WO2012067124A1 - 有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法 - Google Patents
有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法 Download PDFInfo
- Publication number
- WO2012067124A1 WO2012067124A1 PCT/JP2011/076331 JP2011076331W WO2012067124A1 WO 2012067124 A1 WO2012067124 A1 WO 2012067124A1 JP 2011076331 W JP2011076331 W JP 2011076331W WO 2012067124 A1 WO2012067124 A1 WO 2012067124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active layer
- solar cell
- organic solar
- organic
- semiconductor compound
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 230000008569 process Effects 0.000 title claims description 6
- 150000001875 compounds Chemical class 0.000 claims abstract description 195
- 239000004065 semiconductor Substances 0.000 claims abstract description 170
- 239000002270 dispersing agent Substances 0.000 claims abstract description 70
- 239000003960 organic solvent Substances 0.000 claims abstract description 37
- 238000004770 highest occupied molecular orbital Methods 0.000 claims abstract description 35
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims abstract description 33
- 125000003118 aryl group Chemical group 0.000 claims abstract description 26
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 23
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 125000001153 fluoro group Chemical group F* 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 125000004434 sulfur atom Chemical group 0.000 claims description 3
- 239000000976 ink Substances 0.000 description 96
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 56
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 40
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 29
- 239000011787 zinc oxide Substances 0.000 description 28
- 239000002105 nanoparticle Substances 0.000 description 23
- 239000010408 film Substances 0.000 description 21
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 17
- 239000012046 mixed solvent Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 238000004528 spin coating Methods 0.000 description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- JEIJBKDXJPNHGD-UHFFFAOYSA-N chloroform;pyridine Chemical compound ClC(Cl)Cl.C1=CC=NC=C1 JEIJBKDXJPNHGD-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- -1 polyparaphenylene vinylene Polymers 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000005525 hole transport Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- NNLOHLDVJGPUFR-UHFFFAOYSA-L calcium;3,4,5,6-tetrahydroxy-2-oxohexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(=O)C([O-])=O.OCC(O)C(O)C(O)C(=O)C([O-])=O NNLOHLDVJGPUFR-UHFFFAOYSA-L 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 125000000609 carbazolyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- MVPPADPHJFYWMZ-IDEBNGHGSA-N chlorobenzene Chemical group Cl[13C]1=[13CH][13CH]=[13CH][13CH]=[13CH]1 MVPPADPHJFYWMZ-IDEBNGHGSA-N 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001849 group 12 element Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 150000002476 indolines Chemical class 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229910052696 pnictogen Inorganic materials 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920002779 poly(alkoxythiophenes) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- KHDSWONFYIAAPE-UHFFFAOYSA-N silicon sulfide Chemical compound S=[Si]=S KHDSWONFYIAAPE-UHFFFAOYSA-N 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- GKCNVZWZCYIBPR-UHFFFAOYSA-N sulfanylideneindium Chemical compound [In]=S GKCNVZWZCYIBPR-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B23/00—Methine or polymethine dyes, e.g. cyanine dyes
- C09B23/0008—Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
- C09B23/005—Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
- C09B23/0058—Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B23/00—Methine or polymethine dyes, e.g. cyanine dyes
- C09B23/0075—Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring
- C09B23/0083—Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring the heteroring being rhodanine in the chain
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B23/00—Methine or polymethine dyes, e.g. cyanine dyes
- C09B23/10—The polymethine chain containing an even number of >CH- groups
- C09B23/105—The polymethine chain containing an even number of >CH- groups two >CH- groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
- C09B69/008—Dyes containing a substituent, which contains a silicium atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/152—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/30—Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
- H10K85/215—Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an organic solar cell active layer ink capable of stably and easily forming an active layer having high energy conversion efficiency, an organic solar cell having high energy conversion efficiency, and a method for producing an organic solar cell.
- an organic solar cell in which an organic semiconductor layer and an inorganic semiconductor layer are stacked and electrodes are provided on both sides of the stacked body has been developed.
- photoexcitation generates photocarriers (electron-hole pairs) in the organic semiconductor layer, and electrons move through the inorganic semiconductor layer and holes move through the organic semiconductor layer, thereby generating an electric field.
- the active region for generating photocarriers is very narrow, about several tens of nanometers near the junction interface with the inorganic semiconductor layer, and organic semiconductor layers other than this active region cannot contribute to the generation of photocarriers. For this reason, the solar cell has a drawback that the energy conversion efficiency is lowered.
- Patent Document 1 discloses a co-deposited thin film in which an organic semiconductor and an inorganic semiconductor are combined by co-evaporation, and a semiconductor or metal for providing a built-in electric field to the composite thin film provided on both sides of the thin film, Or the organic solar cell provided with the electrode part which consists of both of them is described.
- the organic / inorganic composite thin film described in the same document has a structure in which a pn junction (organic / inorganic semiconductor junction) is stretched over the entire film, so that the entire film is active against optical carrier generation. It is described that since all the light absorbed by the film contributes to carrier generation, a large photocurrent can be obtained.
- Patent Document 2 in an organic solar cell in which an active layer containing an organic electron donor and a compound semiconductor crystal is provided between two electrodes, the active layer includes an organic electron donor and a compound semiconductor crystal.
- An organic compound that is mixed and dispersed, and the compound semiconductor crystal includes two types of rod-shaped crystals having different average particle sizes, and the average particle size and content ratio of the two types of rod-shaped crystals are within a predetermined range.
- a solar cell is described.
- Patent Document 2 describes that the filling rate of the compound semiconductor crystal in the active layer can be increased, and thereby a solar cell with high conversion efficiency can be obtained.
- the present invention provides an organic solar cell active layer ink capable of stably and simply forming an active layer having high energy conversion efficiency, an organic solar cell having high energy conversion efficiency, and a method for producing the organic solar cell.
- the purpose is to do.
- this invention contains the organic-semiconductor compound, the inorganic semiconductor compound, the organic solvent, and the dispersing agent, and the said dispersing agent couple
- the organic solar cell active layer ink is a compound having a polar group, and the dispersant satisfies all of the following (1) to (3).
- the LUMO level is lower than the LUMO level of the organic semiconductor compound.
- the solubility in the organic solvent is equal to or higher than the solubility of the organic semiconductor compound in the organic solvent.
- the HOMO level is higher than the HOMO level of the inorganic semiconductor compound.
- 2nd this invention is an organic solar cell which has an active layer in which an inorganic semiconductor compound exists in an organic semiconductor compound, Comprising: In the cut surface of the thickness direction of the said active layer, 20% of film thickness from a cathode side surface
- This is an organic solar cell in which the area ratio of the inorganic semiconductor compound in the region up to the thickness of is from 100 to 100%. The present invention is described in detail below.
- the present inventor adds an active layer having high energy conversion efficiency by adding a dispersant that satisfies specific requirements to an organic solar cell active layer ink containing an organic semiconductor compound, an inorganic semiconductor compound, and an organic solvent.
- the present inventors have found that an ink for an organic solar cell active layer that can be formed stably and simply is obtained, and have completed the first invention. Further, the present inventor has found that the area of the inorganic semiconductor compound in the region from the cathode-side surface to a thickness of 20% of the thickness at the cut surface in the thickness direction of the active layer in which the inorganic semiconductor compound is present in the organic semiconductor compound.
- the organic solar cell active layer ink of the first aspect of the present invention contains an organic semiconductor compound.
- the organic semiconductor compound is not particularly limited, and examples thereof include conductive polymers such as poly (3-alkylthiophene), polyparaphenylene vinylene derivatives, polyvinyl carbazole derivatives, polyaniline derivatives, polyacetylene derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, pentacene. Derivatives, porphyrin derivatives and the like.
- a conductive polymer is preferable and poly (3-alkylthiophene) is more preferable because an active layer with high hole mobility can be formed.
- the ink for an organic solar cell active layer of the first aspect of the invention contains an inorganic semiconductor compound.
- the inorganic semiconductor compound is not particularly limited.
- titanium oxide, zinc oxide, tin oxide, indium oxide, gallium oxide, antimony oxide, tungsten oxide, silicon oxide, aluminum oxide, barium titanate, strontium titanate, cadmium sulfide examples thereof include zinc sulfide, tin sulfide, antimony sulfide, bismuth sulfide, indium sulfide, silicon sulfide, and vanadium oxide.
- the inorganic semiconductor compound for example, a compound of a group 13 element and a group 15 element such as InP, InAs, GaP, and GaAs, a group 12 element and a group 16 element such as CdSe, CdTe, and ZnS A compound etc. are also mentioned.
- These inorganic semiconductor compounds may be compounds in which two or more of the above components are mixed, or may be compounds doped with an element different from the main component. These inorganic semiconductor compounds may be used alone or in combination of two or more.
- zinc oxide, tin oxide, indium oxide, antimony oxide, zinc sulfide, tin sulfide, antimony sulfide, and bismuth sulfide are preferable because an active layer with high electron mobility can be formed.
- the shape of the inorganic semiconductor compound is not particularly limited, and examples thereof include a rod shape and a spherical shape. Of these, spherical is preferable.
- the average particle diameter is preferably 1 to 50 nm and the average particle diameter / average crystallite diameter is preferably 1 to 3.
- the inorganic semiconductor compound has such an average particle diameter and average particle diameter / average crystallite diameter, in the active layer composed of the organic solar cell active layer ink, when electrons pass through the inorganic semiconductor compound, Inhibition of movement due to crystal grain boundaries is unlikely to occur, and electrons are smoothly collected on the electrode. Thereby, recombination of electrons and holes is suppressed, and the energy conversion efficiency is further increased.
- the average particle diameter is less than 1 nm, the number of grain boundaries between the particles of the inorganic semiconductor compound increases in the active layer made of the organic solar cell active layer ink, and the hindrance to electron transfer may increase.
- the average particle diameter exceeds 50 nm, in the active layer made of the organic solar cell active layer ink, the photocarrier generated by the organic semiconductor compound may not be efficiently transmitted to the bonding interface with the inorganic semiconductor compound.
- the more preferable lower limit of the average particle diameter of the inorganic semiconductor compound is 2 nm, the still more preferable lower limit is 3 nm, the more preferable upper limit is 30 nm, the still more preferable upper limit is 25 nm, and the particularly preferable upper limit is 20 nm.
- the average particle diameter can be measured using, for example, a dynamic light scattering analyzer (PSS-NICOMP, 380DLS).
- the average particle diameter / average crystallite diameter exceeds 3
- the crystal grain boundary in the particles may hinder electron movement, and electrons and holes may be easily recombined.
- a more preferable upper limit of the average particle size / average crystallite size of the inorganic semiconductor compound is 2.5.
- the minimum with a preferable average crystallite diameter is 1 nm.
- the crystallite diameter means the crystallite size calculated by the Scherrer method in the X-ray diffraction method.
- an average crystallite diameter can be measured, for example using an X-ray-diffraction apparatus (Rigaku company make, RINT1000).
- an alkali compound is added while stirring in a hot water bath after adding a zinc metal salt to an organic solvent.
- a method of obtaining an inorganic semiconductor compound particle dispersion by stirring can be used.
- the range of an average particle diameter / average crystallite diameter can be adjusted by changing the temperature of a hot water bath.
- a dry method such as spray flame pyrolysis method, CVD method, PVD method, pulverization method, etc.
- a wet method such as reduction method, microemulsion method, hydrothermal reaction method, sol-gel method, etc. Laws can be applied.
- the preferable lower limit of the compounding amount of the inorganic semiconductor compound with respect to 100 parts by weight of the organic semiconductor compound is 50 parts by weight, and the preferable upper limit is 1000 parts by weight.
- the blending amount of the inorganic semiconductor compound is less than 50 parts by weight, electrons may not be sufficiently transmitted in the active layer made of the organic solar cell active layer ink.
- the compounding amount of the inorganic semiconductor compound exceeds 1000 parts by weight, holes may not be sufficiently transmitted in the active layer made of the organic solar cell active layer ink.
- the more preferable lower limit of the compounding amount of the inorganic semiconductor compound with respect to 100 parts by weight of the organic semiconductor compound is 100 parts by weight, and the more preferable upper limit is 500 parts by weight.
- the ink for an organic solar cell active layer of the first invention contains an organic solvent.
- the organic solvent is not particularly limited, but chlorobenzene, chloroform, methyl ethyl ketone, toluene, ethyl acetate, ethanol, xylene and the like are preferable.
- the compounding quantity of the said organic solvent is not specifically limited,
- the preferable minimum with respect to 1 weight part of said organic-semiconductor compounds is 20 weight part, and a preferable upper limit is 1000 weight part.
- the blending amount of the organic solvent is less than 20 parts by weight, the viscosity of the organic solar cell active layer ink is too high, and the active layer may not be stably and easily formed.
- the blending amount of the organic solvent exceeds 1000 parts by weight, the viscosity of the organic solar cell active layer ink may be too low to form an active layer having a sufficient thickness.
- the more preferable lower limit of the blending amount of the organic solvent with respect to 1 part by weight of the organic semiconductor compound is 50 parts by weight, and the more preferable upper limit is 500 parts by weight.
- the organic solar cell active layer ink of the first aspect of the present invention contains a dispersant.
- the dispersant is a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and a polar group bonded to an asymmetric position of the skeleton.
- the polar group include hydrophilic groups such as a carboxyl group, an amino group, a cyano group, an isocyanate group, and an isothiocyanate group. Of these, a carboxyl group is preferred.
- having a polar group bonded to an asymmetrical position of the skeleton has only one polar group in the molecule or two or more polar groups in the molecule. It means that two or more polar groups are not in a symmetrical positional relationship on the structural formula.
- symmetry means that the centers of gravity of two or more polar groups are at the center of the molecule.
- the dispersant is a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and a polar group bonded to an asymmetric position of the skeleton, whereby the organic solar cell active layer ink of the first invention Can act as a dispersant for enhancing the dispersibility of the organic semiconductor compound and the inorganic semiconductor compound. Therefore, in the active layer comprising the organic solar cell active layer ink of the first aspect of the present invention, the organic semiconductor compound and the inorganic semiconductor compound are very well dispersed, and the organic semiconductor compound and the inorganic semiconductor The area of the bonding interface with the compound is large, and the region active for photocarrier generation is large.
- an active layer with high energy conversion efficiency can be formed by using the organic solar cell active layer ink of the first aspect of the present invention.
- the dispersant does not have a skeleton having an aromatic ring and / or a heterocyclic ring, or does not have a polar group, or the polar group is bonded to a symmetrical position of the skeleton having an aromatic ring and / or a heterocyclic ring. If so, the dispersibility of the organic semiconductor compound and the inorganic semiconductor compound in the organic solar cell active layer ink is reduced.
- the active layer ink of the first aspect of the present invention when used, the active layer can be formed by a printing method such as a spin coating method. In addition to the high dispersibility of the organic semiconductor compound and the inorganic semiconductor compound, a printing method can be employed as a method for forming the active layer. Therefore, by using the organic solar cell active layer ink of the first aspect of the present invention.
- the active layer can be formed stably and simply, and the formation cost of the active layer can be reduced.
- the dispersant is preferably a compound having a nitrogen atom, a sulfur atom, a fluorine atom or a carbonyl group at a site other than the polar group.
- the dispersant is such a compound, in the active layer made of the organic solar cell active layer ink, electrons are easily transferred to the inorganic semiconductor compound, and the energy conversion efficiency is further increased.
- the dispersant is more preferably a compound having a carbonyl group at a site other than the polar group.
- the dispersant is preferably a compound having an electron donating site and an electron accepting site.
- the dispersant is a compound having an electron-donating site and an electron-accepting site, in the active layer comprising the organic solar cell active layer ink, electrons are easily transferred from the organic semiconductor compound to the inorganic semiconductor compound, Energy conversion efficiency is further increased.
- the electron donating site and the electron accepting site mean a site having an electron donating property and a site having an electron accepting property (electron withdrawing property), respectively. That is, the electron donating site has a high value for both the HOMO and LUMO levels relative to the electron accepting site. On the other hand, the electron accepting site has a relatively low value for the HOMO and LUMO levels relative to the electron donating site.
- the electron donating site and the electron accepting site are preferably conjugated to each other, that is, the electron donating site and the electron accepting site are bonded via a conjugated bond. Further, the electron donating moiety and the electron accepting moiety may be adjacent to each other, and may have an alkyl group, an arylene group or the like having 2 or more carbon atoms which may be branched.
- electron donating moiety examples include structures represented by the following formulas (a-1) to (a-16).
- R represents a hydrogen atom or a functional group.
- the functional group represented by R in formulas (a-1) to (a-16) include an alkyl group, an aryl group, an alkoxy group, an alkenyl group, an alkynyl group, and a heteroaryl group.
- the functional group represented by R in formulas (a-1) to (a-16) may be an electron donating site or an electron accepting site.
- electron accepting site examples include structures represented by the following formulas (b-1) to (b-14).
- R represents a hydrogen atom or a functional group.
- the functional group represented by R in formulas (b-1) to (b-14) include an alkyl group, an aryl group, an alkoxy group, an alkenyl group, an alkynyl group, and a heteroaryl group.
- the functional group represented by R in the formulas (b-1) to (b-14) may be an electron donating site or an electron accepting site, or may be the polar group described above.
- the polar group is preferably bonded to the electron accepting site.
- the said dispersing agent may cause an energy loss, it is preferable that it is a compound which does not have a triple bond.
- dispersant examples include a carboxyl group-containing indoline compound, a carboxyl group-containing oligothiophene, and a carboxyl group-containing coumarin compound. Of these, carboxyl group-containing indoline compounds and carboxyl group-containing oligothiophenes are preferred.
- dispersant examples include compounds having structures represented by the following formulas (1) to (8). Especially, the compound which has a structure represented by following formula (1) is preferable.
- R represents a hydrogen atom or a functional group.
- the functional group represented by R in the formulas (1) to (8) include an alkyl group, an aryl group, an alkoxy group, an alkenyl group, an alkynyl group, and a heteroaryl group.
- Examples of commercially available dispersants include D-149 and D-131 (all manufactured by Mitsubishi Paper Industries, Ltd., compounds having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group), NK- 2684, NK-2553 (both manufactured by Hayashibara Biochemical Laboratories, Inc., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group), a carboxy group-containing methanophthalene (manufactured by Aldrich, A compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group), C 60 Pyrrolidene tris-acid (manufactured by Aldrich, a skeleton having an aromatic ring and / or a heterocyclic ring, and three carboxyl groups; And the like.
- the dispersant satisfies all of the following (1) to (3).
- the LUMO level is lower than the LUMO level of the organic semiconductor compound.
- the solubility in the organic solvent is equal to or higher than the solubility of the organic semiconductor compound in the organic solvent.
- the HOMO level is higher than the HOMO level of the inorganic semiconductor compound.
- the dispersant has (1) a LUMO level lower than the LUMO level of the organic semiconductor compound.
- the LUMO level of the dispersant is not particularly limited, and may be appropriately selected according to the LUMO level of the inorganic semiconductor compound. However, since the above (1) is easily satisfied, the LUMO level is ⁇ 4.0 to It is preferably ⁇ 3.0.
- the LUMO level means a value obtained by measuring the HOMO level with an ionization potential measuring device and subtracting the band gap calculated from the ultraviolet-visible light absorption spectrum from the value of the HOMO level.
- the solubility in the organic solvent is equal to or higher than the solubility of the organic semiconductor compound in the organic solvent.
- the solubility in an organic solvent means a dissolved mass that can be dissolved in 100 mL of an organic solvent at 23 ° C.
- the amount of the dispersant that can be dissolved in 100 mL of the organic solvent at 23 ° C. is equal to or greater than the amount of the organic semiconductor compound that can be dissolved in 100 mL of the organic solvent at 23 ° C.
- the solubility of the dispersant in the organic solvent is not particularly limited, and is selected according to the organic solvent to be used.
- the dispersant has (3) a HOMO level higher than the HOMO level of the inorganic semiconductor compound.
- the HOMO level of the dispersant is equal to or lower than the HOMO level of the inorganic semiconductor compound, holes present in the dispersant are transmitted to the inorganic semiconductor compound in the active layer made of the organic solar cell active layer ink. Since reverse hole movement occurs, the performance as a solar cell is deteriorated.
- the HOMO level of the dispersant is not particularly limited and may be appropriately selected according to the HOMO level of the organic semiconductor compound. However, since the above (3) is easily satisfied, the HOMO level is ⁇ 6.0 to It is preferably ⁇ 5.0. In this specification, the HOMO level means a value measured by an ionization potential measuring device.
- the compounding quantity of the said dispersing agent is not specifically limited,
- the preferable minimum with respect to 100 weight part of said inorganic semiconductor compounds is 1 weight part, and a preferable upper limit is 30 weight part.
- the blending amount of the dispersant is less than 1 part by weight, the effect of adding the dispersant is insufficient, and the energy conversion efficiency of the active layer made of the organic solar cell active layer ink may be lowered.
- the amount of the dispersant exceeds 30 parts by weight, an excessive amount of the dispersant may inhibit the movement of electrons or holes in the active layer made of the organic solar cell active layer ink.
- the more preferable lower limit of the blending amount of the dispersant with respect to 100 parts by weight of the inorganic semiconductor compound is 2 parts by weight, and the more preferable upper limit is 20 parts by weight.
- the combination of the organic semiconductor compound, the inorganic semiconductor compound, the organic solvent, and the dispersant is not particularly limited.
- the organic semiconductor compound is polyparaphenylene vinylene
- the inorganic semiconductor compound is cadmium sulfide
- the organic solvent is chlorobenzene.
- the dispersant is NK-2684 (produced by Hayashibara Biochemical Laboratories, Inc., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group).
- the organic semiconductor compound is poly (3-hexylthiophene)
- the inorganic semiconductor compound is zinc oxide
- the dispersant is D-149 (manufactured by Mitsubishi Paper Industries, Ltd., a skeleton having an aromatic ring and / or a heterocyclic ring) And a compound having one carboxyl group)
- the organic solvent is preferably chloroform.
- the method for producing the organic solar cell active layer ink of the first aspect of the present invention is not particularly limited.
- the organic semiconductor compound, the inorganic semiconductor compound, and the dispersant are mixed with the organic organic compound using an ultrasonic disperser.
- Examples include a method of dispersing and dissolving in a solvent to obtain an ink.
- an active layer having high energy conversion efficiency can be stably and easily formed.
- An organic solar cell having an active layer produced by using the organic solar cell active layer ink of the first aspect of the present invention is also one aspect of the present invention.
- the organic semiconductor compound and the inorganic semiconductor compound are in a very well dispersed state, and the organic semiconductor compound and the above The area of the bonding interface with the inorganic semiconductor compound is large, and the region active for photocarrier generation is large. Therefore, such an organic solar cell has high energy conversion efficiency.
- the inorganic semiconductor compound has an average particle diameter and an average particle diameter / average crystallite diameter in the above-described range, when electrons pass through the inorganic semiconductor compound in the active layer, Inhibition of movement hardly occurs, and electrons are smoothly collected on the electrode. Thereby, recombination of electrons and holes is suppressed, and the energy conversion efficiency is further increased.
- a method for producing an organic solar cell comprising a step of forming an active layer by drying and a step of forming an electrode on the active layer is also one aspect of the present invention.
- the method for applying the organic solar cell active layer ink of the first aspect of the present invention is not particularly limited, and examples thereof include a printing method such as a spin coating method.
- a printing method can be employed as a method for forming the active layer. Therefore, by using the organic solar cell active layer ink of the first aspect of the present invention.
- the active layer can be formed stably and simply, and the formation cost of the active layer can be reduced.
- the organic solar cell of the second aspect of the present invention has an active layer in which an inorganic semiconductor compound is present in an organic semiconductor compound.
- the organic semiconductor compound and the inorganic semiconductor compound in the organic solar cell of the second aspect of the present invention the same compounds as those used in the organic solar cell active layer ink of the first aspect of the present invention can be used.
- the area ratio of the inorganic semiconductor compound in the region from the cathode side surface to the thickness of 20% of the film thickness is 75 to 100% on the cut surface in the thickness direction of the active layer. It is.
- an organic solar cell 1 includes a cathode 2, an active layer 3, and an anode 4, and the active layer 3 has a structure in which an inorganic semiconductor compound 6 is present in an organic semiconductor compound 5.
- the area ratio of the inorganic semiconductor compound 6 in the region 3 ′ from the surface of the active layer 3 on the cathode 2 side to the thickness of 20% is 75 to 100%.
- the area ratio is more preferably 80 to 100%, still more preferably 90 to 100%.
- the area ratio is, for example, 20% of the film thickness from the surface of the active layer 3 on the cathode 2 side after creating an element mapping image of the cross section of the active layer 3 obtained using FE-TEM (manufactured by Hitachi High-Tech). % Region 3 ′ is determined, and the area ratio of the inorganic semiconductor compound 6 in the region 3 ′ is calculated from the mapped area.
- the active layer has a preferable lower limit of arithmetic average roughness of the cathode side surface of 2.5 nm and a preferable upper limit of 20 nm.
- the arithmetic average roughness is within the above range, the diffusion effect at the time of reflection of incident light at the interface with the cathode is improved, and the reflected light can also be effectively used for photoelectric conversion.
- the arithmetic average roughness is less than 2.5 nm, it may be difficult to obtain a diffusion effect when reflecting incident light.
- the arithmetic average roughness exceeds 20 nm, sufficient adhesion may not be obtained when forming the cathode.
- the more preferable lower limit of the arithmetic average roughness is 10 nm, and the more preferable upper limit is 18 nm.
- the arithmetic average roughness can be measured by a method based on JIS B 0601 (1994).
- a preferable lower limit of the thickness of the active layer is 25 nm, and a preferable upper limit is 5 ⁇ m. If the thickness of the active layer is less than 25 nm, a sufficient amount of generated photocarriers may not be obtained. If the thickness of the active layer exceeds 5 ⁇ m, the distance until electrons generated on the anode side are collected by the cathode may be long, and electrons and holes may be easily recombined.
- the glass substrate, the anode, the hole transport layer, the cathode and the like other than the active layer in the organic solar battery of the second invention conventionally known ones can be used.
- the organic solar cell of the second aspect of the present invention is, for example, a cathode side active layer ink containing 75 to 100 vol% of an inorganic semiconductor compound with respect to the organic semiconductor compound, and 50% or less of the thickness of the active layer from the cathode side surface. It can manufacture by the method which has the process of coating and drying so that it may become thickness of, and forming a cathode side active layer.
- the thickness of the cathode side active layer is preferably 40% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 10% or less of the thickness of the active layer.
- Such a method for producing an organic solar cell is also one aspect of the present invention.
- the anode-side active layer further containing 25 to 75 vol% of the inorganic semiconductor compound with respect to the organic semiconductor compound before or after the step of forming the cathode-side active layer.
- a step of forming an anode-side active layer by coating and drying the ink for ink may be performed.
- the ink for the active layer on the anode side and the ink for the active layer on the cathode side containing the inorganic semiconductor compound in addition to the organic semiconductor compound are used to superimpose these inks for the active layer.
- the other active layer ink After coating, that is, after forming a coating film made of one active layer ink, the other active layer ink can be applied on the coating film, and there are many inorganic semiconductor compounds in the vicinity of the cathode. Can be made.
- the active layer ink does not contain an inorganic semiconductor compound.
- the anode side active layer ink and the cathode side active layer ink include an organic solvent and a dispersant used in the organic solar cell active layer ink of the first aspect of the present invention. Etc. may be blended.
- the method for applying the anode active layer ink and the method for applying the cathode active layer ink are not particularly limited, and examples thereof include a printing method such as a spin coating method.
- a solvent having solubility in the organic semiconductor compound is applied to the cathode side surface of the active layer to partially remove the organic semiconductor compound and then dried.
- a step of exposing the inorganic semiconductor compound may be performed.
- Examples of the solvent having solubility in the organic semiconductor compound include chloroform, chlorobenzene, ortho-dichlorobenzene, toluene, xylene and the like. Moreover, as a method of applying the solvent which has a solubility with respect to the said organic-semiconductor compound, the method etc. which use a spin coat etc. are mentioned, for example.
- the organic solar cell active layer ink which can form the active layer with high energy conversion efficiency stably and simply, the organic solar cell with high energy conversion efficiency, and the manufacturing method of an organic solar cell Can be provided.
- Example 1 (Inorganic semiconductor compound particles) Dissolve 1 part by weight of zinc acetate dihydrate in 35 parts by weight of methanol and add dropwise a solution prepared by dissolving 0.5 part by weight of potassium hydroxide in 15 parts by weight of methanol while stirring in a 60 ° C. hot water bath.
- the ZnO nanoparticle dispersion liquid was obtained by continuing heating and stirring for 5 hours after the completion of dropping. Next, the ZnO nanoparticle dispersion was centrifuged and the supernatant was removed, and the precipitate was collected to obtain ZnO nanoparticles.
- the obtained ZnO nanoparticles were dispersed in methanol, and the average particle diameter of the dispersion was measured by using a dynamic light scattering analyzer (manufactured by PSS-NICOMP, 380DLS). Further, the obtained ZnO nanoparticles were measured with an X-ray diffractometer (manufactured by Rigaku Corporation: RINT1000), and the half width obtained by removing the instrument-dependent value from the obtained peak was calculated, and the following Scherrer equation was used. The average crystallite size was calculated. The results are shown in the table.
- the dispersant used has a nitrogen atom, sulfur atom, fluorine atom or carbonyl group at a site other than a polar group, whether it has an electron donating site and an electron accepting site, and a triple bond. Whether or not it has is shown in the table.
- An ITO film having a thickness of 240 nm was formed as an anode on a glass substrate, and was ultrasonically cleaned for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, and then dried.
- polyethylene dioxide thiophene: polystyrene sulfonate (PEDOT: PSS) was formed as a hole transport layer to a thickness of 100 nm by spin coating.
- the organic solar cell active layer ink obtained above was formed on the surface of the hole transport layer to a thickness of 100 nm by spin coating to form an active layer.
- an aluminum film having a thickness of 100 nm was formed on the surface of the active layer by vacuum deposition as a cathode, thereby obtaining an organic solar cell.
- the dispersibility of the organic semiconductor compound and the inorganic semiconductor compound was evaluated in three stages ( ⁇ , ⁇ , ⁇ ).
- the appearance of the aluminum electrode of the obtained organic solar cell is a mirror surface
- the organic semiconductor compound and inorganic semiconductor compound in the active layer formed under the electrode are dispersed at the nano level. It is shown in the table as dispersibility “ ⁇ ”.
- the aluminum electrode is white, it means that the dispersion at the nano level is insufficient, and the dispersibility “x” is shown in the table.
- Example 2 8 parts by weight of poly (3-alkylthiophene) (LUMO level -3.0, 2% by weight of solubility in chlorobenzene) and 24 parts by weight of ZnO nanoparticles obtained in Example 1 (HOMO level- 7.5) and 1 part by weight of NK-2684 (produced by Hayashibara Biochemical Laboratories Co., Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level- 3.2, HOMO level-5.6, 2 wt% solubility in chlorobenzene) was dispersed and dissolved in 800 parts by weight of chlorobenzene to obtain an organic solar cell active layer ink. An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- Example 3 As a dispersant, 1 part by weight of NK-2553 (produced by Hayashibara Biochemical Laboratories, Inc., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.2, HOMO level)
- NK-2553 produced by Hayashibara Biochemical Laboratories, Inc., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.2, HOMO level
- the organic solar cell active layer ink was obtained in the same manner as in Example 1, except that chlorobenzene was used as the organic solvent.
- An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- Example 4 As a dispersant, 1 part by weight of D-131 (manufactured by Mitsubishi Paper Industries, Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.3, HOMO level-5 .6, solubility in chlorobenzene 2% by weight), and an organic solar cell active layer ink was obtained in the same manner as in Example 1 except that chlorobenzene was used as the organic solvent. An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- D-131 manufactured by Mitsubishi Paper Industries, Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.3, HOMO level-5 .6, solubility in chlorobenzene 2% by weight
- an organic solar cell active layer ink was obtained in the same manner as in Example 1 except that chlorobenzene was
- Example 5 1 part by weight of a carboxy group-containing methanophthalene (manufactured by Aldrich, a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.9, HOMO level as a dispersant -6.0, except that a chloroform-pyridine mixed solvent (9: 1 by weight) was used as an organic solvent, except that a chloroform-pyridine mixed solvent (9: 1 by weight) was used.
- a chloroform-pyridine mixed solvent (9: 1 by weight) was used as an organic solvent
- a chloroform-pyridine mixed solvent (9: 1 by weight) was used.
- an organic solar cell active layer ink was obtained.
- An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- Example 6 1 part by weight of C 60 Pyrrolidine tris-acid as a dispersant (manufactured by Aldrich, a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and three carboxyl groups, LUMO level-3.9, HOMO level -6.0, except that a chloroform-pyridine mixed solvent (9: 1 by weight) was used as an organic solvent, except that a chloroform-pyridine mixed solvent (9: 1 by weight) was used.
- an organic solar cell active layer ink was obtained.
- An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- Example 7 ZnO nanoparticles were obtained in the same manner as in Example 1 except that the temperature of the hot water bath was 35 ° C. and the reaction time was changed to 72 hours in the process of forming ZnO nanoparticles.
- An organic solar cell was obtained in the same manner as in Example 1 except that these ZnO nanoparticles were used.
- Example 8 ZnO nanoparticles were obtained in the same manner as in Example 1 except that the hot water bath was not used in the ZnO nanoparticle formation process and the reaction time was changed to 96 hours at room temperature (25 ° C.). An organic solar cell was obtained in the same manner as in Example 1 except that these ZnO nanoparticles were used.
- Comparative Example 2 2 parts by weight of HKX-2587 as a dispersant (produced by Hayashibara Biochemical Laboratories Co., Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and a carboxyl group bonded to an asymmetric position of the skeleton, LUMO level
- An organic solar cell active layer ink was obtained in the same manner as in Example 1 except that -3.1, HOMO level -5.3, and 0.5 wt% solubility in chloroform were used.
- An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- Example 3 2 parts by weight of MK-2 (manufactured by Soken Chemical Co., Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and a carboxyl group bonded to an asymmetric position of the skeleton, LUMO level-2.
- the organic solar cell active layer ink was obtained in the same manner as in Example 1, except that (8, HOMO level-5.1, solubility in chloroform 3 wt%) was used.
- An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- Comparative Example 4 2 parts by weight of a polyalkoxythiophene derivative (manufactured by Aldrich, a compound having a polythiophene skeleton and an alkoxy group bonded to a symmetrical position of the skeleton, LUMO level-3.1, HOMO level-5.
- Organic solar cell active layer ink was obtained in the same manner as in Example 1 except that 0, 2% by weight of solubility in chloroform) was used.
- An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- Example 5 As a dispersant, 2 parts by weight of a silicon phthalocyanine compound (manufactured by Aldrich, non-polar group compound, LUMO level-3.5, HOMO level-5.0, solubility in chloroform 2% by weight) is used. An organic solar cell active layer ink was obtained in the same manner as in Example 1 except that. An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- a silicon phthalocyanine compound manufactured by Aldrich, non-polar group compound, LUMO level-3.5, HOMO level-5.0, solubility in chloroform 2% by weight
- Example 7 As a dispersant, 2 parts by weight of N-719 (ruthenium dye manufactured by Aldrich, a compound having a carboxyl group bonded to a symmetrical position of the dye skeleton, LUMO level-4.0, HOMO level-5.6, chloroform- Example 1 except that 800 parts by weight of a chloroform-pyridine mixed solvent (9: 1 by weight) and a pyridine mixed solvent (9: 1 by weight) were used. Thus, an organic solar cell active layer ink was obtained. An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
- N-719 ruthenium dye manufactured by Aldrich, a compound having a carboxyl group bonded to a symmetrical position of the dye skeleton, LUMO level-4.0, HOMO level-5.6
- chloroform- Example 1 except that 800 parts by weight of a chloroform-pyridine mixed solvent (9: 1 by weight) and a pyridine mixed solvent (9: 1 by weight)
- ⁇ Evaluation 1> (Area ratio measurement of inorganic semiconductor compounds) An element mapping image of zinc was obtained by observing a cross section of the organic solar cell obtained using FE-TEM (manufactured by Hitachi High-Tech). Using the obtained element mapping image, the area ratio of the inorganic semiconductor compound in the region from the cathode side surface to the thickness of 20% of the film thickness was calculated. In addition, the area ratio of zinc oxide can be calculated
- Example 9 Inorganic semiconductor compound particles
- ZnO nanoparticles were obtained.
- the obtained anode side active layer ink was applied on the hole transport layer to a thickness of 80 nm by a spin coat method and dried to form an anode side active layer. Further, 28.5 parts by weight of the obtained ZnO nanoparticles and 1 part by weight of poly (3-alkylthiophene) were dissolved and dispersed in a mixed solvent of 1373.2 parts by weight of chloroform and 72.3 parts by weight of methanol, whereby a cathode A side active layer ink was prepared.
- the obtained ink for cathode-side active layer was formed on the anode-side active layer to a thickness of 20 nm by spin coating, and dried to form an active layer composed of an anode-side active layer and a cathode-side active layer. Furthermore, an organic solar cell was fabricated by forming aluminum with a thickness of 100 nm by vacuum deposition on the surface of the active layer as a cathode.
- Example 10 Except that the ink for cathode side active layer was prepared by dissolving and dispersing only 1.00 parts by weight of the obtained ZnO nanoparticles in a mixed solvent of 46.6 parts by weight of chloroform and 2.45 parts by weight of methanol. In the same manner as in Example 9, an organic solar cell was obtained.
- Example 11 By dissolving and dispersing 15.0 parts by weight of the obtained ZnO nanoparticles and 1.00 parts by weight of poly (3-alkylthiophene) in a mixed solvent of 744.8 parts by weight of chloroform and 39.2 parts by weight of methanol, An organic solar cell was obtained in the same manner as in Example 9 except that the cathode side active layer ink was prepared.
- Example 12 An organic solar cell was obtained in the same manner as in Example 9 except that the dispersant was not added to the anode side active layer ink.
- Example 13 Except that the ink for cathode side active layer was prepared by dissolving and dispersing only 1.00 parts by weight of the obtained ZnO nanoparticles in a mixed solvent of 46.6 parts by weight of chloroform and 2.45 parts by weight of methanol. In the same manner as in Example 12, an organic solar cell was obtained.
- Example 14 Inorganic semiconductor compound particles
- ZnO nanoparticles were obtained.
- An ITO film having a thickness of 240 nm was formed as a cathode on a glass substrate, and ultrasonic cleaning was performed for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, followed by drying.
- a titanium oxide thin film having a thickness of 10 nm was formed on the surface of the ITO film by spin coating an ethanol solution of titanium isopropoxide as an electron transport layer.
- a cathode side active layer ink was prepared.
- the obtained cathode side active layer ink was formed on the surface of the electron transport layer to a thickness of 20 nm by spin coating and dried to form a cathode side active layer.
- the obtained anode side active layer ink was applied on the cathode side active layer to a thickness of 80 nm by spin coating, and dried to form an active layer composed of a cathode side active layer and an anode side active layer. Furthermore, an organic solar cell was manufactured by forming molybdenum oxide with a thickness of 10 nm and then silver with a thickness of 100 nm by vacuum deposition on the surface of the active layer as an anode.
- An ITO film having a thickness of 240 nm was formed as a cathode on a glass substrate, and ultrasonic cleaning was performed for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, followed by drying.
- a titanium oxide thin film having a thickness of 10 nm was formed on the surface of the ITO film by spin coating an ethanol solution of titanium isopropoxide as an electron transport layer.
- the organic solar cell active layer ink obtained in Example 1 was applied on the surface of the electron transport layer to a thickness of 100 nm by a spin coating method, and dried to form an active layer.
- an organic solar cell was manufactured by forming molybdenum oxide with a thickness of 10 nm and then silver with a thickness of 100 nm by vacuum deposition on the surface of the active layer as an anode.
- the organic solar cell active layer ink which can form the active layer with high energy conversion efficiency stably and simply, the organic solar cell with high energy conversion efficiency, and the manufacturing method of an organic solar cell Can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
例えば、特許文献1には、有機半導体と無機半導体を共蒸着によって複合化した共蒸着薄膜と、この薄膜を挟んでその両面に設けられ、この複合薄膜に内蔵電界を与えるための半導体もしくは金属、又はそれら双方からなる電極部とを備えた有機太陽電池が記載されている。特許文献1には、同文献に記載の有機・無機複合薄膜においては、pn接合(有機/無機半導体接合)が膜全体に張り巡らされた構造のため、膜全体が光キャリヤ生成に対して活性に働き、膜で吸収された光すべてがキャリア生成に寄与するため、大きな光電流が得られる効果がある旨が記載されている。
例えば、特許文献2には、有機電子供与体と化合物半導体結晶とを含有する活性層を二つの電極の間に設けた有機太陽電池において、前記活性層は有機電子供与体と化合物半導体結晶とを混合して分散してなり、且つ、化合物半導体結晶が平均粒径が異なる二種類のロッド状の結晶を含み、この二種類のロッド状結晶の平均粒径及び含有比率を所定範囲内とする有機太陽電池が記載されている。特許文献2には、活性層中における化合物半導体結晶の充填率を増大することができ、これにより変換効率の高い太陽電池を得ることができる旨が記載されている。
(1)LUMO準位が、前記有機半導体化合物のLUMO準位よりも低い。
(2)前記有機溶媒への溶解性が、前記有機半導体化合物の前記有機溶媒への溶解性と同じか又はそれ以上である。
(3)HOMO準位が、前記無機半導体化合物のHOMO準位よりも高い。
以下、本発明を詳述する。
また、本発明者は、有機半導体化合物中に、無機半導体化合物が存在する活性層の厚み方向の切断面において、陰極側表面から膜厚の20%の厚みまでの領域内の無機半導体化合物の面積比率を所定範囲内とすることで、電子の通路が形成されやすくなり、その結果、光電流値が増加して、エネルギー変換効率を大幅に向上できることを見出し、第2の本発明を完成させるに至った。
第1の本発明の有機太陽電池活性層用インクは、有機半導体化合物を含有する。
上記有機半導体化合物は特に限定されず、例えば、ポリ(3-アルキルチオフェン)、ポリパラフェニレンビニレン誘導体、ポリビニルカルバゾール誘導体、ポリアニリン誘導体、ポリアセチレン誘導体等の導電性高分子、フタロシアニン誘導体、ナフタロシアニン誘導体、ペンタセン誘導体、ポルフィリン誘導体等が挙げられる。なかでも、ホール移動度の高い活性層を形成できることから、導電性高分子が好ましく、ポリ(3-アルキルチオフェン)がより好ましい。
上記無機半導体化合物は特に限定されず、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化ガリウム、酸化アンチモン、酸化タングステン、酸化ケイ素、酸化アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、硫化亜鉛、硫化スズ、硫化アンチモン、硫化ビスマス、硫化インジウム、硫化シリコン、酸化バナジウム等が挙げられる。また、上記無機半導体化合物として、例えば、InP、InAs、GaP、GaAs等の周期表13族元素と15族元素との化合物、CdSe、CdTe、ZnS等の周期表12族元素と16族元素との化合物等も挙げられる。これらの無機半導体化合物は、上記のような成分が2種類以上混在した化合物でもよく、また主成分とは異なる元素がドープされた化合物でもよい。これらの無機半導体化合物は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、電子移動度の高い活性層を形成できることから、酸化亜鉛、酸化スズ、酸化インジウム、酸化アンチモン、硫化亜鉛、硫化スズ、硫化アンチモン、硫化ビスマスが好ましい。
上記無機半導体化合物は、球状である場合、平均粒子径が1~50nmであり、かつ、平均粒子径/平均結晶子径が1~3であることが好ましい。上記無機半導体化合物がこのような平均粒子径及び平均粒子径/平均結晶子径を有することにより、有機太陽電池活性層用インクからなる活性層において、上記無機半導体化合物を電子が通過する際に、結晶粒界による移動の阻害が起こりにくく、電極への電子の捕集がスムーズに行われる。これにより、電子とホールの再結合が抑制されて、エネルギー変換効率がより一層高まる。
本明細書中、平均粒子径は、例えば、動的光散乱解析装置(PSS-NICOMP社製、380DLS)を用いて測定することができる。
本明細書中、結晶子径とは、X線回折法におけるScherrerの方法によって算出される結晶子のサイズを意味する。また、平均結晶子径は、例えば、X線回折装置(リガク社製、RINT1000)を用いて測定することができる。
また、上記無機半導体化合物を粒子化する方法として、噴霧火炎熱分解法、CVD法、PVD法、粉砕法等の乾式法や、還元法、マイクロエマルション法、水熱反応法、ゾルゲル法等の湿式法等が適用可能である。
上記有機溶媒は特に限定されないが、クロロベンゼン、クロロホルム、メチルエチルケトン、トルエン、酢酸エチル、エタノール、キシレン等が好ましい。
上記分散剤は、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合した極性基とを有する化合物である。上記極性基として、例えば、カルボキシル基、アミノ基、シアノ基、イソシアネート基、イソチオシアネート基等の親水性基等が挙げられる。なかでも、カルボキシル基が好ましい。
なお、本明細書中、骨格の非対称な位置に結合した極性基を有するとは、分子内に極性基を1つだけ有するか、又は、分子内に極性基を2つ以上有するが、該2つ以上の極性基は、構造式上の対称な位置関係にはないことを意味する。ここで、対称とは、2つ以上の極性基の重心が分子の中心にあることを意味している。
上記分散剤が芳香環及び/又は複素環を有する骨格を有さないか、極性基を有さないか、或いは、極性基が上記芳香環及び/又は複素環を有する骨格の対称な位置に結合している場合には、有機太陽電池活性層用インクにおける上記有機半導体化合物と上記無機半導体化合物との分散性が低下してしまう。
本明細書中、電子供与性部位と電子受容性部位とは、それぞれに対して電子供与性をもつ部位と電子受容性(電子吸引性)をもつ部位とを意味する。即ち、電子供与性部位は、電子受容性部位に対して相対的にHOMO、LUMO準位がともに高い値を有する。逆に、電子受容性部位は、電子供与性部位に対して相対的にHOMO、LUMO準位がともに低い値を有する。
(1)LUMO準位が、前記有機半導体化合物のLUMO準位よりも低い。
(2)前記有機溶媒への溶解性が、前記有機半導体化合物の前記有機溶媒への溶解性と同じか又はそれ以上である。
(3)HOMO準位が、前記無機半導体化合物のHOMO準位よりも高い。
上記分散剤のLUMO準位が、上記有機半導体化合物のLUMO準位以上であると、有機太陽電池活性層用インクからなる活性層において、上記有機半導体化合物中に存在する電子が上記無機半導体化合物に伝達されないため、太陽電池としての性能が悪化してしまう。上記分散剤のLUMO準位は特に限定されず、上記無機半導体化合物のLUMO準位に合わせて適宜選択すればよいが、上記(1)を満たしやすいことから、LUMO準位が-4.0~-3.0であることが好ましい。
本明細書中、LUMO準位とは、イオン化ポテンシャル測定装置によりHOMO準位を測定し、紫外可視光吸収スペクトルより算出したバンドギャップをHOMO準位の値から差し引いた値を意味する。
23℃において上記有機溶媒100mLに対して溶解しうる分散剤の量が、23℃において上記有機溶媒100mLに対して溶解しうる有機半導体化合物の量と同じか又はそれ以上である場合には、第1の本発明の有機太陽電池活性層用インクを用いて活性層を形成する際に、上記有機半導体化合物より先に全ての分散剤が析出してしまうという問題を防ぐことができる。上記有機半導体化合物より先に全ての分散剤が析出してしまうと、上記分散剤の作用がなくなり、上記有機半導体化合物と上記無機半導体化合物とが極めて良好に分散した活性層を形成することが困難となる。
上記分散剤の上記有機溶媒への溶解性は特に限定されず、使用する有機溶媒に合わせて選択される。
上記分散剤のHOMO準位が、上記無機半導体化合物のHOMO準位以下であると、有機太陽電池活性層用インクからなる活性層において、上記分散剤中に存在するホールが上記無機半導体化合物に伝達され、逆ホール移動が発生するため、太陽電池としての性能が悪化してしまう。上記分散剤のHOMO準位は特に限定されず、上記有機半導体化合物のHOMO準位に合わせて適宜選択すればよいが、上記(3)を満たしやすいことから、HOMO準位が-6.0~-5.0であることが好ましい。
本明細書中、HOMO準位とは、イオン化ポテンシャル測定装置により測定された値を意味する。
上記無機半導体化合物100重量部に対する上記分散剤の配合量のより好ましい下限は2重量部、より好ましい上限は20重量部である。
第1の本発明の有機太陽電池活性層用インクを用いて製造される活性層を有する有機太陽電池もまた、本発明の1つである。
第1の本発明の有機太陽電池活性層用インクを塗工する方法は特に限定されないが、例えば、スピンコート法等の印刷法が挙げられる。上記有機半導体化合物と上記無機半導体化合物との分散性が高いことに加えて、活性層の形成方法として印刷法を採用できることから、第1の本発明の有機太陽電池活性層用インクを用いることにより、活性層を安定的かつ簡便に形成することができ、活性層の形成コストを削減することができる。
第2の本発明の有機太陽電池は、有機半導体化合物中に、無機半導体化合物が存在する活性層を有する。第2の本発明の有機太陽電池における有機半導体化合物及び無機半導体化合物としては、第1の本発明の有機太陽電池活性層用インクに用いられる化合物と同様の化合物を用いることができる。
図1に示す有機太陽電池においては、活性層3の陰極2側表面から膜厚の20%の厚みまでの領域3’内の無機半導体化合物6の面積比率が75~100%である。このように無機半導体化合物6が陰極2の近傍に多く存在することで、電子の通路(矢印)が形成されやすくなり、その結果、光電流値が増加して、エネルギー変換効率が高まる。上記面積比率は、80~100%であることがより好ましく、90~100%であることが更に好ましい。
なお、上記面積比率は、例えば、FE-TEM(日立ハイテク社製)を用いて得られる活性層3の断面の元素マッピング像を作成した後、活性層3の陰極2側表面から膜厚の20%の厚みまでの領域3’を決定し、更に、領域3’内における無機半導体化合物6の面積比率をマッピングされた面積から算出することにより求めることができる。
上記算術平均粗さが2.5nm未満であると、入射光の反射時における拡散効果が得られにくいことがある。上記算術平均粗さが20nmを超えると、陰極を形成する際に充分な密着性が得られないことがある。上記算術平均粗さのより好ましい下限は10nm、より好ましい上限は18nmである。
なお、上記算術平均粗さは、JIS B 0601(1994)に準拠した方法で測定することができる。
このような有機太陽電池の製造方法においては、有機半導体化合物に加えて無機半導体化合物を含有する陽極側活性層用インク及び陰極側活性層用インクを用いることで、これらの活性層用インクを重ね塗りすること、即ち、一方の活性層用インクからなる塗膜を形成した後、該塗膜上に他方の活性層用インクを塗工することができ、無機半導体化合物を陰極の近傍に多く存在させることかできる。
これに対し、例えば、有機P型半導体と有機N型半導体とを有する有機太陽電池を製造する場合には、活性層用インクは無機半導体化合物を含有しないことから、一方の活性層用インクからなる塗膜上に他方の活性層用インクを塗工しようとすると、下層の塗膜が有機溶媒により溶出してしまい、重ね塗りを良好に行うことが困難である。
上記陽極側活性層用インクを塗工する方法、及び、上記陰極側活性層用インクを塗工する方法は特に限定されないが、例えば、スピンコート法等の印刷法が挙げられる。
このような工程を行うことで、活性層の陰極側表面の算術平均粗さを調整することができ、その結果、陰極との界面での入射光の反射時における拡散効果が向上し、反射光についても、光電変換に有効に用いることができる。
また、上記有機半導体化合物に対して溶解性を有する溶媒を塗工する方法としては、例えば、スピンコートを用いる方法等が挙げられる。
(無機半導体化合物の粒子化)
酢酸亜鉛二水和物1重量部をメタノール35重量部に溶解し、60℃の湯浴中にて攪拌しながら、水酸化カリウム0.5重量部をメタノール15重量部に溶解した液を滴下し、滴下終了後5時間加熱攪拌を続けることにより、ZnOナノ粒子分散液を得た。次いで、ZnOナノ粒子分散液を遠心分離及び上澄み除去し、沈殿物を回収することによってZnOナノ粒子を得た。
得られたZnOナノ粒子をメタノール中に分散させ、その分散液について、動的光散乱解析装置(PSS-NICOMP社製、380DLS)を用いることにより平均粒子径を測定した。また、得られたZnOナノ粒子をX線回折装置(リガク社製:RINT1000)にて測定し、得られたピークから機器依存の値を取り除いた半値幅を算出し、下記のScherrerの式を用いて平均結晶子径を算出した。結果を表中に示した。
D=Kλ/βcosθ
D:結晶子径
λ:測定X線の波長
β(rad):結晶子の大きさによる回折線の広がり(半値幅)
θ(rad):測定されるピークの角度
K:Scherrer定数
8重量部のポリ(3-アルキルチオフェン)(LUMO準位-3.0、クロロホルムへの溶解性2重量%)と、24重量部のZnOナノ粒子(HOMO準位-7.5)と、分散剤として2重量部のD-149(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.2、クロロホルムへの溶解性2重量%)とを、クロロホルム1000重量部に分散及び溶解させて、有機太陽電池活性層用インクとした。
なお、使用した分散剤が極性基以外の部位に窒素原子、硫黄原子、フッ素原子又はカルボニル基を有するか否か、電子供与性部位と電子受容性部位とを有するか否か、及び、三重結合を有するか否かについては、表中に示した。
ガラス基板上に陽極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。このITO膜の表面上にホール輸送層としてポリエチレンジオキサイドチオフェン:ポリスチレンスルフォネート(PEDOT:PSS)をスピンコート法により100nmの厚みに成膜した。次いで、このホール輸送層の表面上に上記で得られた有機太陽電池活性層用インクをスピンコート法により100nmの厚みに成膜して、活性層を形成した。更に、この活性層の表面上に陰極として真空蒸着により厚み100nmのアルミニウム膜を形成し、有機太陽電池を得た。
得られた有機太陽電池のアルミニウム電極の外観を観察することにより、有機半導体化合物と無機半導体化合物との分散性を3段階(○、△、×)で評価した。なお、得られた有機太陽電池のアルミニウム電極の外観が鏡面になっている場合は、電極の下に成膜されている活性層中の有機半導体化合物と無機半導体化合物とがナノレベルで分散されていることを意味しており、分散性「○」として表中に示した。アルミニウム電極が白色になっている場合はナノレベルでの分散が不充分であることを意味しており、分散性「×」として表中に示した。
8重量部のポリ(3-アルキルチオフェン)(LUMO準位-3.0、クロロベンゼンへの溶解性2重量%)と、24重量部の実施例1で得られたZnOナノ粒子(HOMO準位-7.5)と、分散剤として1重量部のNK-2684(林原生物化学研究所社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.6、クロロベンゼンへの溶解性2重量%)とを、クロロベンゼン800重量部に分散及び溶解させ、有機太陽電池活性層用インクとした。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として1重量部のNK-2553(林原生物化学研究所社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.6、クロロベンゼンへの溶解性2重量%)を用い、有機溶媒としてクロロベンゼンを用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として1重量部のD-131(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.3、HOMO準位-5.6、クロロベンゼンへの溶解性2重量%)を用い、有機溶媒としてクロロベンゼンを用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として1重量部のカルボキシ基含有メタノフターレン(アルドリッチ社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.9、HOMO準位-6.0、クロロホルム-ピリジン混合溶媒(重量比で9:1)への溶解性2重量%)を用い、有機溶媒としてクロロホルム-ピリジン混合溶媒(重量比で9:1)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として1重量部のC60 Pyrrolidine tris-acid(アルドリッチ社製、芳香環及び/又は複素環を有する骨格と、3つのカルボキシル基とを有する化合物、LUMO準位-3.9、HOMO準位-6.0、クロロホルム-ピリジン混合溶媒(重量比で9:1)への溶解性2重量%)を用い、有機溶媒としてクロロホルム-ピリジン混合溶媒(重量比で9:1)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
ZnOナノ粒子の粒子化過程において湯浴の温度を35℃とし、反応時間を72時間に変更した以外は実施例1と同様にして、ZnOナノ粒子を得た。
このZnOナノ粒子を用いた以外は実施例1と同様にして、有機太陽電池を得た。
ZnOナノ粒子の粒子化過程において湯浴を用いず、室温(25℃)で反応時間を96時間に変更した以外は実施例1と同様にして、ZnOナノ粒子を得た。
このZnOナノ粒子を用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤を添加しなかった以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として2重量部のHKX-2587(林原生物化学研究所社製、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合したカルボキシル基とを有する化合物、LUMO準位-3.1、HOMO準位-5.3、クロロホルムへの溶解性0.5重量%)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として2重量部のMK-2(綜研化学社製、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合したカルボキシル基とを有する化合物、LUMO準位-2.8、HOMO準位-5.1、クロロホルムへの溶解性3重量%)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として2重量部のポリアルコキシチオフェン誘導体(アルドリッチ社製、ポリチオフェン骨格と、該骨格の対称な位置に結合したアルコキシ基とを有する化合物、LUMO準位-3.1、HOMO準位-5.0、クロロホルムへの溶解性2重量%)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として2重量部のシリコンフタロシアニン化合物(アルドリッチ社製、極性基を有さない化合物、LUMO準位-3.5、HOMO準位-5.0、クロロホルムへの溶解性2重量%)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として2重量部のテトラカルボキシ銅フタロシアニン(アルドリッチ社製、フタロシアニン骨格と、該骨格の対称な位置に結合したカルボキシル基とを有する化合物、LUMO準位-3.3、HOMO準位-4.8、クロロホルム-ピリジン混合溶媒(重量比で9:1)への溶解性2重量%)を用い、有機溶媒としてクロロホルム-ピリジン混合溶媒(重量比で9:1)800重量部を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
分散剤として2重量部のN-719(アルドリッチ社製ルテニウム色素、色素骨格の対称な位置に結合したカルボキシル基を有する化合物、LUMO準位-4.0、HOMO準位-5.6、クロロホルム-ピリジン混合溶媒(重量比で9:1)への溶解性2重量%)を用い、クロロホルム-ピリジン混合溶媒(重量比で9:1)800重量部を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(無機半導体化合物の面積比率測定)
FE-TEM(日立ハイテク社製)を用いて得られた有機太陽電池の断面を観察することにより、亜鉛の元素マッピング像を得た。得られた元素マッピング像を用いて、陰極側表面から膜厚の20%の厚みまでの領域内の無機半導体化合物の面積比率を算出した。なお、亜鉛の面積比率を測定することで酸化亜鉛の面積比率を求めることができる。結果を表中に示した。
(エネルギー変換効率の測定)
実施例及び比較例で得られた有機太陽電池の電極間に、電源(KEITHLEY社製、236モデル)を接続し、100mW/cm2の強度のソーラーシミュレータ(山下電装社製)を用いて有機太陽電池のエネルギー変換効率を測定した。比較例1で得られた有機太陽電池のエネルギー変換効率を1.00として規格化した。結果を表中に示した。
(無機半導体化合物の粒子化)
実施例1と同様にして、ZnOナノ粒子を得た。
実施例1と同様にして、ガラス基板上に陽極としてのITO膜と、ホール輸送層とを形成した。
次に、得られたZnOナノ粒子5重量部、ポリ(3-アルキルチオフェン)2重量部と、分散剤としてD-149(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.2、クロロホルムへの溶解性2重量%)0.5重量部とをクロロホルム343重量部に溶解、分散させることで、陽極側活性層用インクを調製した。得られた陽極側活性層用インクをホール輸送層上にスピンコート法により80nmの厚みに塗工し、乾燥させることによって陽極側活性層を形成した。
更に、得られたZnOナノ粒子28.5重量部、ポリ(3-アルキルチオフェン)1重量部をクロロホルム1373.2重量部とメタノール72.3重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した。得られた陰極側活性層用インクを陽極側活性層上にスピンコート法により20nmの厚みに形成し、乾燥させることによって陽極側活性層と陰極側活性層とからなる活性層を形成した。
更に、活性層の表面に陰極として真空蒸着によりアルミニウムを100nmの厚みに形成することにより、有機太陽電池を作製した。
得られたZnOナノ粒子1.00重量部のみを、クロロホルム46.6重量部とメタノール2.45重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した以外は実施例9と同様にして、有機太陽電池を得た。
得られたZnOナノ粒子15.0重量部、ポリ(3-アルキルチオフェン)1.00重量部を、クロロホルム744.8重量部とメタノール39.2重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した以外は実施例9と同様にして、有機太陽電池を得た。
陽極側活性層用インクに分散剤を添加しなかった以外は実施例9と同様にして、有機太陽電池を得た。
得られたZnOナノ粒子1.00重量部のみを、クロロホルム46.6重量部とメタノール2.45重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した以外は実施例12と同様にして、有機太陽電池を得た。
(無機半導体化合物の粒子化)
実施例1と同様にして、ZnOナノ粒子を得た。
ガラス基板上に陰極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。このITO膜の表面上に電子輸送層としてチタンイソプロポキドのエタノール溶液をスピンコートすることにより10nmの厚みの酸化チタン薄膜を成膜した。
次に、得られたZnOナノ粒子28.5重量部、ポリ(3-アルキルチオフェン)1重量部をクロロホルム1373.2重量部とメタノール72.3重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した。得られた陰極側活性層用インクを電子輸送層の表面上にスピンコート法により20nmの厚みに形成し、乾燥させることによって陰極側活性層を形成した。
更に、ZnOナノ粒子5重量部、ポリ(3-アルキルチオフェン)2重量部と、分散剤としてD-149(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.2、クロロホルムへの溶解性2重量%)0.5重量部とをクロロホルム343重量部に溶解、分散させることで、陽極側活性層用インクを調製した。得られた陽極側活性層用インクを陰極側活性層上にスピンコート法により80nmの厚みに塗工し、乾燥させることによって陰極側活性層と陽極側活性層とからなる活性層を形成した。
更に、活性層の表面に陽極として真空蒸着により酸化モリブデンを10nm、次いで銀を100nmの厚みに形成することにより、有機太陽電池を作製した。
得られたZnOナノ粒子15.0重量部、ポリ(3-アルキルチオフェン)1.00重量部を、クロロホルム744.8重量部とメタノール39.2重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した以外は実施例12と同様にして、有機太陽電池を得た。
ガラス基板上に陰極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。このITO膜の表面上に電子輸送層としてチタンイソプロポキドのエタノール溶液をスピンコートすることにより10nmの厚みの酸化チタン薄膜を成膜した。
次いで、この電子輸送層の表面上に実施例1で得られた有機太陽電池活性層用インクをスピンコート法により100nmの厚みに塗工し、乾燥させることによって活性層を形成した。更に、活性層の表面に陽極として真空蒸着により酸化モリブデンを10nm、次いで銀を100nmの厚みに形成することにより、有機太陽電池を作製した。
2 陰極
3 活性層
3’ 活性層の陰極側表面から膜厚の20%の厚みまでの領域
4 陽極
5 有機半導体化合物
6 無機半導体化合物
Claims (12)
- 有機半導体化合物、無機半導体化合物、有機溶媒及び分散剤を含有し、
前記分散剤は、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合した極性基とを有する化合物であり、前記分散剤は、以下の(1)~(3)を全て満たす
ことを特徴とする有機太陽電池活性層用インク。
(1)LUMO準位が、前記有機半導体化合物のLUMO準位よりも低い。
(2)前記有機溶媒への溶解性が、前記有機半導体化合物の前記有機溶媒への溶解性と同じか又はそれ以上である。
(3)HOMO準位が、前記無機半導体化合物のHOMO準位よりも高い。 - 分散剤は、極性基以外の部位に窒素原子、硫黄原子、フッ素原子又はカルボニル基を有する化合物であることを特徴とする請求項1記載の有機太陽電池活性層用インク。
- 分散剤は、極性基以外の部位にカルボニル基を有する化合物であることを特徴とする請求項2記載の有機太陽電池活性層用インク。
- 分散剤は、電子供与性部位と電子受容性部位とを有し、極性基が前記電子受容性部位に結合している化合物であることを特徴とする請求項1、2又は3記載の有機太陽電池活性層用インク。
- 分散剤は、三重結合を有さない化合物であることを特徴とする請求項1、2、3又は4記載の有機太陽電池活性層用インク。
- 分散剤は、極性基がカルボキシル基であることを特徴とする請求項1、2、3、4又は5記載の有機太陽電池活性層用インク。
- 無機半導体化合物は、平均粒子径が1~50nmであり、かつ、平均粒子径/平均結晶子径が1~3であることを特徴とする請求項1、2、3、4、5、6又は7記載の有機太陽電池活性層用インク。
- 請求項1、2、3、4、5、6、7又は8記載の有機太陽電池活性層用インクを用いて製造される活性層を有することを特徴とする有機太陽電池。
- 請求項1、2、3、4、5、6、7又は8記載の有機太陽電池活性層用インクを用いた有機太陽電池の製造方法であって、
電極を有する基板上に、前記有機太陽電池活性層用インクを塗工、乾燥させて活性層を形成する工程と、
前記活性層上に、電極を形成する工程とを有する
ことを特徴とする有機太陽電池の製造方法。 - 有機半導体化合物中に、無機半導体化合物が存在する活性層を有する有機太陽電池であって、
前記活性層の厚み方向の切断面において、陰極側表面から膜厚の20%の厚みまでの領域内の前記無機半導体化合物の面積比率が75~100%である
ことを特徴とする有機太陽電池。 - 請求項11記載の有機太陽電池を製造する方法であって、
有機半導体化合物に対して無機半導体化合物を75~100vol%含有する陰極側活性層用インクを、陰極側表面から活性層の膜厚の50%以下の厚みとなるように塗工、乾燥させて陰極側活性層を形成する工程を有する
ことを特徴とする有機太陽電池の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011551727A JP5037730B2 (ja) | 2010-11-16 | 2011-11-15 | 有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法 |
US13/823,202 US20130199613A1 (en) | 2010-11-16 | 2011-11-15 | Ink for active layer of organic solar cell, organic solar cell, and process for manufacture of organic solar cell |
EP11841214.7A EP2642546A1 (en) | 2010-11-16 | 2011-11-15 | Ink for active layer of organic solar cell, organic solar cell, and process for manufacture of organic solar cell |
KR20137015118A KR20130143603A (ko) | 2010-11-16 | 2011-11-15 | 유기 태양 전지 활성층용 잉크, 유기 태양 전지 및 유기 태양 전지의 제조 방법 |
CN2011800548947A CN103270617A (zh) | 2010-11-16 | 2011-11-15 | 有机太阳能电池活性层用墨液、有机太阳能电池以及有机太阳能电池的制造方法 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010256180 | 2010-11-16 | ||
JP2010-256179 | 2010-11-16 | ||
JP2010256179 | 2010-11-16 | ||
JP2010-256180 | 2010-11-16 | ||
JP2011-037475 | 2011-02-23 | ||
JP2011037475 | 2011-02-23 | ||
JP2011070953 | 2011-03-28 | ||
JP2011-070953 | 2011-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012067124A1 true WO2012067124A1 (ja) | 2012-05-24 |
Family
ID=46084047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076331 WO2012067124A1 (ja) | 2010-11-16 | 2011-11-15 | 有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130199613A1 (ja) |
EP (1) | EP2642546A1 (ja) |
JP (4) | JP5037730B2 (ja) |
KR (1) | KR20130143603A (ja) |
CN (1) | CN103270617A (ja) |
TW (1) | TW201229148A (ja) |
WO (1) | WO2012067124A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013247316A (ja) * | 2012-05-29 | 2013-12-09 | Oike Ind Co Ltd | 有機薄膜太陽電池およびその製造方法 |
WO2014077121A1 (ja) * | 2012-11-13 | 2014-05-22 | 積水化学工業株式会社 | 太陽電池 |
JP2014112610A (ja) * | 2012-12-05 | 2014-06-19 | Sekisui Chem Co Ltd | 有機薄膜太陽電池 |
KR20160026973A (ko) * | 2013-07-03 | 2016-03-09 | 제네스'잉크 에스아 | 나노 입자 기반의 잉크 배합물 |
JP2016178274A (ja) * | 2015-03-19 | 2016-10-06 | 三菱化学株式会社 | 半導体デバイス、太陽電池、太陽電池モジュール、及び組成物 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10326090B2 (en) * | 2014-09-30 | 2019-06-18 | Merck Patent Gmbh | Semiconductor composition comprising an inorganic semiconducting material and an organic binder |
GB2551585A (en) * | 2016-06-24 | 2017-12-27 | Sumitomo Chemical Co | Solvent blends for improved jetting and ink stability for inkjet printing of photoactive layers |
WO2018021952A1 (en) * | 2016-07-29 | 2018-02-01 | Exeger Operations Ab | A light absorbing layer and a photovoltaic device including a light absorbing layer |
SE540184C2 (en) | 2016-07-29 | 2018-04-24 | Exeger Operations Ab | A light absorbing layer and a photovoltaic device including a light absorbing layer |
WO2022004882A1 (ja) * | 2020-07-02 | 2022-01-06 | 積水化学工業株式会社 | 太陽電池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100793A (ja) | 2000-09-25 | 2002-04-05 | Japan Science & Technology Corp | 有機・無機複合薄膜太陽電池とその製造方法 |
JP2008053293A (ja) * | 2006-08-22 | 2008-03-06 | Sony Corp | 電子デバイス及びその製造方法 |
JP4120362B2 (ja) | 2002-11-14 | 2008-07-16 | 松下電工株式会社 | 有機太陽電池 |
JP2009541975A (ja) * | 2006-06-22 | 2009-11-26 | イソボルタ・アクチエンゲゼルシヤフト | 光活性層を製造する方法及び該層を含んでなる構成要素 |
JP2010056497A (ja) * | 2008-08-27 | 2010-03-11 | Honeywell Internatl Inc | ハイブリッドヘテロ接合構造を有する太陽電池及び関連するシステム並びに方法 |
JP2010519745A (ja) * | 2007-02-27 | 2010-06-03 | バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | 表面改質剤中に囲まれた光活性半導体ナノ粒子を有するハイブリッド有機太陽電池 |
-
2011
- 2011-11-15 US US13/823,202 patent/US20130199613A1/en not_active Abandoned
- 2011-11-15 KR KR20137015118A patent/KR20130143603A/ko not_active Application Discontinuation
- 2011-11-15 JP JP2011551727A patent/JP5037730B2/ja not_active Expired - Fee Related
- 2011-11-15 EP EP11841214.7A patent/EP2642546A1/en not_active Withdrawn
- 2011-11-15 CN CN2011800548947A patent/CN103270617A/zh active Pending
- 2011-11-15 WO PCT/JP2011/076331 patent/WO2012067124A1/ja active Application Filing
- 2011-11-16 TW TW100141787A patent/TW201229148A/zh unknown
-
2012
- 2012-03-22 JP JP2012066164A patent/JP5006480B1/ja active Active
- 2012-05-24 JP JP2012118409A patent/JP5143968B2/ja active Active
- 2012-07-04 JP JP2012150604A patent/JP2012248854A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100793A (ja) | 2000-09-25 | 2002-04-05 | Japan Science & Technology Corp | 有機・無機複合薄膜太陽電池とその製造方法 |
JP4120362B2 (ja) | 2002-11-14 | 2008-07-16 | 松下電工株式会社 | 有機太陽電池 |
JP2009541975A (ja) * | 2006-06-22 | 2009-11-26 | イソボルタ・アクチエンゲゼルシヤフト | 光活性層を製造する方法及び該層を含んでなる構成要素 |
JP2008053293A (ja) * | 2006-08-22 | 2008-03-06 | Sony Corp | 電子デバイス及びその製造方法 |
JP2010519745A (ja) * | 2007-02-27 | 2010-06-03 | バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | 表面改質剤中に囲まれた光活性半導体ナノ粒子を有するハイブリッド有機太陽電池 |
JP2010056497A (ja) * | 2008-08-27 | 2010-03-11 | Honeywell Internatl Inc | ハイブリッドヘテロ接合構造を有する太陽電池及び関連するシステム並びに方法 |
Non-Patent Citations (2)
Title |
---|
JILIAN N. DE FREITAS ET AL.: "Hybrid nanostructured solar cells based on the incorporation of inorganic nonoparticles in polymer-fullerene mixtures", PROCEEDINGS OF SPIE, vol. 7772, 1 August 2010 (2010-08-01), pages 77721K.1 - 77721K.9, XP055119433 * |
KAZUKO TAKANEZAWA ET AL.: "Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 111, 20 April 2007 (2007-04-20), pages 7218 - 7223, XP055119434 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013247316A (ja) * | 2012-05-29 | 2013-12-09 | Oike Ind Co Ltd | 有機薄膜太陽電池およびその製造方法 |
WO2014077121A1 (ja) * | 2012-11-13 | 2014-05-22 | 積水化学工業株式会社 | 太陽電池 |
CN104769738A (zh) * | 2012-11-13 | 2015-07-08 | 积水化学工业株式会社 | 太阳能电池 |
JP2014112610A (ja) * | 2012-12-05 | 2014-06-19 | Sekisui Chem Co Ltd | 有機薄膜太陽電池 |
KR20160026973A (ko) * | 2013-07-03 | 2016-03-09 | 제네스'잉크 에스아 | 나노 입자 기반의 잉크 배합물 |
JP2016523306A (ja) * | 2013-07-03 | 2016-08-08 | ジーンズインク エスア | ナノ粒子に基づいたインク調合物 |
KR102214027B1 (ko) | 2013-07-03 | 2021-02-08 | 제네스'잉크 에스아 | 나노 입자 기반의 잉크 배합물 |
JP2016178274A (ja) * | 2015-03-19 | 2016-10-06 | 三菱化学株式会社 | 半導体デバイス、太陽電池、太陽電池モジュール、及び組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP5037730B2 (ja) | 2012-10-03 |
JP5006480B1 (ja) | 2012-08-22 |
JPWO2012067124A1 (ja) | 2014-05-12 |
KR20130143603A (ko) | 2013-12-31 |
JP2012216800A (ja) | 2012-11-08 |
JP2012248854A (ja) | 2012-12-13 |
CN103270617A (zh) | 2013-08-28 |
EP2642546A1 (en) | 2013-09-25 |
JP2012216847A (ja) | 2012-11-08 |
JP5143968B2 (ja) | 2013-02-13 |
US20130199613A1 (en) | 2013-08-08 |
TW201229148A (en) | 2012-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5143968B2 (ja) | 有機太陽電池 | |
CN102834929B (zh) | 纳米结构无机-有机异质结太阳能电池的制备方法 | |
EP2441101B1 (en) | Solid state heterojunction device | |
KR101464798B1 (ko) | 유기 태양 전지 및 유기 광검출기를 위한 광활성 층의 제조를 위한 혼합물 | |
CN102884648A (zh) | 全固态异质结太阳能电池 | |
KR20110023164A (ko) | 광전자 소자 | |
KR101543438B1 (ko) | 페로브스카이트 태양전지 및 이의 제조 방법 | |
Dahiya et al. | Recent Advances in Organic and Inorganic Hole and Electron Transport Layers for Organic Solar Cells: Basic Concept and Device Performance | |
JP2020520095A (ja) | 有機電子素子およびその製造方法 | |
KR101080895B1 (ko) | 유기태양전지 및 이의 제조방법 | |
WO2013118795A1 (ja) | 有機薄膜太陽電池及び有機薄膜太陽電池の製造方法 | |
Chaudhary et al. | Charge transport between coaxial polymer nanorods and grafted all-inorganic perovskite nanocrystals for hybrid organic solar cells with enhanced photoconversion efficiency | |
Ali et al. | Sulphonic acid functionalized porphyrin grafted ZnO nanorods: Synthesis, characterization and applications in the solid state dye sensitized solar cells | |
JP5845059B2 (ja) | 有機無機複合薄膜太陽電池 | |
JP2008091467A (ja) | 有機薄膜太陽電池素子および光電変換層形成用塗工液 | |
JP2013206988A (ja) | 有機無機ハイブリッド太陽電池活性層用インク、有機無機ハイブリッド太陽電池及び有機無機ハイブリッド太陽電池の製造方法 | |
KR20150063705A (ko) | 유기 태양 전지의 제조방법 및 이로 제조된 유기 태양 전지 | |
JP2013191629A (ja) | 光電変換素子 | |
JP2013157471A (ja) | 光電変換素子用インク及び光電変換素子 | |
WO2013141328A1 (ja) | 有機無機ハイブリッド光電変換素子 | |
JP2010009830A (ja) | 光電変換素子及びその製造方法、太陽電池 | |
JP5891005B2 (ja) | 有機無機複合薄膜太陽電池 | |
KR101719028B1 (ko) | 유기 태양 전지 및 이의 제조방법 | |
JP5369238B2 (ja) | 光電変換素子用材料、光電変換素子の製造方法及び光電変換素子 | |
Jenekhe et al. | Molecular and nanoscale engineering of high efficiency excitonic solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011551727 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11841214 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13823202 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011841214 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137015118 Country of ref document: KR Kind code of ref document: A |