WO2012063649A1 - 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール - Google Patents

太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール Download PDF

Info

Publication number
WO2012063649A1
WO2012063649A1 PCT/JP2011/074811 JP2011074811W WO2012063649A1 WO 2012063649 A1 WO2012063649 A1 WO 2012063649A1 JP 2011074811 W JP2011074811 W JP 2011074811W WO 2012063649 A1 WO2012063649 A1 WO 2012063649A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
solar cell
layer
mass
polymer layer
Prior art date
Application number
PCT/JP2011/074811
Other languages
English (en)
French (fr)
Inventor
畠山 晶
伊藤 維成
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN2011800539863A priority Critical patent/CN103210504A/zh
Priority to KR1020137012136A priority patent/KR101398504B1/ko
Publication of WO2012063649A1 publication Critical patent/WO2012063649A1/ja
Priority to US13/890,530 priority patent/US8962987B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
    • Y10T428/273Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.] of coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a solar cell backsheet, a method for manufacturing the solar cell backsheet, and a solar cell module, which are disposed on the side opposite to the light receiving surface side of a battery side substrate provided with solar cell elements.
  • a fluoropolymer sheet is bonded to the back surface opposite to the side on which sunlight is mainly incident. Is widely practiced.
  • repelling failure a coating failure called repelling
  • the present invention has been made in view of the above, and it is excellent in uniformity of a polymer layer when a fluorine-based polymer and / or a silicone-based polymer is used as a binder in the polymer layer, and is more excellent in weather resistance than conventional.
  • the object is to provide a solar cell module that can provide stable power generation performance over a long period of time regardless of the battery back sheet, the manufacturing method thereof, and the installation environment.
  • a polymer substrate a polymer layer that is provided on at least one surface of the polymer substrate by coating, and includes a polymer selected from a fluorine-based polymer and a silicone-based polymer as a binder, and an amorphous colloidal silica. It is a solar cell backsheet.
  • a total content of the fluorine-based polymer and the silicone-based polymer in the polymer layer is in a range of 0.5 g / m 2 or more and 12.5 g / m 2 or less. It is a back sheet.
  • ⁇ 3> The above ⁇ 1> or ⁇ 2>, wherein the content of the colloidal silica is 3.0% by mass or more and 60.0% by mass or less with respect to the total content of the fluoropolymer and the silicone polymer. It is a solar cell backsheet as described in.
  • ⁇ 4> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 3>, wherein the polymer layer further includes a crosslinking agent for crosslinking the polymer in the polymer layer. . ⁇ 5>
  • the content of the crosslinking agent is in the range of 0.5% by mass to 100% by mass with respect to the mass of the polymer in the polymer layer. It is a back sheet for.
  • ⁇ 7> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 6>, wherein the polymer layer further contains a surfactant.
  • the surfactant comprises a polyoxyalkylene alkyl ether nonionic surfactant.
  • the surfactant content is in the range of 0.1 to 10 mg / m 2 in the polymer layer.
  • the polymer layer is provided on a side of the polymer base opposite to a side on which a solar cell element is disposed. It is.
  • a polymer layer is formed by applying and drying a coating liquid containing a polymer selected from a fluorine-based polymer and a silicone-based polymer as a binder and amorphous colloidal silica on at least one surface of a polymer substrate. It is a manufacturing method of the solar cell backsheet which has a process.
  • seat for solar cells which is excellent in the uniformity of the polymer layer at the time of using a fluorine-type polymer and / or a silicone type polymer as a binder, and was excellent in weather resistance compared with the former, and its manufacturing method are provided. can do. Also, According to the present invention, it is possible to provide a solar cell module capable of obtaining stable power generation performance over a long period of time regardless of the installation environment.
  • the back sheet for a solar cell according to the present invention, a method for producing the back sheet, and a solar cell module using the back sheet will be described in detail.
  • the solar cell backsheet of the present invention is provided on a polymer substrate and at least one surface of the polymer substrate, and a polymer selected from a fluorine-based polymer and a silicone-based polymer as at least one binder and an amorphous colloidal silica And a polymer layer including:
  • the solar cell backsheet of the present invention may be composed only of a polymer substrate and a polymer layer, or may be separated from the polymer layer on the surface of the polymer substrate or the surface of the polymer layer, if necessary.
  • other layers such as a colored layer, an easily adhesive layer, and an undercoat layer may be further included.
  • the other layer may be a single layer or two or more layers.
  • a binder component of a polymer layer provided on at least one surface of the polymer substrate preferably, the surface opposite to the side on which the solar cell element is disposed
  • coexistence of amorphous colloidal silica with these polymers prevents the occurrence of repelling failure that tends to occur when a polymer layer is applied and has a polymer layer with excellent uniformity.
  • a solar cell backsheet is obtained.
  • resistance to changes in temperature and humidity, humidity and heat and moisture (humidity) is improved, and even when the solar cell module is configured and placed under all environmental conditions, it can generate power over a long period of time. Performance is secured stably.
  • the solar cell backsheet of the present invention includes a polymer substrate (support).
  • the polymer base material include base materials using polyester, polyolefins such as polypropylene and polyethylene, or fluorine-based polymers such as polyvinyl fluoride.
  • a polyester base material is preferable from the viewpoint of cost and mechanical strength.
  • the polyester used as the substrate (support) in the present invention is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate and the like. Of these, polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable from the viewpoint of balance between mechanical properties and cost.
  • the polyester may be a homopolymer or a copolymer. Further, the polyester may be blended with a small amount of another type of resin such as polyimide.
  • an Sb-based, Ge-based, or Ti-based compound as a catalyst from the viewpoint of suppressing the carboxyl group content in the polyester after polymerization to a predetermined range or less.
  • Ti compounds are preferred.
  • an embodiment in which the Ti compound is polymerized by using it as a catalyst so that the Ti element conversion value in the polyester after polymerization is in the range of 1 ppm to 30 ppm, more preferably 3 ppm to 15 ppm is preferable.
  • the amount of Ti compound used is within the above range in terms of Ti element, the terminal carboxyl group in the polyester after polymerization can be adjusted to the following range, and the hydrolysis resistance of the polymer substrate is kept low. be able to.
  • Examples of the synthesis of polyester using a Ti compound include Japanese Patent Publication No. 8-301198, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 3897756, Japanese Patent No. 396226, and Japanese Patent No. 39786666.
  • No. 3, Patent No. 3,996,871, Patent No. 40000867, Patent No. 4053837, Patent No. 4,127,119, Patent No. 4,134,710, Patent No. 4,159,154, Patent No. 4,269,704, Patent No. 4,313,538 and the like can be applied.
  • the carboxyl group content in the polyester is preferably in the range of 2 to 50 equivalent / t, more preferably in the range of 3 to 35 equivalent / t.
  • the lower limit of the carboxyl group content is preferably 2 equivalents / t in terms of maintaining adhesion between the layer formed on the polyester (for example, a colored layer).
  • the carboxyl group content in the polyester can be adjusted by the polymerization catalyst species and the film forming conditions (film forming temperature and time). In the present specification, “equivalent / ton” represents a molar equivalent per ton.
  • the polyester in the present invention is preferably solid-phase polymerized after polymerization.
  • Solid-phase polymerization may be a continuous method (a method in which a tower is filled with a resin, which is slowly heated for a predetermined time and then sent out), or a batch method (a resin is charged into a container). , A method of heating for a predetermined time).
  • Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392 are disclosed.
  • the method described in Japanese Patent No. 4167159 can be applied.
  • the temperature of the solid phase polymerization is preferably 170 ° C. or higher and 240 ° C. or lower, more preferably 180 ° C. or higher and 230 ° C. or lower, and further preferably 190 ° C. or higher and 220 ° C. or lower.
  • the solid phase polymerization time is preferably 5 hours to 100 hours, more preferably 10 hours to 75 hours, and still more preferably 15 hours to 50 hours.
  • the solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
  • the polyester base material in the present invention is obtained by melt-extruding the above polyester into a film shape and then cooling and solidifying it with a casting drum to form an unstretched film.
  • the unstretched film is subjected to a longitudinal direction at Tg to (Tg + 60) ° C. 1 or 2 times or more (when 2 or more times, the total magnification) is stretched to 3 to 6 times, and then the width is increased to 3 to 5 times in the width direction at Tg to (Tg + 60) ° C. It is preferable that it is a biaxially stretched film. Further, heat treatment may be performed at 180 to 230 ° C. for 1 to 60 seconds as necessary.
  • Tg represents a glass transition temperature and can be measured based on JIS K7121 or ASTM D3418-82. For example. In the present invention, measurement is performed using a differential scanning calorimeter (DSC) manufactured by Shimadzu Corporation. Specifically, 10 mg of a polymer such as polyester is weighed as a sample, set in an aluminum pan, and heated at a rate of temperature increase of 10 ° C./min from room temperature to a final temperature of 300 ° C., with a DSC apparatus, the amount of heat with respect to temperature. was measured as the glass transition temperature.
  • DSC differential scanning calorimeter
  • the thickness of the polymer substrate is preferably about 25 to 300 ⁇ m. If the thickness is 25 ⁇ m or more, the mechanical strength is good, and if it is 300 ⁇ m or less, it is advantageous in terms of cost.
  • the polyester base material has a tendency to become difficult to withstand long-term use due to deterioration of hydrolysis resistance as the thickness increases.
  • the thickness of the polyester base material is 120 ⁇ m or more and 300 ⁇ m or less and the carboxyl group content in the polyester is 2 to 50 equivalents / t, the effect of improving the wet heat durability is further exhibited. Is preferable.
  • the back sheet for a solar cell of the present invention has a configuration in which a polymer layer is provided on one or both sides of the polymer substrate by a coating method.
  • This polymer layer contains a polymer selected from a fluorine-based polymer and a silicone-based polymer as a binder, and amorphous colloidal silica, and further uses other components such as a crosslinking agent, a pigment, and various additives as necessary. Can be configured.
  • the polymer layer may be provided as a single layer or may be provided with two or more layers.
  • the polymer layer in the present invention contains at least one polymer selected from a fluorine-based polymer and a silicone-based polymer as a binder.
  • a fluorine-based polymer and / or a silicone-based polymer as a binder component of the polymer layer provided on the polymer substrate, and by containing these polymers, the weather resistance of the backsheet, In particular, it is possible to drastically improve resistance in a humid and heat environment containing a large amount of temperature and humidity changes and heat and moisture (humidity).
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, or a perfluoroalkyl group having 1 to 3 carbon atoms.
  • fluorine-based polymer examples include polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), polyvinyl fluoride (hereinafter sometimes referred to as PVF), and polyvinylidene fluoride (hereinafter referred to as PVDF). ), Polychlorinated ethylene trifluoride (hereinafter sometimes referred to as PCTFE), polytetrafluoropropylene (hereinafter sometimes referred to as HFP), and the like.
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • PCTFE Polychlorinated ethylene trifluoride
  • HFP polytetrafluoropropylene
  • the fluoropolymer may be a homopolymer obtained by homopolymerizing one kind of monomer, or may be obtained by copolymerizing two or more kinds of monomers.
  • a copolymer obtained by copolymerizing tetrafluoroethylene and tetrafluoropropylene abbreviated as P (TFE / HFP)
  • P tetrafluoroethylene and vinylidene fluoride
  • a polymer obtained by copolymerizing a fluorine-based monomer having a structural portion of-(CFX 1 -CX 2 X 3 )-and another monomer for example, a copolymer of tetrafluoroethylene and ethylene (abbreviated as P (TFE / E)), a copolymer of tetrafluoroethylene and propylene (abbreviated as P (TFE / P)), Copolymer of tetrafluoroethylene and vinyl ether (abbreviated as P (TFE / VE)), copolymer of tetrafluoroethylene and perfluorovinyl ether (abbreviated as P (TFE / FVE)), chlorotri Copolymers of fluoroethylene and vinyl ether (abbreviated as P (CTFE / VE)), copolymers of chlorotrifluoroethylene and perfluorovinyl ether (abbreviated as P (CTFE /
  • the fluoropolymer may be used by being dissolved in an organic solvent, or may be used by being dispersed in water as polymer particles. The latter is preferable in that the environmental load is small.
  • the aqueous dispersions of fluoropolymers are described in, for example, Japanese Patent Application Laid-Open Nos. 2003-231722, 2002-20409, and 9-194538.
  • silicone-based polymer examples include a composite polymer of silicone and acrylic, a composite polymer of silicone and polyester, and the like.
  • Commercially available products that are marketed may be used as the silicone polymer.
  • a composite polymer of silicone and acrylic Seranate WSA1060 and WSA1070 manufactured by DIC Corporation, Asahi Kasei Chemicals Corporation H7620, H7630, H7650, and the like.
  • the polymer layer in the present invention may use the above-mentioned fluorine-based polymer and / or silicone-based polymer in combination with another polymer other than these polymers as long as the effects of the present invention are not impaired.
  • the amount of other polymers other than the fluorine-based polymer and the silicone-based polymer is preferably 50% by mass or less of the total mass of the binder. When the amount of the other polymer is 50% by mass or less, better weather resistance can be exhibited as a back sheet.
  • polyester polymers for example, polyesters such as polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN)
  • polyurethane polymers for example, hexamethylene diisocyanate or toluene diisocyanate and ethylene.
  • Polymers made of glycol or propylene glycol, etc. acrylic polymers (eg, polymers containing polymethyl methacrylate, polyethyl acrylate, etc.), polyolefin polymers (eg, polymers made of polyethylene and (meth) acrylic acid, etc.), etc. These can be selected from known polymers.
  • the total content of the fluorine-based polymer and the silicone-based polymer in the polymer layer is preferably in the range of 0.5 g / m 2 to 12.5 g / m 2 .
  • the durability performance when exposed to a change in temperature and humidity or a high humidity and heat environment can be further improved.
  • the amount is 5 g / m 2 or less, a desired amount of a crosslinking agent or a surfactant can be added, which is advantageous in terms of film strength and coated surface.
  • the total content of the fluorine-based polymer and silicone-based polymer from the same reason, 1.0 g / m 2 or more 12.0 g / m 2 or less in the range is more preferable.
  • the polymer layer in the present invention contains at least one amorphous colloidal silica. Two or more different types of colloidal silica may be used in combination.
  • the coating film when a layer is formed by coating including a fluorine-based or silicone-based resin material, the coating film tends to repel on the polymer base material and easily cause a coating failure (repellency failure).
  • a coating failure repelling failure
  • colloidal silica by applying the coating liquid using colloidal silica, it is possible to suppress the occurrence of repelling failure when applied, and to obtain a polymer layer excellent in thickness and surface property uniformity.
  • Colloidal silica is a colloid composed of fine particles of inorganic oxide containing silicon dioxide (including hydrates thereof) as a main component and silicon having an average particle size of several hundred nm or less. Moreover, you may contain an aluminate as a small component. Examples of the aluminate that may be contained as a minor component include sodium aluminate and potassium aluminate. In addition, colloidal silica may contain inorganic salts such as sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonium hydroxide, and organic salts such as tetramethylammonium hydroxide. These inorganic salts and organic salts act, for example, as colloid stabilizers.
  • the colloidal silica dispersion medium is not particularly limited and may be water, an organic solvent, or a mixture thereof.
  • the organic solvent may be a water-soluble organic solvent or a water-insoluble organic solvent, but is preferably a water-soluble organic solvent. Specific examples include methanol, ethanol, isopropyl alcohol, n-propanol and the like.
  • Colloidal silica can be produced by a commonly used method, for example, it can be produced from aerosil synthesis or water glass by thermal decomposition of silicon tetrachloride. Alternatively, it can also be produced by a liquid phase synthesis method such as hydrolysis of alkoxide (for example, see “Fiber and Industry”, Vol. 60, No. 7 (2004) P376).
  • colloidal silica has a spherical shape and an irregular shape, but the colloidal silk in the present invention is an irregular shape, and more specifically, a plurality of spherical particles (primary particles). For example, it has a chain-like structure that is connected individually.
  • the average primary particle size of the particles contained in the colloidal silica is, for example, preferably in the range of 1 nm to 200 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 3 nm to 50 nm, particularly preferably. It is in the range of 4 nm to 25 nm.
  • the average primary particle size is a value measured by a light scattering method using a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • the particle diameter of the amorphous colloidal silica in the present invention in which a plurality of primary particles are bonded is preferably 10 to 200 nm, more preferably 30 to 180 nm, when the amorphous colloidal silica is regarded as spherical.
  • the range is more preferably 50 to 150 nm.
  • the particle size of amorphous colloidal silica in which a plurality of primary particles are bonded is a value measured by a light scattering method using a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.). .
  • amorphous colloidal silicas commercially available products may be used.
  • commercially available products include Snowtex UP, OUP, PS-S, PS-M, and PS-MO ( Any of them may be Nissan Chemical Industries, Ltd.).
  • the pH of the dispersion liquid containing colloidal silica is generally adjusted to be acidic or alkaline. This is because the stable dispersion region of colloidal silica exists on the acidic side or alkaline side.
  • a commercially available colloidal silica dispersion is added to the coating solution, the pH of the stable dispersion region of colloidal silica and the stability of the coating solution In view of the above, it is preferable to add a neutral to alkaline colloidal silica dispersion.
  • the colloidal silica content can be, for example, 0.1 to 6.5% by mass of the total amount of the coating solution, and preferably 1.0 to 5.0% by mass of the total amount of the coating solution.
  • the content of the colloidal silica in the coating liquid is within the above range, repellency of the coating liquid that is likely to occur during coating is suppressed, which is advantageous in that the effect of improving the weather resistance when the solar cell module is obtained is large.
  • the content of colloidal silica with respect to the total content of the fluorine-based polymer and the silicone-based polymer is preferably in the range of 3.0% by mass or more and 60.0% by mass or less, and is 5.0-50% by mass.
  • the ratio of colloidal silica to the total amount of the fluorine-based polymer and the silicone-based polymer is 3.0% by mass or more, the effect of suppressing the repellency of the coating liquid that is likely to occur at the time of application is remarkable, and is 60.0% by mass or less. This is advantageous in terms of a planar shape.
  • the polymer layer may contain a crosslinking agent for crosslinking the polymer in the layer.
  • a crosslinking agent for crosslinking the polymer in the layer.
  • the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • a carbodiimide-based crosslinking agent and an oxazoline-based crosslinking agent are preferable from the viewpoint of securing adhesiveness after wet heat aging.
  • carbodiimide crosslinking agent examples include N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N- [3- ( And dimethylamino) propyl] -N′-ethylcarbodiimide, N- [3- (dimethylamino) propyl] -N′-propylcarbodiimide, N-tert-butyl-N′-ethylcarbodiimide, and the like.
  • commercially available products include Carbodilite V-02-L2 (manufactured by Nisshinbo Industries, Inc.).
  • oxazoline-based crosslinking agent examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2- Oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2,2'-bis- (2-oxazoline), 2,2'-methylene-bis- (2-oxazoline), 2,2′-ethylene-bis- (2-oxazoline), 2,2′-trimethylene-bis- (2-oxazoline), 2,2′-tetramethylene-bis- (2-oxazoline) ), 2,2′-hexamethylene-bis- (2-oxazoline), 2,2′-octamethylene-bis- (2-oxazoline), 2,2′-ethylene-bis- (4,4 ′) Dimethyl-2-oxazoline), 2,2'-p-pheny
  • the content of the crosslinking agent in the polymer layer is preferably 0.5% by mass or more and 100% by mass or less, more preferably 0.5% by mass or more and 50% by mass or less, and still more preferably 5.0% by mass with respect to the binder.
  • the mass is 30% by mass or more.
  • the polymer layer in the present invention may contain a pigment and be formed as a colored layer.
  • the same pigment as in the colored layer described later can be used, and the preferred embodiment is also the same.
  • a pigment having a desired hue may be included to give design properties, or a white pigment may be included to give the polymer layer a function as a reflective layer.
  • the polymer layer in this invention may contain other additives, such as surfactant and a filler, as needed.
  • the surfactant examples include anionic and nonionic (for example, polyoxyalkylene having 2 or 3 carbon atoms and an alkyl group having 1 to 30, preferably 2 to 24, more preferably 6 to 24 carbon atoms).
  • Known surfactants such as alkylene alkyl ethers can be used.
  • the content range in the polymer layer is preferably 0.1 to 10 mg / m 2 , more preferably 0.5 to 3 mg / m 2 .
  • the content of the surfactant is 0.1 mg / m 2 or more, the formation of a layer suppresses the occurrence of repelling and a better layer is obtained.
  • the content is 10 mg / m 2 or less, the polymer support And the adhesion between the polymer layer can be kept good.
  • the filler a known filler (inorganic fine particles) such as titanium dioxide can be used.
  • the content of the filler in the polymer layer is preferably 20% by mass or less, more preferably 15% by mass or less, based on the amount of the binder in the polymer layer.
  • the lower limit of the filler content is preferably 0.5% by mass.
  • the adhesiveness is good even after aging with wet heat.
  • the content of the filler is more preferably in the range of 1% by mass to 15% by mass.
  • the thickness of the polymer layer in the present invention is preferably 0.5 to 4.0 ⁇ m.
  • the thickness of the polymer layer is 0.5 ⁇ m or more, higher durability can be obtained and adhesion between the polymer layer and the polymer support can be improved.
  • the thickness of the polymer layer is 4.0 ⁇ m or less, the planar shape becomes better, and the adhesive strength between the adjacent layer and the polymer substrate is excellent. That is, when the thickness of the polymer layer is in the range of 0.5 to 4.0 ⁇ m, the durability and planarity of the polymer layer are compatible, and the adhesion between the polymer substrate and the polymer layer is superior.
  • the thickness of the polymer layer is more preferably in the range of 1.0 to 3.5 ⁇ m.
  • the solar cell backsheet of the present invention preferably has a colored layer on the light receiving side of the polymer substrate.
  • the present invention described above as the back surface protective layer is provided on the light receiving side of the polymer base (the side facing the battery side substrate on which the solar cell element is provided) and on the side opposite to the side on which the colored layer is provided.
  • the aspect in which the polymer layer in was provided is preferable.
  • the colored layer in the present invention contains at least a pigment and a binder, and may further include other components such as various additives as necessary.
  • the colored layer As a function of the colored layer, first, by reflecting the light that has passed through the solar cells and reaches the back sheet without being used for power generation out of the incident light, and returns the solar cells to the solar cells, Increasing the power generation efficiency, secondly, improving the decorativeness of the appearance when the solar cell module is viewed from the side on which sunlight enters (front side), and the like.
  • the solar cell module is viewed from the front side (glass substrate side)
  • the back sheet is visible around the solar cell, and the back sheet is decorated with a colored layer on the back sheet polymer sheet (designability) ) To improve the appearance.
  • the colored layer can contain at least one pigment.
  • the pigment include inorganic pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, ultramarine blue, bitumen, and carbon black, and organic pigments such as phthalocyanine blue and phthalocyanine green. It can be appropriately selected and contained.
  • the colored layer is configured as a reflective layer that reflects light that has entered the solar cell and passed through the solar cell and returns it to the solar cell
  • white inorganic particles white pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin and talc are preferable. Of these, titanium dioxide is preferable.
  • the content of the white inorganic particles in the reflective layer is preferably in the range of 30% by mass to 90% by mass with respect to the total mass of the polymer and the white inorganic particles, and more preferable white inorganic particles.
  • the range of the content is 50 to 85% by mass.
  • the content of the pigment in the colored layer is preferably in the range of 2.5 to 12 g / m 2 , and more preferably in the range of 2.5 to 8.5 g / m 2 .
  • the pigment content is 2.5 g / m 2 or more, necessary coloring can be obtained, and reflectance and decorative properties can be effectively provided.
  • the content of the pigment in the colored layer is 12 g / m 2 or less, the planar shape of the colored layer is easily maintained and the film strength is excellent.
  • the reflective layer preferably contains white inorganic particles in the range of 4 to 12 g / m 2 .
  • the content of the white inorganic particles is 4 g / m 2 or more, the required reflectance is easily obtained, and when the content is 12 g / m 2 or less, the weight of the back sheet can be reduced.
  • a more preferable content of white inorganic particles in the reflective layer is in the range of 5 to 11 g / m 2 .
  • the reflective layer contains two or more types of white inorganic particles, the total content of all white inorganic particles in the reflective layer is preferably in the range of 4 to 12 g / m 2 .
  • the average particle diameter of the pigment is preferably 0.03 to 0.8 ⁇ m, more preferably about 0.15 to 0.5 ⁇ m in volume average particle diameter. When the average particle size is within the above range, the light reflection efficiency is high.
  • the volume average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • polyester resin polyurethane resin
  • acrylic resin polyolefin resin
  • silicone resin or the like
  • acrylic resin and polyolefin resin are preferable from the viewpoint of ensuring high adhesiveness.
  • Composite resins may be used, for example acrylic / silicone composite resins are also preferred binders.
  • the binder content is preferably in the range of 15 to 200% by mass, more preferably in the range of 17 to 100% by mass with respect to the pigment.
  • the content of the binder is 15% by mass or more, the strength of the colored layer is sufficiently obtained, and when it is 200% by mass or less, the reflectance and the decorativeness can be kept good.
  • crosslinking agent examples include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Details of the crosslinking agent, in particular, details and preferred embodiments of the carbodiimide crosslinking agent and oxazoline crosslinking agent are as described in the polymer layer.
  • the addition amount of the crosslinking agent is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, based on the binder in the layer.
  • surfactant known surfactants such as anionic and nonionic surfactants can be used. Details and preferred embodiments of the surfactant are as described in the polymer layer.
  • the content is preferably 0.1 to 15 mg / m 2 , more preferably 0.5 to 5 mg / m 2 .
  • filler known fillers such as colloidal silica and titanium dioxide can be used.
  • the content of the filler is preferably 20% by mass or less, more preferably 15% by mass or less per binder of the colored layer.
  • the colored layer can be formed by a method in which a polymer sheet containing a pigment is bonded to a polymer support, a method in which a colored layer is coextruded when forming a substrate, a method by coating, or the like.
  • the colored layer can be formed by bonding, coextrusion, coating, or the like directly on the surface of the polymer support or through an undercoat layer having a thickness of 2 ⁇ m or less.
  • the formed colored layer may be in a state of being in direct contact with the surface of the polymer support or may be in a state of being laminated via an undercoat layer.
  • the method by coating is preferable because it is simple and can be formed in a thin film with uniformity.
  • the coating solution may be an aqueous system using water as an application solvent, or a solvent system using an organic solvent such as toluene or methyl ethyl ketone. Among these, from the viewpoint of environmental burden, it is preferable to use water as a solvent.
  • a coating solvent may be used individually by 1 type, and may mix and use 2 or more types. Specifically, for example, when a reflective layer is formed, a reflective layer containing white inorganic particles, a binder, and other components included as necessary on the surface of the polymer support on which the polymer layer is not formed. It can form by apply
  • the solar cell backsheet of the present invention may further be provided with an easy-adhesive layer (particularly on the colored layer).
  • the easy-adhesion layer is a layer for easily adhering firmly to a battery side substrate (battery body) provided with a solar cell element, for example, a sealing material for sealing the solar cell element of the battery side substrate. is there.
  • the easy-adhesion layer can be formed using a binder and inorganic fine particles, and may further include other components such as additives as necessary.
  • the easy-adhesion layer is used for a sealing material (for example, ethylene-vinyl acetate (EVA; ethylene-vinyl acetate copolymer), polyvinyl butyral (PVB), epoxy resin, etc.) that seals the power generation element of the battery side substrate.
  • EVA ethylene-vinyl acetate
  • PVB polyvinyl butyral
  • Adhesive strength can be adjusted by adjusting the amount of binder and inorganic fine particles in the easy-adhesive layer, and by corona treatment on the backsheet that adheres to the battery side substrate (especially the sealing material). It is.
  • the easy-adhesion layer can contain at least one binder.
  • the binder suitable for the easy-adhesive layer include polyester, polyurethane, acrylic resin, polyolefin, and the like. Among these, acrylic resin and polyolefin are preferable from the viewpoint of durability.
  • acrylic resin a composite resin of acrylic and silicone is also preferable.
  • binders examples include Chemipearl S-120 and S-75N (both manufactured by Mitsui Chemicals) as specific examples of polyolefins, and Jurimer ET-410 and SEK-301 (both Nippon Pure Chemical (both manufactured by Mitsui Chemicals, Inc.)).
  • Jurimer ET-410 and SEK-301 both Nippon Pure Chemical (both manufactured by Mitsui Chemicals, Inc.)
  • Ceranate WSA1060, WSA1070 both manufactured by DIC Corporation
  • H7620, H7630, H7650 both manufactured by Asahi Kasei Chemicals Corporation
  • the content of the binder in the easy-adhesive layer is preferably in the range of 0.05 to 5 g / m 2 . In particular, the range of 0.08 to 3 g / m 2 is more preferable.
  • the content of the binder, 0.05 g / m 2 or more is desired as easy adhesion obtained to that, better surface state is obtained when the is 5 g / m 2 or less.
  • the easily adhesive layer can contain at least one kind of inorganic fine particles.
  • the inorganic fine particles include silica, calcium carbonate, magnesium oxide, magnesium carbonate, and tin oxide.
  • fine particles of tin oxide and silica are preferable in that the decrease in adhesiveness when exposed to a humid heat atmosphere is small.
  • the particle size of the inorganic fine particles is preferably about 10 to 700 nm, more preferably about 20 to 300 nm in terms of volume average particle size. When the particle size is within this range, better easy adhesion can be obtained.
  • the particle size is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • the shape of the inorganic fine particles is not particularly limited, and any shape such as a spherical shape, an irregular shape, or a needle shape can be used.
  • the content of the inorganic fine particles is preferably in the range of 5 to 400% by mass with respect to the binder in the easy-adhesive layer.
  • the content of the inorganic fine particles is preferably in the range of 50 to 300% by mass.
  • the easily adhesive layer can contain at least one crosslinking agent.
  • the crosslinking agent suitable for the easily adhesive layer include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • an oxazoline-based cross-linking agent is particularly preferable from the viewpoint of ensuring adhesiveness after wet heat aging. Details of the crosslinking agent, in particular, details and preferred embodiments of the carbodiimide crosslinking agent and oxazoline crosslinking agent are as described in the polymer layer.
  • Epocros K2010E, K2020E, K2030E, WS-500, WS-700 (all manufactured by Nippon Shokubai Co., Ltd.), etc. can be used. It is.
  • the content of the crosslinking agent in the easy-adhesive layer is preferably 5 to 50% by mass, more preferably 20 to 40% by mass, based on the binder in the easy-adhesive layer.
  • the content of the crosslinking agent is 5% by mass or more, a good crosslinking effect can be obtained, and the strength and adhesiveness of the colored layer can be maintained.
  • the content is 50% by mass or less, the pot life of the coating liquid Can be kept long.
  • the easily adhesive layer may further contain a known matting agent such as polystyrene, polymethylmethacrylate, or silica, or a known surfactant such as anionic or nonionic.
  • a known matting agent such as polystyrene, polymethylmethacrylate, or silica
  • a known surfactant such as anionic or nonionic.
  • the formation of the easy-adhesion layer includes a method of bonding a polymer sheet having easy adhesion to a polymer support and a method by coating. Especially, the method by application
  • a coating method for example, a known coating method using a gravure coater or a bar coater can be used.
  • the coating solvent used for preparing the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone.
  • a coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
  • the thickness of the easy-adhesion layer is not particularly limited, but is usually preferably 0.05 to 8 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the thickness of the easy-adhesion layer is 0.05 ⁇ m or more, necessary easy adhesion can be suitably obtained, and when it is 8 ⁇ m or less, the surface shape becomes better.
  • the easily adhesive layer of the present invention is preferably transparent so as not to reduce the effect of the colored layer.
  • the production method of the solar cell backsheet of the present invention is not particularly limited, and can be suitably produced by, for example, the following steps. That is, the preferred method for producing the solar cell backsheet of the present invention comprises (1) containing a fluorine-based polymer and / or a silicone-based polymer and amorphous colloidal silica on at least one surface of the polymer substrate, preferably a solvent. A step of applying a coating solution containing 60% by mass or more of water directly or through another layer to the surface of the polymer substrate, and (2) drying the coating film formed on the polymer substrate. And a step of forming a polymer layer.
  • the adhesiveness after wet heat aging can be improved by curing the polymer layer after forming the polymer layer.
  • a step for forming another layer may be further provided in addition to the above step.
  • a coating liquid containing components constituting the other layer is placed on the polymer base (for example, the side opposite to the side where the polymer layer of the polymer base is formed).
  • coating is mentioned, The method already described as an example of the formation method of an easily bonding layer and a colored layer is mentioned as the example.
  • a polymer layer is provided on one side of a polymer substrate, and a reflective layer containing white inorganic particles is coated on the side opposite to the side on which the polymer layer is formed.
  • a reflective layer containing white inorganic particles is coated on the side opposite to the side on which the polymer layer is formed.
  • One having a polymer layer on one side of the polymer substrate and a color layer containing a color pigment coated on the side opposite to the side where the polymer layer is formed, and the polymer layer on one side of the polymer substrate The reflective layer containing white inorganic particles and the easy-adhesion layer are coated on the surface opposite to the surface on which the polymer layer is formed in order from the polymer substrate side.
  • seat and film which have a layer which exhibits the function desired as another layer as another example of the formation aspect of another layer to the formation surface of a polymer layer is mentioned.
  • the sheet or film in this case is a sheet or film having one or more other layers.
  • a polymer layer is applied and formed on one side of a polymer substrate, and a white color is formed on the other side opposite to the side on which the polymer layer is formed.
  • a white film (or colored film) containing a white pigment (or colored pigment other than white) as inorganic particles, an aluminum thin film and a white pigment on the side opposite to the side where the polymer layer of the polymer support is formed A white film containing a pigment, a polymer film having an inorganic barrier layer on the side opposite to the side on which the polymer layer is formed, and a white film containing a white pigment, etc. Can be mentioned.
  • the production of the solar cell backsheet of the present invention may be any method as long as the polymer layer of the present invention can be applied and formed on a polymer substrate.
  • the polymer layer in the present invention is prepared by preparing a coating solution containing at least a fluorine-based polymer and / or a silicone-based polymer and an amorphous colloidal silica as a binder, and then coating the coating solution on a polymer substrate. It is preferably formed by drying. After drying, it may be cured by heating. There is no restriction
  • the solvent used for the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone.
  • a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the proportion of water in the solvent is preferably 60% by mass or more, and more preferably 80% by mass or more.
  • the coating film may be dried after applying a coating solution for forming a polymer layer on the polymer substrate after biaxial stretching.
  • coating a coating liquid to the polymer base material after uniaxial stretching and drying a coating film you may make it extend
  • stretching and drying a coating film you may extend
  • the solar cell module of the present invention includes a transparent substrate on which sunlight is incident, a solar cell element, and the solar cell of the present invention described above provided on the opposite side of the solar cell element on which the substrate is disposed.
  • a battery back sheet is provided. Since the solar cell module of the present invention includes the above-described solar cell backsheet of the present invention, it has stable power generation performance over a long period of time even when exposed to weather resistance, in particular, changes in temperature and humidity or a high humidity environment. can get.
  • FIG. 1 schematically shows an example of the configuration of the solar cell module of the present invention.
  • This solar cell module 10 includes a solar cell element 20 that converts light energy of sunlight into electric energy, a transparent substrate 24 on which sunlight is incident, and a back sheet (for the above-described solar cell back sheet of the present invention).
  • (Polymer sheet) 5 and the substrate 24 and the back sheet 5 are sealed with an ethylene-vinyl acetate sealing material 22.
  • two polymer layers are provided on one surface side of the polymer substrate 16, and a white reflective layer is provided as the other layer on the other surface side (the side on which sunlight is incident). 18 is provided.
  • the two polymer layers have a laminated structure in which the first polymer layer 14 and the second polymer layer 12 are provided in contact with the polymer layer 14 in order from the polymer substrate side.
  • One or both of the second polymer layers 12 contain a fluorine polymer or / and a silicone polymer and amorphous colloidal silica.
  • the transparent substrate 24 only needs to have a light transmission property through which sunlight can pass, and can be appropriately selected from base materials that transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better.
  • a transparent resin such as an acrylic resin, or the like can be suitably used.
  • Examples of the solar cell element 20 include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenide.
  • silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon
  • III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenide.
  • II-VI group compound semiconductor systems can be applied.
  • Example 1 -Fabrication of support- (1) Synthesis of polyester A slurry of 100 kg of high-purity terephthalic acid (manufactured by Mitsui Chemicals) and 45 kg of ethylene glycol (manufactured by Nippon Shokubai Co., Ltd.) was charged with about 123 kg of bis (hydroxyethyl) terephthalate in advance and the temperature was 250 The esterification reaction tank maintained at a temperature of 1.2 ° C. and a pressure of 1.2 ⁇ 10 5 Pa was sequentially supplied over 4 hours, and the esterification reaction was carried out over an additional hour after the completion of the supply. Thereafter, 123 kg of the obtained esterification reaction product was transferred to a polycondensation reaction tank.
  • JP-A-2005-340616 was used. Five minutes later, a 10% by mass ethylene glycol solution of ethyl diethylphosphonoacetate was added so as to be 5 ppm with respect to the resulting polymer.
  • the reaction system was gradually heated from 250 ° C. to 285 ° C. and the pressure was reduced to 40 Pa. The time to reach the final temperature and final pressure was both 60 minutes. The reaction was continued for 3 hours, and then the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction. Then, the obtained polymer melt was discharged into cold water in a strand form and immediately cut to produce polymer pellets (diameter: about 3 mm, length: about 7 mm).
  • Titanium Dioxide Dispersion Components in the following composition were mixed, and the mixture was subjected to a dispersion treatment for 1 hour by a Dinomill type disperser to prepare a titanium dioxide dispersion.
  • ⁇ Composition of coating solution> Titanium dioxide dispersion: 80.0% by mass Silanol-modified polyvinyl alcohol binder: 11.4% by mass (R1130, manufactured by Kuraray Co., Ltd., solid content: 7% by mass) ⁇ Polyoxyalkylene alkyl ether: 3.0% by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass) ⁇ Oxazoline compound: 2.0% by mass (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25% by mass; crosslinking agent) ⁇ Distilled water: 5.6% by mass
  • -Back polymer layer 1- Preparation of coating solution for forming backside polymer layer 1 Each component in the following composition was mixed to prepare a coating solution for forming the backside polymer layer 1.
  • the volume average particle size of the colloidal silica was about 60 nm (measured by a light scattering method using a laser analysis / scattering particle size distribution measuring apparatus LA950 [manufactured by Horiba, Ltd.]).
  • Silicone / acrylic binder (Binder P-1): 310 parts (Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass) Colloidal silica (CS-1) 12.4 parts (Snowtex UP, manufactured by Nissan Chemical Co., Ltd., solid content 20% by mass, volume average particle diameter of about 60 nm)
  • Carbodiimide compound (crosslinking agent) 24 parts (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Inc., solid content: 25% by mass)
  • Oxazoline compound (crosslinking agent) 24 parts (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25% by mass)
  • -Surfactant 1.0 part (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
  • Titanium dioxide dispersion 206 parts
  • Distilled water 435 parts
  • a backsheet sample was prepared in which each layer on both sides of the PET support was provided as a coating layer by coating.
  • Adhesion was performed under the condition that a vacuum laminator was evacuated at 128 ° C. for 3 minutes, then pressure-bonded for 2 minutes to perform temporary adhesion, and further in a dry oven at 150 ° C. for 30 minutes. In this way, a crystalline solar cell module was produced. When power generation operation was performed using the produced solar cell module, it showed good power generation performance as a solar cell.
  • Example 1 a back sheet sample was produced in the same manner as in Example 1 except that the content of colloidal silica in the composition of the coating solution for forming the back polymer layer 1 was changed as shown in Table 1 below. .
  • Example 1 A back sheet sample was produced in the same manner as in Example 1 except that the colloidal silica used in the preparation of the coating solution for forming the back polymer layer 1 was not contained in Example 1.
  • Example 7 Comparative Examples 2 to 3
  • a backsheet sample was produced in the same manner as in Example 4 except that the binder in the composition of the coating liquid for forming the back polymer layer 1 was changed as shown in Table 1 below.
  • Example 8 A backsheet sample was prepared in the same manner as in Example 4 except that the binder content in the composition of the coating solution for forming the back polymer layer 1 was changed as shown in 1 below.
  • Example 13 to 14, Comparative Examples 4 to 5 A backsheet sample was produced in the same manner as in Example 4 except that the colloidal silica in the composition of the coating solution for forming the back polymer layer 1 was changed as shown in Table 1 below.
  • Example 15 In Example 4, a coating solution for forming the back polymer layer 2 was applied to the surface of the polymer layer 1 formed on the surface opposite to the side on which the colored layer of the PET support was provided, according to the following procedure. A backsheet sample was prepared in the same manner as in Example 4 except that the back polymer layer 2 was further formed.
  • Silicone / acrylic binder (binder P-1) 311 parts (Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass) Carbodiimide compound (crosslinking agent) 50 parts (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Ltd., solid content: 25% by mass)
  • Carbodiimide compound crosslinking agent 50 parts (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Ltd., solid content: 25% by mass)
  • Surfactant 2 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
  • Colloidal silica (CS-1) 187 parts (Snowtex UP, manufactured by Nissan Chemical Co., Ltd., solid content 20% by mass, volume average particle diameter of about 60 nm)
  • Distilled water 450 parts
  • backside polymer layer 2 The obtained backside polymer layer 2 forming coating solution was applied onto backside polymer layer 1 with a # 8 Meyer bar and then dried at 175 ° C. for 3 minutes to obtain backside polymer. Layer 2 was formed. As described above, a backsheet sample in which each layer on both sides of the PET support was provided as a coating layer by coating was produced.
  • Example 16 A backsheet sample was produced in the same manner as in Example 15 except that the binder in the composition of the coating solution for forming the back polymer layer 2 was changed as shown in Table 1 below.
  • Example 18 to 19 Comparative Examples 6 to 7
  • a backsheet sample was prepared in the same manner as in Example 15 except that the colloidal silica in the composition of the coating solution for forming the back polymer layer 2 was changed as shown in Table 1 below.
  • Adhesiveness- (1) Adhesiveness before wet heat aging 6 pieces of each of the back and back polymer layers 1 (however, backside polymer layer 2 for Examples 15 to 19 and Comparative Examples 6 to 7) with a single-blade razor on the surface Each cell was scratched to form 25 cells.
  • a Mylar tape (polyester tape) was affixed thereon and peeled by manually pulling it in the 180 ° direction along the sample surface. At this time, the adhesive force of the back surface polymer layer was evaluated according to the following evaluation criteria based on the number of peeled cells. Evaluation ranks 4 and 5 are practically acceptable ranges. ⁇ Evaluation criteria> 5: There was no cell which peeled (0 cell).
  • the peeled square was from 0 square to less than 0.5 square.
  • 3 The squares which peeled were 0.5 squares or more and less than 2 squares.
  • 2 The square which peeled was 2 squares or more and less than 10 squares.
  • 1 The square which peeled was 10 squares or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、ポリマー基材と、該ポリマー基材の少なくとも一方の面に塗布により設けられ、バインダーとしてフッ素系ポリマー及びシリコーン系ポリマーから選ばれる少なくとも一種、及び不定形のコロイダルシリカを含むポリマー層とを有し、塗布形成されたポリマー層の均一性に優れ、従来に比べて耐侯性により優れた太陽電池用バックシートを提供する。

Description

太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
 本発明は、太陽電池素子を備えた電池側基板の受光面側とは反対側に配置される太陽電池用バックシート及びその製造方法、並びに太陽電池モジュールに関する。
 従来の太陽電池用バックシートでは、その耐候性を高めて太陽電池全体の耐久性を向上させる観点から、太陽光が主として入射する側と反対側の裏面に、フッ素系ポリマーのシートを貼合することが広く行なわれている。
 更に近年は、フッ素系ポリマーの層を塗布により形成することも提案され、コストが低減されるとされており、具体的には硬化性官能基を有するフッ素系ポリマーを塗布する技術が開示されている(例えば、特開2007-35694号公報参照)。
 塗布によりフッ素系ポリマー又はシリコーン系ポリマーの層を設けることは、バックシートの耐久性の向上に効果が期待される。
 しかしながら、上記のようなフッ素系ポリマーやシリコーン系ポリマーは、塗布した際に塗布膜にいわゆるハジキ(弾き)と呼ばれる塗布故障(以下、これを「ハジキ故障」ということがある。)が発生しやすく、バックシートの商品価値を低下させる一因となっていた。そのため、フッ素系ポリマーやシリコーン系ポリマーを用いながらも、ハジキの発生を抑えた塗布層を有し、従来に比べてより商品価値のあるバックシートの提供が望まれている。
 本発明は、上記に鑑みなされたものであり、ポリマー層にフッ素系ポリマー及び/又はシリコーン系ポリマーをバインダーとして用いた場合のポリマー層の均一性に優れ、従来に比べて耐侯性により優れた太陽電池用バックシート及びその製造方法、並びに設置環境に関わらず、長期に亘り安定的な発電性能が得られる太陽電池モジュールを提供することを目的とし、該目的を達成することを課題とする。
 前記課題を達成するための具体的手段は以下の通りである。
 <1> ポリマー基材と、該ポリマー基材の少なくとも一方の面に塗布により設けられ、バインダーとしてフッ素系ポリマー及びシリコーン系ポリマーから選択されるポリマー、及び不定形のコロイダルシリカを含むポリマー層とを有する太陽電池用バックシートである。
 <2> 前記ポリマー層中における前記フッ素系ポリマー及び前記シリコーン系ポリマーの総含有量が0.5g/m以上12.5g/m以下の範囲である前記<1>に記載の太陽電池用バックシートである。
 <3> 前記コロイダルシリカの含有量が、前記フッ素系ポリマー及び前記シリコーン系ポリマーの総含有量に対して3.0質量%以上60.0質量%以下である前記<1>又は前記<2>に記載の太陽電池用バックシートである。
 <4> 前記ポリマー層が、前記ポリマー層中のポリマーを架橋するための架橋剤を更に含んで成る前記<1>~前記<3>のいずれか1つに記載の太陽電池用バックシートである。
 <5> 前記架橋剤が、カルボジイミド系化合物、及び/またはオキサゾリン系化合物を含んで成る前記<4>に記載の太陽電池用バックシートである。
 <6> 前記架橋剤含量が、前記ポリマー層中の前記ポリマーの質量に対して0.5質量%以上100質量%以下の範囲である、前記<4>または前記<5>に記載の太陽電池用バックシートである。
 <7> 前記ポリマー層が、更に界面活性剤を含んで成る、前記<1>~前記<6>のいずれか1つに記載の太陽電池用バックシートである。
 <8> 前記界面活性剤が、ポリオキシアルキレンアルキルエーテル系ノニオン界面活性剤を含んで成る、前記<7>に記載の太陽電池用バックシートである。
 <9> 前記界面活性剤含量が、前記ポリマー層中0.1~10mg/mの範囲である、前記<7>または前記<8>に記載の太陽電池用バックシートである。
 <10> 前記ポリマー層は、前記ポリマー基材の太陽電池素子が配される側と反対側に設けられた前記<1>~前記<9>のいずれか1つに記載の太陽電池用バックシートである。
 <11> ポリマー基材の少なくとも一方の面に、バインダーとしてフッ素系ポリマー及びシリコーン系ポリマーから選択されるポリマーと不定形のコロイダルシリカとを含む塗布液を塗布し乾燥させることによりポリマー層を形成する工程を有する太陽電池用バックシートの製造方法である。
 <12> 太陽光が入射する透明性の基板と、太陽電池素子と、前記太陽電池素子の前記基板が配された側と反対側に設けられた前記<1>~前記<9>のいずれか1つに記載の太陽電池用バックシートとを備えた太陽電池モジュールである。
 本発明によれば、フッ素系ポリマー及び/又はシリコーン系ポリマーをバインダーとして用いた場合のポリマー層の均一性に優れ、従来に比べて耐侯性により優れた太陽電池用バックシート及びその製造方法を提供することができる。また、
 本発明によれば、設置環境に関わらず、長期に亘り安定的な発電性能が得られる太陽電池モジュールを提供することができる。
太陽電池モジュールの構成例を示す概略断面図である。
 以下、本発明の太陽電池用バックシート及びその製造方法、並びにこれを用いた太陽電池モジュールについて、詳細に説明する。
<太陽電池用バックシート及びその製造方法>
 本発明の太陽電池用バックシートは、ポリマー基材及び、該ポリマー基材の少なくとも一方の面に設けられ、バインダーの少なくとも一種としてフッ素系ポリマー及びシリコーン系ポリマーから選ばれるポリマーと不定形のコロイダルシリカとを含むポリマー層を設けて構成されたものである。本発明の太陽電池用バックシートは、ポリマー基材及びポリマー層のみで構成されてもよいし、ポリマー基材の面上又はポリマー層の面上に、必要に応じて、ポリマー層とは別の、例えば着色層、易接着性層、下塗り層等の他の層を更に有していてもよい。他の層は1層であってもよいし、2層以上であってもよい。
 本発明においては、ポリマー基材の少なくとも一方の面(好ましくは、ポリマー基材の太陽電池素子が配置される側と反対側の面)に設けられるポリマー層のバインダー成分としてフッ素系ポリマーやシリコーン系ポリマーを用いる場合に、これらポリマーと共に不定形のコロイダルシリカを共存させるようにすることで、ポリマー層を塗布形成する際に生じやすいハジキ故障の発生が防止され、均一性に優れたポリマー層を有する太陽電池用バックシートが得られる。これにより、特に温湿度変化や熱や水分(湿度)を多く含む湿熱環境下での耐性が向上し、太陽電池モジュールを構成してあらゆる環境条件下に置かれた場合でも、長期に亘って発電性能が安定的に確保される。
-ポリマー基材-
 本発明の太陽電池用バックシートは、ポリマー基材(支持体)を備えている。
 ポリマー基材としては、ポリエステル、ポリプロピレンやポリエチレンなどのポリオレフィン、又はポリフッ化ビニルなどのフッ素系ポリマー等を用いた基材が挙げられる。これらの中では、コストや機械強度などの点から、ポリエステル基材が好ましい。
 本発明における基材(支持体)として用いられるポリエステルとしては、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とから合成される線状飽和ポリエステルである。かかるポリエステルの具体例としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレートなどを挙げることができる。このうち、力学的物性やコストのバランスの点で、ポリエチレンテレフタレート又はポリエチレン-2,6-ナフタレートが特に好ましい。
 前記ポリエステルは、単独重合体であってもよいし、共重合体であってもよい。更に、前記ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。
 本発明におけるポリエステルを重合する際には、重合後のポリエステル中のカルボキシル基含量を所定の範囲以下に抑える観点から、Sb系、Ge系、Ti系の化合物を触媒として用いることが好ましく、中でも特にTi系化合物が好ましい。Ti系化合物を用いる場合、Ti系化合物を重合後のポリエステル中のTi元素換算値が1ppm以上30ppm以下、より好ましくは3ppm以上15ppm以下の範囲となるように触媒として用いることにより重合する態様が好ましい。Ti系化合物の使用量がTi元素換算で前記範囲内であると、重合後のポリエステル中の末端カルボキシル基を下記範囲に調整することが可能であり、ポリマー基材の耐加水分解性を低く保つことができる。
 Ti系化合物を用いたポリエステルの合成には、例えば、特公平8-301198号公報、特許第2543624号、特許第3335683号、特許第3717380号、特許第3897756号、特許第3962226号、特許第3979866号、特許第3996871号、特許第4000867号、特許第4053837号、特許第4127119号、特許第4134710号、特許第4159154号、特許第4269704号、特許第4313538号等に記載の方法を適用できる。
 ポリエステル中のカルボキシル基含量は2~50当量/tの範囲が好ましく、より好ましくは3~35当量/tの範囲である。カルボキシル基含量が50当量/t以下であると、耐加水分解性を保持し、湿熱経時したときの強度低下を小さく抑制することができる。カルボキシル基含量の下限は、ポリエステルに形成される層(例えば着色層)との間の接着性を保持する点で、2当量/tが望ましい。
 ポリエステル中のカルボキシル基含量は、重合触媒種、製膜条件(製膜温度や時間)により調整することが可能である。なお、本明細書中において、「当量/トン」は1トンあたりのモル当量を表す。
 本発明におけるポリエステルは、重合後に固相重合されていることが好ましい。これにより、好ましいカルボキシル基含量を達成することができる。固相重合は、連続法(タワーの中に樹脂を充満させ、これを加熱しながらゆっくり所定の時間滞流させた後、送り出す方法)でもよいし、バッチ法(容器の中に樹脂を投入し、所定の時間加熱する方法)でもよい。具体的には、固相重合には、特許第2621563号、特許第3121876号、特許第3136774号、特許第3603585号、特許第3616522号、特許第3617340号、特許第3680523号、特許第3717392号、特許第4167159号等に記載の方法を適用することができる。
 固相重合の温度は、170℃以上240℃以下が好ましく、より好ましくは180℃以上230℃以下であり、さらに好ましくは190℃以上220℃以下である。また、固相重合時間は、5時間以上100時間以下が好ましく、より好ましくは10時間以上75時間以下であり、さらに好ましくは15時間以上50時間以下である。固相重合は、真空中あるいは窒素雰囲気下で行なうことが好ましい。
 本発明におけるポリエステル基材は、例えば、上記のポリエステルをフィルム状に溶融押出を行なった後、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムをTg~(Tg+60)℃で長手方向に1回もしくは2回以上倍率(2回以上のときは合計倍率)が3倍~6倍になるよう延伸し、その後Tg~(Tg+60)℃で幅方向に倍率が3~5倍になるように延伸した2軸延伸フィルムであることが好ましい。
 さらに、必要に応じて180~230℃で1~60秒間の熱処理を行なったものでもよい。 なお、Tgはガラス転移温度を表し、JIS K7121或いはASTM D3418-82等に基づいて測定することができる。例えば。本発明では、島津製作所社製の示差走査熱量測定装置(DSC)を用いて測定する。
 具体的には、試料としてポリエステル等のポリマーを10mg秤量し、アルミパンにセットし、昇温速度10℃/minで、室温から最終温度300℃まで昇温しながら、DSC装置で、温度に対する熱量を測定したとき、DSC曲線が屈曲する温度をガラス転移温度とした。
 ポリマー基材(特にポリエステル基材)の厚みは、25~300μm程度が好ましい。厚みは、25μm以上であると力学強度が良好であり、300μm以下であるとコスト的に有利である。
 特にポリエステル基材は、厚みが増すに伴って耐加水分解性が悪化し、長期使用に耐え難くなる傾向にある。本発明においては、ポリエステル基材の厚みが120μm以上300μm以下であって、かつポリエステル中のカルボキシル基含量が2~50当量/tである場合が、より湿熱耐久性の向上効果が奏される点で好ましい。
-ポリマー層-
 本発明の太陽電池用バックシートは、前記ポリマー基材の一方又は両方の側に、塗布方法によってポリマー層が設けられた構成となっている。このポリマー層は、バインダーとしてフッ素系ポリマー及びシリコーン系ポリマーから選ばれるポリマーと、不定形のコロイダルシリカとを含み、必要に応じて、さらに架橋剤や顔料、各種添加剤等の他の成分を用いて構成することができる。ポリマー層は、単層で設けられてもよいし、二層以上が設けられた態様でもよい。
(バインダー)
 本発明におけるポリマー層は、バインダーとして、フッ素系ポリマー及びシリコーン系ポリマーから選ばれる少なくとも一種のポリマーを含有する。下記コロイダルシリカとの併用により、ポリマー基材上に設けられるポリマー層のバインダー成分としてフッ素系ポリマー及び/又はシリコーン系ポリマーを含むことが可能であり、これらポリマーの含有により、バックシートの耐侯性、特に温湿度変化や熱や水分(湿度)を多く含む湿熱環境下での耐性を飛躍的に向上させることができる。
 前記フッ素系ポリマーとしては、-(CFX-CX)-で表される繰り返し単位を有するポリマーが好ましい。なお、前記繰り返し単位において、X、X、及びXは、各々独立に、水素原子、フッ素原子、塩素原子、又は炭素数1~3のパーフルオロアルキル基を表す。
 フッ素系ポリマーの例としては、ポリテトラフルオロエチレン(以下、PTFEと表すことがある。)、ポリフッ化ビニル(以下、PVFと表すことがある。)、ポリフッ化ビニリデン(以下、PVDFと表すことがある。)、ポリ塩化3フッ化エチレン(以下、PCTFEと表すことがある。)、ポリテトラフルオロプロピレン(以下、HFPと表すことがある。)などが挙げられる。
 フッ素系ポリマーは、一種のモノマーを単独重合したホモポリマーでもよいし、2種以上のモノマーを共重合したものでもよい。共重合したポリマーの例として、テトラフルオロエチレンとテトラフルオロプロピレンとを共重合したコポリマー(P(TFE/HFP)と略記する。)、テトラフルオロエチレンとフッ化ビニリデンとを共重合したコポリマー(P(TFE/VDF)と略記する。)等を挙げることができる。
 さらに、-(CFX-CX)-の構造部分を有するフッ素系モノマーとそれ以外のモノマーとを共重合したポリマーでもよい。その例として、テトラフルオロエチレンとエチレンとの共重合体(P(TFE/E)と略記する。)、テトラフルオロエチレンとプロピレンとの共重合体(P(TFE/P)と略記する。)、テトラフルオロエチレンとビニルエーテルとの共重合体(P(TFE/VE)と略記する。)、テトラフルオロエチレンとパーフロロビニルエーテルとの共重合体(P(TFE/FVE)と略記する。)、クロロトリフルオロエチレンとビニルエーテルとの共重合体(P(CTFE/VE)と略記する。)、クロロトリフルオロエチレンとパーフルオロビニルエーテルとの共重合体(P(CTFE/FVE)と略記する。)等を挙げることができる。
 フッ素系ポリマーは、有機溶剤に溶解して用いられるものでもよいし、ポリマー粒子として水に分散させて用いられるものでもよい。環境負荷が少ない点で後者が好ましい。フッ素系ポリマーの水分散物については、例えば特開2003-231722号公報、特開2002-20409号公報、特開平9-194538号公報等に記載されている。
 前記フッ素系ポリマーは、上市されている市販品を用いてもよく、該市販品の例として、AGCコーテック(株)製のオブリガートSW0011Fなどを挙げることができる。
 前記シリコーン系ポリマーとしては、例えば、シリコーンとアクリルの複合ポリマー、シリコーンとポリエステルの複合ポリマー等が挙げられる。シリコーン系ポリマーとして、上市されている市販品を用いてもよく、例えば、シリコーンとアクリルとの複合ポリマーの具体例として、DIC(株)製のセラネートWSA1060、同WSA1070等、旭化成ケミカルズ(株)製のH7620、H7630、H7650等、などを挙げることができる。
 本発明におけるポリマー層は、本発明の効果を損なわない範囲で、上記のフッ素系ポリマー及び/又はシリコーン系ポリマーとこれらポリマー以外の他のポリマーとを併用してもよい。他のポリマーを併用する場合、フッ素系ポリマー及びシリコーン系ポリマー以外の他のポリマーの量が、バインダー全質量の50質量%以下であることが好ましい。他のポリマーの量が50質量%以下であることで、バックシートとしてより良好な耐候性を発揮することができる。
 前記他のポリマーとしては、例えば、ポリエステル系ポリマー(例えば、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)等のポリエステル)、ポリウレタン系ポリマー(例えば、ヘキサメチレンジイソシアネート又はトルエンジイソシアネートとエチレングリコール又はプロピレングリコールからなるポリマー等)、アクリル系ポリマー(例えば、ポリメチルメタクリレート、ポリエチルアクリレート等を含有するポリマー)、ポリオレフィン系ポリマー(例えば、ポリエチレンと(メタ)アクリル酸とからなるポリマー等)などの公知のポリマーから選択して用いることができる。
 ポリマー層中における前記フッ素系ポリマー及び前記シリコーン系ポリマーの総含有量は、0.5g/m以上12.5g/m以下の範囲であることが好ましい。フッ素系ポリマー及びシリコーン系ポリマーの総含有量は、0.5g/m以上であると、温湿度変化や高い湿熱環境に曝されたときの耐久性能をより向上させることができ、また12.5g/m以下であると、所望とされる量の架橋剤や界面活性剤の添加が可能なため膜強度や塗布面状の点で有利である。
 中でも、フッ素系ポリマー及びシリコーン系ポリマーの総含有量は、上記同様の理由から、1.0g/m以上12.0g/m以下の範囲がより好ましい。
(コロイダルシリカ)
 本発明におけるポリマー層は、不定形のコロイダルシリカの少なくとも一種を含有する。コロイダルシリカは、異なる種類のものを二種以上併用してもよい。本発明においては、フッ素系やシリコーン系の樹脂材料を含めて塗布により層形成する場合、塗布膜がポリマー基材上で弾いて塗布故障(ハジキ故障)を招きやすい傾向にあるところ、これら樹脂材料とともにコロイダルシリカを用いた塗布液の塗布によることで、塗布した際のハジキ故障の発生を抑え、厚みや表面性状の均一性に優れたポリマー層が得られる。
 コロイダルシリカは、主成分として二酸化ケイ素(その水和物を含む)を含み、平均粒子径が数百nm以下のケイ素を含む無機酸化物の微粒子からなるコロイドである。また、少量成分としてアルミン酸塩を含んでもよい。少量成分として含まれることがあるアルミン酸塩としては、アルミン酸ナトリウム、アルミン酸カリウムなどが挙げられる。
 また、コロイダルシリカには、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化アンモニウム等の無機塩類やテトラメチルアンモニウムヒドロキシド等の有機塩類が含まれてもよい。これらの無機塩類及び有機塩類は、例えば、コロイドの安定化剤として作用する。
 コロイダルシリカの分散媒としては特に制限はなく、水、有機溶剤、及びこれらの混合物のいずれであってもよい。前記有機溶剤は水溶性有機溶剤であっても非水溶性有機溶剤であってもよいが、水溶性有機溶剤であることが好ましい。具体的には例えば、メタノール、エタノール、イソプロピルアルコール、n-プロパノール等が挙げられる。コロイダルシリカは、通常用いられる方法で製造することができ、例えば、四塩化ケイ素の熱分解によるアエロジル合成や水ガラスから製造することができる。あるいは、アルコキシドの加水分解といった液相合成法(例えば、「繊維と工業」、Vol.60、No.7(2004)P376参照)などによっても製造することができる。
 一般にコロイダルシリカには、粒子の形状が球形のものと不定形のものとがあるが、本発明におけるコロイダルシルカは、不定形のものであり、詳しくは、球形の粒子(1次粒子)が複数個連結した例えば鎖状の形状を持つ構造を有している。
 コロイダルシリカに含まれる粒子の平均1次粒子径としては特に制限はない。コロイダルシリカに含まれる粒子の平均1次粒子径としては、例えば、1nm~200nmの範囲が好ましく、より好ましくは1nm~100nmの範囲であり、更に好ましくは3nm~50nmの範囲であり、特に好ましくは4nm~25nmの範囲である。平均1次粒子径は、200nm以下であることで、良好な塗布面状が得られ、1nm以上であることで、コロイダルシリカの安定性に優れる。
 なお、前記平均1次粒子径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕を用いて光散乱法により測定される値である。
 複数個の1次粒子が結合した本発明における不定形のコロイダルシリカとしての粒子径は、不定形のコロイダルシリカを球形とみなしたときの直径で10~200nmが好ましく、より好ましくは30~180nmの範囲であり、更に好ましくは50~150nmの範囲である。コロイダルシリカの粒子径が、前記直径で10nm以上であることで、より良好なハジキ改良効果が得られ、200nm以下であることで、塗布液中でコロイダルシリカを安定に保つことができる。
 複数の1次粒子が結合した不定形のコロイダルシリカの粒子径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕を用いて光散乱法により測定される値である。
 これらの不定形のコロイダルシリカは、上市されている市販品を用いてもよく、市販品としては、例えば、スノーテックスUP、同OUP、同PS-S、同PS-M、同PS-MO(いずれも日産化学工業(株)製)等を挙げることができる。
 コロイダルシリカを分散含有する分散液のpHは、一般に酸性又はアルカリ性に調整される。これは、コロイダルシリカの安定分散領域が酸性側又はアルカリ性側に存在するためであり、市販のコロイダルシリカ分散液を塗布液に添加する場合、コロイダルシリカの安定分散領域のpHと塗布液の安定性を考慮して、中性~アルカリ性のコロイダルシリカ分散液を添加することが好ましい。
 コロイダルシリカの含有量には、特に制限はない。コロイダルシリカの含有量は、例えば、塗布液の総量の0.1~6.5質量%とすることができ、塗布液の総量の1.0~5.0質量%であることが好ましい。塗布液中のコロイダルシリカの含有量が前記範囲内であることで、塗布時に生じやすい塗布液のハジキが抑制され、太陽電池モジュールとした際の耐候性の向上効果が大きい点で有利である。
 また、コロイダルシリカの、フッ素系ポリマー及びシリコーン系ポリマーの総含有量に対する含有量としては、3.0質量%以上60.0質量%以下である範囲が好ましく、5.0~50質量%であることがより好ましい。フッ素系ポリマー及びシリコーン系ポリマーの総量に対するコロイダルシリカの比率は、3.0質量%以上であると、塗布時に生じやすい塗布液のハジキの抑制効果が顕著であり、60.0質量%以下であると、面状の点で有利である。
(架橋剤)
 ポリマー層は、層中のポリマーを架橋するための架橋剤を含有してもよい。
 架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。これらのうち、湿熱経時後の接着性を確保する観点から、カルボジイミド系架橋剤、オキサゾリン系架橋剤が好ましい。
 前記カルボジイミド系架橋剤の具体例としては、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N-[3-(ジメチルアミノ)プロピル]-N’-エチルカルボジイミド、N-[3-(ジメチルアミノ)プロピル]-N’-プロピルカルボジイミド、N-tert-ブチル-N’-エチルカルボジイミド等が挙げられる。
 また、上市されている市販品として、カルボジライトV-02-L2(日清紡績(株)製)などが挙げられる。
 前記オキサゾリン系架橋剤の具体例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2、2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド等が挙げられる。さらに、これらの化合物の(共)重合体も好ましく利用することができる。
 また、上市されている市販品として、エポクロスWS-700、エポクロスK-2020E(いずれも日本触媒(株)製)などを用いることができる。
 架橋剤のポリマー層中における含有量としては、バインダーに対して、0.5質量%以上100質量%以下が好ましく、0.5質量%以上50質量%以下がより好ましく、さらに好ましくは5.0質量%以上30質量%以下である。架橋剤の含有量は、0.5質量%以上であると、ポリマー層の強度及び接着性を保持しながら充分な架橋効果が得られ、100質量%以下、特に50質量%以下であると、ポリマー層を形成するための塗布液を調整したときの液のポットライフをより長く保つことができる。
(顔料)
 本発明におけるポリマー層は、顔料を含有して着色層として形成されてもよい。この場合、後述する着色層における場合と同様の顔料を用いることができ、好ましい態様も同様である。例えば、所望の色相の顔料を含ませて意匠性を持たせてもよいし、また白色顔料を含ませることによりポリマー層に反射層としての機能を付与してもよい。
(他の添加剤)
 本発明におけるポリマー層は、必要に応じて、界面活性剤、フィラー等の他の添加剤を含んでいてもよい。
 前記界面活性剤としては、アニオン系、ノニオン系(例えば、炭素数2又は3のアルキレン鎖とアルキル基の炭素数1~30,好ましくは炭素数2~24、更に好ましくは6~24のポリオキシアルキレンアルキルエーテル等)等の公知の界面活性剤を用いることができる。界面活性剤を含有する場合、ポリマー層中のその含有量の範囲は0.1~10mg/mが好ましく、より好ましくは0.5~3mg/mである。界面活性剤の含有量は、0.1mg/m以上であると、層形成する場合にハジキの発生を抑えてより良好な層が得られ、10mg/m以下であると、ポリマー支持体及びポリマー層との間の接着を良好に保つことができる。
 フィラーとしては、二酸化チタン等の公知のフィラー(無機微粒子)を用いることができる。フィラーを含有する場合、フィラーのポリマー層中における含有量は、ポリマー層中のバインダー量に対し、20質量%以下であるのが好ましく、より好ましくは15質量%以下である。フィラーの含有量が20質量%以下であると、塗布膜の膜面状がより良好に保てる。フィラーの含有量の下限は、0.5質量%であることが好ましい。また、フィラーの含有量が0.5質量%以上であると、湿熱経時後も接着性が良好である。フィラーの含有量は、1質量%以上15質量%以下の範囲がより好ましい。
 本発明におけるポリマー層の厚みとしては、0.5~4.0μmが好ましい。ポリマー層の厚みが0.5μm以上であると、より高い耐久性能が得られるほか、ポリマー支持体との間の接着力が良好になる。また、ポリマー層の厚みが4.0μm以下であると、面状がより良好なり、隣接層やポリマー基材との間の接着力に優れる。すなわち、ポリマー層の厚みが0.5~4.0μmの範囲内であることにより、ポリマー層の耐久性と面状とが両立し、ポリマー基材とポリマー層との間の接着性により優れる。
 ポリマー層の厚みは、特に1.0~3.5μmの範囲がより好ましい。
-着色層-
 本発明の太陽電池用バックシートは、ポリマー基材の受光側に着色層を有していることが好ましい。例えば、ポリマー基材の受光側(太陽電池素子が設けられた電池側基板と向き合う側)に着色層が設けられ、着色層が設けられた側と反対側に裏面保護層として既述の本発明におけるポリマー層が設けられた態様が好ましい。
 本発明における着色層は、少なくとも顔料とバインダーとを含有し、必要に応じて、更に各種添加剤などの他の成分を含んで構成されてもよい。
 着色層の機能としては、第1に、入射光のうち太陽電池セルを通過して発電に使用されずにバックシートに到達した光を反射させて太陽電池セルに戻すことにより、太陽電池モジュールの発電効率を上げること、第2に、太陽電池モジュールを太陽光が入射する側(オモテ面側)から見た場合の外観の装飾性を向上すること、等が挙げられる。一般に太陽電池モジュールをオモテ面側(ガラス基板側)から見ると、太陽電池セルの周囲にバックシートが見えており、バックシート用ポリマーシートに着色層を設けることによりバックシートの装飾性(意匠性)を向上させて見栄えを改善することができる。
(顔料)
 着色層は、顔料の少なくとも一種を含有することができる。
 顔料としては、例えば、二酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク、群青、紺青、カーボンブラック等の無機顔料、フタロシアニンブルー、フタロシアニングリーン等の有機顔料を、適宜選択して含有することができる。
 着色層を、太陽電池に入射して太陽電池セルを通過した光を反射して太陽電池セルに戻す反射層として構成する場合、白色無機粒子を含むことが好ましい。白色無機粒子としては、二酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク等の白色顔料が好ましい。中でも、二酸化チタンが好ましい。
 反射層を形成する場合、反射層中の白色無機粒子の含有量としては、ポリマー及び白色無機粒子の合計質量に対して、30質量%~90質量%の範囲が好ましく、より好ましい白色無機粒子の含有量の範囲は50~85質量%である。白色無機粒子の反射層中の含有量は、30質量%以上であると良好な反射率が得られ、90質量%以下であることで太陽電池用バックシートの軽量化を図ることができる。
 顔料の着色層中における含有量は、2.5~12g/mの範囲が好ましく、2.5~8.5g/mの範囲がより好ましい。顔料の含有量が2.5g/m以上であると、必要な着色が得られ、反射率や装飾性を効果的に与えることができる。また、着色層中における顔料の含有量が12g/m以下であると、着色層の面状を良好に維持しやすく、膜強度により優れる。
 着色層を反射層として設ける場合、反射層中には、白色無機粒子を4~12g/mの範囲で含有することが好ましい。白色無機粒子の含有量が4g/m以上であると、必要な反射率が得られ易く、含有量が12g/m以下であることでバックシートの軽量化が図れる。中でも、反射層中の白色無機粒子のより好ましい含量は、5~11g/mの範囲である。
 なお、反射層が2種類以上の白色無機粒子を含有する場合は、反射層中の全白色無機粒子の含有量の合計を4~12g/mの範囲とすることが好ましい。
 顔料の平均粒径としては、体積平均粒径で0.03~0.8μmが好ましく、より好ましくは0.15~0.5μm程度である。平均粒径が前記範囲内であると、光の反射効率が高い。体積平均粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。
 着色層を構成するバインダーとしては、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリオレフィン樹脂、シリコーン樹脂等を用いることができる。これらの中でも、高い接着性を確保する観点から、アクリル樹脂、ポリオレフィン樹脂が好ましい。また。複合樹脂を用いてもよく、例えばアクリル/シリコーン複合樹脂も好ましいバインダーである。
 バインダーの含有量は、顔料に対して、15~200質量%の範囲が好ましく、17~100質量%の範囲がより好ましい。バインダーの含有量は、15質量%以上であると、着色層の強度が充分に得られ、また200質量%以下であると、反射率や装飾性を良好に保つことができる。
(添加剤)
 着色層には、必要に応じて、架橋剤、界面活性剤、フィラー等を添加してもよい。
 前記架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。架橋剤の詳細、特にカルボジイミド系架橋剤、オキサゾリン系架橋剤の詳細及び好ましい態様については、前記ポリマー層において記載した通りである。架橋剤の添加量は、層中のバインダー当たり5~50質量%が好ましく、より好ましくは10~40質量%である。
 前記界面活性剤としては、アニオン系、ノニオン系等の公知の界面活性剤を用いることができる。界面活性剤の詳細及び好ましい態様については、前記ポリマー層において記載した通りである。界面活性剤を含有する場合の含有量は、0.1~15mg/mが好ましく、より好ましくは0.5~5mg/mである。
 フィラーとしては、コロイダルシリカ、二酸化チタン等の公知のフィラーを用いることができる。フィラーの含有量は、着色層のバインダー当たり20質量%以下が好ましく、より好ましくは15質量%以下である。
 着色層の形成は、顔料を含有するポリマーシートをポリマー支持体に貼合する方法、基材形成時に着色層を共押出し形成する方法、塗布による方法等により行なえる。具体的には、ポリマー支持体の表面に直にあるいは厚み2μm以下の下塗り層を介して、貼合、共押出し、塗布等することにより着色層を形成することができる。形成された着色層は、ポリマー支持体の表面に直に接した状態であっても、あるいは下塗り層を介して積層した状態であってもよい。
 上記のうち、塗布による方法は、簡便であると共に、均一性で薄膜での形成が可能である点で好ましい。
 塗布による場合、塗布方法としては、例えば、グラビアコーター、バーコーターなどを用いた公知の塗布方法を利用することができる。塗布液は、塗布溶媒として水を用いた水系でもよいし、トルエンやメチルエチルケトン等の有機溶媒を用いた溶剤系でもよい。中でも、環境負荷の観点から、水を溶媒とすることが好ましい。塗布溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。具体的には、例えば反射層を形成する場合、ポリマー支持体の前記ポリマー層が形成されていない側の面に、白色無機粒子、バインダー、及びその他必要に応じて含まれる成分を含有する反射層形成用塗布液を塗布することにより形成することができる。
-易接着性層-
 本発明の太陽電池用バックシートには、さらに易接着性層が(特に着色層の上に)設けられてもよい。易接着性層は、太陽電池素子を備えた電池側基板(電池本体)、例えば該電池側基板の太陽電池素子を封止する封止材との間で強固に接着し易くするための層である。
 易接着性層は、バインダー、無機微粒子を用いて構成することができ、必要に応じて、さらに添加剤などの他の成分を含んで構成されてもよい。易接着性層は、電池側基板の発電素子を封止する封止材(例えばエチレン-ビニルアセテート(EVA;エチレン-酢酸ビニル共重合体)、ポリビニルブチラール(PVB)、エポキシ樹脂等)に対して、10N/cm以上(好ましくは20N/cm以上)の接着力を有するように構成されていることが好ましい。接着力が10N/cm以上であると、接着性を維持し得る湿熱耐性が得られやすい。
 なお、接着力は、易接着性層中のバインダー及び無機微粒子の量を調節する方法、バックシートにおいて電池側基板(特に封止材)と接着する面にコロナ処理を施す方法などにより調整が可能である。
(バインダー)
 易接着性層は、バインダーの少なくとも一種を含有することができる。
 易接着性層に好適なバインダーとしては、例えば、ポリエステル、ポリウレタン、アクリル樹脂、ポリオレフィン等が挙げられ、中でも耐久性の観点から、アクリル樹脂、ポリオレフィンが好ましい。また、アクリル樹脂として、アクリルとシリコーンとの複合樹脂も好ましい。
 好ましいバインダーの例としては、ポリオレフィンの具体例としてケミパールS-120、S-75N(ともに三井化学(株)製)、アクリル樹脂の具体例としてジュリマーET-410、SEK-301(ともに日本純薬(株)製)、アクリルとシリコーンとの複合樹脂の具体例としてセラネートWSA1060、WSA1070(ともにDIC(株)製)とH7620、H7630、H7650(ともに旭化成ケミカルズ(株)製)などを挙げることができる。
 バインダーの易接着性層中における含有量は、0.05~5g/mの範囲とすることが好ましい。中でも、0.08~3g/mの範囲がより好ましい。バインダーの含有量は、0.05g/m以上であると所望とする接着力が得られやすく、5g/m以下であるとより良好な面状が得られる。
(無機微粒子)
 易接着性層は、無機微粒子の少なくとも一種を含有することができる。
 無機微粒子としては、例えば、シリカ、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、酸化錫等が挙げられる。中でも、湿熱雰囲気に曝されたときの接着性の低下が小さい点で、酸化錫、シリカの微粒子が好ましい。
 無機微粒子の粒径は、体積平均粒径で10~700nm程度が好ましく、より好ましくは20~300nm程度である。粒径がこの範囲内であると、より良好な易接着性を得ることができる。粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。
 無機微粒子の形状には、特に制限はなく、球形、不定形、針状形等のいずれのものを用いることができる。
 無機微粒子の含有量は、易接着性層中のバインダーに対して、5~400質量%の範囲が好ましい。無機微粒子の含有量は、5質量%以上であると、湿熱雰囲気に曝されたときに良好な接着性を保持でき、400質量%以下であると、易接着性層の面状が良好である。中でも、無機微粒子の含有量は、50~300質量%の範囲が好ましい。
(架橋剤)
 易接着性層には、架橋剤の少なくとも一種を含有することができる。
 易接着性層に好適な架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。中でも、湿熱経時後の接着性を確保する観点から、オキサゾリン系架橋剤が特に好ましい。
 架橋剤の詳細、特にカルボジイミド系架橋剤、オキサゾリン系架橋剤の詳細及び好ましい態様については、前記ポリマー層において記載した通りである。また、オキサゾリン基を有する化合物として、上市されている市販品としては、エポクロスK2010E、同K2020E、同K2030E、同WS-500、同WS-700(いずれも(株)日本触媒製)等も使用可能である。
 架橋剤の易接着性層中における含有量としては、易接着性層中のバインダーに対して、5~50質量%が好ましく、中でもより好ましくは20~40質量%である。架橋剤の含有量は、5質量%以上であると、良好な架橋効果が得られ、着色層の強度や接着性を保持することができ、50質量%以下であると、塗布液のポットライフを長く保つことができる。
(添加剤)
 易接着性層には、必要に応じて、更に、ポリスチレン、ポリメチルメタクリレート、シリカ等の公知のマット剤、アニオン系やノニオン系などの公知の界面活性剤などを添加してもよい。
 易接着性層の形成は、易接着性を有するポリマーシートをポリマー支持体に貼合する方法や、塗布による方法が挙げられる。中でも、塗布による方法は、簡便であると共に、均一性で薄膜での形成が可能である点で好ましい。塗布方法としては、例えば、グラビアコーターやバーコーターなどを用いた公知の塗布法を利用することができる。塗布液の調製に用いる塗布溶媒は、水でもよいし、トルエンやメチルエチルケトン等の有機溶媒でもよい。塗布溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 易接着性層の厚みには、特に制限はないが、通常は0.05~8μmが好ましく、より好ましくは0.1~5μmの範囲である。易接着性層の厚みは、0.05μm以上であると必要な易接着性を好適に得ることができ、8μm以下であると面状がより良好になる。
また、本発明の易接着性層は、着色層の効果を低減させないために、透明であることが好ましい。
~太陽電池用バックシートの製造~
 本発明の太陽電池用バックシートは、その製造法に特に制限はなく、例えば、下記工程により好適に製造することができる。すなわち、本発明の太陽電池用バックシートの好ましい製造方法は、(1)ポリマー基材の少なくとも片面に、フッ素系ポリマー及び/又はシリコーン系ポリマーと不定形のコロイダルシリカとを含有し、好ましくは溶媒の60質量%以上が水である塗布液を、ポリマー基材の表面に直接あるいは他の層を介して塗布する工程と、(2)ポリマー基材上に塗布形成された塗布膜を乾燥させてポリマー層とする工程と、を設けて構成することができる。ここで、ポリマー層を形成した後に該ポリマー層を硬化させることによって、湿熱経時後の接着性を高めることができる。
 既述のように、易接着性層等の他の層を有している場合、上記の工程に加えて、他の層を形成するための工程がさらに設けられてもよい。他の層の形成態様としては、例えば、他の層を構成する成分を含有する塗布液を、ポリマー基材の上(例えばポリマー基材のポリマー層が形成されている側とは反対側)に塗布する方法が挙げられ、その例としては、易接着性層、及び着色層の形成方法として既述した方法が挙げられる。
 本発明の太陽電池用バックシートの具体例として、ポリマー基材の一方にポリマー層を有し、ポリマー層が形成されている面とは反対の面に白色無機粒子を含有する反射層を塗設したもの、ポリマー基材の一方にポリマー層を有し、ポリマー層が形成されている面とは反対の面に着色顔料を含有する着色層を塗設したもの、ポリマー基材の一方にポリマー層を有し、ポリマー層が形成されている面とは反対の面にポリマー基材側から順に白色無機粒子を含有する反射層と易接着層とを塗設したもの、等を挙げることができる。
 また、他の層の形成態様の他の例として、他の層として所望される機能を発揮する層を有するシートやフィルムをポリマー層の被形成面に貼合する方法が挙げられる。この場合のシートやフィルムは、他の層を1層又は2層以上有するシートやフィルムである。
 本発明の太陽電池用バックシートの具体例としては、ポリマー基材の一方の側にポリマー層が塗布形成されており、該ポリマー層が形成された側とは反対側の他方の側に、白色無機粒子として白色顔料(又は白色以外の着色顔料)を含有する白色フィルム(又は着色フィルム)を貼合したもの、ポリマー支持体のポリマー層が形成された側とは反対側にアルミニウム薄膜と白色顔料を含有する白色フィルムを貼合したもの、ポリマー支持体のポリマー層が形成された側とは反対側に無機バリア層を有するポリマーフィルムと白色顔料を含有する白色フィルムを貼合したもの、等が挙げられる。
 本発明の太陽電池用バックシートの作製は、ポリマー基材の上に本発明におけるポリマー層を塗布形成することができる方法であれば、いずれの態様であってもよい。例えば、本発明におけるポリマー層は、バインダーとしてフッ素系ポリマー及び/又はシリコーン系ポリマーと不定形のコロイダルシリカとを少なくとも含有する塗布液を調製した後、この塗布液をポリマー基材上に塗布し、乾燥させることにより好適に形成される。乾燥後、加熱する等して硬化させてもよい。塗布方法や用いる塗布液の溶媒には、特に制限はない。
 塗布方法としては、例えば、グラビアコーターやバーコーターを利用した塗布法を適用することができる。
 塗布液に用いる溶媒は、水でもよいし、トルエンやメチルエチルケトン等の有機溶媒でもよい。溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。本発明においては、バインダーとして用いるフッ素系ポリマー及び/又はシリコーン系ポリマーを水分散した水系塗布液を調製し、これを塗布する方法が好ましい。この場合、溶媒中の水の割合は60質量%以上が好ましく、80質量%以上がより好ましい。
 また、ポリマー支持体が2軸延伸フィルムである場合は、2軸延伸した後のポリマー基材にポリマー層を形成するための塗布液を塗布した後、塗膜を乾燥させてもよい。また、1軸延伸後のポリマー基材に塗布液を塗布して塗膜を乾燥させた後に、1軸延伸の方向と異なる方向に延伸するようにしてもよい。更に、延伸前のポリマー支持体に塗布液を塗布して塗膜を乾燥させた後、2方向に延伸してもよい。
<太陽電池モジュール>
 本発明の太陽電池モジュールは、太陽光が入射する透明性の基板と、太陽電池素子と、前記太陽電池素子の前記基板が配された側と反対側に設けられた既述の本発明の太陽電池用バックシートとを設けて構成されている。本発明の太陽電池モジュールは、既述の本発明の太陽電池用バックシートを備えるので、耐候性、特に温湿度変化や高い湿熱環境下に曝された場合でも長期に亘り安定的な発電性能が得られる。
 図1は、本発明の太陽電池モジュールの構成の一例を概略的に示している。この太陽電池モジュール10は、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子20を、太陽光が入射する透明性の基板24とバックシート(既述の本発明の太陽電池用バックシート用ポリマーシート)5との間に配置し、基板24とバックシート5との間をエチレン-ビニルアセテート系封止材22で封止して構成されている。本実施形態のバックシート5は、ポリマー基材16の一方の面側に2層のポリマー層が設けられ、他方の面側(太陽光が入射する側)に、他の層として白色の反射層18が設けられている。2層のポリマー層は、ポリマー基材側から順に第1のポリマー層14とポリマー層14に接して第2のポリマー層12とを設けた積層構造になっており、第1のポリマー層14及び第2のポリマー層12の一方又は双方にフッ素系ポリマー又は/及びシリコーン系ポリマーと不定形のコロイダルシリカとが含有されている。
 太陽電池モジュール、太陽電池セル、バックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。
 透明性の基板24は、太陽光が透過し得る光透過性を有していればよく、光を透過する基材から適宜選択することができる。発電効率の観点からは、光の透過率が高いものほど好ましく、このような基板として、例えば、ガラス基板、アクリル樹脂などの透明樹脂などを好適に用いることができる。
 太陽電池素子20としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。
 
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。
(実施例1)
-支持体の作製-
(1)ポリエステルの合成
 高純度テレフタル酸(三井化学(株)製)100kgとエチレングリコール(日本触媒(株)製)45kgのスラリーを、予めビス(ヒドロキシエチル)テレフタレート約123kgが仕込まれ、温度250℃、圧力1.2×10Paに保持されたエステル化反応槽に、4時間かけて順次供給し、供給終了後もさらに1時間かけてエステル化反応を行なった。その後、得られたエステル化反応生成物123kgを重縮合反応槽に移送した。
 引き続いて、エステル化反応生成物が移送された重縮合反応槽に、エチレングリコールを、得られるポリマーに対して0.3質量%添加した。5分間撹拌した後、酢酸コバルト及び酢酸マンガンのエチレングリコール溶液を、得られるポリマーに対してコバルト元素換算値が30ppm、マンガン元素換算が15ppmとなるように加えた。更に5分間撹拌した後、チタンアルコキシド化合物の2質量%エチレングリコール溶液を、得られるポリマーに対してチタン元素換算値が5ppmとなるように添加した。前記チタンアルコキシド化合物には、特開2005-340616号公報の段落番号[0083]の実施例1で合成しているチタンアルコキシド化合物(Ti含有量=4.44質量%)を用いた。その5分後、ジエチルホスホノ酢酸エチルの10質量%エチレングリコール溶液を、得られるポリマーに対して5ppmとなるように添加した。
 その後、低重合体を30rpmで攪拌しながら、反応系を250℃から285℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度、最終圧力に到達するまでの時間はともに60分とした。そのまま3時間反応を続け、その後反応系を窒素パージし、常圧に戻して重縮合反応を停止した。そして、得られたポリマー溶融物を冷水にストランド状に吐出し、直ちにカッティングしてポリマーのペレット(直径約3mm、長さ約7mm)を作製した。
(2)固相重合
 上記で得られたペレットを、40Paに保たれた真空容器中、220℃の温度で30時間保持して、固相重合を行なった。
(3)ベース形成
 以上のように固相重合を経た後のペレットを、280℃で溶融押出して金属ドラムの上にキャストし、厚さ約2.5mmの未延伸ベースを作製した。その後、90℃で縦方向に3倍に延伸し、更に120℃で横方向に3.3倍に延伸した。さらに215℃で3分間、熱固定を行なって、厚み250μmの2軸延伸ポリエチレンテレフタレート支持体(以下、単に「PET支持体」と称する。)を得た。
-表面下塗り層-
(1)表面下塗り層形成用塗布液の調製
 下記組成中の各成分を混合し、受光する側のオモテ面に下塗り層を設けるための表面下塗り層形成用塗布液を調製した。
 <塗布液の組成>
・ポリエステル系バインダー    ・・・48.0部
 (バイロナールDM1245(東洋紡(株)製、固形分:30質量%))
・カルボジイミド化合物(架橋剤) ・・・10.0部
 (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・オキサゾリン化合物(架橋剤)  ・・・3.0部
 (エポクロスWS700、(株)日本触媒製、固形分:25質量%)
・界面活性剤           ・・・15.0部
 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水             ・・・907.0部
(2)表面下塗り層の形成
 得られた表面下塗り層形成用塗布液をPET支持体の一方の面に、バインダー量が塗布量で0.1g/mになるように塗布し、180℃で1分間乾燥させて、乾燥厚みが約0.1μmの下塗り層を形成した。
-着色層-
(1)二酸化チタン分散物の調製
 下記組成中の成分を混合し、その混合物をダイノミル型分散機により1時間、分散処理を施し、二酸化チタン分散物を調製した。
 <二酸化チタン分散物の組成>
・二酸化チタン(体積平均粒子径=0.42μm)    ・・・39.9質量%
 (タイペークR-780-2、石原産業(株)製、固形分100質量%)
・ポリビニルアルコール                ・・・49.9質量%
 (PVA-105、(株)クラレ製、固形分:10質量%)
・界面活性剤                     ・・・0.5質量%
 (デモールEP、花王(株)製、固形分:10質量%)
・蒸留水                       ・・・9.7質量%
(2)着色層用塗布液の調製
 下記組成中の成分を混合し、着色層用塗布液を調製した。
 <塗布液の組成>
・前記二酸化チタン分散物           ・・・80.0質量%
・シラノール変性ポリビニルアルコールバインダー・・・11.4質量%
 (R1130、(株)クラレ製、固形分:7質量%)
・ポリオキシアルキレンアルキルエーテル    ・・・3.0質量%
 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・オキサゾリン化合物             ・・・2.0質量%
 (エポクロスWS-700、日本触媒(株)製、固形分:25質量%;架橋剤)
・蒸留水                   ・・・5.6質量%
(3)着色層の形成
 得られた塗布液を、前記PET支持体上に形成された表面下塗り層の上に塗布し、180℃で1分間乾燥させて、二酸化チタン量が7.0g/m、バインダー1.2g/m2 の着色層を形成した。
-裏面ポリマー層1-
(1)裏面ポリマー層1形成用塗布液の調製
 下記組成中の各成分を混合し、裏面ポリマー層1形成用塗布液を調製した。なお、コロイダルシリカの体積平均粒子径は、約60nm(レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕を用いて光散乱法により測定)であった。
 <塗布液の組成>
・シリコーン/アクリル系バインダー(バインダーP-1)・・・310部
 (セラネートWSA-1070、DIC(株)製、固形分:40質量%)
・コロイダルシリカ(CS-1)            ・・・12.4部
 (スノーテックスUP、日産化学(株)製、固形分20質量%、体積平均粒子径約60nm)
・カルボジイミド化合物(架橋剤)           ・・・24部
 (カルボジライトV-02-L2、日清紡績(株)製、固形分:25質量%)
・オキサゾリン化合物(架橋剤)            ・・・24部
 (エポクロスWS700、日本触媒(株)製、固形分:25質量%)
・界面活性剤                     ・・・1.0部
 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・二酸化チタン分散物                 ・・・206部
・蒸留水                       ・・・435部
(2)裏面ポリマー層1の形成
 得られた裏面ポリマー層1形成用塗布液を、PET支持体の着色層が形成された側とは反対側の面に、#12のメイヤーバーで塗布した後、175℃で3分間乾燥させてポリマー層1を形成した。
 以上のようして、PET支持体の両面の各層が、塗布による塗布層として設けられたバックシート試料を作製した。
-太陽電池モジュールの作製-
 厚さ3mmの強化ガラスと、EVAシート〔SC50B、三井化学ファブロ(株)製〕と、結晶系太陽電池セルと、EVAシート〔SC50B、三井化学ファブロ(株)製〕と、上記のように作製し、下記評価「3.接着性」の「(2)湿熱経時後の接着性」と同様の処理を行なった後のバックシート試料とをこの順に重ね、真空ラミネータ〔日清紡(株)製、真空ラミネート機〕を用いてホットプレスすることにより接着させた。但し、バックシート試料は、その着色層の表面がEVAシートと接触するように配置した。また、接着は、真空ラミネータにより、128℃で3分間の真空引きの後、2分間加圧して仮接着し、さらにドライオーブンにて150℃で30分間本接着処理する条件にて行なった。このようにして、結晶系の太陽電池モジュールを作製した。
 作製した太陽電池モジュールを用いて発電運転を行なったところ、太陽電池として良好な発電性能を示した。
(実施例2~6)
 実施例1において、裏面ポリマー層1形成用塗布液の組成中のコロイダルシリカの含有量を下記表1に示すように変更したこと以外は、実施例1と同様にして、バックシート試料を作製した。
(比較例1)
 実施例1において、裏面ポリマー層1形成用塗布液の調製に用いたコロイダルシリカを含有しなかったこと以外は、実施例1と同様にして、バックシート試料を作製した。
(実施例7、比較例2~3)
 実施例4において、裏面ポリマー層1形成用塗布液の組成中のバインダーを下記表1に示すように変更したこと以外は、実施例4と同様にして、バックシート試料を作製した。
(実施例8~12)
 実施例4において、裏面ポリマー層1形成用塗布液の組成中のバインダーの含有量を下記1に示すように変更したこと以外は、実施例4と同様にして、バックシート試料を作製した。
(実施例13~14、比較例4~5)
 実施例4において、裏面ポリマー層1形成用塗布液の組成中のコロイダルシリカを下記表1に示すように変更したこと以外は、実施例4と同様にして、バックシート試料を作製した。
(実施例15)
 実施例4において、PET支持体の着色層が設けられた側とは反対側の面に形成されたポリマー層1の表面に、以下に示す手順にしたがって、裏面ポリマー層2形成用塗布液を塗布することにより更に裏面ポリマー層2を形成したこと以外は、実施例4と同様にして、バックシート試料を作製した。
-裏面ポリマー層2の形成-
(1)裏面ポリマー層2形成用塗布液の調製
 下記組成中の各成分を混合し、裏面ポリマー層2形成用塗布液を調製した。なお、コロイダルシリカの体積平均粒子径は、前記同様に光散乱法により測定した。
 <塗布液の組成>
・シリコーン/アクリル系バインダー(バインダーP-1)・・・311部
 (セラネートWSA-1070、DIC(株)製、固形分:40質量%)
・カルボジイミド化合物(架橋剤)           ・・・50部
 (カルボジライトV-02-L2、日清紡績(株)製、固形分:25質量%)
・界面活性剤                     ・・・2部
 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・コロイダルシリカ(CS-1)            ・・・187部
 (スノーテックスUP、日産化学(株)製、固形分20質量%、体積平均粒子径約60nm)
・蒸留水                       ・・・450部
(2)裏面ポリマー層2の形成
 得られた裏面ポリマー層2形成用塗布液を裏面ポリマー層1の上に、#8のメイヤーバーで塗布した後、175℃で3分間乾燥させて、裏面ポリマー層2を形成した。
 以上のようにして、PET支持体の両面の各層が、塗布による塗布層として設けられたバックシート試料を作製した。
(実施例16~17)
 実施例15において、裏面ポリマー層2形成用塗布液の組成中のバインダーを下記表1に示すように変更したこと以外は、実施例15と同様にして、バックシート試料を作製した。
(実施例18~19、比較例6~7)
 実施例15において、裏面ポリマー層2形成用塗布液の組成中のコロイダルシリカを下記表1に示すように変更したこと以外は、実施例15と同様にして、バックシート試料を作製した。
(評価)
 上記の実施例及び比較例で作製したバックシート試料について、下記の評価を行なった。評価結果は、下記表1に示す。
-1.ハジキ-
 作製したバックシート試料を30cm×40cmのサイズのサンプル片に加工し、これを3枚用意して、裏面ポリマー層1における塗布液のハジキ(弾き)の数を目視で数えた。なお、実施例15~19、比較例6~7においては、裏面ポリマー層1及び裏面ポリマー層2のそれぞれについて評価を行なった。
-2.面状-
 作製したバックシート試料を30cm×40cmのサイズのサンプル片に加工し、該サンプル片1枚を目視観察することにより、ムラの様子を下記評価基準にしたがって評価した。
 <評価基準>
5:比較例1に比べて、ムラの発生が少なく、発生したムラは目立たないものであった。
4:比較例1に比べて、ムラが少なかった。
3:比較例1と同程度のムラが発生した。
2:比較例1に比べてムラの発生頻度が多かった。
1:比較例1に比べて、ムラが多く認められた。
 上記基準のうち、実用上許容されるのはランク3以上のものである。
-3.接着性-
(1)湿熱経時前の接着性
 作製したバックシートの裏面ポリマー層1(但し、実施例15~19、比較例6~7については裏面ポリマー層2)の表面に片刃のカミソリで縦横それぞれ6本ずつの傷をつけ、25マスのマス目を形成した。この上にマイラーテープ(ポリエステルテープ)を貼り付け、手動で試料表面に沿って180°方向に引っ張って剥離した。このとき、剥離されたマス目の数によって、裏面ポリマー層の接着力を下記の評価基準にしたがって評価した。評価ランク4、5が、実用上許容可能な範囲である。 
 <評価基準>
5:剥離したマス目はなかった(0マス)。
4:剥離したマス目が0マスから0.5マス未満であった。
3:剥離したマス目が0.5マス以上2マス未満であった。
2:剥離したマス目が2マス以上10マス未満であった。
1:剥離したマス目が10マス以上であった。
(2)湿熱経時後の接着性
 作製したバックシートを120℃、相対湿度100%の環境条件下で48時間保持し、その後25℃、相対湿度60%の環境下において1時間調湿した後、前記「(1)湿熱経時前の接着性」の評価と同様の方法で裏面ポリマー層の接着力を評価した。
Figure JPOXMLDOC01-appb-T000001

 
 前記表1中の成分の詳細を以下に示す。
 <バインダー>
・P-1:セラネートWSA1070
 (DIC(株)製、シリコーンアクリル系バインダー)
・P-2:セラネートWSA1060
 (DIC(株)製、シリコーンアクリル系バインダー)
・P-3:オブリガートSW0011F
 (AGCコーテック(株)製、フッ素系バインダー)
・P-101:ファインテックスEs650
 (DIC(株)製、ポリエステル系バインダー)
・P-102:オレスターUD350
 (三井化学(株)製、ポリウレタンバインダー)
 <コロイダルシリカ>
・CS-1:スノーテックスUP
 (日産化学工業(株)製、不定形のコロイダルシリカ、体積平均粒子径約60nm)
・CS-2:スノーテックスPS-S
 (日産化学工業(株)製、不定形のコロイダルシリカ、体積平均粒子径約100nm)
・CS-3:スノーテックスPS-M
 (日産化学工業(株)製、不定形のコロイダルシリカ、体積平均粒子径約110nm)
・CS-101:スノーテックスC
 (日産化学工業(株)製、球形粒子のコロイダルシリカ、体積平均粒子径15nm)
・CS-102:スノーテックスZL
 (日産化学工業(株)製、球形粒子のコロイダルシリカ、体積平均粒子径80nm)
 前記表1に示すように、実施例では、均一性の高いポリマー層が形成されており、特に湿熱環境下に曝された場合でも接着性の低下が抑えられており、良好な耐侯性を示した。これに対し、比較例では、ポリマー層を塗布形成したときの塗布液のハジキを解消できず、結果として形成されたポリマー層は膜状態が悪く、耐侯性を良好に維持することができなかった。
 本発明の具体的態様の前記記述は、記述と説明の目的で提供するものである。開示された、まさにその形態に本発明を限定することを企図するものでもなく、或いは網羅的なものを企図するものでもない。明らかに、当業者が多くの修飾や変形をすることができることは自明である。該態様は、本発明の概念やその実際の応用を最もよく説明するために選定されたものであって、それによって、当業者の他者が企図する特定の用途に適合させるべく種々の態様や種々の変形をなすことができるように、当業者の他者に本発明を理解せしめるためのものである。
 2010年11月12日出願の日本特許出願第2010-254210号公報は、その開示全体がここに参照文献として組み込まれるものである。
  本明細書に記述された全ての刊行物や特許出願、並びに技術標準は、それら個々の刊行物や特許出願、並びに技術標準が引用文献として特別に、そして個々に組み込むことが指定されている場合には、該引用文献と同じ限定範囲においてここに組み込まれるものである。本発明の範囲は下記特許請求の範囲及びその等価物に拠って決定されることを企図するものである。

Claims (12)

  1.  ポリマー基材と、該ポリマー基材の少なくとも一方の面に塗布により設けられ、バインダーとしてフッ素系ポリマー及びシリコーン系ポリマーから選択されるポリマー、及び不定形のコロイダルシリカを含むポリマー層とを有する太陽電池用バックシート。
  2.  前記ポリマー層中における前記フッ素系ポリマー及び前記シリコーン系ポリマーの総含有量が0.5g/m以上12.5g/m以下の範囲である請求項1に記載の太陽電池用バックシート。
  3.  前記コロイダルシリカの含有量が、前記フッ素系ポリマー及び前記シリコーン系ポリマーの総含有量に対して3.0質量%以上60.0質量%以下の範囲である請求項1に記載の太陽電池用バックシート。
  4.  前記ポリマー層が、前記ポリマー層中のポリマーを架橋するための架橋剤を更に含んで成る請求項1~請求項3のいずれか1項に記載の太陽電池用バックシート。
  5.  前記架橋剤が、カルボジイミド系化合物、及び/またはオキサゾリン系化合物を含んで成る請求項4に記載の太陽電池用バックシート。
  6.  前記架橋剤含量が、前記ポリマー層中の前記ポリマーの質量に対して0.5質量%以上100質量%以下の範囲である、請求項4に記載の太陽電池用バックシート。
  7.  前記ポリマー層が、更に界面活性剤を含んで成る、請求項1~請求項3のいずれか1項に記載の太陽電池用バックシート。
  8.  前記界面活性剤が、ポリオキシアルキレンアルキルエーテル系ノニオン界面活性剤を含んで成る、請求項7に記載の太陽電池用バックシート。
  9.  前記界面活性剤含量が、前記ポリマー層中0.1~10mg/mの範囲である、請求項7に記載の太陽電池用バックシート。
  10.  前記ポリマー層は、前記ポリマー基材の太陽電池素子が配される側と反対側に設けられた請求項1~請求項3のいずれか1項に記載の太陽電池用バックシート。
  11.  ポリマー基材の少なくとも一方の面に、バインダーとしてフッ素系ポリマー及びシリコーン系ポリマーから選択されるポリマーと不定形のコロイダルシリカとを含む塗布液を塗布し乾燥させることによりポリマー層を形成する工程を有する太陽電池用バックシートの製造方法。
  12.  太陽光が入射する透明性の基板と、太陽電池素子と、前記太陽電池素子の前記基板が配された側と反対側に設けられた請求項1~請求項3のいずれか1項に記載の太陽電池用バックシートとを備えた太陽電池モジュール。
PCT/JP2011/074811 2010-11-12 2011-10-27 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール WO2012063649A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800539863A CN103210504A (zh) 2010-11-12 2011-10-27 太阳能电池用背板及其制造方法、以及太阳能电池组件
KR1020137012136A KR101398504B1 (ko) 2010-11-12 2011-10-27 태양 전지용 백시트와 그 제조 방법, 및 태양 전지 모듈
US13/890,530 US8962987B2 (en) 2010-11-12 2013-05-09 Back sheet for solar cell and process for production thereof, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010254210A JP5484293B2 (ja) 2010-11-12 2010-11-12 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
JP2010-254210 2010-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/890,530 Continuation US8962987B2 (en) 2010-11-12 2013-05-09 Back sheet for solar cell and process for production thereof, and solar cell module

Publications (1)

Publication Number Publication Date
WO2012063649A1 true WO2012063649A1 (ja) 2012-05-18

Family

ID=46050801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074811 WO2012063649A1 (ja) 2010-11-12 2011-10-27 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール

Country Status (5)

Country Link
US (1) US8962987B2 (ja)
JP (1) JP5484293B2 (ja)
KR (1) KR101398504B1 (ja)
CN (2) CN103210504A (ja)
WO (1) WO2012063649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349899A (zh) * 2012-05-31 2015-02-11 Lg化学株式会社 多层膜和具有该多层膜的光伏组件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587230B2 (ja) * 2011-03-25 2014-09-10 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
EP2858121B1 (en) * 2012-06-01 2017-12-20 LG Chem, Ltd. Backsheet for eco-friendly photovoltaic cell module and method for manufacturing same
JP6164906B2 (ja) * 2013-04-19 2017-07-19 株式会社翠光トップライン 太陽光発電モジュール
JP6217328B2 (ja) * 2013-11-11 2017-10-25 信越化学工業株式会社 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール
CN108368294A (zh) 2015-12-07 2018-08-03 纳幕尔杜邦公司 氟化弹性体的固化剂
CN110157319A (zh) * 2019-05-16 2019-08-23 苏州赛伍应用技术股份有限公司 一种涂料、涂层、透明背板及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11509883A (ja) * 1995-07-12 1999-08-31 カシェム,インコーポレーテッド 光ファイバケーブル用ポリプロピレン適合性グリース組成物
JP2003062921A (ja) * 2001-06-11 2003-03-05 Bridgestone Corp 透明複合フィルム
JP2004168057A (ja) * 2002-11-07 2004-06-17 Matsushita Electric Works Ltd フッ素系複合樹脂フィルム及び太陽電池
WO2005075583A1 (ja) * 2004-02-04 2005-08-18 Mitsubishi Rayon Co., Ltd. 塗膜、水性被覆材及びこれを用いた塗膜の製造方法、並びに塗膜の形成された塗装物
JP2009158952A (ja) * 2007-12-04 2009-07-16 Toray Ind Inc 太陽電池バックシート用フィルム、それを用いた太陽電池バックシート、および太陽電池
JP2010519742A (ja) * 2007-02-16 2010-06-03 マディコ・インコーポレーテッド 太陽電池モジュール用バックシート及びその修理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936021A (en) * 1996-11-27 1999-08-10 Cabot Corporation Masterbatch and resin systems incorporating same
JP4731743B2 (ja) * 2001-07-03 2011-07-27 株式会社ブリヂストン 耐摩耗性フィルム及び積層体
JP5127123B2 (ja) 2005-07-22 2013-01-23 ダイキン工業株式会社 太陽電池のバックシート
US20080264484A1 (en) * 2007-02-16 2008-10-30 Marina Temchenko Backing sheet for photovoltaic modules and method for repairing same
JP5815276B2 (ja) * 2010-05-19 2015-11-17 富士フイルム株式会社 太陽電池用バックシート用ポリマーシート及びその製造方法並びに太陽電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11509883A (ja) * 1995-07-12 1999-08-31 カシェム,インコーポレーテッド 光ファイバケーブル用ポリプロピレン適合性グリース組成物
JP2003062921A (ja) * 2001-06-11 2003-03-05 Bridgestone Corp 透明複合フィルム
JP2004168057A (ja) * 2002-11-07 2004-06-17 Matsushita Electric Works Ltd フッ素系複合樹脂フィルム及び太陽電池
WO2005075583A1 (ja) * 2004-02-04 2005-08-18 Mitsubishi Rayon Co., Ltd. 塗膜、水性被覆材及びこれを用いた塗膜の製造方法、並びに塗膜の形成された塗装物
JP2010519742A (ja) * 2007-02-16 2010-06-03 マディコ・インコーポレーテッド 太陽電池モジュール用バックシート及びその修理方法
JP2009158952A (ja) * 2007-12-04 2009-07-16 Toray Ind Inc 太陽電池バックシート用フィルム、それを用いた太陽電池バックシート、および太陽電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349899A (zh) * 2012-05-31 2015-02-11 Lg化学株式会社 多层膜和具有该多层膜的光伏组件
EP2857195A4 (en) * 2012-05-31 2016-02-10 Lg Chemical Ltd MULTILAYER FILM AND PHOTOVOLTAIC MODULE COMPRISING SAME

Also Published As

Publication number Publication date
KR20130138260A (ko) 2013-12-18
CN103210504A (zh) 2013-07-17
CN107011530A (zh) 2017-08-04
JP5484293B2 (ja) 2014-05-07
JP2012104763A (ja) 2012-05-31
US8962987B2 (en) 2015-02-24
US20130240034A1 (en) 2013-09-19
KR101398504B1 (ko) 2014-05-30
CN107011530B (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
JP5734569B2 (ja) 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
JP5750226B2 (ja) 太陽電池バックシート用フィルム及びその製造方法
US9202956B2 (en) Back sheet for solar cell and process for production thereof, and solar cell module
JP5705643B2 (ja) 太陽電池用バックシート用ポリマーシート、及び太陽電池モジュール
TWI472432B (zh) 多層膜及包含其之光伏打模組
WO2012063649A1 (ja) 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
WO2012121276A1 (ja) 易接着シート及び太陽電池用保護シート
WO2011099390A1 (en) Solar cell backsheet and solar cell module
US9224897B2 (en) Back sheet for solar cell, and solar cell module
KR101622994B1 (ko) 태양 전지용 보호 시트와 그 제조 방법, 태양 전지용 백 시트 부재, 태양 전지용 백 시트 및 태양 전지 모듈
JP5705670B2 (ja) 太陽電池用バックシート及び太陽電池モジュール
WO2013008945A1 (ja) 太陽電池用ポリマーシート及び太陽電池モジュール
JP2012222227A (ja) 太陽電池用バックシート、太陽電池用積層体及び太陽電池モジュール並びにそれらの製造方法
JP5606849B2 (ja) 太陽電池用バックシート用ポリマーシート及び太陽電池モジュール
WO2012063713A1 (ja) 太陽電池用バックシート部材及び太陽電池モジュール
JP5611136B2 (ja) 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
JP2013042016A (ja) 太陽電池用ポリマーシート、太陽電池用バックシート、及び太陽電池モジュール
JP2012231029A (ja) 太陽電池用保護シート及びその製造方法並びに太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137012136

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840102

Country of ref document: EP

Kind code of ref document: A1