WO2012067124A1 - 有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法 - Google Patents

有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法 Download PDF

Info

Publication number
WO2012067124A1
WO2012067124A1 PCT/JP2011/076331 JP2011076331W WO2012067124A1 WO 2012067124 A1 WO2012067124 A1 WO 2012067124A1 JP 2011076331 W JP2011076331 W JP 2011076331W WO 2012067124 A1 WO2012067124 A1 WO 2012067124A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
solar cell
organic solar
organic
semiconductor compound
Prior art date
Application number
PCT/JP2011/076331
Other languages
English (en)
French (fr)
Inventor
明伸 早川
和志 伊藤
佐々木 拓
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2011551727A priority Critical patent/JP5037730B2/ja
Priority to US13/823,202 priority patent/US20130199613A1/en
Priority to EP11841214.7A priority patent/EP2642546A1/en
Priority to KR20137015118A priority patent/KR20130143603A/ko
Priority to CN2011800548947A priority patent/CN103270617A/zh
Publication of WO2012067124A1 publication Critical patent/WO2012067124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0075Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring
    • C09B23/0083Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring the heteroring being rhodanine in the chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic solar cell active layer ink capable of stably and easily forming an active layer having high energy conversion efficiency, an organic solar cell having high energy conversion efficiency, and a method for producing an organic solar cell.
  • an organic solar cell in which an organic semiconductor layer and an inorganic semiconductor layer are stacked and electrodes are provided on both sides of the stacked body has been developed.
  • photoexcitation generates photocarriers (electron-hole pairs) in the organic semiconductor layer, and electrons move through the inorganic semiconductor layer and holes move through the organic semiconductor layer, thereby generating an electric field.
  • the active region for generating photocarriers is very narrow, about several tens of nanometers near the junction interface with the inorganic semiconductor layer, and organic semiconductor layers other than this active region cannot contribute to the generation of photocarriers. For this reason, the solar cell has a drawback that the energy conversion efficiency is lowered.
  • Patent Document 1 discloses a co-deposited thin film in which an organic semiconductor and an inorganic semiconductor are combined by co-evaporation, and a semiconductor or metal for providing a built-in electric field to the composite thin film provided on both sides of the thin film, Or the organic solar cell provided with the electrode part which consists of both of them is described.
  • the organic / inorganic composite thin film described in the same document has a structure in which a pn junction (organic / inorganic semiconductor junction) is stretched over the entire film, so that the entire film is active against optical carrier generation. It is described that since all the light absorbed by the film contributes to carrier generation, a large photocurrent can be obtained.
  • Patent Document 2 in an organic solar cell in which an active layer containing an organic electron donor and a compound semiconductor crystal is provided between two electrodes, the active layer includes an organic electron donor and a compound semiconductor crystal.
  • An organic compound that is mixed and dispersed, and the compound semiconductor crystal includes two types of rod-shaped crystals having different average particle sizes, and the average particle size and content ratio of the two types of rod-shaped crystals are within a predetermined range.
  • a solar cell is described.
  • Patent Document 2 describes that the filling rate of the compound semiconductor crystal in the active layer can be increased, and thereby a solar cell with high conversion efficiency can be obtained.
  • the present invention provides an organic solar cell active layer ink capable of stably and simply forming an active layer having high energy conversion efficiency, an organic solar cell having high energy conversion efficiency, and a method for producing the organic solar cell.
  • the purpose is to do.
  • this invention contains the organic-semiconductor compound, the inorganic semiconductor compound, the organic solvent, and the dispersing agent, and the said dispersing agent couple
  • the organic solar cell active layer ink is a compound having a polar group, and the dispersant satisfies all of the following (1) to (3).
  • the LUMO level is lower than the LUMO level of the organic semiconductor compound.
  • the solubility in the organic solvent is equal to or higher than the solubility of the organic semiconductor compound in the organic solvent.
  • the HOMO level is higher than the HOMO level of the inorganic semiconductor compound.
  • 2nd this invention is an organic solar cell which has an active layer in which an inorganic semiconductor compound exists in an organic semiconductor compound, Comprising: In the cut surface of the thickness direction of the said active layer, 20% of film thickness from a cathode side surface
  • This is an organic solar cell in which the area ratio of the inorganic semiconductor compound in the region up to the thickness of is from 100 to 100%. The present invention is described in detail below.
  • the present inventor adds an active layer having high energy conversion efficiency by adding a dispersant that satisfies specific requirements to an organic solar cell active layer ink containing an organic semiconductor compound, an inorganic semiconductor compound, and an organic solvent.
  • the present inventors have found that an ink for an organic solar cell active layer that can be formed stably and simply is obtained, and have completed the first invention. Further, the present inventor has found that the area of the inorganic semiconductor compound in the region from the cathode-side surface to a thickness of 20% of the thickness at the cut surface in the thickness direction of the active layer in which the inorganic semiconductor compound is present in the organic semiconductor compound.
  • the organic solar cell active layer ink of the first aspect of the present invention contains an organic semiconductor compound.
  • the organic semiconductor compound is not particularly limited, and examples thereof include conductive polymers such as poly (3-alkylthiophene), polyparaphenylene vinylene derivatives, polyvinyl carbazole derivatives, polyaniline derivatives, polyacetylene derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, pentacene. Derivatives, porphyrin derivatives and the like.
  • a conductive polymer is preferable and poly (3-alkylthiophene) is more preferable because an active layer with high hole mobility can be formed.
  • the ink for an organic solar cell active layer of the first aspect of the invention contains an inorganic semiconductor compound.
  • the inorganic semiconductor compound is not particularly limited.
  • titanium oxide, zinc oxide, tin oxide, indium oxide, gallium oxide, antimony oxide, tungsten oxide, silicon oxide, aluminum oxide, barium titanate, strontium titanate, cadmium sulfide examples thereof include zinc sulfide, tin sulfide, antimony sulfide, bismuth sulfide, indium sulfide, silicon sulfide, and vanadium oxide.
  • the inorganic semiconductor compound for example, a compound of a group 13 element and a group 15 element such as InP, InAs, GaP, and GaAs, a group 12 element and a group 16 element such as CdSe, CdTe, and ZnS A compound etc. are also mentioned.
  • These inorganic semiconductor compounds may be compounds in which two or more of the above components are mixed, or may be compounds doped with an element different from the main component. These inorganic semiconductor compounds may be used alone or in combination of two or more.
  • zinc oxide, tin oxide, indium oxide, antimony oxide, zinc sulfide, tin sulfide, antimony sulfide, and bismuth sulfide are preferable because an active layer with high electron mobility can be formed.
  • the shape of the inorganic semiconductor compound is not particularly limited, and examples thereof include a rod shape and a spherical shape. Of these, spherical is preferable.
  • the average particle diameter is preferably 1 to 50 nm and the average particle diameter / average crystallite diameter is preferably 1 to 3.
  • the inorganic semiconductor compound has such an average particle diameter and average particle diameter / average crystallite diameter, in the active layer composed of the organic solar cell active layer ink, when electrons pass through the inorganic semiconductor compound, Inhibition of movement due to crystal grain boundaries is unlikely to occur, and electrons are smoothly collected on the electrode. Thereby, recombination of electrons and holes is suppressed, and the energy conversion efficiency is further increased.
  • the average particle diameter is less than 1 nm, the number of grain boundaries between the particles of the inorganic semiconductor compound increases in the active layer made of the organic solar cell active layer ink, and the hindrance to electron transfer may increase.
  • the average particle diameter exceeds 50 nm, in the active layer made of the organic solar cell active layer ink, the photocarrier generated by the organic semiconductor compound may not be efficiently transmitted to the bonding interface with the inorganic semiconductor compound.
  • the more preferable lower limit of the average particle diameter of the inorganic semiconductor compound is 2 nm, the still more preferable lower limit is 3 nm, the more preferable upper limit is 30 nm, the still more preferable upper limit is 25 nm, and the particularly preferable upper limit is 20 nm.
  • the average particle diameter can be measured using, for example, a dynamic light scattering analyzer (PSS-NICOMP, 380DLS).
  • the average particle diameter / average crystallite diameter exceeds 3
  • the crystal grain boundary in the particles may hinder electron movement, and electrons and holes may be easily recombined.
  • a more preferable upper limit of the average particle size / average crystallite size of the inorganic semiconductor compound is 2.5.
  • the minimum with a preferable average crystallite diameter is 1 nm.
  • the crystallite diameter means the crystallite size calculated by the Scherrer method in the X-ray diffraction method.
  • an average crystallite diameter can be measured, for example using an X-ray-diffraction apparatus (Rigaku company make, RINT1000).
  • an alkali compound is added while stirring in a hot water bath after adding a zinc metal salt to an organic solvent.
  • a method of obtaining an inorganic semiconductor compound particle dispersion by stirring can be used.
  • the range of an average particle diameter / average crystallite diameter can be adjusted by changing the temperature of a hot water bath.
  • a dry method such as spray flame pyrolysis method, CVD method, PVD method, pulverization method, etc.
  • a wet method such as reduction method, microemulsion method, hydrothermal reaction method, sol-gel method, etc. Laws can be applied.
  • the preferable lower limit of the compounding amount of the inorganic semiconductor compound with respect to 100 parts by weight of the organic semiconductor compound is 50 parts by weight, and the preferable upper limit is 1000 parts by weight.
  • the blending amount of the inorganic semiconductor compound is less than 50 parts by weight, electrons may not be sufficiently transmitted in the active layer made of the organic solar cell active layer ink.
  • the compounding amount of the inorganic semiconductor compound exceeds 1000 parts by weight, holes may not be sufficiently transmitted in the active layer made of the organic solar cell active layer ink.
  • the more preferable lower limit of the compounding amount of the inorganic semiconductor compound with respect to 100 parts by weight of the organic semiconductor compound is 100 parts by weight, and the more preferable upper limit is 500 parts by weight.
  • the ink for an organic solar cell active layer of the first invention contains an organic solvent.
  • the organic solvent is not particularly limited, but chlorobenzene, chloroform, methyl ethyl ketone, toluene, ethyl acetate, ethanol, xylene and the like are preferable.
  • the compounding quantity of the said organic solvent is not specifically limited,
  • the preferable minimum with respect to 1 weight part of said organic-semiconductor compounds is 20 weight part, and a preferable upper limit is 1000 weight part.
  • the blending amount of the organic solvent is less than 20 parts by weight, the viscosity of the organic solar cell active layer ink is too high, and the active layer may not be stably and easily formed.
  • the blending amount of the organic solvent exceeds 1000 parts by weight, the viscosity of the organic solar cell active layer ink may be too low to form an active layer having a sufficient thickness.
  • the more preferable lower limit of the blending amount of the organic solvent with respect to 1 part by weight of the organic semiconductor compound is 50 parts by weight, and the more preferable upper limit is 500 parts by weight.
  • the organic solar cell active layer ink of the first aspect of the present invention contains a dispersant.
  • the dispersant is a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and a polar group bonded to an asymmetric position of the skeleton.
  • the polar group include hydrophilic groups such as a carboxyl group, an amino group, a cyano group, an isocyanate group, and an isothiocyanate group. Of these, a carboxyl group is preferred.
  • having a polar group bonded to an asymmetrical position of the skeleton has only one polar group in the molecule or two or more polar groups in the molecule. It means that two or more polar groups are not in a symmetrical positional relationship on the structural formula.
  • symmetry means that the centers of gravity of two or more polar groups are at the center of the molecule.
  • the dispersant is a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and a polar group bonded to an asymmetric position of the skeleton, whereby the organic solar cell active layer ink of the first invention Can act as a dispersant for enhancing the dispersibility of the organic semiconductor compound and the inorganic semiconductor compound. Therefore, in the active layer comprising the organic solar cell active layer ink of the first aspect of the present invention, the organic semiconductor compound and the inorganic semiconductor compound are very well dispersed, and the organic semiconductor compound and the inorganic semiconductor The area of the bonding interface with the compound is large, and the region active for photocarrier generation is large.
  • an active layer with high energy conversion efficiency can be formed by using the organic solar cell active layer ink of the first aspect of the present invention.
  • the dispersant does not have a skeleton having an aromatic ring and / or a heterocyclic ring, or does not have a polar group, or the polar group is bonded to a symmetrical position of the skeleton having an aromatic ring and / or a heterocyclic ring. If so, the dispersibility of the organic semiconductor compound and the inorganic semiconductor compound in the organic solar cell active layer ink is reduced.
  • the active layer ink of the first aspect of the present invention when used, the active layer can be formed by a printing method such as a spin coating method. In addition to the high dispersibility of the organic semiconductor compound and the inorganic semiconductor compound, a printing method can be employed as a method for forming the active layer. Therefore, by using the organic solar cell active layer ink of the first aspect of the present invention.
  • the active layer can be formed stably and simply, and the formation cost of the active layer can be reduced.
  • the dispersant is preferably a compound having a nitrogen atom, a sulfur atom, a fluorine atom or a carbonyl group at a site other than the polar group.
  • the dispersant is such a compound, in the active layer made of the organic solar cell active layer ink, electrons are easily transferred to the inorganic semiconductor compound, and the energy conversion efficiency is further increased.
  • the dispersant is more preferably a compound having a carbonyl group at a site other than the polar group.
  • the dispersant is preferably a compound having an electron donating site and an electron accepting site.
  • the dispersant is a compound having an electron-donating site and an electron-accepting site, in the active layer comprising the organic solar cell active layer ink, electrons are easily transferred from the organic semiconductor compound to the inorganic semiconductor compound, Energy conversion efficiency is further increased.
  • the electron donating site and the electron accepting site mean a site having an electron donating property and a site having an electron accepting property (electron withdrawing property), respectively. That is, the electron donating site has a high value for both the HOMO and LUMO levels relative to the electron accepting site. On the other hand, the electron accepting site has a relatively low value for the HOMO and LUMO levels relative to the electron donating site.
  • the electron donating site and the electron accepting site are preferably conjugated to each other, that is, the electron donating site and the electron accepting site are bonded via a conjugated bond. Further, the electron donating moiety and the electron accepting moiety may be adjacent to each other, and may have an alkyl group, an arylene group or the like having 2 or more carbon atoms which may be branched.
  • electron donating moiety examples include structures represented by the following formulas (a-1) to (a-16).
  • R represents a hydrogen atom or a functional group.
  • the functional group represented by R in formulas (a-1) to (a-16) include an alkyl group, an aryl group, an alkoxy group, an alkenyl group, an alkynyl group, and a heteroaryl group.
  • the functional group represented by R in formulas (a-1) to (a-16) may be an electron donating site or an electron accepting site.
  • electron accepting site examples include structures represented by the following formulas (b-1) to (b-14).
  • R represents a hydrogen atom or a functional group.
  • the functional group represented by R in formulas (b-1) to (b-14) include an alkyl group, an aryl group, an alkoxy group, an alkenyl group, an alkynyl group, and a heteroaryl group.
  • the functional group represented by R in the formulas (b-1) to (b-14) may be an electron donating site or an electron accepting site, or may be the polar group described above.
  • the polar group is preferably bonded to the electron accepting site.
  • the said dispersing agent may cause an energy loss, it is preferable that it is a compound which does not have a triple bond.
  • dispersant examples include a carboxyl group-containing indoline compound, a carboxyl group-containing oligothiophene, and a carboxyl group-containing coumarin compound. Of these, carboxyl group-containing indoline compounds and carboxyl group-containing oligothiophenes are preferred.
  • dispersant examples include compounds having structures represented by the following formulas (1) to (8). Especially, the compound which has a structure represented by following formula (1) is preferable.
  • R represents a hydrogen atom or a functional group.
  • the functional group represented by R in the formulas (1) to (8) include an alkyl group, an aryl group, an alkoxy group, an alkenyl group, an alkynyl group, and a heteroaryl group.
  • Examples of commercially available dispersants include D-149 and D-131 (all manufactured by Mitsubishi Paper Industries, Ltd., compounds having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group), NK- 2684, NK-2553 (both manufactured by Hayashibara Biochemical Laboratories, Inc., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group), a carboxy group-containing methanophthalene (manufactured by Aldrich, A compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group), C 60 Pyrrolidene tris-acid (manufactured by Aldrich, a skeleton having an aromatic ring and / or a heterocyclic ring, and three carboxyl groups; And the like.
  • the dispersant satisfies all of the following (1) to (3).
  • the LUMO level is lower than the LUMO level of the organic semiconductor compound.
  • the solubility in the organic solvent is equal to or higher than the solubility of the organic semiconductor compound in the organic solvent.
  • the HOMO level is higher than the HOMO level of the inorganic semiconductor compound.
  • the dispersant has (1) a LUMO level lower than the LUMO level of the organic semiconductor compound.
  • the LUMO level of the dispersant is not particularly limited, and may be appropriately selected according to the LUMO level of the inorganic semiconductor compound. However, since the above (1) is easily satisfied, the LUMO level is ⁇ 4.0 to It is preferably ⁇ 3.0.
  • the LUMO level means a value obtained by measuring the HOMO level with an ionization potential measuring device and subtracting the band gap calculated from the ultraviolet-visible light absorption spectrum from the value of the HOMO level.
  • the solubility in the organic solvent is equal to or higher than the solubility of the organic semiconductor compound in the organic solvent.
  • the solubility in an organic solvent means a dissolved mass that can be dissolved in 100 mL of an organic solvent at 23 ° C.
  • the amount of the dispersant that can be dissolved in 100 mL of the organic solvent at 23 ° C. is equal to or greater than the amount of the organic semiconductor compound that can be dissolved in 100 mL of the organic solvent at 23 ° C.
  • the solubility of the dispersant in the organic solvent is not particularly limited, and is selected according to the organic solvent to be used.
  • the dispersant has (3) a HOMO level higher than the HOMO level of the inorganic semiconductor compound.
  • the HOMO level of the dispersant is equal to or lower than the HOMO level of the inorganic semiconductor compound, holes present in the dispersant are transmitted to the inorganic semiconductor compound in the active layer made of the organic solar cell active layer ink. Since reverse hole movement occurs, the performance as a solar cell is deteriorated.
  • the HOMO level of the dispersant is not particularly limited and may be appropriately selected according to the HOMO level of the organic semiconductor compound. However, since the above (3) is easily satisfied, the HOMO level is ⁇ 6.0 to It is preferably ⁇ 5.0. In this specification, the HOMO level means a value measured by an ionization potential measuring device.
  • the compounding quantity of the said dispersing agent is not specifically limited,
  • the preferable minimum with respect to 100 weight part of said inorganic semiconductor compounds is 1 weight part, and a preferable upper limit is 30 weight part.
  • the blending amount of the dispersant is less than 1 part by weight, the effect of adding the dispersant is insufficient, and the energy conversion efficiency of the active layer made of the organic solar cell active layer ink may be lowered.
  • the amount of the dispersant exceeds 30 parts by weight, an excessive amount of the dispersant may inhibit the movement of electrons or holes in the active layer made of the organic solar cell active layer ink.
  • the more preferable lower limit of the blending amount of the dispersant with respect to 100 parts by weight of the inorganic semiconductor compound is 2 parts by weight, and the more preferable upper limit is 20 parts by weight.
  • the combination of the organic semiconductor compound, the inorganic semiconductor compound, the organic solvent, and the dispersant is not particularly limited.
  • the organic semiconductor compound is polyparaphenylene vinylene
  • the inorganic semiconductor compound is cadmium sulfide
  • the organic solvent is chlorobenzene.
  • the dispersant is NK-2684 (produced by Hayashibara Biochemical Laboratories, Inc., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group).
  • the organic semiconductor compound is poly (3-hexylthiophene)
  • the inorganic semiconductor compound is zinc oxide
  • the dispersant is D-149 (manufactured by Mitsubishi Paper Industries, Ltd., a skeleton having an aromatic ring and / or a heterocyclic ring) And a compound having one carboxyl group)
  • the organic solvent is preferably chloroform.
  • the method for producing the organic solar cell active layer ink of the first aspect of the present invention is not particularly limited.
  • the organic semiconductor compound, the inorganic semiconductor compound, and the dispersant are mixed with the organic organic compound using an ultrasonic disperser.
  • Examples include a method of dispersing and dissolving in a solvent to obtain an ink.
  • an active layer having high energy conversion efficiency can be stably and easily formed.
  • An organic solar cell having an active layer produced by using the organic solar cell active layer ink of the first aspect of the present invention is also one aspect of the present invention.
  • the organic semiconductor compound and the inorganic semiconductor compound are in a very well dispersed state, and the organic semiconductor compound and the above The area of the bonding interface with the inorganic semiconductor compound is large, and the region active for photocarrier generation is large. Therefore, such an organic solar cell has high energy conversion efficiency.
  • the inorganic semiconductor compound has an average particle diameter and an average particle diameter / average crystallite diameter in the above-described range, when electrons pass through the inorganic semiconductor compound in the active layer, Inhibition of movement hardly occurs, and electrons are smoothly collected on the electrode. Thereby, recombination of electrons and holes is suppressed, and the energy conversion efficiency is further increased.
  • a method for producing an organic solar cell comprising a step of forming an active layer by drying and a step of forming an electrode on the active layer is also one aspect of the present invention.
  • the method for applying the organic solar cell active layer ink of the first aspect of the present invention is not particularly limited, and examples thereof include a printing method such as a spin coating method.
  • a printing method can be employed as a method for forming the active layer. Therefore, by using the organic solar cell active layer ink of the first aspect of the present invention.
  • the active layer can be formed stably and simply, and the formation cost of the active layer can be reduced.
  • the organic solar cell of the second aspect of the present invention has an active layer in which an inorganic semiconductor compound is present in an organic semiconductor compound.
  • the organic semiconductor compound and the inorganic semiconductor compound in the organic solar cell of the second aspect of the present invention the same compounds as those used in the organic solar cell active layer ink of the first aspect of the present invention can be used.
  • the area ratio of the inorganic semiconductor compound in the region from the cathode side surface to the thickness of 20% of the film thickness is 75 to 100% on the cut surface in the thickness direction of the active layer. It is.
  • an organic solar cell 1 includes a cathode 2, an active layer 3, and an anode 4, and the active layer 3 has a structure in which an inorganic semiconductor compound 6 is present in an organic semiconductor compound 5.
  • the area ratio of the inorganic semiconductor compound 6 in the region 3 ′ from the surface of the active layer 3 on the cathode 2 side to the thickness of 20% is 75 to 100%.
  • the area ratio is more preferably 80 to 100%, still more preferably 90 to 100%.
  • the area ratio is, for example, 20% of the film thickness from the surface of the active layer 3 on the cathode 2 side after creating an element mapping image of the cross section of the active layer 3 obtained using FE-TEM (manufactured by Hitachi High-Tech). % Region 3 ′ is determined, and the area ratio of the inorganic semiconductor compound 6 in the region 3 ′ is calculated from the mapped area.
  • the active layer has a preferable lower limit of arithmetic average roughness of the cathode side surface of 2.5 nm and a preferable upper limit of 20 nm.
  • the arithmetic average roughness is within the above range, the diffusion effect at the time of reflection of incident light at the interface with the cathode is improved, and the reflected light can also be effectively used for photoelectric conversion.
  • the arithmetic average roughness is less than 2.5 nm, it may be difficult to obtain a diffusion effect when reflecting incident light.
  • the arithmetic average roughness exceeds 20 nm, sufficient adhesion may not be obtained when forming the cathode.
  • the more preferable lower limit of the arithmetic average roughness is 10 nm, and the more preferable upper limit is 18 nm.
  • the arithmetic average roughness can be measured by a method based on JIS B 0601 (1994).
  • a preferable lower limit of the thickness of the active layer is 25 nm, and a preferable upper limit is 5 ⁇ m. If the thickness of the active layer is less than 25 nm, a sufficient amount of generated photocarriers may not be obtained. If the thickness of the active layer exceeds 5 ⁇ m, the distance until electrons generated on the anode side are collected by the cathode may be long, and electrons and holes may be easily recombined.
  • the glass substrate, the anode, the hole transport layer, the cathode and the like other than the active layer in the organic solar battery of the second invention conventionally known ones can be used.
  • the organic solar cell of the second aspect of the present invention is, for example, a cathode side active layer ink containing 75 to 100 vol% of an inorganic semiconductor compound with respect to the organic semiconductor compound, and 50% or less of the thickness of the active layer from the cathode side surface. It can manufacture by the method which has the process of coating and drying so that it may become thickness of, and forming a cathode side active layer.
  • the thickness of the cathode side active layer is preferably 40% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 10% or less of the thickness of the active layer.
  • Such a method for producing an organic solar cell is also one aspect of the present invention.
  • the anode-side active layer further containing 25 to 75 vol% of the inorganic semiconductor compound with respect to the organic semiconductor compound before or after the step of forming the cathode-side active layer.
  • a step of forming an anode-side active layer by coating and drying the ink for ink may be performed.
  • the ink for the active layer on the anode side and the ink for the active layer on the cathode side containing the inorganic semiconductor compound in addition to the organic semiconductor compound are used to superimpose these inks for the active layer.
  • the other active layer ink After coating, that is, after forming a coating film made of one active layer ink, the other active layer ink can be applied on the coating film, and there are many inorganic semiconductor compounds in the vicinity of the cathode. Can be made.
  • the active layer ink does not contain an inorganic semiconductor compound.
  • the anode side active layer ink and the cathode side active layer ink include an organic solvent and a dispersant used in the organic solar cell active layer ink of the first aspect of the present invention. Etc. may be blended.
  • the method for applying the anode active layer ink and the method for applying the cathode active layer ink are not particularly limited, and examples thereof include a printing method such as a spin coating method.
  • a solvent having solubility in the organic semiconductor compound is applied to the cathode side surface of the active layer to partially remove the organic semiconductor compound and then dried.
  • a step of exposing the inorganic semiconductor compound may be performed.
  • Examples of the solvent having solubility in the organic semiconductor compound include chloroform, chlorobenzene, ortho-dichlorobenzene, toluene, xylene and the like. Moreover, as a method of applying the solvent which has a solubility with respect to the said organic-semiconductor compound, the method etc. which use a spin coat etc. are mentioned, for example.
  • the organic solar cell active layer ink which can form the active layer with high energy conversion efficiency stably and simply, the organic solar cell with high energy conversion efficiency, and the manufacturing method of an organic solar cell Can be provided.
  • Example 1 (Inorganic semiconductor compound particles) Dissolve 1 part by weight of zinc acetate dihydrate in 35 parts by weight of methanol and add dropwise a solution prepared by dissolving 0.5 part by weight of potassium hydroxide in 15 parts by weight of methanol while stirring in a 60 ° C. hot water bath.
  • the ZnO nanoparticle dispersion liquid was obtained by continuing heating and stirring for 5 hours after the completion of dropping. Next, the ZnO nanoparticle dispersion was centrifuged and the supernatant was removed, and the precipitate was collected to obtain ZnO nanoparticles.
  • the obtained ZnO nanoparticles were dispersed in methanol, and the average particle diameter of the dispersion was measured by using a dynamic light scattering analyzer (manufactured by PSS-NICOMP, 380DLS). Further, the obtained ZnO nanoparticles were measured with an X-ray diffractometer (manufactured by Rigaku Corporation: RINT1000), and the half width obtained by removing the instrument-dependent value from the obtained peak was calculated, and the following Scherrer equation was used. The average crystallite size was calculated. The results are shown in the table.
  • the dispersant used has a nitrogen atom, sulfur atom, fluorine atom or carbonyl group at a site other than a polar group, whether it has an electron donating site and an electron accepting site, and a triple bond. Whether or not it has is shown in the table.
  • An ITO film having a thickness of 240 nm was formed as an anode on a glass substrate, and was ultrasonically cleaned for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, and then dried.
  • polyethylene dioxide thiophene: polystyrene sulfonate (PEDOT: PSS) was formed as a hole transport layer to a thickness of 100 nm by spin coating.
  • the organic solar cell active layer ink obtained above was formed on the surface of the hole transport layer to a thickness of 100 nm by spin coating to form an active layer.
  • an aluminum film having a thickness of 100 nm was formed on the surface of the active layer by vacuum deposition as a cathode, thereby obtaining an organic solar cell.
  • the dispersibility of the organic semiconductor compound and the inorganic semiconductor compound was evaluated in three stages ( ⁇ , ⁇ , ⁇ ).
  • the appearance of the aluminum electrode of the obtained organic solar cell is a mirror surface
  • the organic semiconductor compound and inorganic semiconductor compound in the active layer formed under the electrode are dispersed at the nano level. It is shown in the table as dispersibility “ ⁇ ”.
  • the aluminum electrode is white, it means that the dispersion at the nano level is insufficient, and the dispersibility “x” is shown in the table.
  • Example 2 8 parts by weight of poly (3-alkylthiophene) (LUMO level -3.0, 2% by weight of solubility in chlorobenzene) and 24 parts by weight of ZnO nanoparticles obtained in Example 1 (HOMO level- 7.5) and 1 part by weight of NK-2684 (produced by Hayashibara Biochemical Laboratories Co., Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level- 3.2, HOMO level-5.6, 2 wt% solubility in chlorobenzene) was dispersed and dissolved in 800 parts by weight of chlorobenzene to obtain an organic solar cell active layer ink. An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • Example 3 As a dispersant, 1 part by weight of NK-2553 (produced by Hayashibara Biochemical Laboratories, Inc., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.2, HOMO level)
  • NK-2553 produced by Hayashibara Biochemical Laboratories, Inc., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.2, HOMO level
  • the organic solar cell active layer ink was obtained in the same manner as in Example 1, except that chlorobenzene was used as the organic solvent.
  • An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • Example 4 As a dispersant, 1 part by weight of D-131 (manufactured by Mitsubishi Paper Industries, Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.3, HOMO level-5 .6, solubility in chlorobenzene 2% by weight), and an organic solar cell active layer ink was obtained in the same manner as in Example 1 except that chlorobenzene was used as the organic solvent. An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • D-131 manufactured by Mitsubishi Paper Industries, Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.3, HOMO level-5 .6, solubility in chlorobenzene 2% by weight
  • an organic solar cell active layer ink was obtained in the same manner as in Example 1 except that chlorobenzene was
  • Example 5 1 part by weight of a carboxy group-containing methanophthalene (manufactured by Aldrich, a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and one carboxyl group, LUMO level-3.9, HOMO level as a dispersant -6.0, except that a chloroform-pyridine mixed solvent (9: 1 by weight) was used as an organic solvent, except that a chloroform-pyridine mixed solvent (9: 1 by weight) was used.
  • a chloroform-pyridine mixed solvent (9: 1 by weight) was used as an organic solvent
  • a chloroform-pyridine mixed solvent (9: 1 by weight) was used.
  • an organic solar cell active layer ink was obtained.
  • An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • Example 6 1 part by weight of C 60 Pyrrolidine tris-acid as a dispersant (manufactured by Aldrich, a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and three carboxyl groups, LUMO level-3.9, HOMO level -6.0, except that a chloroform-pyridine mixed solvent (9: 1 by weight) was used as an organic solvent, except that a chloroform-pyridine mixed solvent (9: 1 by weight) was used.
  • an organic solar cell active layer ink was obtained.
  • An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • Example 7 ZnO nanoparticles were obtained in the same manner as in Example 1 except that the temperature of the hot water bath was 35 ° C. and the reaction time was changed to 72 hours in the process of forming ZnO nanoparticles.
  • An organic solar cell was obtained in the same manner as in Example 1 except that these ZnO nanoparticles were used.
  • Example 8 ZnO nanoparticles were obtained in the same manner as in Example 1 except that the hot water bath was not used in the ZnO nanoparticle formation process and the reaction time was changed to 96 hours at room temperature (25 ° C.). An organic solar cell was obtained in the same manner as in Example 1 except that these ZnO nanoparticles were used.
  • Comparative Example 2 2 parts by weight of HKX-2587 as a dispersant (produced by Hayashibara Biochemical Laboratories Co., Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and a carboxyl group bonded to an asymmetric position of the skeleton, LUMO level
  • An organic solar cell active layer ink was obtained in the same manner as in Example 1 except that -3.1, HOMO level -5.3, and 0.5 wt% solubility in chloroform were used.
  • An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • Example 3 2 parts by weight of MK-2 (manufactured by Soken Chemical Co., Ltd., a compound having a skeleton having an aromatic ring and / or a heterocyclic ring and a carboxyl group bonded to an asymmetric position of the skeleton, LUMO level-2.
  • the organic solar cell active layer ink was obtained in the same manner as in Example 1, except that (8, HOMO level-5.1, solubility in chloroform 3 wt%) was used.
  • An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • Comparative Example 4 2 parts by weight of a polyalkoxythiophene derivative (manufactured by Aldrich, a compound having a polythiophene skeleton and an alkoxy group bonded to a symmetrical position of the skeleton, LUMO level-3.1, HOMO level-5.
  • Organic solar cell active layer ink was obtained in the same manner as in Example 1 except that 0, 2% by weight of solubility in chloroform) was used.
  • An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • Example 5 As a dispersant, 2 parts by weight of a silicon phthalocyanine compound (manufactured by Aldrich, non-polar group compound, LUMO level-3.5, HOMO level-5.0, solubility in chloroform 2% by weight) is used. An organic solar cell active layer ink was obtained in the same manner as in Example 1 except that. An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • a silicon phthalocyanine compound manufactured by Aldrich, non-polar group compound, LUMO level-3.5, HOMO level-5.0, solubility in chloroform 2% by weight
  • Example 7 As a dispersant, 2 parts by weight of N-719 (ruthenium dye manufactured by Aldrich, a compound having a carboxyl group bonded to a symmetrical position of the dye skeleton, LUMO level-4.0, HOMO level-5.6, chloroform- Example 1 except that 800 parts by weight of a chloroform-pyridine mixed solvent (9: 1 by weight) and a pyridine mixed solvent (9: 1 by weight) were used. Thus, an organic solar cell active layer ink was obtained. An organic solar cell was obtained in the same manner as in Example 1 except that this organic solar cell active layer ink was used.
  • N-719 ruthenium dye manufactured by Aldrich, a compound having a carboxyl group bonded to a symmetrical position of the dye skeleton, LUMO level-4.0, HOMO level-5.6
  • chloroform- Example 1 except that 800 parts by weight of a chloroform-pyridine mixed solvent (9: 1 by weight) and a pyridine mixed solvent (9: 1 by weight)
  • ⁇ Evaluation 1> (Area ratio measurement of inorganic semiconductor compounds) An element mapping image of zinc was obtained by observing a cross section of the organic solar cell obtained using FE-TEM (manufactured by Hitachi High-Tech). Using the obtained element mapping image, the area ratio of the inorganic semiconductor compound in the region from the cathode side surface to the thickness of 20% of the film thickness was calculated. In addition, the area ratio of zinc oxide can be calculated
  • Example 9 Inorganic semiconductor compound particles
  • ZnO nanoparticles were obtained.
  • the obtained anode side active layer ink was applied on the hole transport layer to a thickness of 80 nm by a spin coat method and dried to form an anode side active layer. Further, 28.5 parts by weight of the obtained ZnO nanoparticles and 1 part by weight of poly (3-alkylthiophene) were dissolved and dispersed in a mixed solvent of 1373.2 parts by weight of chloroform and 72.3 parts by weight of methanol, whereby a cathode A side active layer ink was prepared.
  • the obtained ink for cathode-side active layer was formed on the anode-side active layer to a thickness of 20 nm by spin coating, and dried to form an active layer composed of an anode-side active layer and a cathode-side active layer. Furthermore, an organic solar cell was fabricated by forming aluminum with a thickness of 100 nm by vacuum deposition on the surface of the active layer as a cathode.
  • Example 10 Except that the ink for cathode side active layer was prepared by dissolving and dispersing only 1.00 parts by weight of the obtained ZnO nanoparticles in a mixed solvent of 46.6 parts by weight of chloroform and 2.45 parts by weight of methanol. In the same manner as in Example 9, an organic solar cell was obtained.
  • Example 11 By dissolving and dispersing 15.0 parts by weight of the obtained ZnO nanoparticles and 1.00 parts by weight of poly (3-alkylthiophene) in a mixed solvent of 744.8 parts by weight of chloroform and 39.2 parts by weight of methanol, An organic solar cell was obtained in the same manner as in Example 9 except that the cathode side active layer ink was prepared.
  • Example 12 An organic solar cell was obtained in the same manner as in Example 9 except that the dispersant was not added to the anode side active layer ink.
  • Example 13 Except that the ink for cathode side active layer was prepared by dissolving and dispersing only 1.00 parts by weight of the obtained ZnO nanoparticles in a mixed solvent of 46.6 parts by weight of chloroform and 2.45 parts by weight of methanol. In the same manner as in Example 12, an organic solar cell was obtained.
  • Example 14 Inorganic semiconductor compound particles
  • ZnO nanoparticles were obtained.
  • An ITO film having a thickness of 240 nm was formed as a cathode on a glass substrate, and ultrasonic cleaning was performed for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, followed by drying.
  • a titanium oxide thin film having a thickness of 10 nm was formed on the surface of the ITO film by spin coating an ethanol solution of titanium isopropoxide as an electron transport layer.
  • a cathode side active layer ink was prepared.
  • the obtained cathode side active layer ink was formed on the surface of the electron transport layer to a thickness of 20 nm by spin coating and dried to form a cathode side active layer.
  • the obtained anode side active layer ink was applied on the cathode side active layer to a thickness of 80 nm by spin coating, and dried to form an active layer composed of a cathode side active layer and an anode side active layer. Furthermore, an organic solar cell was manufactured by forming molybdenum oxide with a thickness of 10 nm and then silver with a thickness of 100 nm by vacuum deposition on the surface of the active layer as an anode.
  • An ITO film having a thickness of 240 nm was formed as a cathode on a glass substrate, and ultrasonic cleaning was performed for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, followed by drying.
  • a titanium oxide thin film having a thickness of 10 nm was formed on the surface of the ITO film by spin coating an ethanol solution of titanium isopropoxide as an electron transport layer.
  • the organic solar cell active layer ink obtained in Example 1 was applied on the surface of the electron transport layer to a thickness of 100 nm by a spin coating method, and dried to form an active layer.
  • an organic solar cell was manufactured by forming molybdenum oxide with a thickness of 10 nm and then silver with a thickness of 100 nm by vacuum deposition on the surface of the active layer as an anode.
  • the organic solar cell active layer ink which can form the active layer with high energy conversion efficiency stably and simply, the organic solar cell with high energy conversion efficiency, and the manufacturing method of an organic solar cell Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

第1の本発明は、有機半導体化合物、無機半導体化合物、有機溶媒及び分散剤を含有し、前記分散剤は、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合した極性基とを有する化合物であり、前記分散剤は、以下の(1)~(3)を全て満たす有機太陽電池活性層用インクである。(1)LUMO準位が、前記有機半導体化合物のLUMO準位よりも低い。(2)前記有機溶媒への溶解性が、前記有機半導体化合物の前記有機溶媒への溶解性と同じか又はそれ以上である。(3)HOMO準位が、前記無機半導体化合物のHOMO準位よりも高い。第2の本発明は、有機半導体化合物中に、無機半導体化合物が存在する活性層を有する有機太陽電池であって、前記活性層の厚み方向の切断面において、陰極側表面から膜厚の20%の厚みまでの領域内の前記無機半導体化合物の面積比率が75~100%である有機太陽電池である。

Description

有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法
本発明は、エネルギー変換効率の高い活性層を、安定的かつ簡便に形成することができる有機太陽電池活性層用インク、エネルギー変換効率の高い有機太陽電池、及び、有機太陽電池の製造方法に関する。
従来から、有機半導体層と無機半導体層とを積層し、この積層体の両側に電極を設けた有機太陽電池が開発されている。このような構造の有機太陽電池では、光励起により有機半導体層で光キャリア(電子-ホール対)が生成し、電子が無機半導体層を、ホールが有機半導体層を移動することで、電界が生じる。しかしながら、有機半導体層のうち、光キャリア生成に活性な領域は無機半導体層との接合界面付近の数十nm程度と非常に狭く、この活性な領域以外の有機半導体層は光キャリア生成に寄与できないため、太陽電池として、エネルギー変換効率が低くなってしまうという欠点があった。
この問題を解決する目的で、有機半導体と、無機半導体とを混合して複合化した複合膜を用いることが検討されている。
例えば、特許文献1には、有機半導体と無機半導体を共蒸着によって複合化した共蒸着薄膜と、この薄膜を挟んでその両面に設けられ、この複合薄膜に内蔵電界を与えるための半導体もしくは金属、又はそれら双方からなる電極部とを備えた有機太陽電池が記載されている。特許文献1には、同文献に記載の有機・無機複合薄膜においては、pn接合(有機/無機半導体接合)が膜全体に張り巡らされた構造のため、膜全体が光キャリヤ生成に対して活性に働き、膜で吸収された光すべてがキャリア生成に寄与するため、大きな光電流が得られる効果がある旨が記載されている。
また、有機半導体に対して無機半導体を密充填させて、エネルギー変換効率を向上させる試みもなされている。
例えば、特許文献2には、有機電子供与体と化合物半導体結晶とを含有する活性層を二つの電極の間に設けた有機太陽電池において、前記活性層は有機電子供与体と化合物半導体結晶とを混合して分散してなり、且つ、化合物半導体結晶が平均粒径が異なる二種類のロッド状の結晶を含み、この二種類のロッド状結晶の平均粒径及び含有比率を所定範囲内とする有機太陽電池が記載されている。特許文献2には、活性層中における化合物半導体結晶の充填率を増大することができ、これにより変換効率の高い太陽電池を得ることができる旨が記載されている。
しかしながら、特許文献1又は2に記載の有機太陽電池であっても未だエネルギー変換効率はかなり低く、実用化に耐えうる有機太陽電池の開発のためには更なるエネルギー変換効率の改善が不可欠である。
特開2002-100793号公報 特許第4120362号公報
本発明は、エネルギー変換効率の高い活性層を、安定的かつ簡便に形成することができる有機太陽電池活性層用インク、エネルギー変換効率の高い有機太陽電池、及び、有機太陽電池の製造方法を提供することを目的とする。
第1の本発明は、有機半導体化合物、無機半導体化合物、有機溶媒及び分散剤を含有し、前記分散剤は、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合した極性基とを有する化合物であり、前記分散剤は、以下の(1)~(3)を全て満たす有機太陽電池活性層用インクである。
(1)LUMO準位が、前記有機半導体化合物のLUMO準位よりも低い。
(2)前記有機溶媒への溶解性が、前記有機半導体化合物の前記有機溶媒への溶解性と同じか又はそれ以上である。
(3)HOMO準位が、前記無機半導体化合物のHOMO準位よりも高い。
第2の本発明は、有機半導体化合物中に、無機半導体化合物が存在する活性層を有する有機太陽電池であって、前記活性層の厚み方向の切断面において、陰極側表面から膜厚の20%の厚みまでの領域内の前記無機半導体化合物の面積比率が75~100%である有機太陽電池である。
以下、本発明を詳述する。
本発明者は、有機半導体化合物、無機半導体化合物及び有機溶媒を含有する有機太陽電池活性層用インクに対して特定の要件を満たす分散剤を添加することにより、エネルギー変換効率の高い活性層を、安定的かつ簡便に形成することができる有機太陽電池活性層用インクが得られることを見出し、第1の本発明を完成させるに至った。
また、本発明者は、有機半導体化合物中に、無機半導体化合物が存在する活性層の厚み方向の切断面において、陰極側表面から膜厚の20%の厚みまでの領域内の無機半導体化合物の面積比率を所定範囲内とすることで、電子の通路が形成されやすくなり、その結果、光電流値が増加して、エネルギー変換効率を大幅に向上できることを見出し、第2の本発明を完成させるに至った。
まず、第1の本発明の有機太陽電池活性層用インクについて説明する。
第1の本発明の有機太陽電池活性層用インクは、有機半導体化合物を含有する。
上記有機半導体化合物は特に限定されず、例えば、ポリ(3-アルキルチオフェン)、ポリパラフェニレンビニレン誘導体、ポリビニルカルバゾール誘導体、ポリアニリン誘導体、ポリアセチレン誘導体等の導電性高分子、フタロシアニン誘導体、ナフタロシアニン誘導体、ペンタセン誘導体、ポルフィリン誘導体等が挙げられる。なかでも、ホール移動度の高い活性層を形成できることから、導電性高分子が好ましく、ポリ(3-アルキルチオフェン)がより好ましい。
第1の本発明の有機太陽電池活性層用インクは、無機半導体化合物を含有する。
上記無機半導体化合物は特に限定されず、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化ガリウム、酸化アンチモン、酸化タングステン、酸化ケイ素、酸化アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、硫化亜鉛、硫化スズ、硫化アンチモン、硫化ビスマス、硫化インジウム、硫化シリコン、酸化バナジウム等が挙げられる。また、上記無機半導体化合物として、例えば、InP、InAs、GaP、GaAs等の周期表13族元素と15族元素との化合物、CdSe、CdTe、ZnS等の周期表12族元素と16族元素との化合物等も挙げられる。これらの無機半導体化合物は、上記のような成分が2種類以上混在した化合物でもよく、また主成分とは異なる元素がドープされた化合物でもよい。これらの無機半導体化合物は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、電子移動度の高い活性層を形成できることから、酸化亜鉛、酸化スズ、酸化インジウム、酸化アンチモン、硫化亜鉛、硫化スズ、硫化アンチモン、硫化ビスマスが好ましい。
上記無機半導体化合物の形状は特に限定されず、例えば、ロッド状、球状等が挙げられる。なかでも、球状が好ましい。
上記無機半導体化合物は、球状である場合、平均粒子径が1~50nmであり、かつ、平均粒子径/平均結晶子径が1~3であることが好ましい。上記無機半導体化合物がこのような平均粒子径及び平均粒子径/平均結晶子径を有することにより、有機太陽電池活性層用インクからなる活性層において、上記無機半導体化合物を電子が通過する際に、結晶粒界による移動の阻害が起こりにくく、電極への電子の捕集がスムーズに行われる。これにより、電子とホールの再結合が抑制されて、エネルギー変換効率がより一層高まる。
上記平均粒子径が1nm未満であると、有機太陽電池活性層用インクからなる活性層において、上記無機半導体化合物の粒子同士の粒界数が多くなり、電子移動の妨げが増すことがある。上記平均粒子径が50nmを超えると、有機太陽電池活性層用インクからなる活性層において、上記有機半導体化合物で生成した光キャリアが効率良く上記無機半導体化合物との接合界面にまで伝達されないことがある。上記無機半導体化合物の平均粒子径のより好ましい下限は2nm、更に好ましい下限は3nmであり、より好ましい上限は30nm、更に好ましい上限は25nm、特に好ましい上限は20nmである。
本明細書中、平均粒子径は、例えば、動的光散乱解析装置(PSS-NICOMP社製、380DLS)を用いて測定することができる。
上記平均粒子径/平均結晶子径が3を超えると、粒子内での結晶粒界が電子移動の妨げとなり、電子とホールが再結合しやすくなることがある。上記無機半導体化合物の平均粒子径/平均結晶子径のより好ましい上限は2.5である。
上記無機半導体化合物は、平均結晶子径の好ましい下限が1nmである。上記平均結晶子径が1nm未満であると、粒子内での結晶粒界が電子移動の妨げとなり、電子とホールが再結合しやすくなる。
本明細書中、結晶子径とは、X線回折法におけるScherrerの方法によって算出される結晶子のサイズを意味する。また、平均結晶子径は、例えば、X線回折装置(リガク社製、RINT1000)を用いて測定することができる。
上記無機半導体化合物を粒子化する方法として、例えば、酸化亜鉛からなる無機半導体化合物粒子を製造する場合は、有機溶剤に亜鉛金属塩を添加した後、湯浴中で攪拌しながら、アルカリ化合物を添加、撹拌することにより、無機半導体化合物粒子分散液を得る方法等を用いることができる。なお、上記方法を用いる場合は、湯浴の温度を変更することにより、平均粒子径/平均結晶子径の範囲を調整することができる。
また、上記無機半導体化合物を粒子化する方法として、噴霧火炎熱分解法、CVD法、PVD法、粉砕法等の乾式法や、還元法、マイクロエマルション法、水熱反応法、ゾルゲル法等の湿式法等が適用可能である。
上記有機半導体化合物と上記無機半導体化合物の配合比は特に限定されないが、上記有機半導体化合物100重量部に対する上記無機半導体化合物の配合量の好ましい下限が50重量部、好ましい上限が1000重量部である。上記無機半導体化合物の配合量が50重量部未満であると、有機太陽電池活性層用インクからなる活性層において電子が充分に伝達されないことがある。上記無機半導体化合物の配合量が1000重量部を超えると、有機太陽電池活性層用インクからなる活性層においてホールが充分に伝達されないことがある。上記有機半導体化合物100重量部に対する上記無機半導体化合物の配合量のより好ましい下限は100重量部、より好ましい上限は500重量部である。
第1の本発明の有機太陽電池活性層用インクは、有機溶媒を含有する。
上記有機溶媒は特に限定されないが、クロロベンゼン、クロロホルム、メチルエチルケトン、トルエン、酢酸エチル、エタノール、キシレン等が好ましい。
上記有機溶媒の配合量は特に限定されないが、上記有機半導体化合物1重量部に対する好ましい下限が20重量部、好ましい上限が1000重量部である。上記有機溶媒の配合量が20重量部未満であると、有機太陽電池活性層用インクの粘度が高すぎ、安定的かつ簡便に活性層を形成することができないことがある。上記有機溶媒の配合量が1000重量部を超えると、有機太陽電池活性層用インクの粘度が低すぎ、充分な厚みを有する活性層を形成することができないことがある。上記有機半導体化合物1重量部に対する上記有機溶媒の配合量のより好ましい下限は50重量部、より好ましい上限は500重量部である。
第1の本発明の有機太陽電池活性層用インクは、分散剤を含有する。
上記分散剤は、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合した極性基とを有する化合物である。上記極性基として、例えば、カルボキシル基、アミノ基、シアノ基、イソシアネート基、イソチオシアネート基等の親水性基等が挙げられる。なかでも、カルボキシル基が好ましい。
なお、本明細書中、骨格の非対称な位置に結合した極性基を有するとは、分子内に極性基を1つだけ有するか、又は、分子内に極性基を2つ以上有するが、該2つ以上の極性基は、構造式上の対称な位置関係にはないことを意味する。ここで、対称とは、2つ以上の極性基の重心が分子の中心にあることを意味している。
上記分散剤は、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合した極性基とを有する化合物であることにより、第1の本発明の有機太陽電池活性層用インクにおいて上記有機半導体化合物と上記無機半導体化合物との分散性を高めるための分散剤として作用することができる。そのため、第1の本発明の有機太陽電池活性層用インクからなる活性層においては、上記有機半導体化合物と上記無機半導体化合物とが極めて良好に分散した状態にあり、上記有機半導体化合物と上記無機半導体化合物との接合界面の面積が大きく、光キャリア生成に対して活性な領域が大きい。従って、第1の本発明の有機太陽電池活性層用インクを用いることにより、エネルギー変換効率の高い活性層を形成することができる。
上記分散剤が芳香環及び/又は複素環を有する骨格を有さないか、極性基を有さないか、或いは、極性基が上記芳香環及び/又は複素環を有する骨格の対称な位置に結合している場合には、有機太陽電池活性層用インクにおける上記有機半導体化合物と上記無機半導体化合物との分散性が低下してしまう。
また、第1の本発明の有機太陽電池活性層用インクを用いると、スピンコート法等の印刷法により活性層を形成することができる。上記有機半導体化合物と上記無機半導体化合物との分散性が高いことに加えて、活性層の形成方法として印刷法を採用できることから、第1の本発明の有機太陽電池活性層用インクを用いることにより、活性層を安定的かつ簡便に形成することができ、活性層の形成コストを削減することができる。
上記分散剤は、極性基以外の部位に窒素原子、硫黄原子、フッ素原子又はカルボニル基を有する化合物であることが好ましい。上記分散剤がこのような化合物であることにより、有機太陽電池活性層用インクからなる活性層において、無機半導体化合物へ電子が移動しやすくなり、エネルギー変換効率がより一層高まる。なかでも、上記分散剤は、極性基以外の部位にカルボニル基を有する化合物であることがより好ましい。
上記分散剤は、電子供与性部位と電子受容性部位とを有する化合物であることが好ましい。上記分散剤が電子供与性部位と電子受容性部位とを有する化合物であることにより、有機太陽電池活性層用インクからなる活性層において、有機半導体化合物から無機半導体化合物へ電子が移動しやすくなり、エネルギー変換効率がより一層高まる。
本明細書中、電子供与性部位と電子受容性部位とは、それぞれに対して電子供与性をもつ部位と電子受容性(電子吸引性)をもつ部位とを意味する。即ち、電子供与性部位は、電子受容性部位に対して相対的にHOMO、LUMO準位がともに高い値を有する。逆に、電子受容性部位は、電子供与性部位に対して相対的にHOMO、LUMO準位がともに低い値を有する。
上記電子供与性部位と上記電子受容性部位とは、互いに共役している、即ち、上記電子供与性部位と上記電子受容性部位とが共役結合を介して結合していることが好ましい。また、上記電子供与性部位と上記電子受容性部位とは隣接していてもよく、炭素数2以上の分岐していてもよいアルキル基、アリーレン基等を介在していてもよい。
上記電子供与性部位として、具体的には例えば、下記式(a-1)~(a-16)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
式(a-1)~(a-16)中、Rは、水素原子又は官能基を表す。式(a-1)~(a-16)中のRで表される官能基として、例えば、アルキル基、アリール基、アルコキシ基、アルケニル基、アルキニル基、ヘテロアリール基等が挙げられる。また、式(a-1)~(a-16)中のRで表される官能基は、電子供与性部位又は電子受容性部位であってもよい。
上記電子受容性部位として、具体的には例えば、下記式(b-1)~(b-14)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
式(b-1)~(b-14)中、Rは、水素原子又は官能基を表す。式(b-1)~(b-14)中のRで表される官能基として、例えば、アルキル基、アリール基、アルコキシ基、アルケニル基、アルキニル基、ヘテロアリール基等が挙げられる。また、式(b-1)~(b-14)中のRで表される官能基は、電子供与性部位又は電子受容性部位であってもよく、上記の極性基であってもよい。
なお、上記分散剤が上記電子供与性部位と上記電子受容性部位とを有する化合物である場合、上記極性基は上記電子受容性部位に結合していることが好ましい。
また、上記分散剤は、エネルギー損失を起こす場合があることから、三重結合を有さない化合物であることが好ましい。
上記分散剤として、例えば、カルボキシル基含有インドリン化合物、カルボキシル基含有オリゴチオフェン、カルボキシル基含有クマリン化合物等が挙げられる。なかでも、カルボキシル基含有インドリン化合物、カルボキシル基含有オリゴチオフェンが好ましい。
上記分散剤として、具体的には例えば、下記式(1)~(8)で表される構造を有する化合物等が挙げられる。なかでも、下記式(1)で表される構造を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
式(1)~(8)中、Rは、水素原子又は官能基を表す。式(1)~(8)中のRで表される官能基として、例えば、アルキル基、アリール基、アルコキシ基、アルケニル基、アルキニル基、ヘテロアリール基等が挙げられる。
上記分散剤の市販品として、例えば、D-149、D-131(いずれも、三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物)、NK-2684、NK-2553(いずれも、林原生物化学研究所社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物)、カルボキシ基含有メタノフターレン(アルドリッチ社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物)、C60 Pyrrolidine tris-acid(アルドリッチ社製、芳香環及び/又は複素環を有する骨格と、3つのカルボキシル基とを有する化合物)等が挙げられる。
上記分散剤は、以下の(1)~(3)を全て満たす。
(1)LUMO準位が、前記有機半導体化合物のLUMO準位よりも低い。
(2)前記有機溶媒への溶解性が、前記有機半導体化合物の前記有機溶媒への溶解性と同じか又はそれ以上である。
(3)HOMO準位が、前記無機半導体化合物のHOMO準位よりも高い。
上記分散剤は、(1)LUMO準位が、前記有機半導体化合物のLUMO準位よりも低い。
上記分散剤のLUMO準位が、上記有機半導体化合物のLUMO準位以上であると、有機太陽電池活性層用インクからなる活性層において、上記有機半導体化合物中に存在する電子が上記無機半導体化合物に伝達されないため、太陽電池としての性能が悪化してしまう。上記分散剤のLUMO準位は特に限定されず、上記無機半導体化合物のLUMO準位に合わせて適宜選択すればよいが、上記(1)を満たしやすいことから、LUMO準位が-4.0~-3.0であることが好ましい。
本明細書中、LUMO準位とは、イオン化ポテンシャル測定装置によりHOMO準位を測定し、紫外可視光吸収スペクトルより算出したバンドギャップをHOMO準位の値から差し引いた値を意味する。
上記分散剤は、(2)前記有機溶媒への溶解性が、前記有機半導体化合物の前記有機溶媒への溶解性と同じか又はそれ以上である。本明細書中、有機溶媒への溶解性とは、23℃において有機溶媒100mLに対して溶解しうる溶質量を意味する。
23℃において上記有機溶媒100mLに対して溶解しうる分散剤の量が、23℃において上記有機溶媒100mLに対して溶解しうる有機半導体化合物の量と同じか又はそれ以上である場合には、第1の本発明の有機太陽電池活性層用インクを用いて活性層を形成する際に、上記有機半導体化合物より先に全ての分散剤が析出してしまうという問題を防ぐことができる。上記有機半導体化合物より先に全ての分散剤が析出してしまうと、上記分散剤の作用がなくなり、上記有機半導体化合物と上記無機半導体化合物とが極めて良好に分散した活性層を形成することが困難となる。
上記分散剤の上記有機溶媒への溶解性は特に限定されず、使用する有機溶媒に合わせて選択される。
上記分散剤は、(3)HOMO準位が、前記無機半導体化合物のHOMO準位よりも高い。
上記分散剤のHOMO準位が、上記無機半導体化合物のHOMO準位以下であると、有機太陽電池活性層用インクからなる活性層において、上記分散剤中に存在するホールが上記無機半導体化合物に伝達され、逆ホール移動が発生するため、太陽電池としての性能が悪化してしまう。上記分散剤のHOMO準位は特に限定されず、上記有機半導体化合物のHOMO準位に合わせて適宜選択すればよいが、上記(3)を満たしやすいことから、HOMO準位が-6.0~-5.0であることが好ましい。
本明細書中、HOMO準位とは、イオン化ポテンシャル測定装置により測定された値を意味する。
上記分散剤の配合量は特に限定されないが、上記無機半導体化合物100重量部に対する好ましい下限が1重量部、好ましい上限が30重量部である。上記分散剤の配合量が1重量部未満であると、上記分散剤を添加する効果が不充分となり、有機太陽電池活性層用インクからなる活性層のエネルギー変換効率が低下することがある。上記分散剤の配合量が30重量部を超えると、有機太陽電池活性層用インクからなる活性層において、過剰量の分散剤が電子又はホールの移動を阻害することがある。
上記無機半導体化合物100重量部に対する上記分散剤の配合量のより好ましい下限は2重量部、より好ましい上限は20重量部である。
上記有機半導体化合物、無機半導体化合物、有機溶媒及び分散剤の組み合わせは特に限定されないが、有機半導体化合物がポリパラフェニレンビニレンである場合には、無機半導体化合物が硫化カドミウムであり、有機溶媒がクロロベンゼンであり、分散剤がNK-2684(林原生物化学研究所社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物)であることが好ましい。また、有機半導体化合物がポリ(3-ヘキシルチオフェン)である場合には、無機半導体化合物が酸化亜鉛であり、分散剤がD-149(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物)であり、有機溶媒がクロロホルムであることが好ましい。
第1の本発明の有機太陽電池活性層用インクを製造する方法は特に限定されず、例えば、上記有機半導体化合物、上記無機半導体化合物及び上記分散剤を、超音波分散機等を用いて上記有機溶媒に分散及び溶解させて、インクとする方法等が挙げられる。
第1の本発明の有機太陽電池活性層用インクを用いることにより、エネルギー変換効率の高い活性層を、安定的かつ簡便に形成することができる。
第1の本発明の有機太陽電池活性層用インクを用いて製造される活性層を有する有機太陽電池もまた、本発明の1つである。
第1の本発明の有機太陽電池活性層用インクを用いて製造される活性層においては、上記有機半導体化合物と上記無機半導体化合物とが極めて良好に分散した状態にあり、上記有機半導体化合物と上記無機半導体化合物との接合界面の面積が大きく、光キャリア生成に対して活性な領域が大きい。従って、このような有機太陽電池は、エネルギー変換効率が高い。また、上記無機半導体化合物が上述した範囲の平均粒子径及び平均粒子径/平均結晶子径を有する場合には、上記活性層において、上記無機半導体化合物を電子が通過する際に、結晶粒界による移動の阻害が起こりにくく、電極への電子の捕集がスムーズに行われる。これにより、電子とホールの再結合が抑制されて、エネルギー変換効率がより一層高まる。
第1の本発明の有機太陽電池活性層用インクを用いた有機太陽電池の製造方法であって、電極を有する基板上に、第1の本発明の有機太陽電池活性層用インクを塗工、乾燥させて活性層を形成する工程と、前記活性層上に、電極を形成する工程とを有する有機太陽電池の製造方法もまた、本発明の1つである。
第1の本発明の有機太陽電池活性層用インクを塗工する方法は特に限定されないが、例えば、スピンコート法等の印刷法が挙げられる。上記有機半導体化合物と上記無機半導体化合物との分散性が高いことに加えて、活性層の形成方法として印刷法を採用できることから、第1の本発明の有機太陽電池活性層用インクを用いることにより、活性層を安定的かつ簡便に形成することができ、活性層の形成コストを削減することができる。
次に、第2の本発明の有機太陽電池について説明する。
第2の本発明の有機太陽電池は、有機半導体化合物中に、無機半導体化合物が存在する活性層を有する。第2の本発明の有機太陽電池における有機半導体化合物及び無機半導体化合物としては、第1の本発明の有機太陽電池活性層用インクに用いられる化合物と同様の化合物を用いることができる。
第2の本発明の有機太陽電池では、上記活性層の厚み方向の切断面において、陰極側表面から膜厚の20%の厚みまでの領域内の上記無機半導体化合物の面積比率が75~100%である。
第2の本発明の有機太陽電池の一例を図1に示す。図1において、有機太陽電池1は、陰極2、活性層3、陽極4とからなり、活性層3は、有機半導体化合物5中に、無機半導体化合物6が存在する構造となっている。
図1に示す有機太陽電池においては、活性層3の陰極2側表面から膜厚の20%の厚みまでの領域3’内の無機半導体化合物6の面積比率が75~100%である。このように無機半導体化合物6が陰極2の近傍に多く存在することで、電子の通路(矢印)が形成されやすくなり、その結果、光電流値が増加して、エネルギー変換効率が高まる。上記面積比率は、80~100%であることがより好ましく、90~100%であることが更に好ましい。
なお、上記面積比率は、例えば、FE-TEM(日立ハイテク社製)を用いて得られる活性層3の断面の元素マッピング像を作成した後、活性層3の陰極2側表面から膜厚の20%の厚みまでの領域3’を決定し、更に、領域3’内における無機半導体化合物6の面積比率をマッピングされた面積から算出することにより求めることができる。
第2の本発明の有機太陽電池において、上記活性層は、陰極側表面の算術平均粗さの好ましい下限が2.5nm、好ましい上限が20nmである。上記算術平均粗さが上記範囲内であることで、陰極との界面での入射光の反射時における拡散効果が向上し、反射光についても、光電変換に有効に用いることができる。
上記算術平均粗さが2.5nm未満であると、入射光の反射時における拡散効果が得られにくいことがある。上記算術平均粗さが20nmを超えると、陰極を形成する際に充分な密着性が得られないことがある。上記算術平均粗さのより好ましい下限は10nm、より好ましい上限は18nmである。
なお、上記算術平均粗さは、JIS B 0601(1994)に準拠した方法で測定することができる。
第2の本発明の有機太陽電池において、上記活性層の厚みの好ましい下限は25nm、好ましい上限は5μmである。上記活性層の厚みが25nm未満であると、充分な光キャリア発生量を得ることができないことがある。上記活性層の厚みが5μmを超えると、陽極側で発生した電子が陰極に捕集されるまでの距離が長く電子とホールが再結合しやすくなることがある。
第2の本発明の有機太陽電池における活性層以外のガラス基板、陽極、ホール輸送層、陰極等については、従来公知のものを用いることができる。
第2の本発明の有機太陽電池は、例えば、有機半導体化合物に対して無機半導体化合物を75~100vol%含有する陰極側活性層用インクを、陰極側表面から活性層の膜厚の50%以下の厚みとなるように塗工、乾燥させて陰極側活性層を形成する工程を有する方法によって製造することができる。上記陰極側活性層の膜厚としては、活性層の膜厚の好ましくは40%以下、より好ましくは30%以下、更に好ましくは20%以下、特に好ましくは10%以下である。このような有機太陽電池の製造方法もまた、本発明の1つである。
第2の本発明の有機太陽電池を製造する方法では、更に、陰極側活性層を形成する工程の前又は後に、有機半導体化合物に対して無機半導体化合物を25~75vol%含有する陽極側活性層用インクを塗工、乾燥させて陽極側活性層を形成する工程を行ってもよい。
このような有機太陽電池の製造方法においては、有機半導体化合物に加えて無機半導体化合物を含有する陽極側活性層用インク及び陰極側活性層用インクを用いることで、これらの活性層用インクを重ね塗りすること、即ち、一方の活性層用インクからなる塗膜を形成した後、該塗膜上に他方の活性層用インクを塗工することができ、無機半導体化合物を陰極の近傍に多く存在させることかできる。
これに対し、例えば、有機P型半導体と有機N型半導体とを有する有機太陽電池を製造する場合には、活性層用インクは無機半導体化合物を含有しないことから、一方の活性層用インクからなる塗膜上に他方の活性層用インクを塗工しようとすると、下層の塗膜が有機溶媒により溶出してしまい、重ね塗りを良好に行うことが困難である。
上記陽極側活性層用インク及び上記陰極側活性層用インクには、有機半導体化合物及び無機半導体化合物に加えて、第1の本発明の有機太陽電池活性層用インクに用いられる有機溶媒、分散剤等を配合してもよい。
上記陽極側活性層用インクを塗工する方法、及び、上記陰極側活性層用インクを塗工する方法は特に限定されないが、例えば、スピンコート法等の印刷法が挙げられる。
第2の本発明の有機太陽電池を製造する方法では、有機半導体化合物に対して溶解性を有する溶媒を活性層の陰極側表面に塗工し有機半導体化合物を一部除去した後、乾燥させて無機半導体化合物を露出させる工程を行ってもよい。
このような工程を行うことで、活性層の陰極側表面の算術平均粗さを調整することができ、その結果、陰極との界面での入射光の反射時における拡散効果が向上し、反射光についても、光電変換に有効に用いることができる。
上記有機半導体化合物に対して溶解性を有する溶媒としては、例えば、クロロホルム、クロロベンゼン、オルト-ジクロロベンゼン、トルエン、キシレン等が挙げられる。
また、上記有機半導体化合物に対して溶解性を有する溶媒を塗工する方法としては、例えば、スピンコートを用いる方法等が挙げられる。
本発明によれば、エネルギー変換効率の高い活性層を、安定的かつ簡便に形成することができる有機太陽電池活性層用インク、エネルギー変換効率の高い有機太陽電池、及び、有機太陽電池の製造方法を提供することができる。
第2の本発明の有機太陽電池の一例を示す断面図である。
以下に実施例を掲げて第1の本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
(無機半導体化合物の粒子化)
酢酸亜鉛二水和物1重量部をメタノール35重量部に溶解し、60℃の湯浴中にて攪拌しながら、水酸化カリウム0.5重量部をメタノール15重量部に溶解した液を滴下し、滴下終了後5時間加熱攪拌を続けることにより、ZnOナノ粒子分散液を得た。次いで、ZnOナノ粒子分散液を遠心分離及び上澄み除去し、沈殿物を回収することによってZnOナノ粒子を得た。
得られたZnOナノ粒子をメタノール中に分散させ、その分散液について、動的光散乱解析装置(PSS-NICOMP社製、380DLS)を用いることにより平均粒子径を測定した。また、得られたZnOナノ粒子をX線回折装置(リガク社製:RINT1000)にて測定し、得られたピークから機器依存の値を取り除いた半値幅を算出し、下記のScherrerの式を用いて平均結晶子径を算出した。結果を表中に示した。
D=Kλ/βcosθ
D:結晶子径
λ:測定X線の波長
β(rad):結晶子の大きさによる回折線の広がり(半値幅)
θ(rad):測定されるピークの角度
K:Scherrer定数
(有機太陽電池活性層用インクの製造)
8重量部のポリ(3-アルキルチオフェン)(LUMO準位-3.0、クロロホルムへの溶解性2重量%)と、24重量部のZnOナノ粒子(HOMO準位-7.5)と、分散剤として2重量部のD-149(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.2、クロロホルムへの溶解性2重量%)とを、クロロホルム1000重量部に分散及び溶解させて、有機太陽電池活性層用インクとした。
なお、使用した分散剤が極性基以外の部位に窒素原子、硫黄原子、フッ素原子又はカルボニル基を有するか否か、電子供与性部位と電子受容性部位とを有するか否か、及び、三重結合を有するか否かについては、表中に示した。
(有機太陽電池の製造)
ガラス基板上に陽極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。このITO膜の表面上にホール輸送層としてポリエチレンジオキサイドチオフェン:ポリスチレンスルフォネート(PEDOT:PSS)をスピンコート法により100nmの厚みに成膜した。次いで、このホール輸送層の表面上に上記で得られた有機太陽電池活性層用インクをスピンコート法により100nmの厚みに成膜して、活性層を形成した。更に、この活性層の表面上に陰極として真空蒸着により厚み100nmのアルミニウム膜を形成し、有機太陽電池を得た。
得られた有機太陽電池のアルミニウム電極の外観を観察することにより、有機半導体化合物と無機半導体化合物との分散性を3段階(○、△、×)で評価した。なお、得られた有機太陽電池のアルミニウム電極の外観が鏡面になっている場合は、電極の下に成膜されている活性層中の有機半導体化合物と無機半導体化合物とがナノレベルで分散されていることを意味しており、分散性「○」として表中に示した。アルミニウム電極が白色になっている場合はナノレベルでの分散が不充分であることを意味しており、分散性「×」として表中に示した。
(実施例2)
8重量部のポリ(3-アルキルチオフェン)(LUMO準位-3.0、クロロベンゼンへの溶解性2重量%)と、24重量部の実施例1で得られたZnOナノ粒子(HOMO準位-7.5)と、分散剤として1重量部のNK-2684(林原生物化学研究所社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.6、クロロベンゼンへの溶解性2重量%)とを、クロロベンゼン800重量部に分散及び溶解させ、有機太陽電池活性層用インクとした。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(実施例3)
分散剤として1重量部のNK-2553(林原生物化学研究所社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.6、クロロベンゼンへの溶解性2重量%)を用い、有機溶媒としてクロロベンゼンを用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(実施例4)
分散剤として1重量部のD-131(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.3、HOMO準位-5.6、クロロベンゼンへの溶解性2重量%)を用い、有機溶媒としてクロロベンゼンを用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(実施例5)
分散剤として1重量部のカルボキシ基含有メタノフターレン(アルドリッチ社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.9、HOMO準位-6.0、クロロホルム-ピリジン混合溶媒(重量比で9:1)への溶解性2重量%)を用い、有機溶媒としてクロロホルム-ピリジン混合溶媒(重量比で9:1)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(実施例6)
分散剤として1重量部のC60 Pyrrolidine tris-acid(アルドリッチ社製、芳香環及び/又は複素環を有する骨格と、3つのカルボキシル基とを有する化合物、LUMO準位-3.9、HOMO準位-6.0、クロロホルム-ピリジン混合溶媒(重量比で9:1)への溶解性2重量%)を用い、有機溶媒としてクロロホルム-ピリジン混合溶媒(重量比で9:1)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(実施例7)
ZnOナノ粒子の粒子化過程において湯浴の温度を35℃とし、反応時間を72時間に変更した以外は実施例1と同様にして、ZnOナノ粒子を得た。
このZnOナノ粒子を用いた以外は実施例1と同様にして、有機太陽電池を得た。
(実施例8)
ZnOナノ粒子の粒子化過程において湯浴を用いず、室温(25℃)で反応時間を96時間に変更した以外は実施例1と同様にして、ZnOナノ粒子を得た。
このZnOナノ粒子を用いた以外は実施例1と同様にして、有機太陽電池を得た。
(比較例1)
分散剤を添加しなかった以外は実施例1と同様にして、有機太陽電池を得た。
(比較例2)
分散剤として2重量部のHKX-2587(林原生物化学研究所社製、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合したカルボキシル基とを有する化合物、LUMO準位-3.1、HOMO準位-5.3、クロロホルムへの溶解性0.5重量%)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(比較例3)
分散剤として2重量部のMK-2(綜研化学社製、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合したカルボキシル基とを有する化合物、LUMO準位-2.8、HOMO準位-5.1、クロロホルムへの溶解性3重量%)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(比較例4)
分散剤として2重量部のポリアルコキシチオフェン誘導体(アルドリッチ社製、ポリチオフェン骨格と、該骨格の対称な位置に結合したアルコキシ基とを有する化合物、LUMO準位-3.1、HOMO準位-5.0、クロロホルムへの溶解性2重量%)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(比較例5)
分散剤として2重量部のシリコンフタロシアニン化合物(アルドリッチ社製、極性基を有さない化合物、LUMO準位-3.5、HOMO準位-5.0、クロロホルムへの溶解性2重量%)を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(比較例6)
分散剤として2重量部のテトラカルボキシ銅フタロシアニン(アルドリッチ社製、フタロシアニン骨格と、該骨格の対称な位置に結合したカルボキシル基とを有する化合物、LUMO準位-3.3、HOMO準位-4.8、クロロホルム-ピリジン混合溶媒(重量比で9:1)への溶解性2重量%)を用い、有機溶媒としてクロロホルム-ピリジン混合溶媒(重量比で9:1)800重量部を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
(比較例7)
分散剤として2重量部のN-719(アルドリッチ社製ルテニウム色素、色素骨格の対称な位置に結合したカルボキシル基を有する化合物、LUMO準位-4.0、HOMO準位-5.6、クロロホルム-ピリジン混合溶媒(重量比で9:1)への溶解性2重量%)を用い、クロロホルム-ピリジン混合溶媒(重量比で9:1)800重量部を用いた以外は実施例1と同様にして、有機太陽電池活性層用インクを得た。
この有機太陽電池活性層用インクを用いた以外は実施例1と同様にして、有機太陽電池を得た。
<評価1>
(無機半導体化合物の面積比率測定)
FE-TEM(日立ハイテク社製)を用いて得られた有機太陽電池の断面を観察することにより、亜鉛の元素マッピング像を得た。得られた元素マッピング像を用いて、陰極側表面から膜厚の20%の厚みまでの領域内の無機半導体化合物の面積比率を算出した。なお、亜鉛の面積比率を測定することで酸化亜鉛の面積比率を求めることができる。結果を表中に示した。
<評価2>
(エネルギー変換効率の測定)
実施例及び比較例で得られた有機太陽電池の電極間に、電源(KEITHLEY社製、236モデル)を接続し、100mW/cmの強度のソーラーシミュレータ(山下電装社製)を用いて有機太陽電池のエネルギー変換効率を測定した。比較例1で得られた有機太陽電池のエネルギー変換効率を1.00として規格化した。結果を表中に示した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
以下に実施例を掲げて第2の本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例9)
(無機半導体化合物の粒子化)
実施例1と同様にして、ZnOナノ粒子を得た。
(有機太陽電池の製造)
実施例1と同様にして、ガラス基板上に陽極としてのITO膜と、ホール輸送層とを形成した。
次に、得られたZnOナノ粒子5重量部、ポリ(3-アルキルチオフェン)2重量部と、分散剤としてD-149(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.2、クロロホルムへの溶解性2重量%)0.5重量部とをクロロホルム343重量部に溶解、分散させることで、陽極側活性層用インクを調製した。得られた陽極側活性層用インクをホール輸送層上にスピンコート法により80nmの厚みに塗工し、乾燥させることによって陽極側活性層を形成した。
更に、得られたZnOナノ粒子28.5重量部、ポリ(3-アルキルチオフェン)1重量部をクロロホルム1373.2重量部とメタノール72.3重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した。得られた陰極側活性層用インクを陽極側活性層上にスピンコート法により20nmの厚みに形成し、乾燥させることによって陽極側活性層と陰極側活性層とからなる活性層を形成した。
更に、活性層の表面に陰極として真空蒸着によりアルミニウムを100nmの厚みに形成することにより、有機太陽電池を作製した。
(実施例10)
得られたZnOナノ粒子1.00重量部のみを、クロロホルム46.6重量部とメタノール2.45重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した以外は実施例9と同様にして、有機太陽電池を得た。
(実施例11)
得られたZnOナノ粒子15.0重量部、ポリ(3-アルキルチオフェン)1.00重量部を、クロロホルム744.8重量部とメタノール39.2重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した以外は実施例9と同様にして、有機太陽電池を得た。
(実施例12)
陽極側活性層用インクに分散剤を添加しなかった以外は実施例9と同様にして、有機太陽電池を得た。
(実施例13)
得られたZnOナノ粒子1.00重量部のみを、クロロホルム46.6重量部とメタノール2.45重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した以外は実施例12と同様にして、有機太陽電池を得た。
(実施例14)
(無機半導体化合物の粒子化)
実施例1と同様にして、ZnOナノ粒子を得た。
(有機太陽電池の製造)
ガラス基板上に陰極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。このITO膜の表面上に電子輸送層としてチタンイソプロポキドのエタノール溶液をスピンコートすることにより10nmの厚みの酸化チタン薄膜を成膜した。
次に、得られたZnOナノ粒子28.5重量部、ポリ(3-アルキルチオフェン)1重量部をクロロホルム1373.2重量部とメタノール72.3重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した。得られた陰極側活性層用インクを電子輸送層の表面上にスピンコート法により20nmの厚みに形成し、乾燥させることによって陰極側活性層を形成した。
更に、ZnOナノ粒子5重量部、ポリ(3-アルキルチオフェン)2重量部と、分散剤としてD-149(三菱製紙社製、芳香環及び/又は複素環を有する骨格と、1つのカルボキシル基とを有する化合物、LUMO準位-3.2、HOMO準位-5.2、クロロホルムへの溶解性2重量%)0.5重量部とをクロロホルム343重量部に溶解、分散させることで、陽極側活性層用インクを調製した。得られた陽極側活性層用インクを陰極側活性層上にスピンコート法により80nmの厚みに塗工し、乾燥させることによって陰極側活性層と陽極側活性層とからなる活性層を形成した。
更に、活性層の表面に陽極として真空蒸着により酸化モリブデンを10nm、次いで銀を100nmの厚みに形成することにより、有機太陽電池を作製した。
(比較例8)
得られたZnOナノ粒子15.0重量部、ポリ(3-アルキルチオフェン)1.00重量部を、クロロホルム744.8重量部とメタノール39.2重量部の混合溶媒に溶解、分散させることで、陰極側活性層用インクを調製した以外は実施例12と同様にして、有機太陽電池を得た。
(比較例9)
ガラス基板上に陰極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。このITO膜の表面上に電子輸送層としてチタンイソプロポキドのエタノール溶液をスピンコートすることにより10nmの厚みの酸化チタン薄膜を成膜した。
次いで、この電子輸送層の表面上に実施例1で得られた有機太陽電池活性層用インクをスピンコート法により100nmの厚みに塗工し、乾燥させることによって活性層を形成した。更に、活性層の表面に陽極として真空蒸着により酸化モリブデンを10nm、次いで銀を100nmの厚みに形成することにより、有機太陽電池を作製した。
得られた有機太陽電池について、上記<評価1>及び<評価2>と同様の評価を行った。結果を表中に示した。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
本発明によれば、エネルギー変換効率の高い活性層を、安定的かつ簡便に形成することができる有機太陽電池活性層用インク、エネルギー変換効率の高い有機太陽電池、及び、有機太陽電池の製造方法を提供することができる。
1  有機太陽電池
2  陰極
3  活性層
3’ 活性層の陰極側表面から膜厚の20%の厚みまでの領域
4  陽極
5  有機半導体化合物
6  無機半導体化合物

Claims (12)

  1. 有機半導体化合物、無機半導体化合物、有機溶媒及び分散剤を含有し、
    前記分散剤は、芳香環及び/又は複素環を有する骨格と、該骨格の非対称な位置に結合した極性基とを有する化合物であり、前記分散剤は、以下の(1)~(3)を全て満たす
    ことを特徴とする有機太陽電池活性層用インク。
    (1)LUMO準位が、前記有機半導体化合物のLUMO準位よりも低い。
    (2)前記有機溶媒への溶解性が、前記有機半導体化合物の前記有機溶媒への溶解性と同じか又はそれ以上である。
    (3)HOMO準位が、前記無機半導体化合物のHOMO準位よりも高い。
  2. 分散剤は、極性基以外の部位に窒素原子、硫黄原子、フッ素原子又はカルボニル基を有する化合物であることを特徴とする請求項1記載の有機太陽電池活性層用インク。
  3. 分散剤は、極性基以外の部位にカルボニル基を有する化合物であることを特徴とする請求項2記載の有機太陽電池活性層用インク。
  4. 分散剤は、電子供与性部位と電子受容性部位とを有し、極性基が前記電子受容性部位に結合している化合物であることを特徴とする請求項1、2又は3記載の有機太陽電池活性層用インク。
  5. 分散剤は、三重結合を有さない化合物であることを特徴とする請求項1、2、3又は4記載の有機太陽電池活性層用インク。
  6. 分散剤は、極性基がカルボキシル基であることを特徴とする請求項1、2、3、4又は5記載の有機太陽電池活性層用インク。
  7. 分散剤は、下記式(1)で表される構造を有する化合物であることを特徴とする請求項1、2、3、4、5又は6記載の有機太陽電池活性層用インク。
    Figure JPOXMLDOC01-appb-C000001
  8. 無機半導体化合物は、平均粒子径が1~50nmであり、かつ、平均粒子径/平均結晶子径が1~3であることを特徴とする請求項1、2、3、4、5、6又は7記載の有機太陽電池活性層用インク。
  9. 請求項1、2、3、4、5、6、7又は8記載の有機太陽電池活性層用インクを用いて製造される活性層を有することを特徴とする有機太陽電池。
  10. 請求項1、2、3、4、5、6、7又は8記載の有機太陽電池活性層用インクを用いた有機太陽電池の製造方法であって、
    電極を有する基板上に、前記有機太陽電池活性層用インクを塗工、乾燥させて活性層を形成する工程と、
    前記活性層上に、電極を形成する工程とを有する
    ことを特徴とする有機太陽電池の製造方法。
  11. 有機半導体化合物中に、無機半導体化合物が存在する活性層を有する有機太陽電池であって、
    前記活性層の厚み方向の切断面において、陰極側表面から膜厚の20%の厚みまでの領域内の前記無機半導体化合物の面積比率が75~100%である
    ことを特徴とする有機太陽電池。
  12. 請求項11記載の有機太陽電池を製造する方法であって、
    有機半導体化合物に対して無機半導体化合物を75~100vol%含有する陰極側活性層用インクを、陰極側表面から活性層の膜厚の50%以下の厚みとなるように塗工、乾燥させて陰極側活性層を形成する工程を有する
    ことを特徴とする有機太陽電池の製造方法。
PCT/JP2011/076331 2010-11-16 2011-11-15 有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法 WO2012067124A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011551727A JP5037730B2 (ja) 2010-11-16 2011-11-15 有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法
US13/823,202 US20130199613A1 (en) 2010-11-16 2011-11-15 Ink for active layer of organic solar cell, organic solar cell, and process for manufacture of organic solar cell
EP11841214.7A EP2642546A1 (en) 2010-11-16 2011-11-15 Ink for active layer of organic solar cell, organic solar cell, and process for manufacture of organic solar cell
KR20137015118A KR20130143603A (ko) 2010-11-16 2011-11-15 유기 태양 전지 활성층용 잉크, 유기 태양 전지 및 유기 태양 전지의 제조 방법
CN2011800548947A CN103270617A (zh) 2010-11-16 2011-11-15 有机太阳能电池活性层用墨液、有机太阳能电池以及有机太阳能电池的制造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010256180 2010-11-16
JP2010-256179 2010-11-16
JP2010256179 2010-11-16
JP2010-256180 2010-11-16
JP2011-037475 2011-02-23
JP2011037475 2011-02-23
JP2011070953 2011-03-28
JP2011-070953 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012067124A1 true WO2012067124A1 (ja) 2012-05-24

Family

ID=46084047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076331 WO2012067124A1 (ja) 2010-11-16 2011-11-15 有機太陽電池活性層用インク、有機太陽電池及び有機太陽電池の製造方法

Country Status (7)

Country Link
US (1) US20130199613A1 (ja)
EP (1) EP2642546A1 (ja)
JP (4) JP5037730B2 (ja)
KR (1) KR20130143603A (ja)
CN (1) CN103270617A (ja)
TW (1) TW201229148A (ja)
WO (1) WO2012067124A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247316A (ja) * 2012-05-29 2013-12-09 Oike Ind Co Ltd 有機薄膜太陽電池およびその製造方法
WO2014077121A1 (ja) * 2012-11-13 2014-05-22 積水化学工業株式会社 太陽電池
JP2014112610A (ja) * 2012-12-05 2014-06-19 Sekisui Chem Co Ltd 有機薄膜太陽電池
KR20160026973A (ko) * 2013-07-03 2016-03-09 제네스'잉크 에스아 나노 입자 기반의 잉크 배합물
JP2016178274A (ja) * 2015-03-19 2016-10-06 三菱化学株式会社 半導体デバイス、太陽電池、太陽電池モジュール、及び組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326090B2 (en) * 2014-09-30 2019-06-18 Merck Patent Gmbh Semiconductor composition comprising an inorganic semiconducting material and an organic binder
GB2551585A (en) * 2016-06-24 2017-12-27 Sumitomo Chemical Co Solvent blends for improved jetting and ink stability for inkjet printing of photoactive layers
WO2018021952A1 (en) * 2016-07-29 2018-02-01 Exeger Operations Ab A light absorbing layer and a photovoltaic device including a light absorbing layer
SE540184C2 (en) 2016-07-29 2018-04-24 Exeger Operations Ab A light absorbing layer and a photovoltaic device including a light absorbing layer
WO2022004882A1 (ja) * 2020-07-02 2022-01-06 積水化学工業株式会社 太陽電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100793A (ja) 2000-09-25 2002-04-05 Japan Science & Technology Corp 有機・無機複合薄膜太陽電池とその製造方法
JP2008053293A (ja) * 2006-08-22 2008-03-06 Sony Corp 電子デバイス及びその製造方法
JP4120362B2 (ja) 2002-11-14 2008-07-16 松下電工株式会社 有機太陽電池
JP2009541975A (ja) * 2006-06-22 2009-11-26 イソボルタ・アクチエンゲゼルシヤフト 光活性層を製造する方法及び該層を含んでなる構成要素
JP2010056497A (ja) * 2008-08-27 2010-03-11 Honeywell Internatl Inc ハイブリッドヘテロ接合構造を有する太陽電池及び関連するシステム並びに方法
JP2010519745A (ja) * 2007-02-27 2010-06-03 バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 表面改質剤中に囲まれた光活性半導体ナノ粒子を有するハイブリッド有機太陽電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100793A (ja) 2000-09-25 2002-04-05 Japan Science & Technology Corp 有機・無機複合薄膜太陽電池とその製造方法
JP4120362B2 (ja) 2002-11-14 2008-07-16 松下電工株式会社 有機太陽電池
JP2009541975A (ja) * 2006-06-22 2009-11-26 イソボルタ・アクチエンゲゼルシヤフト 光活性層を製造する方法及び該層を含んでなる構成要素
JP2008053293A (ja) * 2006-08-22 2008-03-06 Sony Corp 電子デバイス及びその製造方法
JP2010519745A (ja) * 2007-02-27 2010-06-03 バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 表面改質剤中に囲まれた光活性半導体ナノ粒子を有するハイブリッド有機太陽電池
JP2010056497A (ja) * 2008-08-27 2010-03-11 Honeywell Internatl Inc ハイブリッドヘテロ接合構造を有する太陽電池及び関連するシステム並びに方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JILIAN N. DE FREITAS ET AL.: "Hybrid nanostructured solar cells based on the incorporation of inorganic nonoparticles in polymer-fullerene mixtures", PROCEEDINGS OF SPIE, vol. 7772, 1 August 2010 (2010-08-01), pages 77721K.1 - 77721K.9, XP055119433 *
KAZUKO TAKANEZAWA ET AL.: "Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 111, 20 April 2007 (2007-04-20), pages 7218 - 7223, XP055119434 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247316A (ja) * 2012-05-29 2013-12-09 Oike Ind Co Ltd 有機薄膜太陽電池およびその製造方法
WO2014077121A1 (ja) * 2012-11-13 2014-05-22 積水化学工業株式会社 太陽電池
CN104769738A (zh) * 2012-11-13 2015-07-08 积水化学工业株式会社 太阳能电池
JP2014112610A (ja) * 2012-12-05 2014-06-19 Sekisui Chem Co Ltd 有機薄膜太陽電池
KR20160026973A (ko) * 2013-07-03 2016-03-09 제네스'잉크 에스아 나노 입자 기반의 잉크 배합물
JP2016523306A (ja) * 2013-07-03 2016-08-08 ジーンズインク エスア ナノ粒子に基づいたインク調合物
KR102214027B1 (ko) 2013-07-03 2021-02-08 제네스'잉크 에스아 나노 입자 기반의 잉크 배합물
JP2016178274A (ja) * 2015-03-19 2016-10-06 三菱化学株式会社 半導体デバイス、太陽電池、太陽電池モジュール、及び組成物

Also Published As

Publication number Publication date
JP5037730B2 (ja) 2012-10-03
JP5006480B1 (ja) 2012-08-22
JPWO2012067124A1 (ja) 2014-05-12
KR20130143603A (ko) 2013-12-31
JP2012216800A (ja) 2012-11-08
JP2012248854A (ja) 2012-12-13
CN103270617A (zh) 2013-08-28
EP2642546A1 (en) 2013-09-25
JP2012216847A (ja) 2012-11-08
JP5143968B2 (ja) 2013-02-13
US20130199613A1 (en) 2013-08-08
TW201229148A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP5143968B2 (ja) 有機太陽電池
CN102834929B (zh) 纳米结构无机-有机异质结太阳能电池的制备方法
EP2441101B1 (en) Solid state heterojunction device
KR101464798B1 (ko) 유기 태양 전지 및 유기 광검출기를 위한 광활성 층의 제조를 위한 혼합물
CN102884648A (zh) 全固态异质结太阳能电池
KR20110023164A (ko) 광전자 소자
KR101543438B1 (ko) 페로브스카이트 태양전지 및 이의 제조 방법
Dahiya et al. Recent Advances in Organic and Inorganic Hole and Electron Transport Layers for Organic Solar Cells: Basic Concept and Device Performance
JP2020520095A (ja) 有機電子素子およびその製造方法
KR101080895B1 (ko) 유기태양전지 및 이의 제조방법
WO2013118795A1 (ja) 有機薄膜太陽電池及び有機薄膜太陽電池の製造方法
Chaudhary et al. Charge transport between coaxial polymer nanorods and grafted all-inorganic perovskite nanocrystals for hybrid organic solar cells with enhanced photoconversion efficiency
Ali et al. Sulphonic acid functionalized porphyrin grafted ZnO nanorods: Synthesis, characterization and applications in the solid state dye sensitized solar cells
JP5845059B2 (ja) 有機無機複合薄膜太陽電池
JP2008091467A (ja) 有機薄膜太陽電池素子および光電変換層形成用塗工液
JP2013206988A (ja) 有機無機ハイブリッド太陽電池活性層用インク、有機無機ハイブリッド太陽電池及び有機無機ハイブリッド太陽電池の製造方法
KR20150063705A (ko) 유기 태양 전지의 제조방법 및 이로 제조된 유기 태양 전지
JP2013191629A (ja) 光電変換素子
JP2013157471A (ja) 光電変換素子用インク及び光電変換素子
WO2013141328A1 (ja) 有機無機ハイブリッド光電変換素子
JP2010009830A (ja) 光電変換素子及びその製造方法、太陽電池
JP5891005B2 (ja) 有機無機複合薄膜太陽電池
KR101719028B1 (ko) 유기 태양 전지 및 이의 제조방법
JP5369238B2 (ja) 光電変換素子用材料、光電変換素子の製造方法及び光電変換素子
Jenekhe et al. Molecular and nanoscale engineering of high efficiency excitonic solar cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011551727

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011841214

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137015118

Country of ref document: KR

Kind code of ref document: A