WO2012066982A1 - 内視鏡用レーザ溶接方法、及び、内視鏡用レーザ溶接部材 - Google Patents

内視鏡用レーザ溶接方法、及び、内視鏡用レーザ溶接部材 Download PDF

Info

Publication number
WO2012066982A1
WO2012066982A1 PCT/JP2011/075730 JP2011075730W WO2012066982A1 WO 2012066982 A1 WO2012066982 A1 WO 2012066982A1 JP 2011075730 W JP2011075730 W JP 2011075730W WO 2012066982 A1 WO2012066982 A1 WO 2012066982A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
coil
laser welding
pipe
endoscope
Prior art date
Application number
PCT/JP2011/075730
Other languages
English (en)
French (fr)
Inventor
欣司 瀧口
猛 日高
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201180054439.7A priority Critical patent/CN103201066B/zh
Publication of WO2012066982A1 publication Critical patent/WO2012066982A1/ja
Priority to US13/889,703 priority patent/US9132507B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/30Seam welding of three-dimensional seams
    • B23K26/302Seam welding of three-dimensional seams of helicoidal seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a laser welding method for an endoscope, in which a cylindrical outer member of an endoscope and a coiled inner member positioned inside the endoscope are welded and fixed by irradiating the cylindrical outer member with laser light from the outer periphery.
  • the present invention also relates to an endoscope laser welding member including a cylindrical outer member and a coiled inner member that are welded and fixed to each other by the endoscope laser welding method.
  • Patent Document 1 describes a technique of performing laser welding by interposing a metal foil between a pipe-shaped member and a coil-shaped member, and a technique of shaping the outer periphery of the welded portion after laser welding. Has been.
  • the pipe member for endoscope has a small diameter, and it is difficult to manage the outer diameter and inner diameter of the parts after welding with high accuracy.
  • welding is performed by irradiating laser light in the circumferential direction of the pipe-shaped member as in Patent Documents 2 and 3, laser welding is reliably performed such that the weld beads overlap and the depth becomes uneven. I can't.
  • Laser welding method for endoscope and endoscope for which can perform laser welding surely without interposing a member for the purpose, and does not change the inner and outer diameters of the cylindrical outer member after laser welding A laser welding member is provided.
  • a cylindrical outer member of an endoscope and a coiled inner member positioned inside the endoscope are arranged, and laser light is emitted from the outer periphery to the cylindrical outer member.
  • the plate thickness of the cylindrical outer member is h
  • the plate thickness of the coiled inner member is h c
  • the tube E 1 is the maximum welding energy of laser welding that does not change the inner and outer diameters of the cylindrical outer member at a position where the coiled inner member is not located inside the outer cylindrical member, and welding of the cylindrical outer member and the coiled inner member when the minimum weld energy to allow the fixed and E 2, do not overlap helical weld bead
  • the weld depth H from the tubular outer member to the coil-shaped inner member is located at h ⁇ H ⁇ h + h c
  • the laser welding member for an endoscope of the present invention includes the cylindrical outer member and the coiled inner member that are welded and fixed to each other by the endoscope laser welding method.
  • the laser beam is irradiated from the outer periphery to the cylindrical outer member in a spiral shape around the axis of the cylindrical outer member, the cylindrical outer member and the coil shape are irradiated before laser irradiation. Even if the inner member does not require plastic working for joining and the member for joining is not interposed between the cylindrical outer member and the coiled inner member, the inner member is tubular even if there is no coiled inner member. Laser welding can be reliably performed without changing the inner and outer diameters of the outer member.
  • FIG. 1 is a perspective view showing an endoscope to which an endoscope laser welding method according to an embodiment of the present invention is applied.
  • FIG. It is sectional drawing which shows the snake-tube junction part of the endoscope to which the laser welding method for endoscopes which concerns on one embodiment of this invention is applied.
  • It is principal part sectional drawing which shows the clip apparatus (endoscope treatment tool) for endoscopes which applied the laser welding method for endoscopes which concerns on one embodiment of this invention.
  • FIG. 1 is a schematic sectional view showing a laser welding member 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of the pipe-like member 10 for explaining the laser welding method according to the embodiment of the present invention.
  • 3A to 3D are partial cross-sectional views of the welding region R for explaining the laser welding method.
  • a laser welding member 1 includes, for example, a metal pipe-shaped member 10 as a cylindrical outer member, and a coil-shaped member having a rectangular cross section, for example, as a coil-shaped inner member located inside the laser-shaped member. 20.
  • the pipe-like member 10 and the coil-like member 20 have a substantially cylindrical shape. A part of the coil-shaped member 20 on the end 20a side is fitted to a part of the inner peripheral surface of the pipe-shaped member 10 on the end 10a side.
  • the pipe-shaped member 10 and the coil-shaped member 20 are welded and fixed to each other by the laser beam L irradiated by the laser beam irradiation apparatus 200 shown in FIG.
  • the welded portion 30 as a helical weld bead is formed by irradiating the welding region R shown in FIG.
  • the fitted pipe-like member 10 and coil-like member 20 are held in a holding device (not shown) and rotated in the rotation direction D1 and sent in the feed direction D2.
  • the laser beam irradiation apparatus 200 irradiates the laser beam L to the pipe-shaped member 10 and the coil-shaped member 20 in this state.
  • the pipe-shaped member 10 since the pipe-shaped member 10, the coil-shaped member 20, and the laser beam irradiation apparatus 20 should just rotate or move relatively, for example, the laser beam irradiation apparatus about the feed direction D2 It is good also as a structure of moving 200.
  • the welded portion 30 to be welded by the laser light L is continuous with the laser light L from the outer periphery to the pipe-shaped member 10 in a spiral shape around the axis (center axis) A of the pipe-shaped member 10. Irradiated.
  • the laser beam L may be irradiated intermittently, the welded portion 30 can be formed with high accuracy by continuous irradiation.
  • the coil-shaped member 20 located inside the pipe-shaped member 10 is an application example of a coil-shaped member that is a plate-shaped coil and the coils are not in close contact with each other.
  • the welded portion 30 emits laser light L under the same laser irradiation condition at a portion (welded portion 31) where the coiled member 20 is located on the inside of the outer periphery of the pipe-shaped member 10 and another portion (welded portion 32). Irradiated.
  • the laser irradiation conditions include wavelength, light output, spot diameter, oscillation pulse width, and moving speed.
  • the welded portion 32 where the coil-shaped member 20 is not positioned inside is set to a condition that does not change the inner and outer diameters of the pipe-shaped member 10 by adjusting the laser irradiation condition.
  • the width of the weld 32 at that time becomes w 2.
  • the weld bead width is w 1.
  • the moving speed and the feed speed are controlled so that the welds 30 do not overlap, and the gaps x 1 and x 2 between the welds 30 (31, 32) are set to “x 1 , x 2 > 0”. Yes.
  • the thickness of the pipe-shaped member 10 is h
  • the thickness of the coil-shaped member 20 is h c
  • the laser does not change the inner and outer diameters of the pipe-shaped member 10 in a place where the coil-shaped member 20 is not located inside the pipe-shaped member 10.
  • the welding depth H from the pipe-shaped member 10 to the coil-shaped member 20 is h ⁇ H ⁇ h + hc
  • the welding depth (melting depth) H is This welding energy E satisfies the relationship of E 2 ⁇ E ⁇ E 1 .
  • the maximum welding energy E 1 does not change the inner and outer diameters of the laser welding of the pipe-shaped member 10 in position is not the location of the coiled member 20 to the inside of the pipe-shaped member 10, changes in the inner and outer diameters of the pipe-like member 10 Are the maximum values of welding energy at which only a change of 1% or less in diameter occurs.
  • the welding energy when the inner and outer diameters of the pipe-like member 10 are not changed in a place where the coil-like member 20 is not located inside the pipe-like member 10 is coiled inside the pipe-like member 10.
  • the inner and outer diameters of the coiled member 20 are not changed at the place where the member 20 is located (only a change of 1% or less of the diameter occurs).
  • the rotation direction D3 shown in FIG. 2, which is the formation direction of the welded portion 30, is preferably the same direction as the spiral rotation direction (spiral direction D4) of the coil-shaped member 20 shown in FIG. 3A.
  • the welded portion 30 is formed by providing gaps x 1 and x 2 so as not to overlap with the outer peripheral surface of the pipe-shaped member 10, thereby preventing the weld depth and the like from being formed unevenly.
  • the welded portion 30 can be formed with high accuracy. Since the width w 1 of the welded portion 31 is smaller than the width w 2 of the welded portion 32 and the laser irradiation conditions are constant, the gap x 1 between the welded portions 31 and 31 is the gap between the welded portions 31 and 32. greater than x 2.
  • the coil-like member 20 located inside the pipe-like member 10 may be a plate-like coil and the coils may be close to each other.
  • the welding part 30 consists only of the welding part 31 in which the coil-shaped member 20 is located inside the pipe-shaped member 10. Even in this case, the gap x 1 between the welds 31 is set to “x 1 > 0”.
  • the coil-shaped inner member 20 may be a coil with a circular cross section, and the coils are not in close contact with each other.
  • the gap x 3 clearance x 2 and the welding portions 32, 32 of the welded portion 31 and 32 satisfy the relationship "x 2, x 3>0".
  • the coiled inner member 20 may be a coil having a circular cross section and close to each other.
  • the welded portion 30 includes only the welded portion 31 where the coil-shaped member 20 is positioned inside the pipe-shaped member 10, and the gap x 1 also satisfies the relationship “x 1 > 0”.
  • the welded portion 30 is illustrated as being rotated several times along the outer periphery of the pipe-shaped member 10, but the size or required strength of the target welding region R or laser light Depending on the type of L, etc., it may be rotated several tens of times, several hundreds of times or more.
  • the example which uses the coil-shaped member 20 of a cross-sectional rectangle or a circular cross section as a coil-shaped inner member was demonstrated, if a coil-shaped inner member is welded with a cylindrical outer member, Other shapes are possible.
  • the cylindrical outer member can also have other shapes such as a polygonal pipe shape.
  • the pipe-shaped member 10 and the coil-shaped member 20 are caulked from the outer periphery of the pipe-shaped member 10 (plastically deformed), or a metal foil or the like is joined between the pipe-shaped member 10 and the coil-shaped member 20. You may make it perform the above-mentioned laser irradiation after interposing a member.
  • the pipe-shaped member 10 is irradiated in a spiral shape around the axis A of the pipe-shaped member 10 so that the laser beam does not overlap the outer periphery from the outer periphery.
  • the plastic member for joining is not required for the coil-like member 20 and no member for joining is interposed between the pipe-like member 10 and the coil-like member 20, there is no coil-like member 20 inside.
  • laser welding can be reliably performed without changing the inner and outer diameters of the pipe-shaped member 10. Furthermore, for example, even in a wide welding region R, laser welding can be performed in a short time with a simple configuration.
  • the laser beam L is continuously irradiated in a spiral shape around the axis A of the pipe-shaped member 10. Therefore, the dimensional accuracy of the pipe-shaped member 10 and the coil-shaped member 20 can be maintained, and more accurate laser welding can be performed.
  • the coil-shaped member 20 is used as a coil-shaped inner member, and the spiral (rotation direction D4) of the coil-shaped member 20 and the rotation direction (formation direction of the welding part 30) D3 are the spirals of the same direction.
  • Laser light L is irradiated. Therefore, it becomes easy to irradiate the laser beam L at the portion of the outer periphery of the pipe-shaped member 10 where the coil-shaped member 20 is positioned on the inner side, and more accurate laser welding can be performed.
  • FIG. 4 is a perspective view showing an endoscope 100 to which the laser welding method according to the present embodiment is applied.
  • FIG. 5 is a cross-sectional view showing a serpentine tube joint of the endoscope.
  • the endoscope 100 includes an insertion portion 110 that is inserted into a narrow space, an operation portion 120 that is disposed at a proximal end portion of the insertion portion 110, and extends from the operation portion 120.
  • Universal cable 130 As shown in FIG. 4, the endoscope 100 includes an insertion portion 110 that is inserted into a narrow space, an operation portion 120 that is disposed at a proximal end portion of the insertion portion 110, and extends from the operation portion 120.
  • Universal cable 130 Universal cable 130.
  • the insertion portion 110 includes a distal end hard portion 111, a bending portion 112 disposed at the proximal end portion of the distal end hard portion 111, and a serpentine tube (flexible tube) 113 disposed at the proximal end portion of the bending portion 112. And having.
  • the operation unit 120 is disposed at the proximal end portion of the operation unit main body 121 having the grip portion 121a, the bending operation knob 122 disposed in the operation unit main body 121, and the snake tube 113, and the operation unit main body 121. And a folding stop 123 disposed in the grip portion 121a.
  • the universal cable 130 includes a flexible tube 131 extending from the operation unit main body 121, a connector 132 disposed at an end of the flexible tube 131 distal to the operation unit main body 121, and a flexible cable 131.
  • the bending tube 133 includes a bend stopper 133 disposed at an end portion on the proximal side with respect to the operation portion main body 121.
  • the serpentine tube 113 is connected to the bending portion 112 shown in FIG. 4 via a connection base 114 which is an example of a cylindrical outer member.
  • the snake tube 113 includes a flex 113a that is an example of a coiled inner member, a blade 113b that is disposed outside the flex 113a, and a skin 113c that is disposed outside the blade 113b.
  • the flex 113a is formed in a substantially cylindrical shape, for example, by forming a strip-shaped thin plate material made of stainless steel into a spiral shape.
  • the tip of the flex 113a is cut so as to be 90 degrees or substantially 90 degrees with respect to the central axis in the longitudinal direction of the flex 113a.
  • the blade 113b is formed in a substantially cylindrical shape, for example, by braiding a bundle of strands in which a plurality of strands made of stainless steel are bundled.
  • the outer skin 113c is formed in a substantially cylindrical shape so as to cover the outer side of the blade 113b with a flexible resin material such as a rubber material.
  • connection base 114 is formed in a substantially cylindrical shape by a metal material such as a stainless steel material.
  • the connection base 114 is formed with a flange portion 114a protruding outward in the radial direction. Further, a concave portion 114 b having an inner diameter larger than that of the distal end portion of the connection base 114 is formed on the inner peripheral surface of the base end portion of the connection base 114.
  • the inner diameter of the recess 114b of the connection base 114 is such that the outer peripheral surface of the flex 113a is brought into close contact (fitting) with the inner peripheral surface of the recess 114b when the flex 113a alone is placed in a natural state (a state where no external force is applied).
  • the outer diameter of the flex 113a is the same as or smaller than that.
  • the flex 113a is urged toward the inner peripheral surface of the recess 114b of the connection base 114 while the flex 113a is urged.
  • the tip of 113a is in contact with the stepped portion at the tip of the recess 114b. That is, the tip of the flex 113 a is fitted in a state where it is positioned in the recess 114 b of the connection base 114.
  • connection base 114 as an example of the cylindrical outer member fitted in this way and the flex 113a as an example of the coiled inner member are the pipe-shaped member 10 (cylindrical shape) described with reference to FIGS. 1 to 3D.
  • the welding is fixed in a spiral shape with the axis (center axis) B of the connection cap 114 as the center.
  • the caulking member 115 disposed outside the blade 113b is formed of a metal material such as a stainless steel material.
  • the crimping member 115 is crimped (plastically deformed) to the outside of the connection base 114 at the tip end side of the blade 113b that contacts the flange portion 114a of the connection base 114.
  • laser welding according to the above-described embodiment may be performed.
  • Laser welding according to the present embodiment is suitable for welding a coiled serpentine tube 113 (flex 113a) or the like.
  • connection base 114 and the flex 113a may be welded and fixed after the connection base 114 is crimped to the outside of the flex 113a.
  • connection base 114 and the flex 113a are securely fixed by the laser welding described above. Therefore, it is more desirable to adopt a structure that does not crimp to avoid deformation.
  • FIG. 6 is a cross-sectional view of a main part showing an endoscopic clip device 300 to which the laser welding method according to the present embodiment is applied.
  • an endoscopic clip device 300 as an endoscopic treatment instrument is inserted into a treatment instrument insertion channel of an endoscope insertion section (not shown), for example, and used in combination with an endoscope. Therefore, the insertion portion composed of the tubular body 310, the operation wire 320, and the like is formed sufficiently longer than the treatment instrument insertion channel.
  • the insertion portion is flexible so as to bend in accordance with the curvature of the endoscope insertion portion.
  • the operation wire 320 extends along the tubular body 310 and is inserted through the tubular body 310 so as to freely advance and retract. Further, the operation wire 320 has a hook 330 having a diameter larger than that of a base end side on which a clip unit (not shown) is detachably engaged, connected to the distal end.
  • the hook 330 is used for hooking a clip unit (not shown).
  • the hook 330 is formed of a metal material such as a stainless steel material, for example, and is engaged by, for example, welding through a substantially conical engagement portion 331 that hooks and engages the clip unit, and a shaft portion 332. And a wire connection portion 333 for connecting the joint portion 331 to the operation wire 320.
  • the tubular body 310 includes a proximal side coil 311 disposed on the proximal end side, a distal end side coil 312 connected to the distal end of the proximal side coil 311 and having an inner diameter larger than the inner diameter of the proximal side coil 311, and a proximal side coil. 311 and a coil connection pipe 313 that connects the distal end side coil 312.
  • the coil connection pipe 313 is harder than the proximal coil 311 and the distal coil 312.
  • the hand side coil 311 is formed in a cylindrical shape in which a round wire made of, for example, a stainless steel material is flattened into a flat wire 311a and is rounded into a flat wire 311a.
  • the distal end side coil 312 is formed in a cylindrical shape in which a flat wire 312a having a substantially rectangular cross section made of stainless steel, for example, is closely wound spirally.
  • the coil connection pipe 313 has a substantially pipe shape made of, for example, a stainless steel material, and has a distal end side connection portion 313a whose outer diameter is substantially the same as the inner diameter of the distal end side coil 312 and a hand whose outer diameter is substantially the same as the proximal side coil 311.
  • the side connection part 313b is connected and formed.
  • the inner diameter of the distal end side connecting portion 313a and the inner diameter of the proximal side connecting portion 313b are substantially the same.
  • the coil connection pipe 313 (hand side connection portion 313b) functions as an example of the above-described cylindrical outer member
  • the hand side coil 311 is an example of a coiled inner member located inside the coil connection pipe 313. Function.
  • the coil connection pipe 313 and the proximal coil 311 are similar to the laser welding of the pipe-shaped member 10 (cylindrical outer member) and the coil-shaped member (coiled inner member) 20 described with reference to FIGS. 1 to 3D.
  • laser welding is performed in a spiral shape around the axis (center axis) C of the coil connection pipe 313.
  • the distal end side coil 312 is used as a cylindrical outer member, and the coil connection pipe 313 (front end side connecting portion 313 a) is used as a coiled inner member. It is also possible to perform a laser welding method.
  • the laser welding according to the present embodiment is suitable for welding the coiled proximal coil 311 and the like, but other portions may be used as a welding region.
  • the laser welding according to the present embodiment can be performed on a connection portion between the engaging portion 331 of the hook 330 and the operation wire 320 and other connection portions.
  • the endoscope 100 FIGS. 4 and 5 including the cylindrical outer member and the coiled inner member that are welded and fixed by the laser welding method described above, and the clip device 300 as the endoscope treatment tool.
  • FIG. 6 has been described as a preferred application example for the laser welding method of the present embodiment, but the laser welding method of the present embodiment is welding with the cylindrical outer member and the coiled inner member of the endoscope. If applicable, it is applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Surgery (AREA)
  • Plasma & Fusion (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Endoscopes (AREA)
  • Laser Beam Processing (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 内視鏡用レーザ溶接方法において、筒状外側部材の板厚をh、コイル状内側部材の板厚をh、筒状外側部材の内側にコイル状内側部材の位置しない場所で筒状外側部材の内外径を変化させないレーザ溶接の最大溶接エネルギーをE、筒状外側部材とコイル状内側部材の溶接固定を可能とする最小溶接エネルギーをEとするとき、螺旋状溶接ビードが重ならず、筒状外側部材からコイル状内側部材までの溶接深さHがh<H<h+hであり、筒状外側部材とコイル状内側部材とを溶接固定し溶接深さが溶接深さHとなる溶接エネルギーEは、E≦E≦Eの関係を満たす。

Description

内視鏡用レーザ溶接方法、及び、内視鏡用レーザ溶接部材
 本発明は、内視鏡の筒状外側部材と、その内側に位置するコイル状内側部材とを、筒状外側部材に外周からレーザ光を照射することにより溶接固定する内視鏡用レーザ溶接方法、並びに、この内視鏡用レーザ溶接方法により互いに溶接固定された筒状外側部材及びコイル状内側部材を備える内視鏡用レーザ溶接部材に関する。
 従来、内視鏡のパイプ状部材の内面にコイル状部材を内接させて接合する際に、パイプ状部材の外側より、パイプ材の外径を加工するいわゆるスウェージング等の方法を用いてパイプ状部材を縮径する方向に塑性加工した後、この塑性加工部分をレーザで溶接する手法が知られている(例えば、特許文献1参照)。
 また、上記特許文献1には、パイプ状部材とコイル状部材との間に金属箔を介在させてレーザ溶接を行う手法や、レーザ溶接後に溶接部の外周を削って整形加工を行う技術が記載されている。
 また、レーザ光により溶接を行う手法として、パイプ状部材の外周から周方向にレーザ光を照射することにより溶接を行う手法が知られている(例えば、特許文献2及び3参照)。
特公平6-16790号公報 特開平5-161597号公報 特開昭60-246741号公報
 しかしながら、上記特許文献1のようにスウェージング等の塑性加工を行うと、パイプ状部材及びコイル状部材を変形させることになり、パイプ状部材及びコイル状部材の外径及び内径が変化する。
 そのため、コイル状部材の内部に処置具などを挿通させて用いる内視鏡の場合は、スウェージングによる変形を見込んで設計を行う必要があるが、スウェージングは変形後の寸法のバラつきが大きくなるため、内視鏡用のパイプ部材は径が小さく、溶接後の部品の外径及び内径を高精度に管理することは困難である。
 また、上記特許文献2及び3のようにレーザ光をパイプ状部材の周方向に照射することにより溶接を行うと、溶接ビードが重なって深さが不均一になるなど、レーザ溶接を確実に行うことができない。
 本発明の目的は、レーザ照射前に筒状外側部材及びその内側に位置するコイル状内側部材に接合のための塑性加工を必要とせず、筒状外側部材とコイル状内側部材との間に接合のための部材を介在させない場合にも、確実にレーザ溶接を行うことができると共に、レーザ溶接後の筒状外側部材の内外径の寸法変化をさせない内視鏡用レーザ溶接方法及び内視鏡用レーザ溶接部材を提供することである。
 本発明の内視鏡用レーザ溶接方法は、内視鏡の筒状外側部材と、その内側に位置するコイル状内側部材とを、上記筒状外側部材に外周からレーザ光を上記筒状外側部材の軸を中心とした螺旋状に照射することにより溶接固定する内視鏡用レーザ溶接方法において、上記筒状外側部材の板厚をh、上記コイル状内側部材の板厚をh、上記筒状外側部材の内側に上記コイル状内側部材の位置しない場所で上記筒状外側部材の内外径を変化させないレーザ溶接の最大溶接エネルギーをE、上記筒状外側部材と上記コイル状内側部材の溶接固定を可能とする最小溶接エネルギーをEとするとき、螺旋状溶接ビードが重ならず、上記筒状外側部材から上記コイル状内側部材までの溶接深さHがh<H<h+hであり、上記筒状外側部材と上記コイル状内側部材とを溶接固定し溶接深さが上記溶接深さHとなる溶接エネルギーEは、E≦E≦Eの関係を満たす。
 本発明の内視鏡用レーザ溶接部材は、上記内視鏡用レーザ溶接方法により互いに溶接固定された上記筒状外側部材及び上記コイル状内側部材を備える。
 本発明によれば、筒状外側部材の軸を中心とした螺旋状に、筒状外側部材に外周からレーザ光が重ならないように照射されるため、レーザ照射前に筒状外側部材及びコイル状内側部材に接合のための塑性加工を必要とせず、筒状外側部材とコイル状内側部材との間に接合のための部材を介在させない場合にも、内側にコイル状内側部材が無くとも筒状外側部材の内外径が変化することなく確実にレーザ溶接を行うことができる。
本発明の一実施の形態に係る内視鏡用レーザ溶接部材を示す概略断面図である。 本発明の一実施の形態に係る内視鏡用レーザ溶接方法を説明するためのパイプ状部材(外側部材)の概略斜視図である。 本発明の一実施の形態に係る内視鏡用レーザ溶接方法を説明するための溶接領域の部分断面図(その1)である。 本発明の一実施の形態に係る内視鏡用レーザ溶接方法を説明するための溶接領域の部分断面図(その2)である。 本発明の一実施の形態に係る内視鏡用レーザ溶接方法を説明するための溶接領域の部分断面図(その3)である。 本発明の一実施の形態に係る内視鏡用レーザ溶接方法を説明するための溶接領域の部分断面図(その4)である。 本発明の一実施の形態に係る内視鏡用レーザ溶接方法を適用した内視鏡を示す斜視図である。 本発明の一実施の形態に係る内視鏡用レーザ溶接方法を適用した内視鏡の蛇管接合部を示す断面図である。 本発明の一実施の形態に係る内視鏡用レーザ溶接方法を適用した内視鏡用クリップ装置(内視鏡処置具)を示す要部断面図である。
 以下、本発明の実施の形態に係る、内視鏡用レーザ溶接方法及び内視鏡用レーザ溶接部材について、図面を参照しながら説明する。
 図1は、本発明の一実施の形態に係るレーザ溶接部材1を示す概略断面図である。
 図2は、本発明の一実施の形態に係るレーザ溶接方法を説明するためのパイプ状部材10の概略斜視図である。
 図3A~図3Dは、上記レーザ溶接方法を説明するための溶接領域Rの部分断面図である。
 図1に示すように、レーザ溶接部材1は、筒状外側部材としての例えば金属製のパイプ状部材10と、その内側に位置するコイル状内側部材としての例えば金属製で断面矩形のコイル状部材20と、を備える。
 パイプ状部材10及びコイル状部材20は、略円筒状を呈する。パイプ状部材10の端部10a側の一部の内周面には、コイル状部材20の端部20a側の一部が嵌合している。パイプ状部材10とコイル状部材20とは、図2に示すレーザ光照射装置200により照射されるレーザ光Lによって、互いに溶接固定される。螺旋状溶接ビードとしての溶接部30は、パイプ状部材10の外周から例えばYAGレーザであるレーザ光Lを図1に示す溶接領域Rに照射されることで形成される。
 図2に示すように、嵌合したパイプ状部材10及びコイル状部材20は、図示しない保持装置に保持された状態で、回転方向D1に回転すると共に送り方向D2に送られる。この状態のパイプ状部材10及びコイル状部材20に対し、レーザ光照射装置200はレーザ光Lを照射する。
 なお、回転方向D1及び送り方向D2については、パイプ状部材10及びコイル状部材20とレーザ光照射装置20とが相対的に回転又は移動すればよいため、例えば、送り方向D2についてレーザ光照射装置200を移動させるなどの構成としてもよい。
 図2に示すように、レーザ光Lにより溶接される溶接部30は、パイプ状部材10の軸(中心軸)Aを中心とした螺旋状に、パイプ状部材10に外周からレーザ光Lを連続的に照射されてなる。なお、レーザ光Lは断続的に照射されるようにしてもよいが、連続的に照射することで高精度に溶接部30を形成することができる。
 図3Aに示すように、パイプ状部材10の内側に位置するコイル状部材20は、板状コイルでコイル間が密着していないコイル状部材の適用例を示す。溶接部30は、パイプ状部材10の外周のうちコイル状部材20が内側に位置する部分(溶接部31)とその他の部分(溶接部32)とで、同一のレーザ照射条件のレーザ光Lを照射されている。このレーザ照射条件とは、例えば、波長、光出力、スポット径、発振パルス幅、移動速度などが挙げられる。
 本実施の形態では、まず第一に、内側にコイル状部材20が位置しない溶接部32は、レーザ照射条件の調整によってパイプ状部材10の内外径に変化をさせない条件に設定する。そのときの溶接部32の幅はwになる。
 上記のレーザ照射条件で、内側にコイル状部材20が位置する溶接部31は、溶接ビード幅がwになる。溶接部30が重ならないように移動速度と送り速度は制御されており、溶接部30(31,32)間の隙間x,xは、「x,x>0」に設定されている。
 また、パイプ状部材10の板厚をh、コイル状部材20の板厚をh、パイプ状部材10の内側にコイル状部材20の位置しない場所でパイプ状部材10の内外径を変化させないレーザ溶接の最大溶接エネルギーをE、パイプ状部材10とコイル状部材20の溶接固定を可能とする最小溶接エネルギーをEとするとき、溶接部31,32がパイプ状部材10の軸Aを中心とした螺旋状で、溶接部31,32が重ならず、パイプ状部材10からコイル状部材20までの溶接深さHがh<H<h+hで、溶接深さ(溶融深さ)Hとなる溶接エネルギーEは、E≦E≦Eの関係を満たしている。
 なお、パイプ状部材10の内側にコイル状部材20の位置しない場所でパイプ状部材10の内外径を変化させないレーザ溶接の最大溶接エネルギーEとは、パイプ状部材10の内径及び外径の変化が両方とも直径の1%以下の変化しか生じない溶接エネルギーの最大値である。ここで、本実施の形態では、パイプ状部材10の内側にコイル状部材20の位置しない場所でパイプ状部材10の内外径を変化させないときの溶接エネルギーでは、パイプ状部材10の内側にコイル状部材20が位置する場所でコイル状部材20の内外径を変化させない(直径の1%以下の変化しか生じない)。
 また、溶接エネルギーEは、「単位時間当たりの溶接エネルギー×溶接時間」で表されるため、レーザ光Lの強度が一定であっても、送り方向D2の送り速度等によって溶接時間ひいては溶接エネルギーEを簡単に調節することができる。但し、溶接部30が重ならないように、回転方向D1及び送り方向D2の速度やレーザ光の強度等を調整する必要がある。
 溶接部30の形成方向である図2に示す回転方向D3は、図3Aに示すコイル状部材20の螺旋の回転方向(螺旋方向D4)と同方向とするとよい。なお、溶接部30は、パイプ状部材10の外周面で重ならないように隙間x,xを設けて形成することで、溶接深さ等が不均一に形成されるのを防止して高精度に溶接部30を形成することができる。なお、溶接部31の幅wは、溶接部32の幅wよりも小さくなり、レーザ照射条件が一定であるため、溶接部31,31の隙間xは、溶接部31,32の隙間xよりも大きい。
 図3Bに示すように、パイプ状部材10の内側に位置するコイル状部材20は、板状コイルでコイル間が近接するようにしてもよい。溶接部30は、パイプ状部材10の内側にコイル状部材20が位置する溶接部31のみからなる。この場合でも、溶接部31間の隙間xは、「x>0」に設定されている。
 また、図3Cに示すように、コイル状内側部材20は、断面円形のコイルでコイル間が密着していないものでもよい。図3Cに示すように、溶接部31,32の隙間x及び溶接部32,32の隙間xも「x,x>0」の関係を満たす。
 また、図3Dに示すように、コイル状内側部材20は、断面円形のコイルでコイル間が近接するものでもよい。この場合、溶接部30は、パイプ状部材10の内側にコイル状部材20が位置する溶接部31のみからなり、これらの隙間xも「x>0」の関係を満たす。
 なお、本実施の形態では、溶接部30がパイプ状部材10の外周に沿って数回回転しているものとして図示しているが、対象となる溶接領域Rの大きさ若しくは必要強度又はレーザ光Lの種類などに応じて、数十回、数百回又はそれ以上回転しているものとすることも可能である。
 また、本実施の形態では、コイル状内側部材として断面矩形又は断面円形のコイル状部材20を用いる例について説明したが、コイル状内側部材は、筒状外側部材と溶接されるものであれば、他の形状とすることも可能である。筒状外側部材についても、多角パイプ状などの他の形状とすることも可能である。
 また、パイプ状部材10とコイル状部材20とをパイプ状部材10の外周からカシメたり(塑性変形させたり)、パイプ状部材10とコイル状部材20との間に金属箔等の接合のための部材を介在させたりした後に、上述のレーザ照射を行うようにしてもよい。
 本実施の形態によれば、パイプ状部材10の軸Aを中心とした螺旋状に、パイプ状部材10に外周からレーザ光が重ならないように照射されるため、レーザ照射前にパイプ状部材10及びコイル状部材20に接合のための塑性加工を必要とせず、パイプ状部材10とコイル状部材20との間に接合のための部材を介在させない場合にも、内側にコイル状部材20がなくともパイプ状部材10の内外径が変化することなく確実にレーザ溶接を行うことができる。更には、例えば広範囲の溶接領域Rでも、簡単な構成で短時間にレーザ溶接を行うことが可能となる。
 また、本実施の形態では、パイプ状部材10の軸Aを中心とした螺旋状に連続的にレーザ光Lが照射される。そのため、パイプ状部材10及びコイル状部材20の寸法精度を保つことができ、より高精度なレーザ溶接を行うことができる。
 また、本実施の形態では、コイル状内側部材としてコイル状部材20を用い、コイル状部材20の螺旋(回転方向D4)と回転方向(溶接部30の形成方向)D3が同方向の螺旋状にレーザ光Lが照射される。そのため、パイプ状部材10の外周のうち内側にコイル状部材20が位置する部分でレーザ光Lを照射しやすくなり、より高精度なレーザ溶接を行うことができる。
 図4は、本実施の形態に係るレーザ溶接方法を適用した内視鏡100を示す斜視図である。
 図5は、上記内視鏡の蛇管接合部を示す断面図である。
 図4に示すように、内視鏡100は、狭小空間に挿入される挿入部110と、この挿入部110の基端部に配設された操作部120と、この操作部120から延出されたユニバーサルケーブル130と、を備える。
 挿入部110は、先端硬質部111と、この先端硬質部111の基端部に配設された湾曲部112と、この湾曲部112の基端部に配設された蛇管(可撓管)113と、を有する。
 操作部120は、把持部121aを有する操作部本体121と、この操作部本体121に配設された湾曲操作ノブ122と、蛇管113の基端部に配設されているとともに操作部本体121の把持部121aに配設された折れ止め123と、を有する。
 ユニバーサルケーブル130は、操作部本体121から延出された可撓管131と、この可撓管131のうち操作部本体121に対して遠位側の端部に配設されたコネクタ132と、可撓管131のうち操作部本体121に対して近位側の端部に配設された折れ止め133と、を有する。
 図5に示すように、蛇管113は、筒状外側部材の一例である接続口金114を介して図4に示す湾曲部112に接続される。
 蛇管113は、コイル状内側部材の一例であるフレックス113aと、このフレックス113aの外側に配設されたブレード113bと、このブレード113bの外側に配設された外皮113cと、を有する。
 フレックス113aは、例えばステンレス鋼材製の帯状薄板素材が螺旋状に成形されて、略円筒状に形成されている。フレックス113aの先端は、フレックス113aの長手方向の中心軸に対して90度又は略90度となるようにカットされている。
 ブレード113bは、例えばステンレス鋼材製の複数の素線が束にされた素線束を編み込んだものが略円筒状に形成されている。
 外皮113cは、例えばゴム材などのフレキシブル性を有する樹脂材によりブレード113bの外側を覆うように略円筒状に形成されている。
 接続口金114は、例えばステンレス鋼材などの金属材等により略円筒状に形成されている。接続口金114には、径方向外方に向かって突出したフランジ部114aが形成されている。また、接続口金114の基端部の内周面には、接続口金114の先端部よりも内径が大きく形成された凹部114bが形成されている。
 また、接続口金114の凹部114bの内径は、フレックス113a単体を自然状態(外力が加わらない状態)に置いたときに、フレックス113aの外周面を凹部114bの内周面に密着(嵌合)させるように、フレックス113aの外径と同じかそれよりも小さく形成されている。
 また、上述のようにフレックス113aの先端はその軸方向に対して略90度にカットされているため、フレックス113aの外周面を接続口金114の凹部114bの内周面に付勢しつつ、フレックス113aの先端が凹部114bの先端の段差部分に当接されている。すなわち、フレックス113aの先端が接続口金114の凹部114bに位置決めされた状態で嵌合されている。
 このように嵌合された筒状外側部材の一例である接続口金114とコイル状内側部材の一例であるフレックス113aとは、図1~図3Dを参照しながら説明したパイプ状部材10(筒状外側部材)とコイル状部材(コイル状内側部材)20とのレーザ溶接と同様に、溶接領域Rにおいて、接続口金114の軸(中心軸)Bを中心とした螺旋状に溶接固定される。
 なお、ブレード113bの外側に配設されたカシメ部材115は、例えばステンレス鋼材などの金属材で形成されている。カシメ部材115は、例えば、接続口金114のフランジ部114aに当接するブレード113bの先端側において、接続口金114の外側に対してカシメられる(塑性変形加工される)。この後には、上述の本実施の形態のレーザ溶接を行ってもよい。本実施の形態のレーザ溶接は、コイル状の蛇管113(フレックス113a)等の溶接に適しているが、その他の部分を溶接領域Rとしてもよい。
 なお、接続口金114をフレックス113aの外側に対してカシメた後に接続口金114とフレックス113aとを溶接固定してもよいが、上述のレーザ溶接によって接続口金114とフレックス113aとは確実に固定されるため、変形を避けるためにカシメない構成をとる方がより望ましい。
 図6は、本実施の形態に係るレーザ溶接方法を適用した内視鏡用クリップ装置300を示す要部断面図である。
 図6に示すように、内視鏡処置具としての内視鏡用クリップ装置300は、例えば図示しない内視鏡挿入部の処置具挿通チャンネルに挿通され、内視鏡と組み合わせて使用される。そのため、管状体310、操作ワイヤ320等からなる挿入部は、処置具挿通チャンネルよりも十分に長く形成されている。挿入部は、内視鏡挿入部の湾曲に合わせて湾曲するように可撓性を備えている。
 操作ワイヤ320は、管状体310に沿って延びるとともに管状体310に対して進退自在に挿通して配されている。また、操作ワイヤ320は、図示しないクリップユニットが着脱自在に係合された基端側よりも太径のフック330が先端に接続されている。
 フック330は、図示しないクリップユニットを引掛けるために使用される。また、フック330は、例えばステンレス鋼材等の金属材で形成されており、上記クリップユニットを引掛けて係合する略円錐形状の係合部331と、軸部332を介して例えば溶接などによって係合部331を操作ワイヤ320に接続するワイヤ接続部333と、を有している。
 管状体310は、基端側に配された手元側コイル311と、この手元側コイル311の先端に接続され、手元側コイル311の内径よりも大きい内径を有する先端側コイル312と、手元側コイル311と先端側コイル312とを接続するコイル接続パイプ313と、を有する。このコイル接続パイプ313は、手元側コイル311及び先端側コイル312よりも硬質である。
 手元側コイル311は、例えばステンレス鋼材製の略円形断面の丸線が平線状につぶされて平線311aとされたものが螺旋状に密巻きされた筒状に形成されている。
 先端側コイル312は、例えばステンレス鋼材製の略矩形断面の平線312aが螺旋状に密巻きされた筒状に形成されている。
 先端側コイル312の先端には、例えばステンレス鋼材製で環状に形成された先端チップ340が配されている。
 コイル接続パイプ313は、例えばステンレス鋼材からなる略パイプ形状とされて、外径が先端側コイル312の内径と略同一の先端側接続部313aと、外径が手元側コイル311と略同一の手元側接続部313bとが接続されて形成されている。先端側接続部313aの内径と手元側接続部313bの内径とは、略同一となっている。
 ここで、コイル接続パイプ313(手元側接続部313b)は、上述の筒状外側部材の一例として機能し、手元側コイル311は、コイル接続パイプ313の内側に位置するコイル状内側部材の一例として機能する。
 コイル接続パイプ313と手元側コイル311とは、図1~図3Dを参照しながら説明したパイプ状部材10(筒状外側部材)とコイル状部材(コイル状内側部材)20とのレーザ溶接と同様に、溶接領域Rにおいて、コイル接続パイプ313の軸(中心軸)Cを中心とした螺旋状にレーザ溶接される。
 なお、先端側コイル312の外側からレーザ光を照射することができれば、先端側コイル312を筒状外側部材として用い、コイル接続パイプ313(先端側接続部313a)をコイル状内側部材として用いることで、レーザ溶接方法を行うことも可能である。本実施の形態のレーザ溶接は、コイル状の手元側コイル311等の溶接に適しているが、その他の部分を溶接領域としてもよい。
 例えば、フック330の係合部331と操作ワイヤ320との接続部分や、その他の接続部分に、本実施の形態のレーザ溶接を行うことも可能である。
 なお、以上の説明では、上述のレーザ溶接方法により溶接固定された筒状外側部材及びコイル状内側部材を備える内視鏡100(図4及び図5)並びに内視鏡処置具としてのクリップ装置300(図6)について、本実施の形態のレーザ溶接方法に好ましい適用例として説明したが、本実施の形態のレーザ溶接方法は、内視鏡の筒状外側部材及びコイル状内側部材との溶接であれば、適用可能である。
   1   レーザ溶接部材
  10   パイプ状部材
   10a   端部
  20   コイル状部材
   20a   端部
  30,31,32   溶接部
 100   内視鏡
 110   挿入部
 111   先端硬質部
 112   湾曲部
 113   蛇管
  113a   フレックス
  113b   ブレード
  113c   外皮
 114   接続口金
  114a   フランジ部
  114b   凹部
 115   カシメ部材
 120   操作部
 121   操作部本体
  121a   把持部
 122   湾曲操作ノブ
 123   折れ止め
 130   ユニバーサルケーブル
 131   可撓管
 132   コネクタ
 133   折れ止め
 200   レーザ光照射装置
 300   クリップ装置
 310   管状体
 311   手元側コイル
  311a   平線
 312   先端側コイル
  312a   平線
 313   コイル接続パイプ
  313a   先端側接続部
  313b   手元側接続部
 320   操作ワイヤ
 330   フック
 331   係合部
 332   軸部
 333   ワイヤ接続部
 340   先端チップ

Claims (2)

  1.  内視鏡の筒状外側部材と、その内側に位置するコイル状内側部材とを、前記筒状外側部材に外周からレーザ光を前記筒状外側部材の軸を中心とした螺旋状に照射することにより溶接固定する内視鏡用レーザ溶接方法において、
     前記筒状外側部材の板厚をh、前記コイル状内側部材の板厚をh、前記筒状外側部材の内側に前記コイル状内側部材の位置しない場所で前記筒状外側部材の内外径を変化させないレーザ溶接の最大溶接エネルギーをE、前記筒状外側部材と前記コイル状内側部材の溶接固定を可能とする最小溶接エネルギーをEとするとき、
     螺旋状溶接ビードが重ならず、
     前記筒状外側部材から前記コイル状内側部材までの溶接深さHがh<H<h+hであり、
     前記筒状外側部材と前記コイル状内側部材とを溶接固定し溶接深さが前記溶接深さHとなる溶接エネルギーEは、E≦E≦Eの関係を満たす、
     ことを特徴とする内視鏡用レーザ溶接方法。
  2.  請求項1記載の内視鏡用レーザ溶接方法により互いに溶接固定された前記筒状外側部材及び前記コイル状内側部材を備えることを特徴とする内視鏡用レーザ溶接部材。
PCT/JP2011/075730 2010-11-17 2011-11-08 内視鏡用レーザ溶接方法、及び、内視鏡用レーザ溶接部材 WO2012066982A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180054439.7A CN103201066B (zh) 2010-11-17 2011-11-08 内窥镜用激光焊接方法及内窥镜用激光焊接构件
US13/889,703 US9132507B2 (en) 2010-11-17 2013-05-08 Laser welding method and laser welded member for endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-256690 2010-11-17
JP2010256690A JP5980475B2 (ja) 2010-11-17 2010-11-17 内視鏡用レーザ溶接方法、及び、内視鏡用レーザ溶接部材

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/889,703 Continuation US9132507B2 (en) 2010-11-17 2013-05-08 Laser welding method and laser welded member for endoscope

Publications (1)

Publication Number Publication Date
WO2012066982A1 true WO2012066982A1 (ja) 2012-05-24

Family

ID=46083916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075730 WO2012066982A1 (ja) 2010-11-17 2011-11-08 内視鏡用レーザ溶接方法、及び、内視鏡用レーザ溶接部材

Country Status (4)

Country Link
US (1) US9132507B2 (ja)
JP (1) JP5980475B2 (ja)
CN (1) CN103201066B (ja)
WO (1) WO2012066982A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309944A (zh) * 2022-03-04 2022-04-12 极限人工智能有限公司 激光焊接装置及内窥镜构件焊接方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835993B2 (en) * 2015-08-05 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Laser welding method
WO2021109405A1 (zh) * 2019-12-06 2021-06-10 深圳市资福医疗技术有限公司 一种胶囊内窥镜壳体激光焊接密封工艺
CN113084341A (zh) * 2019-12-19 2021-07-09 先健科技(深圳)有限公司 导丝、焊接装置及焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001173A (ja) * 1999-06-22 2001-01-09 Olympus Optical Co Ltd 線状部材の溶接方法
JP2008238193A (ja) * 2007-03-26 2008-10-09 Tokyu Car Corp レーザ溶接方法及び鉄道車両構体
JP2009154194A (ja) * 2007-12-27 2009-07-16 Kinki Sharyo Co Ltd 鉄道車両構体の重ねレーザ溶接方法、重ねレーザ溶接継手、鉄道車両の構体構造

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728854B2 (ja) 1984-05-22 1995-04-05 オリンパス光学工業株式会社 内視鏡用鉗装置
JPH0616790B2 (ja) 1986-05-20 1994-03-09 オリンパス光学工業株式会社 ワイヤの接続方法
JPH05161597A (ja) 1991-12-13 1993-06-29 Fuji Photo Optical Co Ltd 内視鏡のアングル部における保護ネット固定方法
JPH085934A (ja) * 1994-06-22 1996-01-12 Mitsubishi Cable Ind Ltd スコープ首振部及びその製造方法
JP3498426B2 (ja) * 1995-05-16 2004-02-16 富士写真光機株式会社 内視鏡の可撓管
JP2000070221A (ja) * 1998-09-02 2000-03-07 Sony Corp 内視鏡
CN1392023A (zh) * 2001-06-15 2003-01-22 沈阳大陆激光技术有限公司 烟气轮机损伤叶片激光仿形修复工艺
JP4555014B2 (ja) * 2003-08-22 2010-09-29 Hoya株式会社 接合方法、医療機器用ユニット部品接合体および内視鏡
EP2234663A1 (en) * 2007-12-19 2010-10-06 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
JP5085309B2 (ja) * 2007-12-26 2012-11-28 オリンパスメディカルシステムズ株式会社 内視鏡
CN101508057B (zh) * 2009-03-20 2012-08-22 江苏奇能电池有限公司 一种电池激光焊接方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001173A (ja) * 1999-06-22 2001-01-09 Olympus Optical Co Ltd 線状部材の溶接方法
JP2008238193A (ja) * 2007-03-26 2008-10-09 Tokyu Car Corp レーザ溶接方法及び鉄道車両構体
JP2009154194A (ja) * 2007-12-27 2009-07-16 Kinki Sharyo Co Ltd 鉄道車両構体の重ねレーザ溶接方法、重ねレーザ溶接継手、鉄道車両の構体構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309944A (zh) * 2022-03-04 2022-04-12 极限人工智能有限公司 激光焊接装置及内窥镜构件焊接方法

Also Published As

Publication number Publication date
US9132507B2 (en) 2015-09-15
US20130240493A1 (en) 2013-09-19
JP2012106258A (ja) 2012-06-07
JP5980475B2 (ja) 2016-08-31
CN103201066A (zh) 2013-07-10
CN103201066B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5085309B2 (ja) 内視鏡
WO2012066982A1 (ja) 内視鏡用レーザ溶接方法、及び、内視鏡用レーザ溶接部材
US8567033B2 (en) Method of constructing an articulation joint for steerable medical device
EP2074927B1 (en) Endoscope
JP6842933B2 (ja) ガイドワイヤおよびガイドワイヤの製造方法
WO2021010222A1 (ja) インプラント装置
WO2020059120A1 (ja) ダイレータ
CN109328115B (zh) 其上设有标记件的机械波导
JP6997007B2 (ja) ガイドワイヤ
WO2020208906A1 (ja) ガイドワイヤ
JP6799317B2 (ja) 操作ワイヤの製造方法
JP2011036577A (ja) 内視鏡の可撓管
WO2020255400A1 (ja) ガイドワイヤ
JP4608518B2 (ja) 管状部材及び内視鏡用処置具
JP2009261644A (ja) 内視鏡の挿入部
JP5322838B2 (ja) 内視鏡の可撓管
JP2020137854A (ja) ガイドワイヤ
US20070112246A1 (en) Tubular member and endoscopic instrument
JP2001231784A (ja) 内視鏡用小部品の連結構造及び連結方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842412

Country of ref document: EP

Kind code of ref document: A1