=46084048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076334 WO2012067125A1 (en) 2010-11-17 2011-11-15 Probe unit

Country Status (3)

Country Link
JP (1) JPWO2012067125A1 (en)
TW (1) TWI457573B (en)
WO (1) WO2012067125A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073599A1 (en) * 2015-10-28 2017-05-04 株式会社エンプラス Electric component socket
CN113552393A (en) * 2020-04-23 2021-10-26 跃澐科技股份有限公司 Test probe seat structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223098B (en) * 2019-10-04 2024-04-12 株式会社村田制作所 Probe head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062312A (en) * 2000-08-22 2002-02-28 Toyo Denshi Giken Kk Contact device
JP2002107377A (en) * 2000-09-28 2002-04-10 Nhk Spring Co Ltd Conductive contactor with movable guide plate
WO2009096318A1 (en) * 2008-02-01 2009-08-06 Nhk Spring Co., Ltd. Probe unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859054B1 (en) * 2003-08-13 2005-02-22 Advantest Corp. Probe contact system using flexible printed circuit board
JP4607004B2 (en) * 2005-12-27 2011-01-05 株式会社ヨコオ Inspection unit
JP4939879B2 (en) * 2006-09-13 2012-05-30 株式会社エンプラス Electrical contact and socket for electrical parts
TWI388839B (en) * 2008-02-14 2013-03-11 Nhk Spring Co Ltd Probe unit
WO2009102029A1 (en) * 2008-02-14 2009-08-20 Nhk Spring Co., Ltd. Contact probe and probe unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062312A (en) * 2000-08-22 2002-02-28 Toyo Denshi Giken Kk Contact device
JP2002107377A (en) * 2000-09-28 2002-04-10 Nhk Spring Co Ltd Conductive contactor with movable guide plate
WO2009096318A1 (en) * 2008-02-01 2009-08-06 Nhk Spring Co., Ltd. Probe unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073599A1 (en) * 2015-10-28 2017-05-04 株式会社エンプラス Electric component socket
JP2017083295A (en) * 2015-10-28 2017-05-18 株式会社エンプラス Socket for electric component
US10431947B2 (en) 2015-10-28 2019-10-01 Enplas Corporation Electrical component socket
CN113552393A (en) * 2020-04-23 2021-10-26 跃澐科技股份有限公司 Test probe seat structure

Also Published As

Publication number Publication date
TWI457573B (en) 2014-10-21
JPWO2012067125A1 (en) 2014-05-12
TW201234017A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5607934B2 (en) Probe unit
TWI422829B (en) Inspection fixture, electrode structure and method for manufacturing electrode structure
KR101415722B1 (en) Contact probe and probe unit
CN101907642B (en) Inspection fixture and inspection probe
US10877085B2 (en) Inspection jig and inspection device
JP6367249B2 (en) Probe unit
KR101157879B1 (en) Inspection fixture, inspection probe
WO2012067126A1 (en) Contact probe and probe unit
WO2013018809A1 (en) Probe unit
JP6283929B2 (en) Inspection jig and method for manufacturing inspection jig
JP2007178163A (en) Inspection unit and outer sheath tube assembly for inspection probe used for it
JP5394264B2 (en) Probe unit
WO2012067125A1 (en) Probe unit
CN112600006B (en) Electrical contact, electrical connection structure and electrical connection device
WO2009102029A1 (en) Contact probe and probe unit
WO2016043327A1 (en) Probe unit
US20220155345A1 (en) Contact terminal, inspection jig, and inspection device
US20220155346A1 (en) Contact terminal, inspection jig, and inspection device
JP2013164304A (en) Tool for substrate inspection
US20220178968A1 (en) Contact terminal, inspection jig, and inspection device
US20220137094A1 (en) Inspection jig
JP2004125548A (en) Probe card

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841904

Country of ref document: EP

Kind code of ref document: A1