WO2012067025A1 - シリコンウェハ清浄化方法及びシリコンウェハ清浄化装置 - Google Patents

シリコンウェハ清浄化方法及びシリコンウェハ清浄化装置 Download PDF

Info

Publication number
WO2012067025A1
WO2012067025A1 PCT/JP2011/076025 JP2011076025W WO2012067025A1 WO 2012067025 A1 WO2012067025 A1 WO 2012067025A1 JP 2011076025 W JP2011076025 W JP 2011076025W WO 2012067025 A1 WO2012067025 A1 WO 2012067025A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
cleaning
carbonated water
tank
ultrapure water
Prior art date
Application number
PCT/JP2011/076025
Other languages
English (en)
French (fr)
Inventor
中馬 高明
孝博 川勝
北見 勝信
森田 博志
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to US13/884,350 priority Critical patent/US9136104B2/en
Priority to CN201180055008.2A priority patent/CN103210476B/zh
Priority to KR20137015487A priority patent/KR20130132861A/ko
Publication of WO2012067025A1 publication Critical patent/WO2012067025A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels

Definitions

  • the present invention relates to a silicon wafer cleaning method and a silicon wafer cleaning apparatus for preventing adhesion of impurities to a silicon wafer in a wet cleaning process in a semiconductor manufacturing process.
  • SC-2 hydrochloric acid, hydrogen peroxide and water
  • SPM sulfuric acid and hydrogen peroxide
  • Patent Document 1 discloses a technique for dissolving ammonia in ultrapure water.
  • Patent Document 2 discloses a cleaning method in which an object to be cleaned is brought into contact with a cleaning solution in which ozone gas and carbon dioxide gas are dissolved in pure water or ultrapure water in order to remove metal impurities attached to the substrate surface. Yes.
  • Patent Document 3 when the substrate on which the metal wiring is formed is rinsed with ultrapure water, the metal dissolved from the metal wiring on the substrate surface by the ultrapure water adheres to the substrate again while preventing metal adhesion.
  • ultrapure water containing a chelating agent is used as a rinsing liquid.
  • Patent Document 2 focuses solely on the advantage of adding carbonic acid to ozone used for cleaning as a chemical replacement for substrate cleaning. It is not a method used to prevent metal adhesion.
  • the present invention has been made in view of the above-described problems. Static electricity is not generated due to rinsing treatment, and dust does not adhere to the cleaned silicon wafer surface due to static electricity.
  • a silicon wafer that can prevent metal impurities from adhering during wafer rinsing and can be rinsed using a clean rinsing liquid that is free from the risk of residue while giving consideration to cost.
  • An object is to provide a cleaning method and a silicon wafer cleaning apparatus.
  • the present invention provides a silicon wafer cleaning method characterized in that a silicon wafer cleaned with a cleaning liquid is rinsed with carbonated water (Invention 1).
  • the cleaning liquid remaining on the surface of the silicon wafer is washed away with carbonated water, so that the carbonated water relaxes the anionic property of the silicon wafer surface, and thus the metal silicon wafer is cationic.
  • the affinity for the surface it is possible to prevent metal impurities from adhering to the silicon wafer surface during the rinsing process of the silicon wafer, and to add ultrapure water with an increased purity without considering the cost.
  • Rinse treatment using carbonated water as a clean rinse liquid without causing a residue can be performed without using a rinse liquid.
  • the silicon wafer may be rinsed with the carbonated water and then rinsed with ultrapure water (Invention 2).
  • the carbonated water is washed away by further rinsing with ultrapure water, and there is a metal near the silicon wafer that forms a compound with carbonate and tends to precipitate.
  • the metal can be prevented from forming a compound with carbonic acid.
  • the carbonated water whose carbon dioxide concentration is adjusted based on the analysis result of the amount of metal attached to the silicon wafer after being cleaned by the silicon wafer cleaning method, It is preferable to rinse the silicon wafer cleaned with the cleaning liquid (Invention 3).
  • invention 3 since the carbon dioxide gas concentration in carbonated water can be determined and adjusted according to the metal adhesion amount to the silicon wafer surface after cleaning, more efficient carbonated water is used. It is possible to perform rinsing of the silicon wafer.
  • the cleaning tank cleaned with the cleaning liquid may be rinsed with the carbonated water (Invention 4). What is the cleaning tank cleaned with the cleaning liquid? You may perform the rinse process by the said carbonated water in a different clean tank (invention 5).
  • Inventions 1 to 5 a method of dissolving carbon dioxide gas in ultrapure water using a gas permeable membrane, a method of injecting carbon dioxide gas into a line through which ultrapure water passes, or a carbonate ion exchange resin
  • the carbonated water can be prepared by a method of bringing carbon dioxide gas into the ultrapure water by bringing it into contact with ultrapure water (Invention 6).
  • the present invention includes a cleaning tank for cleaning a silicon wafer with a cleaning liquid, and a carbonated water supply unit that supplies carbonated water to the cleaning tank, and is supplied from the carbonated water supply unit to the clean tank.
  • a silicon wafer cleaning apparatus characterized in that the silicon wafer cleaned with the cleaning liquid is rinsed with carbonated water (Invention 7).
  • the cleaning liquid remaining on the surface of the silicon wafer is washed away by the carbonated water supplied from the carbonated water supply unit.
  • Carbonated water relaxes the anionic nature of the silicon wafer surface, thus reducing the affinity of the cationic metal for the silicon wafer surface, preventing metal impurities from adhering to the silicon wafer surface during the rinsing of the silicon wafer.
  • Rinsing using carbonated water as a clean rinse solution without the risk of generating residues without using ultrapure water whose purity has been increased without considering the cost. be able to.
  • invention 7 it further has the ultrapure water supply part which supplies an ultrapure water to the said cleaning tank, and after rinsing the said silicon wafer with the said carbonated water, from the said ultrapure water supply part to the said cleaning tank
  • the silicon wafer may be rinsed with ultrapure water supplied to (Invention 8).
  • the carbonated water is washed away by rinsing the silicon wafer with ultrapure water supplied to the cleaning tank from the ultrapure water supply unit, and the carbonic acid and the compound are washed away.
  • the metal can be prevented from forming a compound with carbonic acid.
  • invention 7 and 8 it is preferable to further provide the washing
  • the present invention relates to a cleaning tank for cleaning silicon wafers, a rinsing tank for rinsing silicon wafers that have been cleaned in the cleaning tank, and a carbonate that supplies carbonated water to the rinsing tank.
  • a silicon wafer cleaning apparatus comprising: a water supply unit, wherein the silicon wafer cleaned in the cleaning tank is rinsed with carbonated water supplied from the carbonated water supply part to the rinse tank. (Invention 10).
  • the cleaning liquid remaining on the surface of the silicon wafer in the rinse tank is supplied from the carbonated water supply unit.
  • the carbonated water relaxes the anionicity of the silicon wafer surface and reduces the affinity of the cationic metal to the silicon wafer surface, so that metal impurities are removed from the silicon wafer surface during rinsing of the silicon wafer. It is possible to prevent adhering to the water, and without using the pure water whose purity has been increased without considering the cost as a rinsing liquid, the carbonated water as a clean rinsing liquid with no concern about the formation of residues
  • the rinse treatment used can be performed.
  • the carbonated water whose carbon dioxide concentration is adjusted based on the analysis result of the amount of metal attached to the silicon wafer after being cleaned by the silicon wafer cleaning device, It is preferable to rinse the silicon wafer cleaned with the cleaning liquid (Invention 11).
  • invention 11 since the carbon dioxide gas density
  • static electricity may be generated by the rinsing process, and electrostatic breakdown may occur, or dust may adhere to the cleaned silicon wafer surface due to static electricity.
  • FIG. 1 is a schematic view showing a silicon wafer cleaning apparatus according to an embodiment of the present invention.
  • a silicon wafer cleaning apparatus 10 includes a cleaning tank 1, a dilute hydrofluoric acid supply apparatus 2, a carbon dioxide gas supply apparatus 3, an ozone gas supply apparatus 4, and an ultrapure water supply. Line 5.
  • a wafer holder (not shown) is provided in the cleaning tank 1, and a silicon wafer as an object to be cleaned is mounted on the wafer holder and installed in the cleaning tank 1.
  • One end of the ultrapure water supply line 5 is connected to the ultrapure water production system 6, and the other end is connected to one inlet port of the three-way switching valve 7.
  • the dilute hydrofluoric acid supply pipe 21 connected to the dilute hydrofluoric acid supply device 2 is connected to the other inlet port of the three-way switching valve 7, and the liquid supply pipe 11 connected to the cleaning tank 1 is the outlet of the three-way switching valve 7. Connected to the port.
  • the ultrapure water W produced by the ultrapure water production system 6 is supplied to the cleaning tank 1 via the ultrapure water supply line 5 and the three-way switching valve 7, and dilute hydrofluoric acid is supplied to the dilute hydrofluoric acid supply pipe 21 and It is supplied to the washing tank 1 through the three-way switching valve 7.
  • a carbon dioxide supply device 3 is connected via a carbon dioxide supply tube 31, and an ozone gas supply device 4 is connected via an ozone gas supply tube 41.
  • Valves 8A and 8B are provided in the middle of the supply pipe 41, respectively. Thereby, the supply of carbon dioxide gas or ozone gas from the carbon dioxide supply device 3 or the ozone gas supply device 4 to the ultrapure water supply line 5 can be controlled by opening and closing the valves 8A and 8B.
  • the dilute hydrofluoric acid supply device 2 supplies dilute hydrofluoric acid as a cleaning liquid to the cleaning tank 1 through the three-way switching valve 7 and the liquid supply pipe 11.
  • the three-way switching valve 7 By operating the three-way switching valve 7, supply of ultrapure water from the ultrapure water supply line 5 to the cleaning tank 1, supply of dilute hydrofluoric acid from the dilute hydrofluoric acid supply device 2, and Can be switched.
  • the silicon wafer cleaning apparatus 10 can freely switch the liquid to be supplied to the cleaning tank 1 by operating the three-way switching valve 7 and the valves 8A and 8B.
  • the dilute hydrofluoric acid can be supplied to the cleaning tank 1 by operating the three-way switching valve 7 to open only the flow path from the dilute hydrofluoric acid supply device 2 to the liquid supply pipe 11. Further, by operating the three-way valve 7 to open only the flow path from the ultrapure water supply line 5 to the liquid supply pipe 11, it is possible to supply ultrapure water to the cleaning tank 1.
  • the silicon wafer cleaning apparatus 10 includes the dilute hydrofluoric acid supply device 2 for supplying dilute hydrofluoric acid as a cleaning liquid to the cleaning tank 1, but is not limited thereto.
  • the cleaning liquid may be a mixed liquid of ammonia water, hydrogen peroxide water and water, a mixed liquid of hydrochloric acid, hydrogen peroxide water and water, or a mixed liquid of sulfuric acid and hydrogen peroxide water depending on the purpose of the cleaning. Further, it may be a mixed solution of sulfuric acid, ozone and water, or may be used in combination according to the purpose, and the silicon wafer cleaning apparatus 10 can supply each necessary cleaning solution.
  • An apparatus may be provided.
  • Examples of the carbon dioxide supply device 3 included in the silicon wafer cleaning device 10 include a carbon dioxide cylinder, but any device that can supply carbon dioxide gas is not particularly limited. Absent.
  • the carbon dioxide supply device 3 is a device that can control the supply amount of carbon dioxide so that the carbon dioxide concentration of carbonated water supplied to the cleaning tank 1 can be accurately adjusted to a predetermined concentration. preferable.
  • Examples of the ozone gas supply device 4 provided in the silicon wafer cleaning device 10 include those having a discharge type ozone gas production device by silent discharge, creeping discharge, etc., an electrolysis type ozone gas production device, and the like. Any device can be used as long as it can be supplied.
  • the ozone gas supply device 4 is preferably a device that can control the supply amount of ozone gas so that the ozone concentration of the ozone water supplied to the cleaning tank 1 can be accurately adjusted to a predetermined concentration.
  • the silicon wafer cleaning process and the rinsing process by the silicon wafer cleaning apparatus 10 according to the present embodiment are performed as follows.
  • a silicon wafer which is an object to be cleaned, is mounted on a wafer holder (not shown) and placed in the cleaning tank 1.
  • the three-way switching valve 7 is operated to open only the flow path from the dilute hydrofluoric acid supply device 2 to the supply pipe 11, and supply of dilute hydrofluoric acid having a predetermined concentration to the cleaning tank 1 is started.
  • the silicon wafer is cleaned by supplying dilute hydrofluoric acid to the cleaning tank 1 for a predetermined time. By performing this cleaning, the metal impurities are removed from the surface of the silicon wafer, and the base for forming the oxide film is exposed.
  • the three-way switching valve 7 is operated to open only the flow path from the ultrapure water supply line 5 to the supply pipe 11, and the supply of ultrapure water to the cleaning tank 1 is stopped and the supply of ultrapure water is started. Then, the silicon wafer is rinsed for a predetermined time.
  • the valve 8B is opened, ozone gas is supplied to the ultrapure water flowing through the ultrapure water supply line 5, and the valve 8A is opened, and the ultrapure water W flowing through the ultrapure water supply line 5 is carbonated. Supply gas.
  • supply of ozone water containing carbonic acid to the cleaning tank 1 via the liquid supply pipe 11 is started.
  • the silicon wafer is cleaned by supplying the ozone water containing carbonic acid to the cleaning tank 1 for a predetermined time.
  • the silicon wafer cleaning apparatus 10 can remove metal impurities from the surface of the silicon wafer and form an oxide film on the surface of the silicon wafer by performing such a cleaning process.
  • the ozone concentration in the ozone water containing carbonic acid supplied to the cleaning tank 1 is 100 ppm or less, preferably 1 to 50 ppm, particularly preferably 5 to 20 ppm. If the ozone concentration of ozone water supplied to the cleaning tank 1 is less than 1 ppm, the thickness of the silicon oxide film formed on the silicon wafer may be insufficient, and if it exceeds 100 ppm, the oxidation reaction becomes intense. Thus, it becomes difficult to form a uniform silicon oxide film, and an oxide film having a high ratio of COOH groups is formed.
  • the carbon dioxide gas concentration in the ozone water containing carbonic acid supplied to the cleaning tank 1 is 10 ppm or less, preferably 1 to 5 ppm, particularly preferably 1 to 3 ppm.
  • the supply of carbonated water to the cleaning tank 1 is started by closing the valve 8B while the valve 8A remains open, and stopping the supply of ozone gas.
  • the wafer is rinsed with carbonated water.
  • the silicon wafer cleaning apparatus 10 can wash out ozone water as a cleaning liquid from the surface of the silicon wafer and prevent adhesion of metal impurities to the surface of the silicon wafer by performing such a rinsing process. it can.
  • the carbon dioxide concentration in the carbonated water supplied to the cleaning tank 1 may be the same as the carbon dioxide concentration in the ozone water containing carbonic acid.
  • the valve 8A is closed to stop the supply of carbon dioxide gas, whereby only the ultrapure water W is supplied to the cleaning tank 1, and the silicon wafer is rinsed with ultrapure water for a predetermined time. I do.
  • carbonated water is washed away by performing the rinsing process with ultrapure water, and a metal that forms a compound with carbonic acid and is likely to precipitate is present near the silicon wafer. In some cases, the metal can be prevented from forming a compound with carbonic acid.
  • the ultrapure water supplied to the ultrapure water supply line 5 by the ultrapure water production system 4 has a specific resistance of 18 M ⁇ ⁇ cm or more and preferably TOC 5 ppb or less.
  • the silicon wafer cleaning apparatus 10 which concerns on this embodiment is provided with only one washing tank 1, it is not restricted to this,
  • the silicon wafer cleaning apparatus is provided with the some washing tank.
  • Different cleaning processes may be performed in the respective cleaning tanks, or a rinsing tank may be provided separately from the cleaning tank, and the rinsing process may be performed in the rinsing tank.
  • the silicon wafer cleaning apparatus is provided with a cleaning tank and a rinsing tank, and the cleaning process with dilute hydrofluoric acid and the cleaning process with ozone water containing carbonic acid are performed in the cleaning tank, and the rinsing process with carbonated water is performed.
  • the rinsing treatment with ultra pure water may be performed in a rinsing tank.
  • the silicon wafer cleaning apparatus includes a first cleaning tank, a second cleaning tank, and a rinsing tank, and the cleaning treatment with dilute hydrofluoric acid is performed in the first cleaning tank, and the ozone water containing carbonic acid is used.
  • the cleaning process may be performed in the second cleaning tank, and the rinsing process with carbonated water and the rinsing process with ultrapure water may be performed in the rinsing tank.
  • the silicon wafer cleaning apparatus 10 is configured such that the carbon dioxide supply device 3 is connected to the ultra pure water supply line 5 via the carbon dioxide supply pipe 31 and the valve 8A.
  • the carbonated water used for the rinsing process is prepared by injecting carbon dioxide into the line through which liquid flows, but this is not a limitation. For example, carbon dioxide is dissolved in ultrapure water using a gas permeable membrane.
  • the carbonated water used for the rinsing treatment may be prepared by the method of rinsing treatment, or the carbonated water used for the rinsing treatment by the method in which the carbonate ion exchange resin and ultrapure water are brought into contact with each other and the carbon dioxide gas is gradually released into the ultrapure water. It is good also as what prepares.
  • the flow from the ultrapure water supply line 5 to the liquid supply pipe 11 is opened by operating the three-way switching valve 7, the valve 8B is opened, and the ozone gas supply device 6 in the ultrapure water supply line 5 While supplying 15 ppm of ozone gas to the ultrapure water and opening the valve 8A to supply 1 ppm of carbon dioxide gas from the carbon dioxide supply device 7 to the ultrapure water, ozone water containing carbon dioxide is passed through the cleaning tank 1 for 20 minutes. The metal impurities were removed, and an oxide film was formed on the silicon wafer surface.
  • both the valves 8A and 8B are closed, and the supply of ozone gas from the ozone gas supply device 6 and the supply of carbon dioxide gas from the carbon dioxide supply device 7 are stopped. Water W was supplied and rinse treatment with ultrapure water W was performed for 15 minutes.
  • the silicon wafer that has undergone the above steps is dried in a clean atmosphere, and the amount of Fe deposited on the dried silicon wafer is analyzed by vapor phase decomposition-ICP / MS.
  • the concentration of Fe element on the wafer is 2.2 ⁇ 10. It was 10 atoms / cm 2 .
  • the silicon wafer that has undergone the above steps is dried in a clean atmosphere, and the amount of Cu deposited on the dried silicon wafer is analyzed by vapor phase decomposition-TXRF (total reflection fluorescent X-ray). 3.7 ⁇ 10 10 atoms / cm 2 .
  • Example 1 In the silicon wafer cleaning apparatus 10 as shown in FIG. 1, the silicon wafer is mounted on the wafer holder and installed in the cleaning tank 1. First, by opening the flow path from the dilute hydrofluoric acid supply device 2 to the liquid supply pipe 11 by operating the three-way switching valve 7, 2% dilute hydrofluoric acid is supplied to the cleaning tank 1 for 2 minutes to remove metal impurities. The base for forming the oxide film was exposed. Then, the flow path from the ultrapure water supply line 5 to the liquid supply pipe 11 was opened by operating the three-way switching valve 7, and rinse treatment was performed for 2 minutes using ultrapure water W (Fe concentration: 1 ng / L). .
  • the flow from the ultrapure water supply line 5 to the liquid supply pipe 11 is opened by operating the three-way switching valve 7, and the valve 8B is opened to supply 15 ppm of ozone gas from the ozone gas supply device 6 to the ultrapure water.
  • the valve 8A by opening the valve 8A and supplying carbon dioxide gas from the carbon dioxide supply device 7 to the ultrapure water, ozone water containing carbon dioxide is passed through the cleaning tank 1 for 20 minutes to remove metal impurities.
  • an oxide film was formed on the silicon wafer surface.
  • valve 8B was closed with the valve 8A open, only the supply of ozone gas from the ozone gas supply device 6 was stopped, and a rinse treatment with carbonated water was performed for 10 minutes. Thereafter, the valve 8A was closed, the supply of carbon dioxide gas was stopped, and rinsing with ultrapure water W was performed for 5 minutes.
  • the silicon wafer that has undergone the above steps is dried in a clean atmosphere, and the amount of Fe deposited on the dried silicon wafer is analyzed by vapor phase decomposition-ICP / MS.
  • the concentration of Fe element on the wafer is 5.1 ⁇ 10 5. It was 9 atoms / cm 2 .
  • Example 2 The silicon wafer was cleaned in the same manner as in Example 1 except that ultrapure water with an Fe concentration of 5 ng / L was used, and the amount of Fe deposited on the dried silicon wafer was analyzed by vapor phase decomposition-ICP / MS As a result, the concentration of Fe element on the wafer was 4.3 ⁇ 10 10 atoms / cm 2 .
  • Example 3 The silicon wafer was cleaned in the same manner as in Example 2 except that the amount of metal adhesion in Example 2 was fed back and the carbon dioxide gas supplied to the ultrapure water from the carbon dioxide gas supply device 7 was changed to 5 ppm.
  • the concentration of Fe element on the wafer decreased to 8.9 ⁇ 10 9 atoms / cm 2 .
  • Example 4 In the silicon wafer cleaning apparatus 10 as shown in FIG. 1, the silicon wafer is mounted on the wafer holder and installed in the cleaning tank 1. First, by opening the flow path from the dilute hydrofluoric acid supply device 2 to the liquid supply pipe 11 by operating the three-way switching valve 7, 2% dilute hydrofluoric acid is supplied to the cleaning tank 1 for 2 minutes to remove metal impurities. The base for forming the oxide film was exposed. Thereafter, the flow from the ultrapure water supply line 5 to the liquid supply pipe 11 is opened by operating the three-way switching valve 7, the valve 8A is opened, and the ultrapure water W (Cu concentration: 1ng / L) was supplied with 1 ppm of carbon dioxide gas, and rinsed with carbonated water for 2 minutes.
  • the ultrapure water W Cu concentration: 1ng / L
  • the silicon wafer that has undergone the above steps is dried in a clean atmosphere, and the amount of Cu deposited on the dried silicon wafer is analyzed by vapor phase decomposition-TXRF (total reflection fluorescent X-ray). It was 3.2 ⁇ 10 9 atoms / cm 2 .
  • carbonated water can be used as a clean rinse liquid that does not cause a residue during rinsing of a silicon wafer, and the purity is simply increased without considering the cost. It was confirmed that it was not necessary to use water as a rinse liquid, and adhesion of metal impurities (Fe) was sufficiently suppressed.
  • the present invention is useful as a silicon wafer cleaning method using a clean rinse liquid that prevents adhesion of metal impurities during rinsing processing of a silicon wafer, considers cost, and does not cause a residue. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

 洗浄液により洗浄したシリコンウェハを、炭酸水によりリンスする。かかるシリコンウェハ清浄化方法によれば、リンス処理によって静電気が発生して静電破壊が発生したり、洗浄したシリコンウェハ表面に静電気によってゴミが付着したりすることがなく、シリコンウェハのリンス処理時における金属不純物の付着を防止することができるとともに、コストにも配慮しつつ、更には、残渣が生じる懸念のないクリーンなリンス液を用いたリンス処理を行うことができる。

Description

シリコンウェハ清浄化方法及びシリコンウェハ清浄化装置
 本発明は、半導体製造プロセスにおけるウェット洗浄プロセスにおいて、シリコンウェハへの不純物付着を防止するシリコンウェハ清浄化方法及びシリコンウェハ清浄化装置に関する。
 ICの高集積化を目的とした半導体製品の製造プロセスルールの微細化に伴い、微量不純物の混入は当該半導体製品のデバイス性能や製品歩留まりに大きく影響する。半導体製品の製造工程においては、微量不純物の混入を防ぐために、厳しいコンタミネーションコントロールが要求されており、各工程で各種の洗浄が行われている。
 一般に配線パターン作成前のFEOLに用いる半導体基板(シリコンウェハ)洗浄液としては、微粒子除去を目的としたアンモニア水と過酸化水素水と水との混合液(SC-1)、金属除去を目的とした塩酸と過酸化水素水と水との混合液(SC-2)や希フッ酸、オゾン水、オゾン水及び希フッ酸の混合液、有機物除去を目的とした硫酸と過酸化水素水との混合液(SPM)や硫酸とオゾンと水との混合液などが用いられており、目的に応じて単独で又は組み合わせにより使用されている。
 従来の洗浄工程(RCA洗浄方法やその改良型洗浄方法)においては、基板表面を上述のような洗浄液で処理した後、その洗浄液を洗い落とすために超純水で基板をすすぐリンス工程が必ず実施される。このとき、リンス用の超純水に汚染物が僅かでも存在すると、この汚染物が基板表面に付着してしまうため、リンス用の超純水に対する純度要求は非常に高いものとなっている。
 しかしながら、近年のリンス用超純水の純度に対する要求は、汚染物の基板表面への付着をおそれるあまり、コストや利便性を度外視した高すぎるものとなりがちであり、特に、汚染物として問題となる金属の場合、超純水中の微量金属の濃度を下げることが安全サイドであるため、どの成分をどの程度低減すればよいかという効果の確認はないまま、全般的な濃度低減に注力しているのが現状となっている。
 また、リンス液として超純水を用いた場合、超純水の比抵抗値が高いため、リンス処理によって静電気が発生して静電破壊が発生したり、静電気によって洗浄した基板表面にゴミが付着したりするという問題も生じる。このような問題を解決するために、超純水にアンモニアを溶解させる技術が特許文献1に開示されている。
 一方、特許文献2には、基板表面に付着した金属不純物を除去するために、純水または超純水にオゾンガスと炭酸ガスとを溶解した洗浄液に被洗浄物を接触させる洗浄方法が開示されている。
 さらに、特許文献3には、金属配線を形成した基板を超純水でリンスする際に、金属付着を防止しつつ、超純水によって基板表面上の金属配線から溶解した金属が再度基板に付着することを防止するため、キレート剤を含む超純水をリンス液として使用することが記載されている。
特開2004-273799号公報 特開2001-062412号公報 特開2002-050606号公報
 しかしながら、特許文献2において提案されている炭酸を含む洗浄液は、あくまでも、基板洗浄の薬液代替として洗浄に用いるオゾンに対して炭酸を加えることの利点に主眼をおいたものであり、炭酸水のみで金属の付着を予防するために使う方法ではない。
 また、酸化膜や窒化膜などのような超純水でそもそもエッチングがされにくい基板表面に対してまで、特許文献3に記載されたような、薬品を超純水に添加したリンス液を用いることは好ましくなく、残渣が生じる懸念のない、クリーンなリンス液を用いることが望まれている。
 本発明は、上記課題に鑑みてなされたものであり、リンス処理によって静電気が発生して静電破壊が発生したり、洗浄したシリコンウェハ表面に静電気によってゴミが付着したりすることがなく、シリコンウェハのリンス処理時における金属不純物の付着を防止することができるとともに、コストにも配慮しつつ、更には、残渣が生じる懸念のないクリーンなリンス液を用いたリンス処理を行うことのできるシリコンウェハ清浄化方法及びシリコンウェハ清浄化装置を提供することを目的とする。
 上記課題を解決するために、第一に本発明は、洗浄液により洗浄したシリコンウェハを、炭酸水によりリンスすることを特徴とするシリコンウェハ清浄化方法を提供する(発明1)。
 上記発明(発明1)によれば、シリコンウェハの表面に残存している洗浄液を炭酸水によって洗い流すことにより、炭酸水がシリコンウェハ表面のアニオン性を緩和し、もってカチオン性である金属のシリコンウェハ表面に対する親和性を低減するため、シリコンウェハのリンス処理時において金属不純物がシリコンウェハ表面へ付着することを防止することができるとともに、コストを度外視してただ徒に純度を高めた超純水をリンス液とすることなく、残渣が生じる懸念のないクリーンなリンス液としての炭酸水を用いたリンス処理を行うことができる。また、リンス液として超純水を用いた場合のように、リンス処理によって静電気が発生して静電破壊が発生したり、洗浄したシリコンウェエハ表面に静電気によってゴミが付着したりするという問題も生じることがない。さらに、表面に金属不純物やゴミが付着することが防止されたシリコンウェハを原材料として用いることにより、より品質の高い半導体製品を製造することができる。
 上記発明(発明1)においては、前記シリコンウェハを前記炭酸水によりリンスした後、超純水によりリンスしてもよい(発明2)。
 上記発明(発明2)によれば、炭酸水によるリンス処理後、さらに超純水でリンすることにより炭酸水が洗い流され、炭酸と化合物を形成して析出し易い金属がシリコンウェハ近くに存在する場合に、当該金属が炭酸と化合物を形成することを防止することができる。
 上記発明(発明1、2)においては、前記シリコンウェハ清浄化方法により清浄化された後の前記シリコンウェハへの金属付着量の分析結果に基づいて炭酸ガス濃度が調整された炭酸水により、前記洗浄液により洗浄されたシリコンウェハをリンスすることが好ましい(発明3)。
 上記発明(発明3)によれば、清浄化後のシリコンウェハ表面への金属付着量に応じて炭酸水中の炭酸ガス濃度を決定し、調整することができるため、より効率的な炭酸水を用いたシリコンウェハのリンス処理を行うことができる。
 上記発明(発明1~3)においては、前記洗浄液による洗浄を行った清浄槽において、前記炭酸水によるリンス処理を行ってもよいし(発明4)、前記洗浄液による洗浄を行った清浄槽とは異なる清浄槽において、前記炭酸水によるリンス処理を行ってもよい(発明5)。
 上記発明(発明1~5)においては、ガス透過膜を用いて炭酸ガスを超純水に溶解させる方法、超純水が通液するラインに炭酸ガスを注入する方法、又は炭酸型イオン交換樹脂と超純水とを接触させて超純水中に炭酸ガスを徐放させる方法により、前記炭酸水を調製することができる(発明6)。
 第二に本発明は、洗浄液によりシリコンウェハの洗浄処理を行う清浄槽と、炭酸水を前記洗浄槽に供給する炭酸水供給部とを備え、前記炭酸水供給部から前記清浄槽に供給された炭酸水により、前記洗浄液により洗浄されたシリコンウェハをリンスすることを特徴とするシリコンウェハ清浄化装置を提供する(発明7)。
 上記発明(発明7)によれば、洗浄液によりシリコンウェハの洗浄処理を行う清浄槽において、シリコンウェハの表面に残存している洗浄液が炭酸水供給部から供給された炭酸水によって洗い流されることにより、炭酸水がシリコンウェハ表面のアニオン性を緩和し、もってカチオン性である金属のシリコンウェハ表面に対する親和性を低減するため、シリコンウェハのリンス処理時において金属不純物がシリコンウェハ表面へ付着することを防止することができるとともに、コストを度外視してただ徒に純度を高めた超純水をリンス液とすることなく、残渣が生じる懸念のないクリーンなリンス液としての炭酸水を用いたリンス処理を行うことができる。また、リンス液として超純水を用いた場合のように、リンス処理によって静電気が発生して静電破壊が発生したり、静電気によって洗浄した基板表面にゴミが付着したりするという問題も生じることがない。さらに、表面に金属不純物やゴミが付着することが防止されたシリコンウェハを原材料として用いることにより、より品質の高い半導体製品を製造することができる。
 上記発明(発明7)においては、前記清浄槽に超純水を供給する超純水供給部をさらに備え、前記シリコンウェハを前記炭酸水によりリンスした後、前記超純水供給部から前記清浄槽に供給された超純水により、前記シリコンウェハをリンスしてもよい(発明8)。
 上記発明(発明8)によれば、炭酸水によるリンス処理後、超純水供給部から清浄槽に供給された超純水でシリコンウェハをリンスすることにより炭酸水が洗い流され、炭酸と化合物を形成して析出し易い金属がシリコンウェハ近くに存在する場合に、当該金属が炭酸と化合物を形成することを防止することができる。
 上記発明(発明7、8)においては、前記清浄槽に洗浄液を供給する洗浄液供給部と、前記清浄槽への前記洗浄液と前記炭酸水との供給を切り替える液体供給ユニットとをさらに備えることが好ましい(発明9)。
 上記発明(発明9)によれば、洗浄液と炭酸水とを切り替えながら清浄槽に供給できるため、洗浄液により洗浄されたシリコンウェハを効率的に炭酸水によりリンスすることができる。
 第三に本発明は、シリコンウェハの洗浄処理を行う洗浄槽と、前記洗浄槽内において洗浄処理が行われたシリコンウェハのリンス処理を行うリンス槽と、前記リンス槽に炭酸水を供給する炭酸水供給部とを備え、前記炭酸水供給部から前記リンス槽に供給された炭酸水により、前記洗浄槽にて洗浄されたシリコンウェハをリンスすることを特徴とするシリコンウェハ清浄化装置を提供する(発明10)。
 上記発明(発明10)によれば、洗浄槽において洗浄液によりシリコンウェハの洗浄処理が行われた後、リンス槽においてシリコンウェハの表面に残存している洗浄液が炭酸水供給部から供給された炭酸水によって洗い流されることにより、炭酸水がシリコンウェハ表面のアニオン性を緩和し、もってカチオン性である金属のシリコンウェハ表面に対する親和性を低減するため、シリコンウェハのリンス処理時において金属不純物がシリコンウェハ表面へ付着することを防止することができるとともに、コストを度外視してただ徒に純度を高めた超純水をリンス液とすることなく、残渣が生じる懸念のないクリーンなリンス液としての炭酸水を用いたリンス処理を行うことができる。また、リンス液として超純水を用いた場合のように、リンス処理によって静電気が発生して静電破壊が発生したり、洗浄したシリコンウェハ表面に静電気によってゴミが付着したりするという問題も生じることがない。さらに、表面に金属不純物やゴミが付着することが防止されたシリコンウェハを原材料として用いることにより、より品質の高い半導体製品を製造することができる。
 上記発明(発明7~10)においては、前記シリコンウェハ清浄化装置により清浄化された後の前記シリコンウェハへの金属付着量の分析結果に基づいて炭酸ガス濃度が調整された炭酸水により、前記洗浄液により洗浄されたシリコンウェハをリンスすることが好ましい(発明11)。
 上記発明(発明11)によれば、清浄化後のシリコンウェハ表面への金属付着量に応じて炭酸水中の炭酸ガス濃度を決定し、調整することができるため、より効率的な炭酸水を用いたシリコンウェハのリンス処理を行うことができる。
 本発明のシリコンウェハ清浄化方法及びシリコンウェハ清浄化装置によれば、リンス処理によって静電気が発生して静電破壊が発生したり、洗浄したシリコンウェハ表面に静電気によってゴミが付着したりすることがなく、シリコンウェハのリンス処理時における金属不純物の付着を防止することができるとともに、コストにも配慮しつつ、更には、残渣が生じる懸念のないクリーンなリンス液を用いたリンス処理を行うことができる。
本発明の一の実施形態に係るシリコンウェハ清浄化装置を示す概略図である。
 以下、図面を参照して本発明の実施の形態について説明する。図1は、本発明の一の実施形態に係るシリコンウェハ清浄化装置を示す概略図である。
 図1に示すように、本実施形態に係るシリコンウェハ清浄化装置10は、洗浄槽1と、希フッ酸供給装置2と、炭酸ガス供給装置3と、オゾンガス供給装置4と、超純水供給ライン5とを備えている。
 洗浄槽1内には、図示しないウェハホルダが設けられており、被洗浄物であるシリコンウェハはウェハホルダに装着され、洗浄槽1内に設置される。
 超純水供給ライン5の一端は超純水製造システム6に接続され、他端は三方切替弁7の一の入口ポートに接続されている。また、希フッ酸供給装置2に接続される希フッ酸供給管21は三方切替弁7の他の入口ポートに接続され、洗浄槽1に接続される液供給管11は三方切替弁7の出口ポートに接続されている。これにより、超純水製造システム6により製造された超純水Wが超純水供給ライン5及び三方切替弁7を介して洗浄槽1に供給され、希フッ酸が希フッ酸供給管21及び三方切替弁7を介して洗浄槽1に供給される。
 超純水供給ライン5の途中には、炭酸ガス供給管31を介して炭酸ガス供給装置3が、オゾンガス供給管41を介してオゾンガス供給装置4が接続されており、炭酸ガス供給管31及びオゾンガス供給管41の途中には、それぞれバルブ8A,8Bが設けられている。これにより、バルブ8A,8Bの開閉によって、炭酸ガス供給装置3又はオゾンガス供給装置4から超純水供給ライン5への炭酸ガス又はオゾンガスの供給を制御することができる。
 希フッ酸供給装置2は、三方切替弁7及び液供給管11を介して洗浄槽1に洗浄液としての希フッ酸を供給する。この三方切替弁7を操作することにより、超純水供給ライン5からの超純水の洗浄槽1への供給と、希フッ酸供給装置2からの希フッ酸の洗浄槽1への供給とを切り替えることができるようになっている。
 すなわち、本実施形態に係るシリコンウェハ清浄化装置10は、三方切替弁7、バルブ8A,8Bを操作することにより、洗浄槽1へ供給する液体を自在に切り替えることができる。例えば、三方切替弁7を操作して、希フッ酸供給装置2から液供給管11への流路のみを開成することにより、洗浄槽1に希フッ酸を供給することができる。また、三方バルブ7を操作して、超純水供給ライン5から液供給管11への流路のみを開成することにより、洗浄槽1に超純水を供給することもできる。さらに、この状態で、バルブ8Aを開成して炭酸ガス供給装置3から超純水に炭酸ガスを供給することにより、洗浄槽1に炭酸水を供給することができ、バルブ8Aを閉成し、バルブ8Bを開成してオゾンガス供給装置4から超純水にオゾンガスを供給することにより、洗浄槽1にオゾン水を供給することもでき、バルブ8A及び8Bの両方を開成して超純水に炭酸ガスとオゾンガスとを供給することにより、洗浄槽1に炭酸を含むオゾン水を供給することもできる。
 なお、本実施形態において、シリコンウェハ清浄化装置10は、洗浄液としての希フッ酸を洗浄槽1に供給するために希フッ酸供給装置2を備えているが、これに限られるものではなく、例えば、洗浄液は、その洗浄の目的に応じて、アンモニア水と過酸化水素水と水との混合液、塩酸と過酸化水素水と水との混合液、硫酸と過酸化水素水との混合液、硫酸とオゾンと水との混合液等であってもよいし、これらを目的に応じて組み合わせて使用してもよく、シリコンウェハ清浄化装置10は、必要とするそれぞれの洗浄液を供給可能な装置を備えていてもよい。
 シリコンウェハ清浄化装置10が備える炭酸ガス供給装置3としては、例えば、炭酸ガスボンベ等が挙げられるが、炭酸ガスを供給し得るものであればどのような装置であっても特に限定されるものではない。なお、炭酸ガス供給装置3は、洗浄槽1に供給される炭酸水の炭酸ガス濃度を所定の濃度に精確に調整し得るように炭酸ガスの供給量を制御することのできる装置であるのが好ましい。
 シリコンウェハ清浄化装置10が備えるオゾンガス供給装置4としては、例えば、無声放電、沿面放電等による放電方式のオゾンガス製造装置や、電解方式のオゾンガス製造装置等を有するもの等が挙げられるが、オゾンガスを供給し得るものであればどのような装置であっても特に限定されるものではない。なお、オゾンガス供給装置4は、洗浄槽1に供給されるオゾン水のオゾン濃度を所定の濃度に精確に調整し得るようにオゾンガスの供給量を制御することのできる装置であるのが好ましい。
 本実施形態に係るシリコンウェハ清浄化装置10によるシリコンウェハの洗浄処理及びリンス処理は次のように行われる。
 まず、被洗浄物であるシリコンウェハがウェハホルダ(図示せず)に装着され、洗浄槽1内に設置される。次に、三方切替弁7を操作して希フッ酸供給装置2から供給管11への流路のみを開成し、洗浄槽1に対して所定の濃度の希フッ酸の供給を開始する。そして、希フッ酸を所定の時間洗浄槽1に供給することによってシリコンウェハの洗浄が行われる。この洗浄を行うことにより、シリコンウェハ表面から金属不純物の除去が行われるとともに、酸化膜形成の下地が露出する。
 その後、三方切替弁7を操作して超純水供給ライン5から供給管11への流路のみを開成し、洗浄槽1に対して希フッ酸の供給を止めて超純水の供給を開始し、所定の時間シリコンウェハのリンス処理を行う。
 リンス処理後、バルブ8Bを開成し、超純水供給ライン5中を流れる超純水にオゾンガスを供給するとともに、バルブ8Aを開成し、超純水供給ライン5中を流れる超純水Wに炭酸ガスを供給する。この結果、洗浄槽1に液供給管11を介して炭酸を含むオゾン水の供給が開始される。この炭酸を含むオゾン水を所定の時間洗浄槽1に供給することによってシリコンウェハの洗浄が行われる。本実施形態に係るシリコンウェハ清浄化装置10は、このような洗浄処理を行うことにより、シリコンウェハ表面から金属不純物の除去を行うとともに、シリコンウェハ表面に酸化膜を形成することができる。
 洗浄槽1に供給される、炭酸を含むオゾン水におけるオゾン濃度は、100ppm以下、好ましくは1~50ppm、特に好ましくは5~20ppmである。洗浄槽1に供給されるオゾン水のオゾン濃度が1ppm未満であると、シリコンウェハに形成されるシリコン酸化膜の膜厚が不十分となるおそれがあり、100ppmを超えると、酸化反応が激しくなって均質なシリコン酸化膜ができにくくなり、COOH基の比率の高い酸化膜が形成されてしまう。
 洗浄槽1に供給される、炭酸を含むオゾン水における炭酸ガス濃度は、10ppm以下、好ましくは1~5ppm、特に好ましくは1~3ppmである。
 炭酸を含むオゾン水による洗浄処理後、バルブ8Aを開成したままの状態でバルブ8Bを閉成してオゾンガスの供給を止めることにより、洗浄槽1に炭酸水の供給を開始し、所定の時間シリコンウェハの炭酸水によるリンス処理を行う。本実施形態に係るシリコンウェハ清浄化装置10は、このようなリンス処理を行うことにより、シリコンウェハ表面から洗浄液であるオゾン水を洗い流すとともに、シリコンウェハ表面への金属不純物の付着を防止することができる。なお、洗浄槽1に供給される炭酸水における炭酸ガス濃度は、上記炭酸を含むオゾン水における炭酸ガス濃度と同様であればよい。
 さらに、所定の時間経過後、バルブ8Aを閉成して炭酸ガスの供給をも止めることにより、洗浄槽1に超純水Wのみを供給し、所定の時間シリコンウェハの超純水によるリンス処理を行う。本実施形態に係るシリコンウェハ清浄化装置10は、このような超純水によるリンス処理を行うことにより炭酸水が洗い流され、炭酸と化合物を形成して析出し易い金属がシリコンウェハ近くに存在する場合に、当該金属が炭酸と化合物を形成することを防止することができる。
 超純水製造システム4により超純水供給ライン5に供給される超純水としては、比抵抗18MΩ・cm以上であり、TOC5ppb以下であるのが好ましい。
 なお、本実施形態に係るシリコンウェハ清浄化装置10は洗浄槽1を一つのみ備えているが、これに限られるものではなく、例えば、シリコンウェハ清浄化装置が複数の洗浄槽を備えており、それぞれの洗浄槽で異なる洗浄処理を行うものとしてもよいし、洗浄槽とは別にリンス槽を備えており、リンス処理はそのリンス槽において行うものとしてもよい。具体的には、シリコンウェハ清浄化装置が洗浄槽とリンス槽とを備えるものとし、希フッ酸による洗浄処理と炭酸を含むオゾン水による洗浄処理とは洗浄槽にて行い、炭酸水によるリンス処理と超純水によるリンス処理とはリンス槽にて行うように構成してもよい。また、シリコンウェハ清浄化装置が第1の洗浄槽と第2の洗浄槽とリンス槽とを備えるものとし、希フッ酸による洗浄処理は第1の洗浄槽にて行い、炭酸を含むオゾン水による洗浄処理は第2の洗浄槽にて行い、炭酸水によるリンス処理と超純水によるリンス処理とはリンス槽にて行うように構成してもよい。
 また、本実施形態に係るシリコンウェハ清浄化装置10は、炭酸ガス供給装置3が炭酸ガス供給管31及びバルブ8Aを介して超純水供給ライン5に接続されるように構成し、超純水が通液するラインに炭酸ガスを注入する方法によりリンス処理に用いる炭酸水を調製しているが、これに限られるものではなく、例えば、ガス透過膜を用いて炭酸ガスを超純水に溶解させる方法によりリンス処理に用いる炭酸水を調製してもよいし、炭酸型イオン交換樹脂と超純水とを接触させて超純水中に炭酸ガスを徐放させる方法によりリンス処理に用いる炭酸水を調製するものとしてもよい。
 以下、実施例及び比較例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、下記の実施例及び比較例において、シリコンウェハとしては、P型シリコンウェハ(信越半導体社製、抵抗値8~12Ω・cm)を使用した。また、基準となる金属不純物をFeとした。
〔比較例1〕
 図1に示すシリコンウェハ清浄化装置10において、シリコンウェハをウェハホルダに装着して洗浄槽1内に設置した。まず、三方切替弁7の操作により希フッ酸供給装置2から液供給管11への流路を開成し、2%希フッ酸を洗浄槽1に2分間供給し、金属不純物の除去を行うとともに、酸化膜形成の下地を露出させた後、超純水(Fe濃度:1ng/L)を用いて2分間リンス処理を行った。
 リンス処理後、三方切替弁7の操作により、超純水供給ライン5から液供給管11への流路を開成し、バルブ8Bを開成してオゾンガス供給装置6から超純水供給ライン5中の超純水にオゾンガスを15ppm供給するとともに、バルブ8Aを開成して炭酸ガス供給装置7からは超純水に炭酸ガスを1ppm供給することにより、洗浄槽1に炭酸を含むオゾン水を20分間通液し、金属不純物の除去を行うとともに、シリコンウェハ表面に酸化膜を形成した。
 酸化膜形成後、バルブ8A,8Bのいずれをも閉成してオゾンガス供給装置6からのオゾンガスの供給及び炭酸ガス供給装置7からの炭酸ガスの供給を停止することにより、洗浄槽1に超純水Wを供給し、超純水Wによるリンス処理を15分間行った。
 ここまでの工程を経たシリコンウェハを清浄な雰囲気で乾燥させ、乾燥後のシリコンウェハにおけるFe付着量を気相分解-ICP/MSにより分析したところ、Fe元素のウェハ上濃度は2.2×1010atoms/cmであった。
〔比較例2〕
 図1に示すシリコンウェハ清浄化装置10において、シリコンウェハをウェハホルダに装着して洗浄槽1内に設置した。その後、三方切替弁7の操作により希フッ酸供給装置2から液供給管11への流路を開成し、2%希フッ酸を洗浄槽1に2分間供給し、金属不純物の除去を行うとともに、酸化膜形成の下地を露出させた後、超純水(Cu濃度:1ng/L)を用いて2分間リンス処理を行った。
 ここまでの工程を経たシリコンウェハを清浄な雰囲気で乾燥させ、乾燥後のシリコンウェハにおけるCu付着量を気相分解-TXRF(全反射蛍光X線)により分析したところ、Cu元素のウェハ上濃度は3.7×1010atoms/cmであった。
〔実施例1〕
 図1に示されるようなシリコンウェハ清浄化装置10において、シリコンウェハをウェハホルダに装着して洗浄槽1内に設置した。まず、三方切替弁7の操作により希フッ酸供給装置2から液供給管11への流路を開成し、2%希フッ酸を洗浄槽1に2分間供給し、金属不純物の除去を行うとともに、酸化膜形成の下地を露出させた。その後、三方切替弁7の操作により超純水供給ライン5から液供給管11への流路を開成し、超純水W(Fe濃度:1ng/L)を用いて2分間リンス処理を行った。
 リンス処理後、三方切替弁7の操作により、超純水供給ライン5から液供給管11への流路を開成し、バルブ8Bを開成してオゾンガス供給装置6から超純水にオゾンガスを15ppm供給するとともに、バルブ8Aを開成して炭酸ガス供給装置7からは超純水に炭酸ガスを1ppm供給することにより、洗浄槽1に炭酸を含むオゾン水を20分間通液し、金属不純物の除去を行うとともに、シリコンウェハ表面に酸化膜を形成した。
 酸化膜形成後、バルブ8Aを開成したままの状態でバルブ8Bを閉成して、オゾンガス供給装置6からのオゾンガスの供給のみを停止し、炭酸水によるリンス処理を10分間行った。その後、バルブ8Aを閉成して炭酸ガスの供給を停止し、超純水Wによるリンス処理を5分間行った。
 ここまでの工程を経たシリコンウェハを清浄な雰囲気で乾燥させ、乾燥後のシリコンウェハにおけるFe付着量を気相分解-ICP/MSにより分析したところ、Fe元素のウェハ上濃度は5.1×10atoms/cmであった。
〔実施例2〕
 Fe濃度が5ng/Lの超純水を使用する以外は実施例1と同様にしてシリコンウェハの清浄化処理を行い、乾燥後のシリコンウェハにおけるFe付着量を気相分解-ICP/MSにより分析したところ、Fe元素のウェハ上濃度は4.3×1010atoms/cmであった。
〔実施例3〕
 実施例2における金属付着量をフィードバックし、炭酸ガス供給装置7から超純水に供給する炭酸ガスを5ppmとすること以外は実施例2と同様にしてシリコンウェハの清浄化処理を行い、乾燥後のシリコンウェハにおけるFe付着量を気相分解-ICP/MSにより分析したところ、Fe元素のウェハ上濃度は8.9×10atoms/cmまで減少した。
〔実施例4〕
 図1に示されるようなシリコンウェハ清浄化装置10において、シリコンウェハをウェハホルダに装着して洗浄槽1内に設置した。まず、三方切替弁7の操作により希フッ酸供給装置2から液供給管11への流路を開成し、2%希フッ酸を洗浄槽1に2分間供給し、金属不純物の除去を行うとともに、酸化膜形成の下地を露出させた。その後、三方切替弁7の操作により超純水供給ライン5から液供給管11への流路を開成し、バルブ8Aを開成して炭酸ガス供給装置7から超純水W(Cu濃度:1ng/L)に炭酸ガスを1ppm供給することにより、炭酸水を用いて2分間リンス処理を行った。
 ここまでの工程を経たシリコンウェハを清浄な雰囲気で乾燥させ、乾燥後のシリコンウェハにおけるCu付着量を気相分解-TXRF(全反射蛍光X線)により分析したところ、Cu元素のウェハ上濃度は3.2×10atoms/cmであった。
 以上の比較例及び実施例により、シリコンウェハのリンス処理時において、残渣が生じる懸念のないクリーンなリンス液として炭酸水を用いることができ、コストを度外視してただ徒に純度を高めた超純水をリンス液として用いる必要がなくなり、金属不純物(Fe)の付着も十分に抑制されることが確認された。
 本発明は、シリコンウェハのリンス処理時における金属不純物の付着を防止するとともに、コストにも配慮しつつ、更には、残渣が生じる懸念のないクリーンなリンス液を用いるシリコンウェハ清浄化方法として有用である。
10…シリコンウェハ清浄化装置
1…洗浄槽
3…炭酸ガス供給装置
4…オゾンガス供給装置
5…超純水供給ライン
7…三方切替弁
8A,8B…バルブ

Claims (11)

  1.  洗浄液により洗浄したシリコンウェハを、炭酸水によりリンスすることを特徴とするシリコンウェハ清浄化方法。
  2.  前記シリコンウェハを前記炭酸水によりリンスした後、超純水によりリンスすることを特徴とする請求項1に記載のシリコンウェハ清浄化方法。
  3.  前記シリコンウェハ清浄化方法により清浄化された後の前記シリコンウェハへの金属付着量の分析結果に基づいて炭酸ガス濃度が調整された炭酸水により、前記洗浄液により洗浄されたシリコンウェハをリンスすることを特徴とする請求項1または2に記載のシリコンウェハ清浄化方法。
  4.  前記洗浄液による洗浄を行った洗浄槽において、前記炭酸水によるリンス処理を行うことを特徴とする請求項1~3のいずれか1項に記載のシリコンウェハ清浄化方法。
  5.  前記洗浄液による洗浄を行った洗浄槽とは異なる洗浄槽において、前記炭酸水によるリンス処理を行うことを特徴とする請求項1~3のいずれか1項に記載のシリコンウェハ清浄化方法。
  6.  ガス透過膜を用いて炭酸ガスを超純水に溶解させる方法、超純水が通液するラインに炭酸ガスを注入する方法、又は炭酸型イオン交換樹脂と超純水とを接触させて超純水中に炭酸ガスを徐放させる方法により、前記炭酸水を調製することを特徴とする請求項1~5のいずれか1項に記載のシリコンウェハ清浄化方法。
  7.  洗浄液によりシリコンウェハの洗浄処理を行う清浄槽と、
     炭酸水を前記清浄槽に供給する炭酸水供給部と
    を備え、
     前記炭酸水供給部から前記清浄槽に供給された炭酸水により、前記洗浄液により洗浄されたシリコンウェハをリンスすることを特徴とするシリコンウェハ清浄化装置。
  8.  前記清浄槽に超純水を供給する超純水供給部をさらに備え、
     前記シリコンウェハを前記炭酸水によりリンスした後、前記超純水供給部から前記清浄槽に供給された超純水により、前記シリコンウェハをリンスすることを特徴とする請求項7に記載のシリコンウェハ清浄化装置。
  9.  前記清浄槽に洗浄液を供給する洗浄液供給部と、
     前記清浄槽への前記洗浄液と前記炭酸水との供給を切り替える液体供給ユニットとをさらに備えることを特徴とする請求項7または8に記載のシリコンウェハ清浄化装置。
  10.  シリコンウェハの洗浄処理を行う洗浄槽と、
     前記洗浄槽内において洗浄処理が行われたシリコンウェハのリンス処理を行うリンス槽と、
     前記リンス槽に炭酸水を供給する炭酸水供給部と
    を備え、
     前記炭酸水供給部から前記リンス槽に供給された炭酸水により、前記洗浄槽にて洗浄されたシリコンウェハをリンスすることを特徴とするシリコンウェハ清浄化装置。
  11.  前記シリコンウェハ清浄化装置により清浄化された後の前記シリコンウェハへの金属付着量の分析結果に基づいて炭酸ガス濃度が調整された炭酸水により、前記洗浄液により洗浄されたシリコンウェハをリンスすることを特徴とする請求項7~10のいずれか1項に記載のシリコンウェハ清浄化装置。
PCT/JP2011/076025 2010-11-15 2011-11-11 シリコンウェハ清浄化方法及びシリコンウェハ清浄化装置 WO2012067025A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/884,350 US9136104B2 (en) 2010-11-15 2011-11-11 Method for cleaning silicon wafer and apparatus for cleaning silicon wafer
CN201180055008.2A CN103210476B (zh) 2010-11-15 2011-11-11 硅晶片清洁方法和硅晶片清洁装置
KR20137015487A KR20130132861A (ko) 2010-11-15 2011-11-11 실리콘 웨이퍼 청정화 방법 및 실리콘 웨이퍼 청정화 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-254602 2010-11-15
JP2010254602A JP2012109290A (ja) 2010-11-15 2010-11-15 シリコンウェハ清浄化方法及びシリコンウェハ清浄化装置

Publications (1)

Publication Number Publication Date
WO2012067025A1 true WO2012067025A1 (ja) 2012-05-24

Family

ID=46083957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076025 WO2012067025A1 (ja) 2010-11-15 2011-11-11 シリコンウェハ清浄化方法及びシリコンウェハ清浄化装置

Country Status (6)

Country Link
US (1) US9136104B2 (ja)
JP (1) JP2012109290A (ja)
KR (1) KR20130132861A (ja)
CN (1) CN103210476B (ja)
TW (1) TWI616944B (ja)
WO (1) WO2012067025A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140154406A1 (en) * 2012-11-30 2014-06-05 Lam Research Corporation Wet activation of ruthenium containing liner/barrier
CN104437225A (zh) * 2013-09-12 2015-03-25 深圳市日联科技有限公司 一种液体调配装置及具有该装置的清洗设备
CN105327887A (zh) * 2015-10-28 2016-02-17 江苏辉伦太阳能科技有限公司 一种循环利用清洗液去除并回收金属杂质的链式装置
CN108941037A (zh) * 2017-05-19 2018-12-07 浙江昱辉阳光能源有限公司 一种硅料回收清洗方法及装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9808757B2 (en) * 2012-06-04 2017-11-07 The Southern Company Systems and methods for sequestering CO2
JP2014203906A (ja) * 2013-04-03 2014-10-27 株式会社荏原製作所 基板処理方法
CN104438170A (zh) * 2013-09-12 2015-03-25 深圳市日联科技有限公司 一种可靠的液体液路分配清洗装置
KR101598321B1 (ko) * 2015-01-16 2016-02-26 주식회사 엘지실트론 웨이퍼의 불순물 제거 방법 및 장치
CN106033711A (zh) * 2015-03-18 2016-10-19 联华电子股份有限公司 基底的清洁方法
JP6561734B2 (ja) * 2015-09-30 2019-08-21 栗田工業株式会社 炭酸水のシリカ濃度の分析方法
CN106653560B (zh) * 2015-10-30 2020-08-21 东莞新科技术研究开发有限公司 硅片的清洗方法
JP6716992B2 (ja) 2016-03-25 2020-07-01 栗田工業株式会社 ウェット洗浄装置及びウェット洗浄方法
JP6759087B2 (ja) * 2016-12-19 2020-09-23 株式会社Screenホールディングス 基板処理方法、送液方法、および、基板処理装置
JP6811675B2 (ja) * 2017-04-28 2021-01-13 株式会社Screenホールディングス 基板処理方法および基板処理装置
KR20180134465A (ko) * 2017-06-08 2018-12-19 삼성전자주식회사 기판 처리 장치 및 방법
CN109326505B (zh) * 2018-08-27 2021-12-03 上海中欣晶圆半导体科技有限公司 一种提高硅片最终清洗金属程度的方法及装置
SE542591C2 (en) * 2018-10-24 2020-06-09 Nanosized Sweden Ab Method and arrangement for semiconductor manufacturing
US11371159B2 (en) * 2019-06-22 2022-06-28 Applied Materials, Inc. Methods of reducing or eliminating deposits after electrochemical plating in an electroplating processor
CN113764259B (zh) * 2020-09-18 2024-05-07 英迪那米(徐州)半导体科技有限公司 一种半导体芯片的清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629271A (ja) * 1992-03-12 1994-02-04 Kyushu Electron Metal Co Ltd 半導体ウェーハの洗浄方法及びその装置
JP2003203856A (ja) * 2001-10-23 2003-07-18 Ums:Kk 有機被膜の除去方法
JP2005040663A (ja) * 2003-07-23 2005-02-17 Seiko Epson Corp 洗浄装置及び洗浄方法
JP2007012860A (ja) * 2005-06-30 2007-01-18 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175124A (en) * 1991-03-25 1992-12-29 Motorola, Inc. Process for fabricating a semiconductor device using re-ionized rinse water
JP2836562B2 (ja) * 1996-02-08 1998-12-14 日本電気株式会社 半導体ウェハのウェット処理方法
JP2001062412A (ja) 1999-08-31 2001-03-13 Nomura Micro Sci Co Ltd 洗浄方法、洗浄液の製造方法、洗浄液、および洗浄液の製造装置
JP2002050606A (ja) 2000-08-01 2002-02-15 Ebara Corp 基板用リンス液及び基板処理方法
JP3914842B2 (ja) 2001-10-23 2007-05-16 有限会社ユーエムエス 有機被膜の除去方法および除去装置
JP2004273799A (ja) 2003-03-10 2004-09-30 Dainippon Screen Mfg Co Ltd 基板用リンス液、基板処理方法および基板処理装置
JP2004273961A (ja) 2003-03-12 2004-09-30 Ebara Corp 金属配線形成基板の洗浄処理装置
JP2005183791A (ja) * 2003-12-22 2005-07-07 Dainippon Screen Mfg Co Ltd 基板処理方法及びその装置
US20060115774A1 (en) * 2004-11-30 2006-06-01 Taiwan Semiconductor Manufacturing Co., Ltd. Method for reducing wafer charging during drying
JP4642079B2 (ja) * 2005-08-10 2011-03-02 富士通セミコンダクター株式会社 半導体装置の製造方法
JP4579138B2 (ja) * 2005-11-11 2010-11-10 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
JP4693642B2 (ja) * 2006-01-30 2011-06-01 株式会社東芝 半導体装置の製造方法および洗浄装置
KR100682538B1 (ko) * 2006-02-07 2007-02-15 삼성전자주식회사 반도체 웨이퍼 세정설비 및 세정방법
JP2008016660A (ja) * 2006-07-06 2008-01-24 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
US20080156356A1 (en) * 2006-12-05 2008-07-03 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
TWI343078B (en) * 2007-03-05 2011-06-01 United Microelectronics Corp Wet cleaning process and method for fabricating semiconductor device using the same
JP5019370B2 (ja) * 2007-07-12 2012-09-05 ルネサスエレクトロニクス株式会社 基板の洗浄方法および洗浄装置
US8476003B2 (en) * 2011-03-09 2013-07-02 Taiwan Semiconductor Manufacturing Company, Ltd. Iterative rinse for semiconductor fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629271A (ja) * 1992-03-12 1994-02-04 Kyushu Electron Metal Co Ltd 半導体ウェーハの洗浄方法及びその装置
JP2003203856A (ja) * 2001-10-23 2003-07-18 Ums:Kk 有機被膜の除去方法
JP2005040663A (ja) * 2003-07-23 2005-02-17 Seiko Epson Corp 洗浄装置及び洗浄方法
JP2007012860A (ja) * 2005-06-30 2007-01-18 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140154406A1 (en) * 2012-11-30 2014-06-05 Lam Research Corporation Wet activation of ruthenium containing liner/barrier
CN104437225A (zh) * 2013-09-12 2015-03-25 深圳市日联科技有限公司 一种液体调配装置及具有该装置的清洗设备
CN105327887A (zh) * 2015-10-28 2016-02-17 江苏辉伦太阳能科技有限公司 一种循环利用清洗液去除并回收金属杂质的链式装置
CN108941037A (zh) * 2017-05-19 2018-12-07 浙江昱辉阳光能源有限公司 一种硅料回收清洗方法及装置

Also Published As

Publication number Publication date
TWI616944B (zh) 2018-03-01
CN103210476B (zh) 2016-10-12
US20130291891A1 (en) 2013-11-07
KR20130132861A (ko) 2013-12-05
TW201234472A (en) 2012-08-16
JP2012109290A (ja) 2012-06-07
US9136104B2 (en) 2015-09-15
CN103210476A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2012067025A1 (ja) シリコンウェハ清浄化方法及びシリコンウェハ清浄化装置
KR100806476B1 (ko) 유기 피막의 제거 장치
TWI600756B (zh) 利用後段化學機械拋光移除之組成物及其使用方法
US7456113B2 (en) Cleaning method and solution for cleaning a wafer in a single wafer process
JP4667860B2 (ja) 材料表面の湿式洗浄方法及びこれを用いた電子、光学、または光電子デバイスの作製プロセス
TWI417949B (zh) 矽表面的製備
US20020102852A1 (en) Cleaning method and solution for cleaning a wafer in a single wafer process
KR19980070977A (ko) 메가소닉스 보조 세정의 효율 제어 방법
JP2006080501A (ja) 半導体基板洗浄液及び半導体基板洗浄方法
JP2009105299A (ja) 半導体デバイス用基板の洗浄液
KR20050032943A (ko) 반도체의 제조를 위한 세정방법 및 세정장치
JP6020658B2 (ja) シリコンウェハ清浄化方法及びシリコンウェハ清浄化装置
KR101643124B1 (ko) 웨이퍼용 세정수 및 웨이퍼의 세정 방법
TWI525690B (zh) 半導體基板的洗淨方法與洗淨系統
WO2011086876A1 (ja) シリコンウェーハの表面浄化方法
Morinaga et al. Advanced alkali cleaning solution for simplification of semiconductor cleaning process
JP3445765B2 (ja) 半導体素子形成用基板表面処理方法
JP2007214412A (ja) 半導体基板洗浄方法
JP2006073747A (ja) 半導体ウェーハの処理方法およびその装置
JPH11340182A (ja) 半導体表面洗浄剤及び洗浄方法
JP6020626B2 (ja) デバイス用Ge基板の洗浄方法、洗浄水供給装置及び洗浄装置
WO2015189933A1 (ja) デバイス用Ge基板の洗浄方法、洗浄水供給装置及び洗浄装置
JP2001053042A (ja) 環境雰囲気からの電子デバイス用基板の有機汚染防止法及び防止処理が施された電子デバイス用基板
JP2012109289A (ja) シリコンウェハ洗浄用リンス液調製方法
KR0172717B1 (ko) 반도체 기판의 세정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137015487

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13884350

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11842394

Country of ref document: EP

Kind code of ref document: A1