WO2012067100A1 - 金属シリコンの凝固精製方法及び装置 - Google Patents

金属シリコンの凝固精製方法及び装置 Download PDF

Info

Publication number
WO2012067100A1
WO2012067100A1 PCT/JP2011/076270 JP2011076270W WO2012067100A1 WO 2012067100 A1 WO2012067100 A1 WO 2012067100A1 JP 2011076270 W JP2011076270 W JP 2011076270W WO 2012067100 A1 WO2012067100 A1 WO 2012067100A1
Authority
WO
WIPO (PCT)
Prior art keywords
solidification
melt
mold
vogc
silicon
Prior art date
Application number
PCT/JP2011/076270
Other languages
English (en)
French (fr)
Inventor
田中 正博
岸田 豊
Original Assignee
新日鉄マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄マテリアルズ株式会社 filed Critical 新日鉄マテリアルズ株式会社
Priority to EP11841948.0A priority Critical patent/EP2641869A4/en
Priority to CN201180055381.8A priority patent/CN103209924B/zh
Publication of WO2012067100A1 publication Critical patent/WO2012067100A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a solidification purification method and a solidification purification apparatus for metal silicon, and in particular, removes impurity elements from molten silicon obtained by roughly refining metal silicon as a starting material, and finally silicon for solar cells.
  • the present invention relates to a method and apparatus for solidifying and purifying metal silicon suitable for obtaining a high-purity silicon crystal useful for manufacturing a substrate.
  • One of the techniques for increasing the purity of metal silicon is a coagulation purification method. For example, in a furnace having a structure as shown in FIG. 1, it is performed based on the following principle of coagulation purification.
  • Non-Patent Documents 1, 2, 3 The principle of this solidification purification utilizes a segregation phenomenon caused by a thermodynamic equilibrium state in which the element to be purified and the impurity element to be removed are established at the solidification interface.
  • Non-Patent Documents 1, 2, 3 a thermodynamic equilibrium state in which the element to be purified and the impurity element to be removed are established at the solidification interface.
  • this solidification process When the melt raw material to be purified held in the mold is slowly solidified in one direction (for example, upward from the bottom) while keeping the solidification interface flat, this solidification process Thus, the impurity element is hardly taken into the solid side by the segregation phenomenon and remains on the melt side.
  • the distribution of the impurity element in the crystal formed by solidification is low in the lower part solidified in the initial stage, increases in series toward the upper part, and reaches the upper end and becomes significantly concentrated. Therefore, by cutting and discarding the upper part (concentration part) of the crystal obtained after the coagulation purification,
  • the former problem is a problem of only the thermal environment based on heating and / or cooling, but the latter problem is due to compositional supercooling due to the concentration of impurity elements in the melt, resulting in the melting away from the solidification interface.
  • This is a problem that occurs because equiaxed crystals are precipitated in the liquid, and as a result, solidification cannot proceed sequentially while maintaining a columnar crystal structure and a flat surface.
  • the generation of equiaxed crystals due to this compositional supercooling is as follows: “The impurity element concentration Cm in the concentrated melt is V / G, which is the ratio of the temperature gradient G on the solidification interface melt side to the solidification rate V.
  • compositional supercooling index [(V / G) C] (hereinafter referred to as “compositional supercooling index (VOGC)”) obtained by applying the above value exceeds the critical value. ”(See Non-Patent Documents 1, 2, and 3), but there is no description explaining the yield in an industrial process for refining actual metallic silicon using compositional supercooling critical values, As for the critical value of mechanical supercooling, the value is not clear.
  • the optimum solidification rate is determined empirically, and this optimum solidification rate is adjusted by adjusting the cooling water amount and temperature of the cooling means arranged at the bottom of the mold and the heat amount of the heater arranged above. It is realized by adjusting the temperature.
  • the solidification surface height (the position of the solidification interface) is sequentially determined according to the progress of solidification by a plurality of thermometers and ultrasonic distance meters provided in the mold.
  • a method for estimating the solidification rate by obtaining the temperature and adjusting the thermal environment in the mold is proposed.
  • the target solidification rate is a trial-and-error method in which the relationship between the concentration of impurity elements at the initial stage of various raw materials and the solidification rate when the solidification purification is appropriately performed is obtained from a large number of operation data in advance.
  • the present invention was devised in view of such circumstances, and its object is to more efficiently and reliably remove impurity elements than in the past while maintaining high crystal productivity. It is to provide a solidification and purification method and apparatus for metallic silicon that can be processed quickly, especially in response to the effects of variations in the degree of contact between the cooling means and the lower part of the mold holding the melt and the aging of the heat insulating member in the furnace. It is an object to provide a solidification and purification method for metal silicon and a solidification and purification apparatus therefor, which are suitable for obtaining high-purity silicon crystals useful for the production of silicon substrates for solar cells. An object of the present invention is to provide a method and apparatus for coagulating and purifying silicon.
  • compositional supercooling index compositional supercooling index
  • the unidirectional solidification of the melt in the mold is performed by heating from above the melt surface while radiating heat while cooling the side surface of the mold and cooling by removing heat from the bottom of the mold.
  • Compositional supercooling index is the physical property value information of metal silicon (solidification latent heat, freezing point, density, thermal conductivity), melt-related initial information before solidification (initial impurity concentration, initial melt depth) ) And time-series information of the solidification process (heat flow extracted from the crystal to the outside, solidification surface height), the solidification interface by steady one-dimensional heat transfer balance with respect to the solidification progress direction across the solidification interface
  • the product of the melt-side temperature gradient G and the solidification rate V is obtained by multiplying the product by the impurity element concentration value Cm in the melt, and the metal silicon as described in (1) or (2) above Coagulation purification method.
  • compositional supercooling index are physical property value information of metal silicon (L: latent heat of solidification, T mp: freezing point of the silicon, [rho: the density of the crystal in the solidification point, K mo: thermal conductivity of stationary melt Degree), the effective thermal conductivity information in the melt (Km: effective thermal conductivity in the melt), and the melt-related initial information before solidification (C o : initial impurity element concentration, H: initial melt) Based on the liquid depth) and time-series information on the solidification process (J b : heat flow to be extracted from the bottom of the container to the outside, x: solidification surface height)
  • T a is the radiation temperature of the heater
  • epsilon is the effective emissivity between the melt surface and the heater
  • sigma is the Stefan Boltzmann constant
  • k eff denotes respectively the effective distribution coefficient.
  • the metal silicon melt in the mold of the coagulation purification apparatus is heated by radiation from above the liquid surface and cooled by heat removal from the bottom of the mold, and the melt is unidirectionally solidified in the mold.
  • a device for solidifying and refining metal silicon to remove impurity elements in the metal silicon, the heating means comprising a heater installed above the liquid surface of the melt to heat the liquid surface, and the bottom of the mold Cooling means for cooling, and heat insulating means installed on the side surface of the mold to insulate the side surface of the mold, and calculating a solidification rate V expressed by the following formula (0) in time series from the initial stage of solidification:
  • a coagulation surface height calculating means for calculating the coagulation surface height x the cumulative calculation of the time series from the solidification rate of the calculated time-series, and a temperature measuring means for measuring a time series radiation temperature T a of the heater, the Cooling water inlet temperature, outlet temperature, and flow rate in the cooling means are measured in time series, and a bottom heat removal amount calculating means for calculating heat flow rate J b that is extracted from the bottom of the container to the outside from the measured values in time series.
  • compositional supercooling index calculating means for calculating the compositional supercooling index (VOGC) by means of the above, and the compositional supercooling index (VOGC) value calculated by the compositional supercooling index calculating means is a silicon-impurity in metal silicon
  • a heater radiation temperature control means for adjusting the radiation temperature of the heater in accordance with the progress of solidification of the melt so as to maintain the temperature.
  • the solidified surface height measuring means for measuring the solidified surface height in time series is provided, and the solidified surface height obtained by the solidified surface height measuring means is calculated.
  • the time series information is input to the compositional supercooling index calculating means in place of the time series information of the solidified face height obtained by the solidified face height calculating means.
  • the critical value of compositional supercooling which is used as an index for controlling the compositional supercooling index (VOGC) of the melt of metal silicon, determines the conditions under which the compositional supercooling of the melt occurs.
  • Melt-side temperature gradient G in the melt, impurity element concentration Cm in the melt during solidification, solidification rate V, liquidus gradient m that can be read from the phase diagram of silicon-impurity element in metal silicon, and impurity element diffusion coefficient D The following relational expression expressed by using (V / G) Cm> 0.59 (D / m) (See Chapter 3 of Non-Patent Document 3, Chapter 2 of Appendix, and Chapter 2 of Non-Patent Document 2).
  • VOGC compositional supercooling index
  • compositional supercooling does not occur, that is, coagulation purification is possible, are the following formulas in which the inequality sign of the above formula is reversed.
  • V / G Cm ⁇ 0.59 (D / m)
  • the right side “0.59 (D / m)” of this equation is the critical value of compositional supercooling that serves as an index of control.
  • the gradient m of the liquidus defining the critical value of compositional supercooling which is an index of control using the compositional supercooling index (VOGC)
  • VOGC compositional supercooling index
  • the position where the crystal has undergone compositional supercooling in the actual operation and the position
  • the critical value of VOGC can be obtained directly by statistically taking the correspondence of the VOGC value calculated by the equation (1) based on the operation data in FIG.
  • the lowering of the freezing point of the melt is the sum of contributions from each impurity. It is represented by the following formula (4).
  • the melt is heated and / or cooled so as to maintain the above relationship, thereby maintaining the solidification rate V at as high a value as possible within the melt in the process of solidifying and purifying the metal silicon.
  • compositional supercooling occurs due to the concentration of impurity elements, and equiaxed crystals precipitate in the melt away from the solidification interface, and solidification cannot proceed sequentially while maintaining a columnar crystal structure and maintaining a flat surface. This is to prevent the occurrence.
  • compositional supercooling index VOGC
  • VOGC compositional supercooling index
  • the solidification and purification apparatus used for the solidification and purification of metal silicon can be obtained by, for example, using the melt in the mold as long as the metal silicon melt is unidirectionally solidified to remove the impurity elements in the metal silicon. It may be of a type that solidifies unidirectionally from the bottom side toward the upper side, or conversely, may be of a type that solidifies unidirectionally from the upper side toward the bottom side, for example, silicon for solar cells
  • the unidirectional solidification of the melt in the mold is performed above the melt surface while insulating the side surface of the mold. It is preferable to use a method in which heating is performed by radiation and cooling is performed by removing heat from the bottom of the mold.
  • the method for controlling the heating and / or cooling of the melt is not particularly limited.
  • unidirectional solidification of the melt in the mold insulates the side surface of the mold.
  • the temperature of the heater disposed above the melt surface may be controlled.
  • a cooling means such as a water cooling jacket provided for heat removal at the bottom may be controlled, and further, both the heater temperature and the cooling means may be controlled.
  • the compositional supercooling index ⁇ 0.59 (D / m) ⁇ is used as an index for the melt of metal silicon in the solidification purification process, using the critical value ⁇ 0.59 (D / m) ⁇ .
  • the melt is heated and / or cooled. It is possible to control the solidification rate, thereby enabling the solidification purification to be performed at the highest possible solidification rate without reducing the purity of the impurity elements, and the productivity of high-purity silicon crystals is remarkably increased. improves.
  • solidification and purification of metal silicon is carried out by adopting a method in which the side surface of the mold is insulated and heated from above the melt surface by radiation and cooled from the bottom of the mold by heat removal.
  • the degree of contact between the cooling means and the lower surface of the mold that holds the molten raw material varies depending on the operation, and even if the heat flow that flows from the lower surface of the mold changes, it is possible to control according to the change.
  • the solidification rate can be optimized, and as a result, the silicon yield can be improved and the cost can be reduced, and an inexpensive silicon substrate for a solar cell can be manufactured.
  • FIG. 1 is a longitudinal sectional explanatory view showing an example of a metal silicon coagulation purification apparatus according to the present invention, which is used for producing a high-purity silicon crystal suitable for producing a silicon substrate for a solar cell.
  • FIG. 2 is a conceptual diagram showing a coagulation purification control model of the coagulation purification apparatus according to FIG.
  • FIG. 3 shows the calculation of the compositional supercooling index (VOGC) value in Example 1 of the present invention, and the radiation temperature of the heater so that the VOGC value is less than the critical value of the compositional supercooling.
  • It is a graph which shows an example set, and the change of the radiation temperature (degreeC) of a heater with respect to solidification time (min.), The estimated temperature (degreeC) of a melt surface, and a VOGC value is shown.
  • the impurity concentration (ppmw) in the melt necessary for calculating the VOGC value, the temperature gradient (K / m) in the melt, and the temperature gradient (K / m) in the solid are shown.
  • FIG. 4 shows the relationship between the calculated VOGC value and the concentration of iron in the crystal measured by the component analyzer with respect to the solidification rate of the crystal obtained in Example 1 of the present invention. It is.
  • FIG. 5 is a graph showing the compositional supercooling index (VOGC) according to the set radiation temperature pattern of the heater in the comparative example of the present invention, the radiation temperature (° C.) of the heater with respect to the solidification time (min.), The estimated temperature (° C.) of the melt surface and the change in the VOGC value are shown.
  • the impurity concentration (ppmw) in the melt necessary for calculating the VOGC value, the temperature gradient (K / m) in the melt, and the temperature gradient (K / m) in the solid are shown.
  • FIG. 6 shows the relationship between the calculated VOGC value and the iron concentration value in the ingot measured by the component analyzer with respect to the solidification rate of the obtained crystal in the comparative example of the present invention. is there.
  • FIG. 7 is a graph showing the compositional supercooling index (VOGC) according to the set heater radiation temperature pattern in Example 2 of the present invention, and the heater radiation temperature (° C.) with respect to the solidification time (min.).
  • the estimated temperature (° C.) of the melt surface and the change in the VOGC value are shown.
  • the impurity concentration (ppmw) in the melt necessary for calculating the VOGC value the temperature gradient (K / m) in the melt, and the temperature gradient (K / m) in the solid are shown.
  • FIG. 8 shows the calculated VOGC value and the iron (Fe), aluminum (Al), and aluminum (Al) in the ingot measured by the component analyzer with respect to the solidification rate of the obtained crystal in Example 2 of the present invention. The relationship with the concentration value of nickel (Ni) is shown.
  • unidirectional solidification of the melt in the mold is a water-cooled jacket or the like in which the side of the mold is radiatively heated by a heater from above the melt surface while being insulated with a heat insulating material and cooled with cooling water from the bottom of the mold
  • a solidification and purification apparatus for solidifying and purifying by removing heat and cooling by a cooling means of a metal, for producing a high-purity silicon crystal suitable for manufacturing a silicon substrate for solar cells as an example.
  • FIG. 1 shows an apparatus for solidifying and purifying metal silicon according to an embodiment of the present invention.
  • 1 is a liquid phase (melt) of metal silicon that is a raw material for solidification purification
  • 2 is a coagulated and refined product.
  • a solid phase of silicon, 3 is a solidification interface between the liquid phase and the solid phase of silicon, 4 is a melt surface of a liquid phase (melt) of metal silicon, 5 is a mold containing metal silicon as a solidification purification raw material, 5b is disposed at the bottom of the mold 5, 6 is disposed above the mold 5, and an electric heater (heating means) for radiantly heating the melt 1 from above the liquid surface of the melt 1 in the mold 5;
  • a water cooling jacket (cooling means) disposed in contact with the bottom 5b of the cooling water, 8 is cooling water for the refrigerant flowing in the water cooling jacket 7 of the cooling means, 9 is a heat insulating means made of a heat insulating material that insulates the side surface of the mold 5, 10 is, for example, a carbon rod or ultrasonic solidification surface height measuring device ⁇ M.
  • Temperature measurement means for measuring the radiation temperature of the water 12 is a bottom heat removal amount calculation means for calculating the bottom heat removal amount from information on the inlet temperature, outlet temperature and flow rate of the cooling water of the water cooling jacket, and a compositional supercooling index (VOGC)
  • a solidification rate control means including a compositional supercooling calculation means for calculating the power 13 is a power supply for the electric heater 6 as a heating means, and 14 is a compositional supercooling calculation means for the solidification rate control means.
  • a melt (liquid phase) 1 of molten metal silicon injected into the mold 5 is initially placed in a water-cooled jacket (cooling means) placed away from the lower surface of the bottom 5b of the mold 5.
  • ) 7 is raised at the start of the coagulation purification operation after maintaining a certain melt stabilization, brought into contact with the lower surface of the bottom 5b of the mold 5, and further, the radiation temperature of the heater is lowered, so that the bottom 5b of the mold 5 is removed. Coagulation gradually progresses upward.
  • the metal silicon melt 1 in the mold 5 is thermally insulated by a heat insulating material (heat insulating means) 9 on the side surface of the mold 5 in the lateral direction. Radiation heating is performed from above by an electric heater (heating means) 6 disposed above, and further heat is removed by a water-cooling jacket (cooling means) 7 disposed on the bottom 5b of the mold 5, and as a result, In the melt 1, the heat flow from the upper side to the lower side increases, and the flow of heat flowing from the liquid phase (melt) 1 of the metal silicon, which is a raw material for solidification purification, into the solid phase 2 is almost one-dimensional in the vertical direction.
  • a heat insulating material heat insulating means
  • the solidification of the liquid phase (melt) 1 proceeds from the bottom 5b side of the mold 5 upward while maintaining a flat and solid solidification interface. At this time, the movement of heat inside the silicon is sufficiently large with respect to the solidification rate, so that it can be considered to be steady.
  • the inlet temperature, outlet temperature and flow rate of the cooling water 8 flowing through the cooling means 7 are measured, and the mold 5 obtained from the water temperature difference between the inlet temperature and the outlet temperature and the flow rate is obtained.
  • the heat flow rate Jb passing from the bottom 5b to the lower part and the radiation temperature Ta of the heater are recorded over time. Then, the steady one-dimensional heat transfer balance is calculated from these values and the initial impurity element concentration of the metal silicon melt 1 measured in advance before entering this process, using the calculation model shown in FIG.
  • the temperature gradient G on the melt 1 side in the solidification interface 3 and the impurity element concentration in the melt 1 are obtained over time or intermittently, and the obtained temperature gradient G and melt on the melt 1 side are obtained.
  • the VC / G value of the compositional supercooling index (VOGC) is calculated using the information of the impurity element concentration in 1, and this VC / G value can be read from the silicon-impurity element phase diagram in the metal silicon of the solidification refining raw material
  • the critical value ⁇ 0.59 (D / m) ⁇ of compositional supercooling expressed using the gradient m of the liquidus and the diffusion coefficient D of the impurity element, the following relationship 1/10 ⁇ 0.59 ( D / m) ⁇ ⁇ VOGC ⁇ 0.59 (D / m)
  • the heater temperature T a and / or the heat flow rate J b is controlled so as to maintain the optimum temperature of the melt 1 by heating and / or cooling, and the critical value ⁇ 0.59 (D / m )
  • the radiant heat flow rate from the heater to the melt surface is J a
  • the heat flow rate in the melt is J m
  • the solidification latent heat amount at the solidification interface accompanying solidification is J g
  • the heat flow rate in the solid is J s
  • each heat flow rate has the following relationship with the temperature of each part.
  • J a ⁇ (T a 4 ⁇ T s 4 ) ⁇ 4 ⁇ (T a 4 ⁇ T a 3 Ts) (10)
  • J m K m (T s ⁇ T i ) / (H ⁇ x) (11)
  • J g ⁇ LV (12)
  • J s K s (T i ⁇ T b ) / x (13)
  • Ta is the radiation temperature of the heater
  • T s is the melt surface temperature
  • T i is the solidification interface temperature
  • T b is the temperature at the bottom of the crystal
  • is the effective radiation rate between the melt surface and the heater
  • is Stefan-Boltzmann constant
  • K m is the effective thermal conductivity in the melt
  • K s is the thermal conductivity in the crystal determined by physical properties
  • H is the initial melt depth
  • x is the solidified surface height
  • is the density of silicon at the solidification temperature
  • L is a solidification latent heat determined by physical properties
  • V is a solidification rate.
  • the effective thermal conductivity in the melt depends on the apparatus used because it takes different values depending on the degree of stirring when the melt is stirred by some means. Therefore, this value K m must be determined by actual measurement or empirical formula.
  • the melt surface temperature T s is eliminated from the equations (7) to (12) and the solidification rate V is obtained as follows.
  • the temperature T s on the surface of the melt is as follows.
  • the temperature gradient G on the melt side at the solidification interface is as follows using the thermal conductivity Km 0 in the stationary melt.
  • V and G is a function of only the radiation temperature T a of the coagulation surface height x and the heater. Therefore, constitutional supercooling index defined by the following equation (VOGC), since except x and T a is an actual measurement value and the physical properties, the solidification surface height x and the heater temperature T a function only. Moreover, since the solidification rate of Si unidirectional solidification purification is generally less than 1.0 mm / min, the degree of supercooling required as a driving force for crystal growth at the solidification interface is small, and the temperature Ti at the solidification interface is The freezing point T mp of the raw material Si may be considered.
  • the concentration of the impurity element is usually about 0.01 to 0.5% by mass in the metal silicon of the solidification purification raw material used in the present invention
  • the solidification rate g of solidification is low in the purification of the low purity raw material.
  • the impurity element concentration is concentrated in the melt C m is about 5 wt%, the drop of the freezing point due to impurities are estimated to number ° C., it can not be ignored.
  • freezing point T mp is the impurity element concentration Cm in the melt liquidus gradient m
  • solidification temperature T mp0 (1685K) of pure silicon is expressed by the following equation.
  • the impurity element concentration C m in the melt during solidification is expressed by the following equation using the initial impurity element concentration C 0 , the solidification rate g obtained from the solidification surface height x, and the effective distribution coefficient k eff. It is known to be represented. That is, the impurity element concentration C m in the melt is concentrated with solidification.
  • the formula for obtaining the compositional supercooling index (VOGC) is substantially as shown in the following formula (23).
  • the solidification height x in this equation is obtained as an integral value with respect to the time of the solidification rate V, where the solidification start time is 0.
  • the actual furnace control is automatically performed by a so-called PLC (programmable logic controller) device.
  • PLC programmable logic controller
  • equation (24) is calculated from this value at each control step executed at a specified time interval.
  • the VOGC value can be calculated by the discretized equation (25). That is, here, if the order of steps is i, the solidified surface height x after (i + 1) steps from the start of control is the solidified surface height and solidified speed after i steps, and between (i + 1) and i steps. From the time interval, it is obtained as follows.
  • the solidification speed V expressed by the equation (14) may be used, but it can also be directly measured by the solidified surface height measuring means 10.
  • Method 1 since it is not necessary to measure the solidified surface height, the equipment is simple, but the solidification conditions are not yet stabilized due to the operation of a new furnace or the change of the in-furnace members.
  • the solidified surface height x and the solidified velocity V are calculated from the actual solidified surface height x measured by the solidified surface height measuring means 10 or from the calculated solidified surface height x and the solidified velocity V for some reason, such as the cooling water flow rate decreasing due to equipment trouble. It is also conceivable that the solidification rate V is different.
  • the heater temperature is corrected in real time by Method 2 so that the actual value of the solidified surface height x is positive and the actual speed does not exceed the critical value of compositional supercooling. It is also possible to minimize the yield drop.
  • the procedure for obtaining VOGC for each of method 1 and method 2 will be described below.
  • T i T mp
  • Step 2 Substituting T i into formulas (14) and (17) to obtain the solidification rate V and the melt-side temperature gradient G at the solidification interface.
  • VOGC is obtained using V, G, and C m obtained in Step 1 and Step 2.
  • Step 4 From the solidification rate V, the solidified surface height x at the next time step is obtained by the equation (25).
  • Step 5 Thereafter, Step 1 to Step 4 are repeated to obtain the VOGC at each time t i .
  • T i T mp
  • Step 3 From the solidified surface height measuring means 10, the solidified surface height x is obtained from the solidified surface height x and its change over time.
  • T i and x By substituting T i and x into equation (17), the melt-side temperature gradient G at the solidification interface is obtained.
  • Step 4 VOGC is obtained using V, G, and C m obtained in Step 1 to Step 3.
  • Step 5 Thereafter, Step 1 to Step 4 are repeated to obtain the VOGC at each time t i .
  • conditions that may be different for each coagulation purification process include the initial impurity element concentration C 0 of the raw material and J b due to variations in the degree of contact between the cooling means 7 and the bottom portion 5 b of the mold 5.
  • J b affects the heat transfer phenomenon. J b is greatly affected by the degree of contact with the bottom 5b of the cooling unit 7 and the mold 5, a great influence on the quality and productivity of the resulting crystals.
  • the coagulation purification process can be controlled at a coagulation rate close to the maximum value at which no occurrence occurs.
  • J b can be easily measured as a value obtained by dividing the heat flow rate measured by a calorimeter installed in the cooling water for cooling the bottom of the mold by the bottom area of the crystal. Further, J b is the thermal resistance of the solid silicon with increasing solidification height, with a tendency to decrease in proportion to the substantially solidified rate.
  • Example 1 Using the metal silicon solidification and purification apparatus of FIG. 1 according to the example of the present invention, 350 kg of unidirectional solidification and purification of metal silicon (containing iron as an impurity at a concentration of 2000 ppmw) as a solidification purification material was performed.
  • the mold 5 used in Example 1 is a square container having a height of 0.4 m, with its side wall and bottom 5 b combined, and has a square cross section with a side of 0.8 m and a height of 0.22 m. Crystals are produced.
  • the effective thermal conductivity 200 (W / m / K) of silicon melt measured in advance as basic data is used. of using a value 67 which is determined by the physical properties (W / m / K) is the thermal conductivity Km 0, further, 21 as the thermal conductivity of ingots (W / m / K), also between the silicon melt and the heater An effective emissivity of 0.3 was used. Moreover, about the time required from the start of solidification to completion, 15 hours (900 minutes) was set as a standard.
  • Example 1 the VOGC value (predicted VOGC value) is calculated by the method of the present invention, and the radiation temperature of the heater is calculated and set so that the predicted VOGC value is below the critical value (predicted heater)
  • the temperature control pattern is indicated by a solid line in the upper part of the graph of FIG.
  • the critical value of compositional supercooling is 1.0 ⁇ 10 ⁇ Since a value of 10 m 2 / K / sec. was obtained, this value was used. This critical value is indicated by a thick dotted line in the middle of the graph of FIG.
  • Kinetsu flow J b from mold base which is obtained from operating experience in the relevant furnace Can do. That is, in the operation of the furnace of Example 1, the flow rate of the cooling water flowing through the cooling plate at the bottom of the mold is 150 L / min, and the temperature difference between the inlet temperature and the outlet temperature of the cooling water is at the initial stage of solidification. Is 6.1 ° C, decreases in proportion to the solidification rate, reaches 4.3 ° C when solidification is completed, and there is a 10% detection loss in the measurement of heat flow with cooling panel cooling water I know each.
  • the transition of the temperature gradient G in the melt is calculated by the equation (17), which is indicated by a sparse dotted line in the lower graph of FIG.
  • the transition of the solidification rate V is calculated by the equation (14), and this is indicated by a solid line in the lower graph of FIG.
  • the transition of the VOGC value is calculated by the equation (1). From the temperature gradient G in the melt, the solidification rate V, and the impurity concentration Cm in the melt, the V value and Cm value at each time are calculated. It is also obtained by multiplying and dividing by the G value, and this is indicated by a solid line in the middle graph of FIG. In this calculation, the change in the freezing point in the melt is considered based on the equation (19), and is shown by the lower solid line (around 1410 ° C.) in the upper graph of FIG. Further, the temperature Ts of the melt surface is calculated based on the equation (15), and this is indicated by a dotted line in the upper graph of FIG.
  • VOGC was calculated for the radiation temperature control pattern of the heater set in Example 1, and the obtained VOGC value was 1.3 ⁇ 10 ⁇ 11 m 2 / K / at the start of solidification. This is a value larger than 1/10 of the critical value of VOGC value 1.0 ⁇ 10 ⁇ 10 m 2 / K / sec.
  • VOGC gradually increases with time, the critical value of 1.0 ⁇ 10 ⁇ 10 m 2 / K / sec is exceeded for the first time at time 830 minutes close to the solidification completion time, and then the solidification occurs in a state of exceeding the critical value. Is completed. Further, the solidification rate of the crystal when the critical value of VOCG is reached is 90%, which is calculated based on the equation (23).
  • the composition is not supercooled from the start of solidification to the solidification rate of 90%, and 90% Can be coagulated and purified to obtain an ingot of good quality.
  • the silicon silicon is solidified and refined according to the heater temperature control pattern in the upper part of FIG. 3, and the center of the obtained silicon crystal is cut in the vertical (solidification) direction, and the height of the cross section (solidification progress) direction.
  • the change in the impurity analysis concentration with respect to was measured with a portable simple fluorescent X-ray apparatus.
  • the crystal height direction (solidification progress direction) is 10 mm intervals
  • the horizontal direction (the same solidification rate is 8 points at 100 mm intervals horizontally starting from a place 50 mm away from the outer peripheral position of the crystal.
  • the total number of measurement points was 168.
  • the horizontal axis indicates the height of the crystal (solidification rate g), the VOCG value predicted for this is indicated by a solid line, the critical value of VOCG is indicated by a one-dot chain line, and the height direction of the cut surface Further, the Fe concentration averaged at 8 points of the same height (same solidification rate) is indicated by black circles.
  • the Fe concentration in the silicon crystal is not detected up to the crystal height of 180 mm (solidification rate 81%) and is the detection lower limit of 5 ppmw of the analyzer, but begins to be detected after the height of 190 mm (solidification rate 85%), 190 mm 14 ppmw, 200 mm (solidification rate 89%), 16400 ppmw, 210 m (solidification rate 93%), 18200 ppmw, 220 mm (solidification rate 98%), 20700 ppmw. Further, in the visual observation of the structure, the columnar crystals grew to a height of 205 mm (solidification rate: 90%) and were equiaxed from 205 mm onward. From the above, a crystal in which 90% or more was coagulated and purified by the control method shown in Example 1 was obtained.
  • Example 1 Comparative Example 1
  • the radiation temperature control pattern of the conventional heater is used, and the same apparatus as in the case of the above-described Example 1 and the same solidification / purification raw material metal silicon are used under the same conditions as in Example 1.
  • Coagulation purification was performed.
  • the control pattern for the radiation control of this heater is 15 hours (900 minutes) as a guideline for the time from the start of solidification to completion, and in order to avoid rapid solidification at the beginning of solidification, the temperature decreases from the start of solidification toward the middle stage.
  • the gradient is almost constant, and the latter half of solidification aims to maintain the heater radiation temperature at a high temperature for solidification purification.
  • the VOGC value is also obtained under the conditions of Comparative Example 1, but the physical property values used and the change accompanying the progress of solidification of Jb are the same as in Example 1.
  • a setting example (predicted heater temperature control pattern) of the radiation temperature of the heater is indicated by a solid line on the upper side of the upper graph of FIG.
  • the transition of the temperature gradient G in the melt is indicated by a sparse dotted line in the lower graph of FIG. 5, and the transition of the solidification rate V is indicated by a solid line in the lower graph of FIG. 5.
  • the transition of the impurity concentration Cm in the melt is indicated by a dotted line in the middle graph of FIG. 5, and the transition of the VOGC value is indicated by a solid line in the middle graph of FIG. Has been.
  • the change in the freezing point is indicated by a lower solid line in the upper graph of FIG. 5, and the melt surface temperature Ts is indicated by a dotted line in the upper graph of FIG.
  • VOGC was calculated for the radiation temperature control pattern of the heater set in Comparative Example 1.
  • the obtained VOGC value was 7.2 ⁇ 10 ⁇ 12 m 2 / K / at the start of solidification. Although it is sec., this is a value smaller than 1/10 of the critical value of VOGC value 1.0 ⁇ 10 ⁇ 10 m 2 / K / sec., and it can be seen that the solidification rate has a sufficient margin.
  • VOGC gradually increases with time, exceeding the critical value of 1.0 ⁇ 10 ⁇ 10 m 2 / K / sec at 570 minutes from the start of solidification, and then solidification is completed in a state where the critical value is exceeded. To do. Further, the solidification rate of the crystal when the critical value of VOCG is reached is 60%, which is calculated based on the equation (23).
  • the compositional supercooling of the melt occurs at a solidification rate of 60% from the start of solidification. Only about 60% is coagulated and purified.
  • the metal silicon was solidified and refined in accordance with the heater temperature control pattern in the upper part of FIG. 5, and the central portion of the silicon crystal was cut in the vertical (solidification) direction in the same manner as in Example 1 to obtain the height of the cross section.
  • the change in the impurity analysis concentration with respect to the (coagulation progress) direction was similarly measured by a portable simple fluorescent X-ray analyzer. The measurement location was the same as in Example 1.
  • the horizontal axis represents the crystal height (solidification rate g), and the VOCG value predicted for this is indicated by a solid line, with the same height (same solidification rate) at 8 points in the height direction of the cut surface.
  • the value of the Fe concentration averaged at is indicated by a black circle.
  • the Fe concentration in the ingot is not detected until the crystal height is 120 mm (solidification rate of 54%) and is the detection lower limit of 5 ppmw of the analyzer, but begins to be detected after the height of 130 mm (solidification rate of 58%), 140 mm ( When the solidification rate was 63% or more, a high value exceeding 3000 ppmw was exhibited.
  • the conventional method cannot sufficiently cope with the change in the heat flow rate from the mold substructure, and the precise solidification rate control using the solidification position information obtained during the solidification cannot be performed. In the latter half of the process, a portion exceeding the critical value of compositional supercooling occurred, and the yield was considered to have decreased.
  • Example 2 As Example 2, using the same coagulation purification apparatus and template as in Example 1 above, the impurity concentration of the coagulation purification raw material is 2500 ppmw, and the breakdown of the composition is iron 1200 ppmw, aluminum 800 ppmw, nickel 400 ppmw Coagulation purification of 350 kg of silicon was performed. Here, the required time from the start of solidification to completion was 15 hours (900 minutes) as a guide.
  • Example 2 the VOGC value (predicted VOGC value) is calculated by the method of the present invention, and the radiation temperature of the heater is calculated and set so that the predicted VOGC value is below the critical value (predicted heater)
  • the temperature control pattern is indicated by a solid line in the upper part of the graph of FIG.
  • the critical value of the VOGC value is as follows, assuming that the weight density of all impurities is C m-all : Is given by (V / G) C m-all ⁇ 0.59 ⁇ D / m>
  • the weight ratio ⁇ i of the impurities is 0.5 for iron, 0.33 for aluminum, and 0.17 for nickel.
  • the value of ⁇ D / m> becomes 1.6 ⁇ 10 ⁇ 10 m 2 / K / sec
  • the VOGC critical value becomes 9.3 ⁇ 10 ⁇ 10 m 2 / K / sec. This critical value is indicated by a thick dotted line in the middle of the graph of FIG.
  • J b is calculated to be a 74W / m 2 at the time of completion of solidification a 104W / m 2 at the start solidification
  • the value obtained by dividing the J b by heat conductivity of the crystal is at a temperature penetrates Gs in the ingot, the value in the lower graph of FIG. 7, indicated by dense dotted line.
  • Example 2 a setting example (predicted heater temperature control pattern) of the radiation temperature of the heater is shown by a solid line in the upper part of the graph of FIG.
  • this setting is a comparative example.
  • the transition of the temperature gradient G in the melt is shown by a sparse dotted line in the lower graph of FIG. 7, and the transition of the solidification rate V is shown by a solid line in the lower graph of FIG.
  • the transition of the impurity concentration Cm in the melt is indicated by a dotted line in the middle graph of FIG. 7, and the transition of the VOGC value is indicated by a dotted line in the middle graph of FIG. Has been.
  • the change in the freezing point in the melt is indicated by the lower solid line in the upper graph of FIG. 7, and the temperature Ts of the melt surface is indicated by the dotted line in the upper graph of FIG. Has been.
  • the VOGC value obtained with respect to the radiation temperature control pattern of the heater set in Example 2 is 2.2 ⁇ 10 ⁇ 11 m 2 / K / sec at the start of solidification. It gradually increases with the passage of time, exceeds the critical value of 9.3 ⁇ 10 ⁇ 11 m 2 / K / sec at time 830 minutes from the start of solidification, and then completes solidification when the critical value is exceeded.
  • the fact that the solidification rate of the crystal when reaching the critical value of VOCG is 89% is also calculated based on the equation (23).
  • the solidification rate from the start of solidification to about 90% of the solidification rate is obtained as a crystal with good quality. It will be.
  • the metal silicon was solidified and refined according to the heater temperature control pattern in the upper part of FIG. 7, and the central portion of the silicon crystal was cut in the vertical (solidification) direction in the same manner as in Example 1 to obtain the height of the cross section.
  • the change in the impurity analysis concentration with respect to the (coagulation progress) direction was similarly measured by a portable simple fluorescent X-ray analyzer.
  • the measurement location was the same as in Example 1. The measurement results are shown in FIG.
  • the horizontal axis represents the height of the crystal (solidification rate g), and the VOCG value predicted for this is indicated by a solid line in the height direction of the cut surface (the same solidification rate).
  • Fe concentration averaged at 8 points is indicated by black circles, aluminum concentration is indicated by triangles, and nickel concentration is indicated by x.
  • the Fe concentration in the silicon crystal is 5 ppmw, which is the lower limit of detection of the analyzer up to a crystal height of 190 mm (solidification rate of 85%), but starts to be detected after a height of 200 mm (solidification rate of 89%), and 2200 ppmw at 200 mm. , 210 mm (solidification rate 93%), 12500 ppmw, 220 mm (solidification rate 98%), 15100 ppmw.
  • the concentration of aluminum is 10 ppmw which is the lower limit of detection of the analyzer up to a crystal height of 190 mm (solidification rate of 85%), but starts to be detected after a height of 200 mm (solidification rate of 89%), and is 5400 ppmw at 200 mm. It was 7900 ppmw at 210 mm (solidification rate 93%), and 8500 ppmw at 220 mm (solidification rate 98%).
  • the concentration of nickel is 5 ppmw which is the lower limit of detection of the analyzer until the crystal height is 180 mm (solidification rate 81%), but starts to be detected after the height 190 mm (solidification rate 85%), 45 mmw at 190 mm, 200 mm. It was 4300 ppmw at (solidification rate 89%), 4600 ppmw at 210 m (solidification rate 93%), and 5700 ppmw at 220 mm (solidification rate 98%).
  • SYMBOLS 1 Liquid phase (melt) of metallic silicon, 2 ... Solid phase of metallic silicon, 3 ... Solidification interface between liquid phases of metallic silicon, 4 ... Melting of liquid phase (melt) of metallic silicon Liquid surface, 5 ... mold, 5b ... bottom of mold 5, 6 ... electric heater (heating means), 7 ... water cooling jacket (cooling means), 8 ... cooling water, 9 ... insulating means, 10 ... solidified surface height measuring means , 11 ... Temperature measuring means, 12 ... Solidification rate control means including bottom heat removal amount calculating means and compositional supercooling calculating means, 13 ... Electric heater power supply, 14 ... Transmission means for transmitting heater temperature information, 15 ... Transmission means for transmitting information of cooling water, 16... Transmission means for transmitting power control information to the power source of the electric heater, 17... Mold lower structure such as the bottom of the mold and the water cooling jacket 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 結晶の生産性を高い状態に維持しながら、従来よりも不純物元素の除去を効率良くかつ確実に行うことができる金属シリコンの凝固精製方法及びその装置を提供する。 凝固精製装置の鋳型内にある金属シリコンの融液を一方向凝固させて金属シリコン中の不純物元素を除去する金属シリコンの凝固精製法であり、凝固界面での融液側温度勾配Gと、凝固途中の融液中不純物元素濃度Cmと、凝固速度Vとを用いて表される組成的過冷却指数{VOGC=(V/G)×Cm}が、金属シリコンにおけるシリコン-不純物元素の状態図から読み取れる液相線の勾配mと不純物元素の拡散係数Dにより表される組成的過冷却の臨界値{0.59(D/m)}に対して、1/10{0.59(D/m)}≦VOGC<0.59(D/m)の関係を維持するように、融液の加熱及び/又は冷却を行う金属シリコンの凝固精製法である。

Description

金属シリコンの凝固精製方法及び装置
 本発明は、金属シリコンの凝固精製方法及び凝固精製装置に関し、特に、出発原料の金属シリコンを粗精製して得られた溶融状態にあるシリコンから不純物元素を除去し、最終的に太陽電池用シリコン基板の製造に有用な高純度のシリコン結晶を得るために好適な金属シリコンの凝固精製方法及びその装置に関する。
 金属シリコンの純度を上げる技術の1つに凝固精製法があり、例えば図1に示すような構造を持った炉において、以下のような凝固精製の原理に基づいて行われている。
 この凝固精製の原理は、精製対象の元素と除去対象の不純物元素が凝固界面において成立している熱力学的な平衡状態に起因する偏析現象を利用するものである(非特許文献1、2、3参照)。具体的には、鋳型内に保持した精製対象となる融液原料を、その凝固界面を平坦に保ちながら、一方向に(例えば底部から上方へ)向けてゆっくりと凝固させると、この凝固の過程で、不純物元素は、上記の偏析現象によって固体側にほとんど取り込まれることなく、融液側に残る。この結果、凝固により生成した結晶内の不純物元素の分布は、初期に凝固した下方部で低く、上方に向かって級数的に増加し、上端に至って著しく濃縮したものとなる。そこで、この凝固精製後に得られた結晶の上部(濃縮部)を切断し破棄することにより、純度の高い結晶が得られる。
 このような凝固精製を実際に行うに当っては、生産性と精製歩留りの二つの観点から、凝固速度(凝固界面の移動速度)を適切な値に制御することが極めて重要である。そして、この凝固速度は、凝固界面での一次元の熱バランス、即ち、融液側から凝固界面に加わる熱量と、凝固によって発生する熱量(凝固潜熱)及び凝固界面から結晶側へ抜き取られる熱量とのバランスによって変わるため(非特許文献1参照)、適切な温度制御がなされない場合には、凝固が下方から上方に向かって順次進行せずに、凝固した部位が再び融解する等して、長時間経過しても融液から結晶が得られないという問題が起きる。
 また、上記の適切な温度制御がなされない場合には、これだけではなく、凝固界面の成長が不安定になり、平坦な面を保ちながらの凝固が進まなくなって、凝固精製の基となる不純物元素の偏析原理がうまく働かず、凝固の進行中に不純物元素が融液部に十分に濃化することなく凝固が完了し、凝固精製が十分になされていない結晶が生成するという問題が起きる。
 ここで、前者の問題は、加熱及び/又は冷却に基づく熱環境のみの問題であるが、後者の問題は、融液内の不純物元素の濃縮による組成的過冷却により、凝固界面から離れた融液中に等軸晶が析出し、その結果として、凝固が柱状晶組織を保って平坦な面を保ちながら順次進行できなくなるために発生する問題である。そして、この組成的過冷却による等軸晶の発生については、「凝固界面融液側の温度勾配Gと凝固速度Vの比であるV/Gに、濃化した融液中の不純物元素濃度Cmをかけて得られた組成的過冷却の値〔(V/G)C〕(以後、「組成的過冷却指数(VOGC)」と呼ぶ。)が、その臨界値を越えた時に起きる。」という理論的なモデルがある(非特許文献1、2、3参照)が、組成的過冷却臨界値を用いて現実の金属シリコンを精製する工業プロセスでの歩留りを説明した記述がなく、組成的過冷却の臨界値に関しても、その値は明確ではない。
 このように、凝固精製において生産性を稼ぐために凝固速度を大きくすることは、常に凝固精製の失敗の危険性を増長するものとなる。また、凝固の進行の後半では、偏析現象により吐き出された不純物元素濃度が急激に増加するため、凝固速度の上限値が次第にあるいは急速に小さくなっていく。このような状況の中で、結晶の生産性と精製歩留りを最大限に保つには、凝固の進行状況に応じて凝縮する鋳型内の原料融液中の不純物元素濃度に応じて、凝固速度、翻っては、鋳型内の温度環境を精密に制御する必要がある。しかしながら、これを制御することは容易ではなく、従来においては試行錯誤的な方法が採られていたに過ぎない。
 例えば、特許文献1で述べられている方法では、凝固精製する原料中の不純物元素濃度の初期分析値と、その凝固精製が成功した時の凝固開始から完了までの平均的な凝固速度の関係との相関をとることにより、経験的に最適な凝固速度を決定するものであり、この最適な凝固速度の調整は、鋳型底部に配置した冷却手段の冷却水量や温度、上方に配置したヒーターの熱量や温度を調整することで実現する。しかし、この方法では、凝固の進行による凝固層の熱抵抗の増大や、凝固速度に比例する凝固潜熱の発生、結晶や炉内断熱部材の経年劣化による熱伝導度及び熱容量の変化等の要素に起因する、複雑な実際の操業における凝固速度の変化に十分に対応できない。
 また、この問題点を克服するために、特許文献2では、鋳型内に設けた複数の温度計や超音波距離計によって、凝固の進行に応じて凝固面高さ(凝固界面の位置)を逐次求めることにより凝固速度を推定し、鋳型内の熱環境を調整する方法が提案されている。しかしながら、この方法においても、狙いとする凝固速度は、種々の原料初期の不純物元素濃度と凝固精製が適切に行われた時の凝固速度との関係を予め多数の操業データから求める試行錯誤的な手法により求めることになるが、これは極めて煩雑であって、時間のかかる作業である。そして、このような従来の方法においては、温度計や超音波距離計等の計測装置を高温の炉内に設置するという設備的な難しさがある上に、操業毎の冷却手段と鋳型下面との間の接触度合い(鋳型下面からの熱流量に影響)等の操業上のばらつきに対して、迅速に対応できないという問題もあった。
特開平10-120493号公報 特開平10-182137号公報
中江秀雄著「結晶成長と凝固」アグネ承風社1998年 W. Kurz, D.J. Fisher,「Fundamental of Solidification」, Trans Tech Publication, (1998) M.C. Flemings,「Solidification Processing」, McGraw Hill, (1974)
 本発明は、かかる事情に鑑みて創案されたものであり、その目的とするところは、結晶の生産性を高い状態に維持しながら、従来よりも不純物元素の除去を効率良くかつ確実に行うことができる金属シリコンの凝固精製方法及びその装置を提供することにあり、特に、冷却手段と融液を保持する鋳型下部との接触度合いのばらつきや、炉内断熱部材の経年劣化の影響にも迅速に対応することができる金属シリコンの凝固精製方法及びそのための凝固精製装置を提供することにあり、これによって、太陽電池用シリコン基板の製造に有用な高純度のシリコン結晶を得るのに好適な金属シリコンの凝固精製方法及びその装置を提供することにある。
 本発明者らは、上記目的を達成するための方策について鋭意研究した結果、目的達成のためには、凝固精製の際の凝固速度を、不純物元素の初期濃度との関係で初期設定するのではなく、凝固の進行と共に経時的に調整しなければならないとの結論に達し、そして、この考えを具現化するため、凝固の進行中に組成的過冷却の程度(組成的過冷却指数;VOGC)を推定し、この推定された組成的過冷却指数(VOGC)を基に加熱の程度を調整することについて鋭意検討し、本発明を完成させた。
 すなわち、本発明は、上記課題を解決するためになされたもので、以下のように構成される。
 (1) 凝固精製装置の鋳型内にある金属シリコンの融液を一方向凝固させて前記金属シリコン中の不純物元素を除去する金属シリコンの凝固精製法であり、凝固界面での融液側温度勾配Gと、凝固途中の融液中不純物元素濃度Cmと、凝固速度Vとを用いて表される組成的過冷却指数{VOGC=(V/G)×Cm}が、金属シリコンにおけるシリコン-不純物元素の状態図から読み取れる液相線の勾配mと不純物元素の拡散係数Dとを用いて表される組成的過冷却の臨界値{0.59(D/m)}に対して、下記の関係
   1/10{0.59(D/m)}≦VOGC<0.59(D/m)
を維持するように、前記融液の加熱及び/又は冷却を行うことを特徴とする金属シリコンの凝固精製法。
 (2) 鋳型内での融液の一方向凝固が、前記鋳型の側面を断熱しながら融液の液面上方から輻射により加熱すると共に鋳型の底部からは抜熱により冷却して行われることを特徴とする上記(1)に記載の金属シリコンの凝固精製法。
 (3) 組成的過冷却指数(VOGC)は、金属シリコンの物性値情報(凝固潜熱、凝固点、密度、熱伝導度)、凝固前の融液関連初期情報(初期不純物濃度、初期融液深さ)と、凝固過程の時系列情報(結晶から外部へ抜熱される熱流量、凝固面高さ)とを基にして、凝固界面を挟んだ凝固進行方向に対する定常の一次元熱移動収支によって凝固界面での融液側温度勾配Gと凝固速度Vの積を求め、これに融液中不純物元素濃度の値Cmを乗じで求めることを特徴とする上記(1)又は(2)に記載の金属シリコンの凝固精製方法。
 (4) 組成的過冷却指数(VOGC)は、金属シリコンの物性値情報(L:凝固潜熱、Tmp:シリコンの凝固点、ρ:凝固点における結晶の密度、Kmo:静止した融液の熱伝導度)と、事前に求めた融液内実効熱伝導度情報(Km:融液内実効熱伝導度)と、凝固前の融液関連初期情報(Co:初期不純物元素濃度、H:初期融液深さ)と、凝固過程の時系列情報(Jb:容器底部から外部へ抜熱される熱流量、x:凝固面高さ)とを基にして、下記の(1)式
Figure JPOXMLDOC01-appb-I000004
〔但し、上記式中、Taはヒーターの輻射温度、εは融液表面とヒーターとの間の実効輻射率、σはステファンボルツマン定数、及びkeffは実効分配係数をそれぞれ意味する。〕
により、凝固界面を挟んだ凝固進行方向に対する定常の一次元熱移動収支を計算することによって求めることを特徴とする上記(3)に記載の金属シリコンの凝固精製方法。
 (5) 凝固精製装置の鋳型内にある金属シリコンの融液を、その液面上方から輻射により加熱すると共に前記鋳型底部からは抜熱により冷却し、前記鋳型内で前記融液を一方向凝固させて前記金属シリコン中の不純物元素を除去する金属シリコンの凝固精製装置であり、前記融液の液面上方に設置されて前記液面を加熱するヒーターからなる加熱手段と、前記鋳型の底部を冷却する冷却手段と、前記鋳型の側面に設置されてこの鋳型側面を断熱する断熱手段とを有し、下記の(0)式で表される凝固速度Vを凝固初期から時系列で算出し、
Figure JPOXMLDOC01-appb-I000005
この算出された時系列の凝固速度から時系列の凝固面高さxを累積計算によって求める凝固面高さ計算手段と、前記ヒーターの輻射温度Taを時系列で測定する温度測定手段と、前記冷却手段における冷却水の入口温度、出口温度、及び流量を時系列で測定し、当該測定値から前記容器の底部から外部へ抜熱される熱流量Jbを時系列で算出する底部抜熱量算出手段とを有し、また、前記金属シリコンの物性値情報(L:凝固潜熱、Tmp:シリコンの凝固点、ρ:凝固点における密度、Kmo:静止した融液の熱伝導度)と、事前に求めた融液内実効熱伝導度情報(Km:融液内実効熱伝導度)と、凝固前の融液関連初期情報(Co:初期不純物元素濃度、H:初期融液深さ)とが入力されると共に、前記凝固面高さ計算手段で求められた凝固面高さxの時系列情報と、前記底部抜熱量算出手段で算出された前記容器底部から外部へ抜熱される熱流量Jbの時系列情報とが入力され、これらの入力情報を基にして、下記の(1)式
Figure JPOXMLDOC01-appb-I000006
により組成的過冷却指数(VOGC)を算出する組成的過冷却指数演算手段と、前記組成的過冷却指数演算手段で算出される組成的過冷却指数(VOGC)の値が金属シリコンにおけるシリコン-不純物元素の状態図から読み取れる液相線の勾配mと不純物元素の拡散係数Dとを用いて表わされる組成的過冷却の臨界値{0.59(D/m)}に対して、下記の関係
   1/10{0.59(D/m)}≦VOGC<0.59(D/m)
を維持するように、前記ヒーターの輻射温度を前記融液の凝固の進行に応じて調整するヒーターの輻射温度制御手段とを有することを特徴とする金属シリコンの凝固精製装置。
 (6) 前記凝固面高さ計算手段に替えて、凝固面高さを時系列で測定する凝固面高さ測定手段を有し、当該凝固面高さ測定手段で求められた凝固面高さの時系列情報を、前記凝固面高さ計算手段で求められた凝固面高さの時系列情報に替えて、前記組成的過冷却指数演算手段へ入力することを特徴とする上記(5)に記載の金属シリコンの凝固精製装置。
 本願発明において、金属シリコンの融液の組成的過冷却指数(VOGC)を制御する上でその指標となる組成的過冷却の臨界値は、融液の組成的過冷却が発生する条件を凝固界面での融液側温度勾配G、凝固途中の融液中不純物元素濃度Cm、凝固速度V、金属シリコンにおけるシリコン-不純物元素の状態図から読み取れる液相線の勾配m、及び不純物元素の拡散係数Dを用いて数式化された下記の関係式
         (V/G)Cm>0.59(D/m)
(非特許文献3の第3章及びAppendix第2章と、非特許文献2の第2章を参照)に基づいて規定される。
 即ち、融液の組成的過冷却の発生条件は、凝固界面から離れる方向xに対する凝固点の勾配Gmp(=dTmp/dx)と実際の温度の勾配G(=dT/dx)とを用いると、単純に、G<Gmpと表すことができ、上記の凝固点の勾配Gmpは融液中の不純物元素濃度の勾配Gcと液相線の傾きmとの積(mGc)で表すことができ、また、この融液中の不純物元素濃度の勾配Gcは融液中の不純物元素の拡散係数Dと凝固速度V、凝固界面での融液中の不純物元素濃度Cm *と、凝固界面から十分離れた大部分の融液中の不純物元素濃度Cmの差を基に、下記の(2)式
       Gc=(V/D)×(Cm *-Cm) ……(2)
で計算できるので、凝固界面の固体側の不純物元素濃度をCs、平衡分配係数をk、実効分配係数をkeffとすると、
       Gc=(V/D)×{(keff/k)-1}Cm
と書き換えられる。
 また、keff/kについては、凝固界面の拡散層厚みをδとすると下記の(3)式
   keff/k=1/{k+(1-k)exp(-Vδ/D) ……(3)
で表される。本願発明の金属シリコンの凝固精製においては、融液流動の影響が小さくて、(すなわち、不純物の拡散係数Dが融液の動粘性係数より小さいことにより)凝固界面での濃度分布が拡散により形成されると考えられ、拡散層厚みδは、ほぼδ=D/Vで近似される。更に、原料として用いられる金属シリコン中の不純物元素の平衡分配係数kが1より極めて小さな値であることから、keff/kの値は、1/exp(-1)≒2.7と近似される。
 従って、本願発明の金属シリコンの凝固精製においては、融液の濃度勾配は、
            Gc=1.7(VCm/D)
の式で表すことができ、上記の組成的過冷却の条件式G<Gmpは、液相線の勾配m、融液中不純物元素の濃度Cm、不純物元素の拡散係数D、及び凝固速度Vを用いて、下記の式
        G<Gmp=mGc=1.7(mVCm/D)
で表すことができ、この式を組成的過冷却指数(VOGC)の式に変形すると、
         (V/G)Cm>0.59(D/m)
が得られる。
 それ故、組成的過冷却が発生しない、すなわち凝固精製が可能となる条件は、上式の不等号を逆にした以下の式になる。
           (V/G)Cm<0.59(D/m)
そして、この式の右辺「0.59(D/m)」が、制御の指標となる組成的過冷却の臨界値である。
 そして、本願発明の金属シリコンの凝固精製において、組成的過冷却指数(VOGC)を用いた制御の指標となる組成的過冷却の臨界値を規定する液相線の勾配mは、原料として用いる金属シリコンのシリコン-不純物元素の状態図から読み取ることができ、また、不純物元素の拡散係数Dは、例えばTan et al., JOM vol.61 no.1 p49 (2009)等の文献に記載された文献値を用いることができるほか、Liu et al., Scripta Materialia vol.55 p367,(2006)等の数値モデルによる方法で推定することもできる。また、鉄の場合の様に、拡散係数Dが実験データとして報告されておらず、信頼できる値がない場合には、実際の操業において、結晶が組成的過冷却を起こした位置と、その位置においての操業データを基に(1)式により計算されるVOGC値の対応を統計的にとることで、VOGCの臨界値を直接求めることができる。
 融液中に複数の不純物元素が含まれている場合には、融液の凝固点の降下は、各不純物による寄与の総和となるから、各不純物について各物性値に添字iを付けて示すと、以下の(4)式で表される。
Figure JPOXMLDOC01-appb-I000007
ここで、各不純物濃度の合計値をCm-all、全不純物濃度に対する各不純物濃度の比をαiとすると、以下の(5)式となる。
Figure JPOXMLDOC01-appb-I000008
 従って、凝固精製が可能となる条件、Gmp>Gは、以下の様に書ける。
    (V/G)Cm-all<0.59<D/m>
ここで、<D/m>は、各不純物成分の(mi/Di)値について、重みとしてαiを取った加重調和平均値の逆数で、以下の(6)式で定義される。
Figure JPOXMLDOC01-appb-I000009
 本発明においては、上記の組成的過冷却指数{VOGC=(V/G)×Cm}が組成的過冷却の臨界値{0.59(D/m)}に対して、下記の関係
   1/10{0.59(D/m)}≦VOGC<0.59(D/m)
好ましくは
   1/3{0.59(D/m)}≦VOGC<0.59(D/m)
の関係を維持するように、融液の加熱及び/又は冷却を行うものであり、これによって、凝固速度Vを可及的に高い値に保ちながら、金属シリコンの凝固精製過程で融液内の不純物元素の濃縮による組成的過冷却が発生し、凝固界面から離れた融液中に等軸晶が析出し、凝固が柱状晶組織を保って平坦な面を保ちながら順次進行できなくなるという問題の発生を防止するものである。ここで、組成的過冷却指数(VOGC)が、組成的過冷却の臨界値{0.59(D/m)}以上になると、上記組成的過冷却の発生を防止できなくなって平坦な面を保ちながら凝固精製を行うのが難しくなり、反対に、組成的過冷却の臨界値{0.59(D/m)}の1/10より小さくなると、凝固速度Vが小さくなりすぎて生産性が低下する。
 本発明において、金属シリコンの凝固精製に用いる凝固精製装置については、金属シリコンの融液を一方向凝固させて金属シリコン中の不純物元素を除去するものであれば、例えば鋳型内の融液をその底部側から上方に向けて一方向凝固させる方式のものであっても、また反対に、その上方から底部側に向けて一方向凝固させる方式のものであってもよいが、例えば太陽電池用シリコン基板の製造に有用な高純度のシリコン結晶を工業的に製造する場合には、好ましくは、鋳型内での融液の一方向凝固が、前記鋳型の側面を断熱しながら融液の液面上方から輻射により加熱すると共に鋳型の底部からは抜熱により冷却して行われる方式のものであるのがよい。
 また、本発明において、前記融液の加熱及び/又は冷却を制御する方法については、特に制限されるものではなく、例えば鋳型内での融液の一方向凝固が、前記鋳型の側面を断熱しながら融液の液面上方から輻射により加熱すると共に鋳型の底部からは抜熱により冷却して行われる場合、融液の液面上方に配置されるヒーター温度を制御してもよく、また、鋳型底部に抜熱のために設けられる水冷ジャケット等の冷却手段を制御してもよく、更には、これらヒーター温度と冷却手段の両者を制御してもよい。
 本発明によれば、金属シリコンの凝固精製において、凝固精製過程にある金属シリコンの融液について、組成的過冷却の臨界値{0.59(D/m)}を指標に、組成的過冷却指数{VOGC=(V/G)×Cm}がこの臨界値の1/10以上臨界値以下の範囲となるように維持しながら、融液の過熱及び/又は冷却を行うので、凝固の進行と共に経時的に凝固速度を制御することができ、これによって、不純物元素の精製度を低下させることなく可及的に高い凝固速度で凝固精製を行うことができ、高純度のシリコン結晶の生産性が顕著に向上する。しかも、本発明によれば、鋳型の側面を断熱しながら融液の液面上方から輻射により加熱すると共に鋳型の底部からは抜熱により冷却して行われる方式を採用して金属シリコンの凝固精製を行う際に、冷却手段と溶融原料を保持する鋳型下面との接触度合いが操業毎に変化してばらつき、鋳型下面から流れ出る熱流量が変化しても、その変化に合わせた制御が可能になって凝固速度の最適化を図ることができ、その結果として、シリコン歩留の向上、コストの低減を達成することができ、安価な太陽電池用シリコン基板の製造が可能になる。
図1は、太陽電池用シリコン基板の製造に好適な高純度のシリコン結晶を製造するために用いる、本発明に係る金属シリコンの凝固精製装置の一例を示す縦断面説明図である。
図2は、図1に係る凝固精製装置の凝固精製制御モデルを示す概念図である。
図3は、本発明の実施例1において、組成的過冷却指数(VOGC)の値を計算し、このVOGC値が組成的過冷却の臨界値以下となるようにヒーターの輻射温度を計算して設定した一例を示すグラフ図であり、凝固時間(min.)に対するヒーターの輻射温度(℃)、融液表面の推定温度(℃)、及びVOGC値の変化が示されている。併せて、VOGC値の算出に必要な融液中の不純物濃度(ppmw)、融液中の温度勾配(K/m)、及び固体中の温度勾配(K/m)が示されている。
図4は、本発明の実施例1において、得られた結晶の固化率に対し、計算されたVOGC値、及び成分分析装置で測定された結晶中の鉄の濃度の値の関係を示したものである。
図5は、本発明の比較例において、設定したヒーターの輻射温度パターンによる組成的過冷却指数(VOGC)を示したグラフ図であり、凝固時間(min.)に対するヒーターの輻射温度(℃)、融液表面の推定温度(℃)、及びVOGC値の変化が示されている。併せて、VOGC値の算出に必要な融液中の不純物濃度(ppmw)、融液中の温度勾配(K/m)、及び固体中の温度勾配(K/m)が示されている。
図6は、本発明の比較例において、得られた結晶の固化率に対し、計算されたVOGC値および、成分分析装置で測定されたインゴット中の鉄の濃度の値の関係を示したものである。
図7は、本発明の実施例2において、設定したヒーターの輻射温度パターンによる組成的過冷却指数(VOGC)を示したグラフ図であり、凝固時間(min.)に対するヒーターの輻射温度(℃)、融液表面の推定温度(℃)、及びVOGC値の変化が示されている。併せて、VOGC値の算出に必要な融液中の不純物濃度(ppmw)、融液中の温度勾配(K/m)、及び固体中の温度勾配(K/m)が示されている。
図8は、本発明の実施例2において、得られた結晶の固化率に対し、計算されたVOGC値と、成分分析装置で測定されたインゴット中の鉄(Fe)、アルミニウム(Al)、及びニッケル(Ni)の濃度の値との関係を示したものである。
 以下、鋳型内での融液の一方向凝固が、鋳型の側面を断熱材で断熱しながら融液の液面上方からヒーターにより輻射加熱すると共に鋳型の底部からは冷却水で冷却する水冷ジャケット等の冷却手段により抜熱冷却して凝固精製を行う凝固精製装置であって、太陽電池用シリコン基板の製造に好適な高純度のシリコン結晶を製造するための金属シリコンの凝固精製装置を例にして、本発明の実施の形態を説明する。
 図1に本発明の実施例に係る金属シリコンの凝固精製装置が示されており、この図1において、1は凝固精製原料である金属シリコンの液相(融液)、2は凝固精製されたシリコンの固相、3はシリコンの液相と固相との間の凝固界面、4は金属シリコンの液相(融液)の融液表面、5は凝固精製原料の金属シリコンを収容する鋳型、5bは鋳型5の底部、6は鋳型5の上方に配置され、鋳型5内の融液1の液面上方からこの融液1を輻射加熱するための電熱ヒーター(加熱手段)、7は鋳型5の底部5bに接触した状態で配置された水冷ジャケット(冷却手段)、8は冷却手段の水冷ジャケット7内を流れる冷媒の冷却水、9は鋳型5の側面を断熱する断熱材からなる断熱手段、10は例えば炭素棒や超音波凝固面高さ測定装置{M. Azizi, et al, ”Ultrasound Measurement of the Position of the Growing Interface During Directional Solidification of Silicone” 25th EU-PVSEC proceedings, 2CV.1.13 (2010)参照}等からなる凝固面高さ測定手段、11は熱電対等の加熱手段6の輻射温度を測定するための温度測定手段、12は水冷ジャケットの冷却水の入口温度、出口温度及び流量の情報から底部抜熱量を算出する底部抜熱量算出手段と組成的過冷却指数(VOGC)を計算する組成的過冷却演算手段とを含む凝固速度制御手段、13は加熱手段である電熱ヒーター6の電源、14はヒーターの輻射温度の情報を凝固速度制御手段の組成的過冷却演算手段に伝達する伝達手段、15は冷却水の入口温度、出口温度及び流量の情報を凝固速度制御手段の組成的過冷却演算手段に伝達する伝達手段、16は凝固速度制御手段の底部抜熱量算出手段から電熱ヒーター6の電源13にそのパワー制御情報を伝達する伝達手段をそれぞれ示している。
 本発明の凝固精製方法において、鋳型5に注入された溶融状態にある金属シリコンの融液(液相)1は、当初は鋳型5の底部5bの下面から離して置かれた水冷ジャケット(冷却手段)7を、一定の融液安定化保持後の凝固精製操作開始時に上昇させ、鋳型5の底部5b下面に接触させ、更にヒーターの輻射温度を下げて行くことにより、鋳型5の底部5b側から徐々に上方へと凝固が進行していく。
 本発明の凝固精製装置において、鋳型5内にある金属シリコンの融液1は、その横方向に対しては鋳型5の側面にある断熱材(断熱手段)9により断熱され、また、その液面上方に配置された電熱ヒーター(加熱手段)6により上方から輻射加熱され、更に、鋳型5の底部5bに配置された水冷ジャケット(冷却手段)7により抜熱され、結果として、この鋳型5内の融液1おいては、その上方から下方に抜ける熱流量が大きくなり、凝固精製原料である金属シリコンの液相(融液)1から固相2内を流れる熱の流れはほぼ上下方向一次元となり、液相(融液)1の凝固は鋳型5の底部5b側から上方に向けて、平坦で一面の凝固界面を保って、進行する。そして、この際のシリコン内部の熱の移動は、凝固速度に対して十分大きいために、定常であると考えることができる。
 本発明方法においては、凝固精製の開始から、冷却手段7を流れる冷却水8の入口温度、出口温度及び流量を測定し、入口温度と出口温度との水温差と流量とから求められる鋳型5の底部5b側から下部へ抜ける熱流量Jbと、ヒーターの輻射温度Taとを経時的に記録する。そして、これらの値と、本プロセスに入る前に予め測定しておいた金属シリコンの融液1の初期不純物元素濃度から、図2に示す計算モデルを用いて、定常一次元熱移動収支を計算することにより、凝固界面3における融液1側の温度勾配G及び融液1中の不純物元素濃度を経時的にあるいは間欠的に求め、この求められた融液1側の温度勾配G及び融液1中の不純物元素濃度の情報を用いて組成的過冷却指数(VOGC)のVC/G値を算出し、このVC/G値が凝固精製原料の金属シリコンにおけるシリコン-不純物元素の状態図から読み取れる液相線の勾配mと不純物元素の拡散係数Dとを用いて表される組成的過冷却の臨界値{0.59(D/m)}に対して、下記の関係
   1/10{0.59(D/m)}≦VOGC<0.59(D/m)
を維持するように、ヒーター温度Ta及び/又は熱流量Jbを制御し、これによって最適な融液1の加熱及び/又は冷却を行い、組成的過冷却の臨界値{0.59(D/m)}を超えない最大凝固速度Vを達成することができる。
 即ち、図2において、ヒーターから融液表面への放射熱流量をJa、融液内の熱流量をJm、凝固に伴う凝固界面における凝固潜熱量をJg、固体内の熱流量をJs、冷却水8の入口温度、出口温度及び流量から計算された鋳型5の底部5bを経て水冷ジャケット7等の鋳型下部構造体から逃げていく熱流量をJbとすると、熱流量が保存されるため、系の一次元熱バランスは以下のように表される。
  Ja=Jm        ……(7)
  Jm+Jg=Js   ……(8)
  Js=Jb        ……(9)
 ここで、各熱流量は各部位の温度と次の関係にある。
  Ja=εσ(Ta 4-Ts 4)≒4εσ(Ta 4-Ta 3Ts)   ……(10)
  Jm=Km(Ts-Ti)/(H-x)                    ……(11)
  Jg=ρLV                                        ……(12)
  Js=Ks(Ti-Tb)/x                           ……(13)
 ここで、Taはヒーターの輻射温度、Tsは融液表面温度、Tiは凝固界面温度、Tbは結晶下端の温度、εは融液表面とヒーターとの間の実効輻射率、σはステファンボルツマン定数、Kmは融液内実効熱伝導度、Ksは物性により決まる結晶内熱伝導度、Hは初期融液深さ、xは凝固面高さ、ρは凝固温度におけるシリコンの密度、Lは物性により決まる凝固潜熱、Vは凝固速度である。なお、融液内実効熱伝導度は、融液を何らかの手段で攪拌する場合等はその攪拌度合いにより異なる値をとるため、使っている装置に依存する。従って、この値Kmは実測又は経験式により決める必要がある。(7)~(12)式から融液表面温度Tsを消去して、凝固速度Vを求めると次のようになる。
Figure JPOXMLDOC01-appb-I000010
 また(7)、(10)、(11)式から融液表面の温度Tsは次のようになる。
Figure JPOXMLDOC01-appb-I000011
 融液中の熱流束Jmは(15)式を(11)式に代入して次のようになる。
Figure JPOXMLDOC01-appb-I000012
 凝固界面での融液側の温度勾配Gは静止した融液中の熱伝導度Km0を用いて次のようになる。
Figure JPOXMLDOC01-appb-I000013
 上記のVとGの式中でxとTa以外は物性値と実測値なので、VとGは凝固面高さxとヒーターの輻射温度Taのみの関数となる。従って、次式で定義される組成的過冷却指数(VOGC)は、xとTa以外は物性値と実測値なので、凝固面高さxとヒーター温度Taのみ関数となる。
 また、一般的にSiの一方向凝固精製の凝固速度は、1.0mm/minに満たないため、凝固界面での結晶成長の駆動力として必要な過冷却度は小さく、凝固界面の温度Tiは原料Siの凝固点Tmpである考えてよい。
 従って、VOGCは、
Figure JPOXMLDOC01-appb-I000014
 ただし、本発明で用いる凝固精製原料の金属シリコンは、通常その不純物元素の濃度が0.01~0.5質量%程度であるため、低純度の原料の精製においては、凝固の固化率gが90%にまで達したときの、融液中に濃縮された不純物元素濃度Cmが5質量%程度となり、不純物による凝固点の降下が数℃と見積もられるため、無視できなくなる。
 不純物による凝固点Tmpの降下は、状態図の液相線から読み取ることができるが、不純物濃度が数%程度であれば、その勾配はほぼ一定である。従って、凝固点Tmpは、融液中の不純物元素濃度Cm、液相線勾配m、純シリコンの凝固温度Tmp0(1685K)として、以下の関係式で表わされる。
Figure JPOXMLDOC01-appb-I000015
 ここで、凝固途中における融液中の不純物元素濃度Cmは、初期不純物元素濃度C0と、凝固面高さxから求めた固化率gと、実効分配係数keffを用いて次の式で表されることが知られている。即ち、融液中の不純物元素濃度Cmは凝固と共に濃縮されていく。
Figure JPOXMLDOC01-appb-I000016
 これよりTmpは、以下の式で記述される。
Figure JPOXMLDOC01-appb-I000017
 従って、不純物濃度が高く、凝固点の変化を考慮する必要がある場合には、Tmpを(19)式に置き換えた、次の修正式を使うことが望ましい。
Figure JPOXMLDOC01-appb-I000018
 以上より、本発明において、組成的過冷却指数(VOGC)を求める式は、実質的に下記の(23)式の通りになる。
Figure JPOXMLDOC01-appb-I000019
 この式中の、凝固高さxは、凝固開始時刻を0として、凝固速度Vの時間に対する積分値で求められる。
Figure JPOXMLDOC01-appb-I000020
 また、実際の炉の制御は、いわゆるPLC(programmable logic controller)装置によって自動で行われるが、PLC装置では、指定された時間間隔で実行される制御ステップ毎に、この値から(24)式を離散化した(25)式によりVOGC値が計算できる。すなわち、ここで、ステップの順番をiとすると、制御開始から(i+1)ステップ後の凝固面高さxは、iステップ後の凝固面高さ及び凝固速度と、(i+1)とiステップ間の時間間隔とから次のように求められる。
Figure JPOXMLDOC01-appb-I000021
 ここで、xの値を求めるには、(14)式によって表現される凝固速度Vを使用してもよいが、凝固面高さ測定手段10により直接計測することもできる。
 以上のことから、数値計算による方法(方法1)若しくは、凝固高さの計測による方法(方法2)によって、最終的に、各時刻ti毎のヒーターの輻射温度、即ち、ヒーターパターンTa(ti)を決めると、各時刻tiにおいて、VOGCの値が求まる。
 ところで、方法1では、凝固面高さを測定する必要が無いため、設備が簡易ではあるが、新造炉の操業であったり、炉内部材の変更等により凝固条件がまだ安定化していない場合や、設備トラブルにより冷却水流量が低下する等、何らかの原因で、計算による凝固面高さxと凝固速度Vが、凝固面高さ測定手段10で測定した実際の凝固面高さxやそれから計算された凝固速度Vと異なる場合も考えられる。そこで、そのような場合には、方法2によって、凝固面高さxの実測値を正として、その実際の速度が組成的過冷却の臨界値を超えないように、ヒーター温度をリアルタイムに修正し、歩留り低下を最小限に抑えることも可能である。
 以下に、方法1と方法2のそれぞれについてVOGCを求める手順を述べる。
(方法1)
[Step 1] 式(20)から求まる不純物元素濃度Cmを式(21)に代入して凝固界面温度Ti(=Tmp)を求める。
[Step 2] Tiを式(14)、(17)に代入して、凝固速度V、凝固界面での融液側温度勾配Gを求める。
[Step 3] Step 1及びStep 2で求められたV、G、Cmを用いてVOGCを求める。
[Step 4] 凝固速度Vから式(25)により、次の時間ステップの凝固面高さxを求める。
[Step 5] 以後、Step 1からStep 4を繰り返すことで、各時間tiにおけるVOGCを求める。
(方法2)
[Step 1] 式(20)から求まる不純物元素濃度Cmを式(21)に代入して凝固界面温度Ti(=Tmp)求める
[Step 2] 凝固面高さ測定手段10から凝固面高さx、及びその時間変化から凝固速度Vを求める。
[Step 3] Tiとxを式(17)に代入して凝固界面での融液側温度勾配Gを求める。
[Step 4] Step 1からStep 3で求められたV、G、Cmを用いてVOGCを求める。
[Step 5] 以後、Step1からStep4を繰り返すことで、各時間tiにおけるVOGCを求める。
 ここで、各凝固精製プロセス毎に異なる可能性のある条件としては、原料の初期不純物元素濃度C0と、冷却手段7と鋳型5の底部5bとの接触度合いのばらつきによるJbがある。これまでの制御技術では初期不純物元素濃度C0のばらつきにのみ注目されていたが、定常一次元熱移動解析式から、Jbが熱移動現象に影響を与えることが分かる。Jbは冷却手段7と鋳型5の底部5bとの接触度合いに大きく影響され、得られる結晶の品質や生産性に大きな影響を及ぼす。従って、C0とJbの幾つかの組み合わせパターンに対して、組成的過冷却指数{VOGC=(V/G)×Cm}が組成的過冷却の臨界値の1/10以上臨界値以下の範囲を満たすヒーターパターンを予め計算しておけば、実際のC0の値と、Jbの情報から、凝固プロセスの最適なヒーターパターンを、凝固開始直後に選択することができ、組成的過冷却の発生しない最大値に近い凝固速度で凝固精製プロセスを制御することができる。尚、Jbは、鋳型底部を冷却する冷却水に設置したカロリーメータによって測定される熱流量を結晶の底面積で割った値として容易に測定できる。また、Jbは、凝固高さの増加に伴う固体シリコンの熱抵抗により、ほぼ固化率に比例して減少する傾向を持つ。
 最近のPLCの演算能力は、本発明に使用する計算を数秒以内に完了できるものであるが、凝固速度は数mm/分以下と比較的遅いので、初期に測定したJbに対応するヒーターパターンが無い場合でも、操業中に得られたJbからヒーターパターンを計算し直しても制御には十分に間に合う。また、同様に、鋳型の側面方向の断熱がきちんと保持されていれば、加熱手段6や、鋳型5の底部5bや冷却手段7の経時変化等が生じても、加熱手段温度Taと冷却水8の入口温度、出口温度及び流量から計算される鋳型下部構造体17から逃げていく熱流量Jbをモニタリングしてさえいれば、全く同じようにプロセスを正常に制御することができる。
(実施例1)
 本発明の実施例に係る図1の金属シリコンの凝固精製装置を用いて、凝固精製原料である金属シリコン(不純物として鉄を濃度2000ppmw含有)350kgの一方向凝固精製を実施した。この実施例1で用いた鋳型5は、その側壁と底部5bを合わせて、高さ0.4mの正方型の容器であり、一辺が0.8mで、高さ0.22mの正方形断面を持つ結晶が製造される。
 また、VOGC値を求めるための融液内実効熱伝導度Kmとしては予め基礎データとして実測したシリコン融液の実効熱伝導度200(W/m/K)を用い、また、静止した融液中の熱伝導度Km0については物性により決まる値67(W/m/K)を用い、更に、インゴットの熱伝導度として21(W/m/K)を、また、シリコン融液とヒーター間の実効輻射率として0.3を用いた。また、凝固開始から完了までの所要時間については15時間(900分)を目安とした。
 この実施例1において、本発明の方法でVOGC値(予測VOGC値)を計算し、この予測VOGC値が臨界値以下となるようにヒーターの輻射温度を計算して設定した際の例(予測ヒーター温度制御パターン)を、図3のグラフの上段に実線で示す。
 この実施例1で精製すべき不純物元素の鉄については、そのシリコン融液中の拡散係数Dを実験的に求めた報告が無く、信頼できる値が知られていないため、組成的過冷却の臨界値を見積もることができなかった。そこで、発明者らが実施した凝固精製の試験においては、精製した結晶の凝固組織及び不純物濃度と操業プロセスデータとの対応を取ることにより、組成的過冷却の臨界値として1.0×10-10m2/K/sec.の値が得られたので、この値を用いた。この臨界値は図3のグラフの中段に太い点線で示している。
 ここで設定されたヒーター輻射温度パターンから凝固中でのVOGC値を予測するに当り、先ず、鋳型底からの伐熱流量Jbが必要であるが、これは該当炉での操業実績から得ることができる。すなわち、この実施例1の炉の操業においては、鋳型底の冷却盤に流している冷却水の流量が150L/minであり、冷却水の入口温度と出口温度の温度差が、凝固の初期には6.1℃であって、固化率に比例して減少し、凝固完了時には4.3℃になることと、冷却盤冷却水での熱流量の測定においては10%の検出ロスがあることがそれぞれ判っている。これは、熱量計算により、鋳型底部からの伐熱量が固化率と共に71KWから50KWへと減少することを意味している。また、結晶の底面積は0.64m2であるので、Jbは凝固開始時で111W/m2であって凝固完了時で79W/m2である。Jbを結晶の熱伝導度で除した値が結晶中の温度勾Gsであるが、この値は図3の下段のグラフにおいて、密な点線で示されている。
 融液中の温度勾配Gの推移は、(17)式により計算されて、これは図3の下段のグラフにおいて、疎な点線で示されている。また、凝固速度Vの推移は、(14)式により計算されて、これは図3の下段のグラフにおいて、実線で示されている。更に、融液中の不純物の濃度Cmの推移は、初期の不純物濃度C0(=2000ppmw)を基に式(20)により計算されて、これは図3の中段のグラフにおいて、点線で示されている。
 VOGC値の推移は、(1)式により計算されるが、上記の融液中の温度勾配G、凝固速度V、融液中の不純物の濃度Cmから、各時刻においてのV値とCm値を乗じてG値で除しても求められ、これは図3の中段のグラフにおいて、実線で示されている。尚、ここでの計算では融液中の凝固点の変化を(19)式に基づいて考慮しており、図3の上段のグラフにおいて、下側(1410℃付近)の実線で示されている。また、融液表面の温度Tsが(15)式に基づいて計算され、これは図3の上段のグラフにおいて、点線で示されている。
 以上より、本実施例1で設定されるヒーターの輻射温度制御パターンに対してVOGCが計算されたが、得られたVOGC値は、凝固開始時点で1.3×10-11m2/K/sec.であるが、これは臨界値であるVOGC値1.0×10-10m2/K/sec.の1/10より大きな値である。また、VOGCは時間と共に漸次増加するが、凝固完了時刻に近い時刻830分において初めて臨界値の1.0×10-10m2/K/secを超え、その後は臨界値を超えた状態で凝固が完了する。また、VOCGの臨界値到達時の結晶の固化率は90%であることも、(23)式を基に計算される。
 なお、凝固の終盤830分以降において温度の下げ勾配を大きくしているため、凝固速度が増加し、VOGC値が臨界値を超えて急激に増加しているが、これは、凝固終了時近傍では固化率が90%に近い値になっており、この部分での歩留りを低下させても、凝固速度を上げた方が全体的にみて生産性が上がるためである。
 従って、本実施例1で設定されるヒーターの輻射温度制御パターンに基づき、凝固炉の操業を実施すれば、凝固開始から固化率90%まで、融液の組成的過冷却が起きず、90%が凝固精製されて品質の良好なインゴットを得ることができる。
 実際に、この図3上段のヒーター温度制御パターンに従って、金属シリコンの凝固精製を行い、得られたシリコン結晶の中央部を縦(凝固)方向に切断し、その断面の高さ(凝固進行)方向に対する不純物分析濃度の変化を、携帯型の簡易蛍光X線装置により測定した。測定箇所については、結晶の高さ方向(凝固進行方向)に10mm間隔で、また、水平方向(同一固化率については結晶の外周位置から50mm離れた場所を起点として水平方向に100mm間隔で8箇所測定した。測定点の数は合計168点であった。
 この測定結果を図4に示す。
 この図4のグラフでは、横軸に結晶の高さ(固化率g)をとり、これに対して予想されたVOCG値を実線で、VOCGの臨界値を一点鎖線で、切断面の高さ方向に、同一高さ(同一固化率)8箇所で平均したFe濃度を黒丸印で示してある。
 シリコン結晶中のFe濃度は結晶高さ180mm(固化率81%)まで検出されず、分析装置の検出下限値の5ppmwであるが、高さ190mm(固化率85%)以降から検出され始め、190mmで14ppmw、200mm(固化率89%)で16400ppmw、210m(固化率93%)で18200ppmw、220mm(固化率98%)で20700ppmwとなっていた。また、目視による組織観察でも、柱状晶が高さ205mm(固化率90%)位置まで成長し、205mm以降から等軸晶化していた。以上より、この実施例1に示した制御方法により、90%以上が凝固精製された結晶が得られた。
(比較例1)
 また、比較例1として、従来のヒーターの輻射温度制御パターンを用い、また、上記の実施例1の場合と同じ装置及び同じ凝固精製原料の金属シリコンを用いて、実施例1と同じ条件での凝固精製を行った。このヒーターの輻射制御の制御パターンは、凝固開始から完了までの所要時間は15時間(900分)を目安とし、凝固初期の急速な凝固を避けるために、凝固開始から中盤に向かって温度の下げ勾配をほぼ一定とし、凝固後半は凝固精製のためにヒーター輻射温度を高温に維持することを狙ったものである。また、この比較例1の条件においてもVOGC値を求めるが、使用する物性値、及びJbの凝固進行に伴う変化も、実施例1の場合と同じである。
 この比較例1において、ヒーターの輻射温度の設定例(予測ヒーター温度制御パターン)を、図5のグラフ上段の上側の実線で示す。
 ここで、融液中の温度勾配Gの推移は、図5の下段のグラフにおいて疎な点線で示されており、また、凝固速度Vの推移は、図5の下段のグラフにおいて実線で示されており、更に、融液中の不純物の濃度Cmの推移は、図5の中段のグラフにおいて点線で示されており、更にまた、VOGC値の推移は、図5の中段のグラフにおいて実線で示されている。また、凝固点の変化は、図5の上段のグラフにおいて、下側の実線で示されており、また、融液表面の温度Tsは、図5の上段のグラフにおいて、点線で示されている。
 以上より、本比較例1で設定されるヒーターの輻射温度制御パターンに対してVOGCが計算されたが、得られたVOGC値は、凝固開始時点で7.2×10-12m2/K/sec.であるが、これは臨界値であるVOGC値1.0×10-10m2/K/sec.の1/10より小さい値であり、凝固速度に十分余裕があることがわかる。また、VOGCは、時間と共に漸次増加し、凝固開始からの時刻570分において臨界値の1.0×10-10m2/K/secを超え、その後は臨界値を超えた状態で凝固が完了する。また、VOCGの臨界値到達時の結晶の固化率は60%であることも、(23)式を基に計算される。
 従って、この比較例1で設定されるヒーターの輻射温度制御パターンに基づき、凝固炉の操業を実施すれば、凝固開始から固化率60%で融液の組成的過冷却が起こってしまい、インゴトの60%程度しか凝固精製されないことになる。
 実際に、この図5上段のヒーター温度制御パターンに従って、金属シリコンの凝固精製を行い、実施例1と同様にして、シリコン結晶の中央部を縦(凝固)方向に切断し、その断面の高さ(凝固進行)方向に対する不純物分析濃度の変化を、同様に携帯型の簡易蛍光X線分析装置により測定した。測定箇所については、実施例1の場合と同様にした。
 この測定結果を図6に示す。
 このグラフでは、横軸に結晶の高さ(固化率g)をとり、これに対して予想されたVOCG値を実線で、切断面の高さ方向に、同一高さ(同一固化率)8箇所で平均したFe濃度の値を黒丸印で示してある。
 インゴット中のFe濃度は結晶高さ120mm(固化率54%)まで検出されず、分析装置の検出下限値の5ppmwであるが、高さ130mm(固化率58%)以降から検出され始め、140mm(固化率63%)以上では3000ppmwを超える高い値を示していた。また、目視による組織観察でも、柱状晶は高さ140mm位置までしか成長しておらず140mm以降から等軸晶化していた。以上より、この比較例に示した制御方法では、原料の60%程度しか凝固精製できないことが判明した。
 従って、従来の方法では、鋳型下部構造体からの熱流量の変化に十分な対応がとれず、また、凝固途中に得られる凝固位置の情報を利用した精密な凝固速度制御ができなくて、凝固途中の後半で組成的過冷却の臨界値を超えた部分が発生し、歩留りが低下したものと考えられる。
(実施例2)
 実施例2として、上記の実施例1の場合と同じ凝固精製装置と鋳型を用いて、凝固精製原料の不純物濃度が2500ppmwで、その組成の内訳が、鉄1200ppmw、アルミニウム800ppmw、ニッケル400ppmwである金属シリコン350kgの凝固精製を行った。ここで、凝固開始から完了までの所要時間は15時間(900分)を目安とした。
 この実施例2において、本発明の方法でVOGC値(予測VOGC値)を計算し、この予測VOGC値が臨界値以下となるようにヒーターの輻射温度を計算して設定した際の例(予測ヒーター温度制御パターン)を、図7のグラフの上段に実線で示す。
 この実施例2で精製すべき不純物元素は鉄、アルミニウム、ニッケルの3種であるので、VOGC値の臨界値は、先に示したように、全不純物の重量密度をCm-allとして、以下の式で与えられる。
    (V/G)Cm-all<0.59<D/m>
 ここで、<D/m>は、各不純物成分の(mi/Di)値について、重みとしてαiを取った加重調和平均値の逆数であるため、各成分の(mi/Di)の値が必要である。ここでは、鉄については、実施例1で採用したVOGC臨界値1.0×10-10m2/K/secから、これを0.59で除した値の逆数である5.85×109Ksec/m2を採用した。また、アルミニウムについては、状態図より読み取った液相線勾配のm=544℃/100w%と、文献値の拡散係数D=3.80×10-7m2/sより求めた値の、1.43×109Ksec/mを採用した。更に、ニッケルについては状態図より読み取った液相線勾配のm=214℃/100w%と、文献値の拡散係数D=1.05×10-7m2/sより求めた値の2.04×109Ksec/mを採用した。また、不純物の重量比率αiは、鉄が0.5、アルミニウムが0.33、ニッケルが0.17である。これらの値を用いると<D/m>の値は、1.6×10-10m2/K/secとなり、VOGC臨界値は9.3×10-10m2/K/secとなる。この臨界値は図7のグラフの中段に太い点線で示されている。
 ここで、設定されたヒーター輻射温度パターンから凝固中でのVOGC値を予測するに当り、先ず、鋳型底からの伐熱流量Jbが必要であるが、この実施例2の操業時においては、炉の経時劣化により、鋳型の底部と水冷ジャケットの間の接触熱抵抗が増加したため、水冷ジャケットに流している冷却水量は実施例1と同じ150L/min.で、冷却水の入り口温度と出口温度の差が、凝固初期には5.7℃であって凝固完了時には4.3℃になっていた。これは、鋳型底部での伐熱が固化率と共に66KWから47KWへと減少し、Jbは凝固開始時で104W/m2であって凝固完了時で74W/m2となっていると計算される。Jbを結晶の熱伝導度で除した値がインゴット中の温度勾Gsであるが、この値は図7の下段のグラフにおいて、密な点線で示されている。
 この実施例2において、ヒーターの輻射温度の設定例(予測ヒーター温度制御パターン)を、図7のグラフの上段に実線で示す。この実施例2では、全不純物濃度が高く、かつ、鋳型底部の経時劣化によりJbが減少しており、実施例1より凝固精製が難しい条件となっていることから、この設定は、比較例1よりも凝固初期の温度を下げて勾配を大きくすることで、凝固初期段階での凝固速度を大きくし、凝固の終盤でヒーターの輻射温度を高めに取ることで、凝固速度を抑制することを狙っている。
 ここで、融液中の温度勾配Gの推移は、図7の下段のグラフにおいて疎な点線で示されており、また、凝固速度Vの推移は、図7の下段のグラフにおいて実線で示されており、更に、融液中の不純物の濃度Cmの推移は、図7の中段のグラフにおいて点線で示されており、更にまた、VOGC値の推移は、図7の中段のグラフにおいて点線で示されている。また、融液中の凝固点の変化は、図7の上段のグラフにおいて、下側の実線で示されており、また、融液表面の温度Tsは、図7の上段のグラフにおいて、点線で示されている。
 本実施例2で設定されるヒーターの輻射温度制御パターンに対して得られたVOGC値は、凝固開始時点で2.2×10-11m2/K/sec.であって、その後に時間の経過と共に漸次増加し、凝固開始からの時刻830分において臨界値の9.3×10-11m2/K/secを超え、その後は臨界値を超えた状態で凝固が完了する。また、VOCGの臨界値到達時の結晶の固化率は89%であることも、(23)式を基に計算される。
 従って、本実施例2で設定されるヒーターの輻射温度制御パターンに基づいて凝固炉の操業を実施すれば、凝固開始から固化率約90%までが凝固精製されて品質の良好な結晶として得られることになる。
 実際に、この図7上段のヒーター温度制御パターンに従って、金属シリコンの凝固精製を行い、実施例1と同様にして、シリコン結晶の中央部を縦(凝固)方向に切断し、その断面の高さ(凝固進行)方向に対する不純物分析濃度の変化を、同様に携帯型の簡易蛍光X線分析装置により測定した。測定箇所については、実施例1の場合と同様にした。
 この測定結果を図8に示す。
 この図8のグラフでは、横軸に結晶の高さ(固化率g)をとり、これに対して予想されたVOCG値を実線で、切断面の高さ方向に、同一高さ(同一固化率)8箇所で平均したFe濃度を黒丸印、アルミニウム濃度を三角印、ニッケル濃度を×印で示してある。
 シリコン結晶中のFe濃度は、結晶高さ190mm(固化率85%)まで、分析装置の検出下限値の5ppmwであるが、高さ200mm(固化率89%)以降から検出され始め、200mmで2200ppmw、210mm(固化率93%)で12500ppmw、220mm(固化率98%)で15100ppmwとなっていた。
 また、アルミニウムの濃度は、結晶高さ190mm(固化率85%)まで、分析装置の検出下限値の10ppmwであるが、高さ200mm(固化率89%)以降から検出され始め、200mmで5400ppmw、210mm(固化率93%)で7900ppmw、220mm(固化率98%)で8500ppmwとなっていた。
 更に、ニッケルの濃度は、結晶高さ180mm(固化率81%)まで分析装置の検出下限値の5ppmwであるが、高さ190mm(固化率85%)以降から検出され始め、190mmで45ppmw、200mm(固化率89%)で4300ppmw、210m(固化率93%)で4600ppmw、220mm(固化率98%)で5700ppmwとなっていた。
 また、目視による組織観察でも、柱状晶が高さ205mm(固化率90%)位置まで成長し、205mm以降から等軸晶化していた。以上より、この実施例2に示した制御方法により、ほぼ90%以上の割合で凝固精製された結晶が得られた。
 1…金属シリコンの液相(融液)、2…金属シリコンの固相、3…金属シリコンの液相と固相との間の凝固界面、4…金属シリコンの液相(融液)の融液表面、5…鋳型、5b…鋳型5の底部、6…電熱ヒーター(加熱手段)、7…水冷ジャケット(冷却手段)、8…冷却水、9…断熱手段、10…凝固面高さ測定手段、11…温度測定手段、12…底部抜熱量算出手段と組成的過冷却演算手段とを含む凝固速度制御手段、13…電熱ヒーターの電源、14…ヒーター温度の情報を伝達する伝達手段、15…冷却水の情報を伝達する伝達手段、16…電熱ヒーターの電源にパワー制御情報を伝達する伝達手段、17…鋳型の底部や水冷ジャケット7等の鋳型下部構造体。

Claims (6)

  1.  凝固精製装置の鋳型内にある金属シリコンの融液を一方向凝固させて前記金属シリコン中の不純物元素を除去する金属シリコンの凝固精製法であり、
     凝固界面での融液側温度勾配Gと、凝固途中の融液中不純物元素濃度Cmと、凝固速度Vとを用いて表される組成的過冷却指数{VOGC=(V/G)×Cm}が、金属シリコンにおけるシリコン-不純物元素の状態図から読み取れる液相線の勾配mと不純物元素の拡散係数Dとを用いて表される組成的過冷却の臨界値{0.59(D/m)}に対して、下記の関係
     1/10{0.59(D/m)}≦VOGC<0.59(D/m)
    を維持するように、前記融液の加熱及び/又は冷却を行うことを特徴とする金属シリコンの凝固精製法。
  2.  鋳型内での融液の一方向凝固が、前記鋳型の側面を断熱しながら融液の液面上方から輻射により加熱すると共に鋳型の底部からは抜熱により冷却して行われることを特徴とする請求項1に記載の金属シリコンの凝固精製法。
  3.  組成的過冷却指数(VOGC)は、金属シリコンの物性値情報(凝固潜熱、凝固点、密度、熱伝導度)、凝固前の融液関連初期情報(初期不純物濃度、初期融液深さ)と、凝固過程の時系列情報(結晶から外部へ抜熱される熱流量、凝固面高さ)とを基にして、凝固界面を挟んだ凝固進行方向に対する定常の一次元熱移動収支によって凝固界面での融液側温度勾配Gと凝固速度Vの積を求め、これに融液中不純物元素濃度の値Cmを乗じで求めることを特徴とする請求項1又は2に記載の金属シリコンの凝固精製方法。
  4.  組成的過冷却指数(VOGC)は、金属シリコンの物性値情報(L:凝固潜熱、Tmp:シリコンの凝固点、ρ:凝固点における結晶の密度、Kmo:静止した融液の熱伝導度)と、事前に求めた融液内実効熱伝導度情報(Km:融液内実効熱伝導度)と、凝固前の融液関連初期情報(Co:初期不純物濃度、H:初期融液深さ)と、凝固過程の時系列情報(Jb:容器底部から外部へ抜熱される熱流量、x:凝固面高さ)とを基にして、下記の(1)式
    Figure JPOXMLDOC01-appb-I000001
    〔但し、上記式中、Taはヒーターの輻射温度、εは融液表面とヒーターとの間の実効輻射率、σはステファンボルツマン定数、及びkeffは実効分配係数をそれぞれ意味する。〕
    により、凝固界面を挟んだ凝固進行方向に対する定常の一次元熱移動収支を計算することによって求めることを特徴とする請求項3に記載の金属シリコンの凝固精製方法。
  5.  凝固精製装置の鋳型内にある金属シリコンの融液を、その液面上方から輻射により加熱すると共に前記鋳型底部からは抜熱により冷却し、前記鋳型内で前記融液を一方向凝固させて前記金属シリコン中の不純物元素を除去する金属シリコンの凝固精製装置であり、
     前記融液の液面上方に設置されて前記液面を加熱するヒーターからなる加熱手段と、前記鋳型の底部を冷却する冷却手段と、前記鋳型の側面に設置されてこの鋳型側面を断熱する断熱手段とを有し、
     下記の(0)式で表される凝固速度Vを凝固初期から時系列で算出し、
    Figure JPOXMLDOC01-appb-I000002
    この算出された時系列の凝固速度から時系列の凝固面高さxを累積計算によって求める凝固面高さ計算手段と、前記ヒーターの温度Taを時系列で測定する温度測定手段と、前記水冷ジャケットにおける冷却水の入口温度、出口温度、及び流量を時系列で測定し、当該測定値から前記容器の底部から外部へ抜熱される熱流量Jbを時系列で算出する底部抜熱量算出手段とを有し、また、
     前記金属シリコンの物性値情報(L:凝固潜熱、Tmp:純シリコンの凝固点、ρ:凝固点における密度、Kmo:静止した融液の熱伝導度)と、事前に求めた融液内実効熱伝導度情報(Km:融液内実効熱伝導度)と、凝固前の融液関連初期情報(Co:初期不純物濃度、H:初期融液深さ)とが入力されると共に、前記凝固面高さ計算手段で求められた凝固面高さxの時系列情報と、前記底部抜熱量算出手段で算出された前記容器底部から外部へ抜熱される熱流量Jbの時系列情報とが入力され、これらの入力情報を基にして、下記の(1)式
    Figure JPOXMLDOC01-appb-I000003
    により組成的過冷却指数(VOGC)を算出する組成的過冷却指数演算手段と、前記組成的過冷却指数演算手段で算出される組成的過冷却指数(VOGC)の値が金属シリコンにおけるシリコン-不純物元素の状態図から読み取れる液相線の勾配mと不純物元素の拡散係数Dとを用いて表わされる組成的過冷却の臨界値{0.59(D/m)}に対して、下記の関係
     1/10{0.59(D/m)}≦VOGC<0.59(D/m)
    を維持するように、前記ヒーターの温度を前記融液の凝固の進行に応じて調整するヒーター温度制御手段とを有することを特徴とする金属シリコンの凝固精製装置。
  6.  前記凝固面高さ計算手段に替えて、凝固面高さを時系列で測定する凝固面高さ測定手段を有し、
     当該凝固面高さ測定手段で求められた凝固面高さの時系列情報を、前記凝固面高さ計算手段で求められた凝固面高さの時系列情報に替えて、前記組成的過冷却指数演算手段へ入力することを特徴とする請求項5に記載の金属シリコンの凝固精製装置。
PCT/JP2011/076270 2010-11-17 2011-11-15 金属シリコンの凝固精製方法及び装置 WO2012067100A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11841948.0A EP2641869A4 (en) 2010-11-17 2011-11-15 METHOD AND DEVICE FOR SOLIDIFYING AND PURIFYING SILICON METALLIC
CN201180055381.8A CN103209924B (zh) 2010-11-17 2011-11-15 金属硅的凝固提纯方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010257212A JP2012106886A (ja) 2010-11-17 2010-11-17 金属シリコンの凝固精製方法及び装置
JP2010-257212 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012067100A1 true WO2012067100A1 (ja) 2012-05-24

Family

ID=46084026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076270 WO2012067100A1 (ja) 2010-11-17 2011-11-15 金属シリコンの凝固精製方法及び装置

Country Status (5)

Country Link
EP (1) EP2641869A4 (ja)
JP (1) JP2012106886A (ja)
CN (1) CN103209924B (ja)
TW (1) TWI515166B (ja)
WO (1) WO2012067100A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630257B (zh) * 2020-12-28 2024-03-22 宁波铭瑞中兴电子科技有限公司 一种玻璃水水箱监控方法、系统、智能终端以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120493A (ja) * 1996-10-14 1998-05-12 Kawasaki Steel Corp 太陽電池用シリコンの鋳造方法
JPH10182137A (ja) * 1996-12-26 1998-07-07 Kawasaki Steel Corp 太陽電池用シリコンの凝固精製方法及び装置
JPH10251009A (ja) * 1997-03-14 1998-09-22 Kawasaki Steel Corp 太陽電池用シリコンの凝固精製方法
JP2006027940A (ja) * 2004-07-14 2006-02-02 Sharp Corp 金属の精製方法
JP2006273628A (ja) * 2005-03-28 2006-10-12 Kyocera Corp 多結晶シリコンインゴットの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014758B2 (ja) * 1999-04-30 2007-11-28 三菱マテリアルテクノ株式会社 結晶シリコン製造装置
US7867334B2 (en) * 2004-03-29 2011-01-11 Kyocera Corporation Silicon casting apparatus and method of producing silicon ingot
KR20100061510A (ko) * 2007-09-13 2010-06-07 실리슘 비캔커 인코포레이티드 야금 등급의 규소로부터 중간 및 고순도 규소를 생산하는 방법
JP5125973B2 (ja) * 2007-10-17 2013-01-23 住友化学株式会社 精製シリコンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120493A (ja) * 1996-10-14 1998-05-12 Kawasaki Steel Corp 太陽電池用シリコンの鋳造方法
JPH10182137A (ja) * 1996-12-26 1998-07-07 Kawasaki Steel Corp 太陽電池用シリコンの凝固精製方法及び装置
JPH10251009A (ja) * 1997-03-14 1998-09-22 Kawasaki Steel Corp 太陽電池用シリコンの凝固精製方法
JP2006027940A (ja) * 2004-07-14 2006-02-02 Sharp Corp 金属の精製方法
JP2006273628A (ja) * 2005-03-28 2006-10-12 Kyocera Corp 多結晶シリコンインゴットの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2641869A4 *

Also Published As

Publication number Publication date
CN103209924A (zh) 2013-07-17
EP2641869A4 (en) 2015-12-23
TWI515166B (zh) 2016-01-01
TW201228935A (en) 2012-07-16
CN103209924B (zh) 2015-08-05
EP2641869A1 (en) 2013-09-25
JP2012106886A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
JP3523986B2 (ja) 多結晶半導体の製造方法および製造装置
WO2006054610A1 (ja) 結晶製造装置
Liu et al. High thermal gradient directional solidification and its application in the processing of nickel-based superalloys
TWI558863B (zh) Polycrystalline silicon rods
US6899758B2 (en) Method and apparatus for growing single crystal
JPH09183606A (ja) 多結晶半導体の製造方法および製造装置
Wang et al. Investigation of segregation and density profiles in the mushy zone of CMSX-4 superalloys solidified during downward and upward directional solidification processes
KR101385997B1 (ko) 단결정 제조장치 및 단결정 제조방법
CN105092406A (zh) 一种新型炉渣结晶过程热重测试设备与测试方法
WO2012067100A1 (ja) 金属シリコンの凝固精製方法及び装置
JPS63166711A (ja) 多結晶シリコン鋳塊の製造法
US9617618B2 (en) Silicon purification mold and method
Beaudhuin et al. One-dimensional model of the equiaxed grain formation in multi-crystalline silicon
JP2012025612A (ja) 多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット
JPH10182137A (ja) 太陽電池用シリコンの凝固精製方法及び装置
US9553221B2 (en) Electromagnetic casting method and apparatus for polycrystalline silicon
Lee et al. Numerical study on stress control of silicon ingot for photovoltaic applications
JP2013199417A (ja) 結晶の製造装置及び製造方法
JP2001278613A (ja) シリコンの一方向凝固装置
Xuan et al. A Method of Stray Grain Suppression for Single-Crystal Superalloy During Seed Melt-Back
CN117517390A (zh) 一种熔渣选分结晶实验装置及实验方法
JP4579122B2 (ja) 酸化物単結晶の製造方法およびその製造装置
Wu et al. In-situ observation of Ni-11.5 wt% Si eutectic microstructure evolution and exploration of strengthening mode of Ni-Ni3Si eutectic composites
JP2013049586A (ja) シリコンインゴットの連続鋳造方法
Hao et al. Investigation on solidification structure evolution of deeply undercooled single-phase Ni-Cu-Co alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011841948

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011841948

Country of ref document: EP