WO2012063596A1 - 接眼ズーム光学系及び光学機器 - Google Patents

接眼ズーム光学系及び光学機器 Download PDF

Info

Publication number
WO2012063596A1
WO2012063596A1 PCT/JP2011/073608 JP2011073608W WO2012063596A1 WO 2012063596 A1 WO2012063596 A1 WO 2012063596A1 JP 2011073608 W JP2011073608 W JP 2011073608W WO 2012063596 A1 WO2012063596 A1 WO 2012063596A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
positive
optical system
zoom optical
Prior art date
Application number
PCT/JP2011/073608
Other languages
English (en)
French (fr)
Inventor
陽介 宮▲崎▼
Original Assignee
株式会社ニコンビジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコンビジョン filed Critical 株式会社ニコンビジョン
Priority to EP11839640.7A priority Critical patent/EP2639619B1/en
Priority to US13/883,826 priority patent/US8958151B2/en
Priority to CN201180053843.2A priority patent/CN103221869B/zh
Publication of WO2012063596A1 publication Critical patent/WO2012063596A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces

Definitions

  • the present invention relates to an eyepiece zoom optical system and an optical apparatus having the eyepiece zoom optical system.
  • an eyepiece zoom optical system used for optical devices such as telescopes and binoculars
  • a moving lens group having negative refractive power a moving lens group having positive refractive power across the field stop
  • a positive lens A type that realizes zooming with a configuration of a fixed lens group having a refractive power of 2 is known.
  • this type of eyepiece zoom optical system those having a zoom ratio of 3 times and an apparent field of view of 40 ° or more, and those having a zoom ratio of 2 times and an apparent field of view of 50 ° or more are known. (For example, refer to Patent Document 1).
  • the conventional eyepiece zoom optical system corrects aberrations well from low magnification to high magnification
  • the apparent field of view at low magnification is 40 ° to 50 °, which is a fixed magnification wide-field eyepiece optical system. It is not enough when compared. If the apparent field of view is to be increased, various aberrations around the visual field, particularly lateral chromatic aberration and distorted chromatic aberration, remarkably occur. Further, on the high-magnification side, the occurrence of spherical aberration of the pupil that causes vignetting of the intermediate angle of view, which is called “kidney bean effect”, is also a problem.
  • the present invention has been made in view of such problems, and has a wide apparent field of view even on the low magnification side, and an eyepiece zoom in which various aberrations are well corrected while ensuring sufficient eye relief throughout the entire zoom range.
  • An object is to provide an optical apparatus having the optical system and the eyepiece zoom optical system.
  • an eyepiece zoom optical system includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a positive refraction. And a third lens group having at least one aspheric surface, and an intermediate image is formed between the first lens group and the second lens group. Further, at the time of zooming, the third lens group is fixed on the optical axis, and the first lens group and the second lens group are configured to move in opposite directions with respect to the intermediate image.
  • the second lens group includes, in order from the object side, a positive single lens having a positive refracting power that is stronger on the eye point side lens surface than the object side lens surface, and a positive lens and a negative lens. And a cemented lens.
  • the focal length of the second lens group is f2
  • the focal length of the single lens is f21
  • the Abbe number of the medium of the single lens is ⁇ d21
  • the single lens constituting the second lens group is a lens having a convex surface facing the eye point side, and the curvature radius of the lens surface on the object side of this single lens is set to ra, and the eye point
  • the radius of curvature of the lens surface on the side is rb
  • the third lens group includes, in order from the object side, a positive lens and a biconcave lens that have a refractive power that is stronger on the object side lens surface than on the eye point side lens surface.
  • the refractive index with respect to the d-line of the medium of the positive lens constituting the third lens group is nd31 and the Abbe number is ⁇ d31, the following formula 1.65 ⁇ nd31 ⁇ 1.74 ⁇ d31> 50 It is preferable to satisfy the following conditions.
  • the object-side lens surface of the positive lens constituting the third lens group has a height from the optical axis as h, a sag amount at the height h as x,
  • a sag amount at the height h as x When the reciprocal of the radius of curvature is c, An aspherical surface satisfying the above condition is preferable.
  • such an eyepiece zoom optical system has the following formula when the focal length of the entire system in the high magnification end state is fm, the focal length of the first lens group is f1, and the focal length of the third lens group is f3. 2.5 ⁇ ( ⁇ f1) / fm ⁇ 3.0 3.2 ⁇ f2 / fm ⁇ 4.0 5.0 ⁇ f3 / fm ⁇ 6.2 It is preferable to satisfy the following conditions.
  • optical apparatus has any of the above-described eyepiece zoom optical systems.
  • an eyepiece zoom optical system having a wide apparent field of view even on the low magnification side, and having sufficiently corrected various aberrations while ensuring sufficient eye relief over the entire zoom range, and this eyepiece zoom
  • An optical apparatus having an optical system can be provided.
  • FIG. 2 is a lens configuration diagram for explaining the configuration of an eyepiece zoom optical system and the operation of a lens group during zooming, where (a) shows a low magnification end state and (b) shows an intermediate focal length state. , (C) shows a high magnification end state.
  • FIG. 5A is a diagram illustrating various aberrations in the first example, where (a) illustrates a low magnification end state, (b) illustrates an intermediate focal length state, and (c) illustrates a high magnification end state.
  • FIG. 5A is a diagram illustrating various aberrations in the second example, where (a) illustrates a low magnification end state, (b) illustrates an intermediate focal length state, and (c) illustrates a high magnification end state. It is a lens block diagram which shows the eyepiece zoom optical system which concerns on 3rd Example.
  • FIG. 5A is a diagram illustrating various aberrations in the third example, in which (a) illustrates a low magnification end state, (b) illustrates an intermediate focal length state, and (c) illustrates a high magnification end state. It is a lens block diagram which shows the eyepiece zoom optical system which concerns on 4th Example.
  • FIG. 5A is a diagram illustrating various aberrations in the fourth example, in which (a) illustrates a low magnification end state, (b) illustrates an intermediate focal length state, and (c) illustrates a high magnification end state.
  • the telescope optical system TS shown in FIG. 1 will be described as an example of an optical system of an optical apparatus having an eyepiece zoom optical system according to the present embodiment.
  • the telescope optical system TS includes, in order from the object side, an objective lens 1 that forms an image (intermediate image) of an object to be observed, a prism 2 that converts an inverted image formed by the objective lens 1 into a formed image, An eyepiece zoom optical system 3 for condensing the light from the intermediate image formed by the objective lens 1 and magnifying and observing the image of the object with the observation eye located at the eye point EP.
  • the eyepiece zoom optical system 3 includes, in order from the object side, a first lens group G1 having a negative refractive power and a second lens group having a positive refractive power. G2 and a third lens group G3 having a positive refractive power are configured.
  • the eyepiece zoom optical system 3 is arranged so that an object image (intermediate image) I formed by the objective lens 1 is formed between the first lens group G1 and the second lens group G2. Therefore, the intermediate image I of the objective lens 1 is formed at the position I ′.
  • the third lens group G3 is fixed on the optical axis at the time of zooming, and the first lens group G1 and the second lens group G2 are disposed between the lens groups G1 and G2.
  • the intermediate image I ′ is formed so as to move in opposite directions along the optical axis.
  • the first lens group G1 moves to the object side along the optical axis and the second lens group G2 emits light when zooming from the low magnification end state to the high magnification end state. It is configured to move to the eye point side along the axis.
  • the second lens group G2 includes, in order from the object side, a positive single lens (in FIG. 2) having a strong positive refractive power on the lens surface on the eye point side compared to the lens surface on the object side.
  • a positive meniscus lens L21 having a convex surface facing the eye point
  • a positive lens biconvex lens L22 in FIG. 2
  • a negative lens negative meniscus lens L23 having a convex surface facing the eye point in FIG. 2).
  • a cemented lens (a cemented lens CL2 in FIG. 2).
  • the second lens group G2 is a lens group through which light passes through the highest position from the optical axis and has a high refractive power, as is apparent from FIG.
  • the effect on aberration fluctuations at a magnification is great. Therefore, in order to suppress aberration fluctuations, it is necessary to select an appropriate power arrangement and Abbe number. Therefore, it is desirable that the eyepiece zoom optical system 3 satisfies the following conditional expression (1) when the focal length of the second lens group G2 is f2 and the focal length of the single lens L21 is f21.
  • Conditional expression (1) defines an appropriate refractive power of the single lens L21 in the second lens group G2. If the upper limit value of the conditional expression (1) is exceeded, the refractive power of the single lens L21 is insufficient, and on the low magnification side, the light beam passes through a high position of the subsequent lens, so that correction of lateral chromatic aberration tends to be excessive. . If the lower limit value of conditional expression (1) is not reached, it is difficult to correct spherical aberration of the pupil, especially on the high magnification side, and a sufficient eye relief ER cannot be secured.
  • the eye relief ER is a distance on the optical axis from the lens surface closest to the eye point EP of the eyepiece zoom optical system 3 to the eye point EP.
  • the eyepiece zoom optical system 3 satisfies the following conditional expression (2) when the Abbe number of the medium of the single lens L21 is ⁇ d21.
  • Conditional expression (2) defines an appropriate Abbe number of the medium of the single lens L21 within the range of conditional expression (1). If the lower limit value of conditional expression (2) is not reached, the dispersion of the medium of the single lens L21 increases, so that the change due to the wavelength of the incident height on the cemented positive lens CL2 responsible for achromaticity increases. Further, the declination angle of the single lens L21 also changes depending on the position at the time of zooming, and as a result, the fluctuation accompanying the zooming of the chromatic aberration of magnification becomes large.
  • the focal length of the second lens group G2 is f2
  • F line ( ⁇ 486.
  • Conditional expression (3) is a condition for reducing the variation in lateral chromatic aberration due to zooming. If the lower limit of conditional expression (3) is not reached, the variation in lateral chromatic aberration due to zooming becomes large.
  • the single lens L21 of the second lens group G2 is a lens (for example, a positive meniscus lens) having a convex surface toward the eye point, and has a radius of curvature on the object side of ra.
  • a lens for example, a positive meniscus lens
  • the curvature radius on the eye point side is rb, it is desirable that the following conditional expression (4) is satisfied.
  • Conditional expression (4) is a condition for balancing the spherical aberration, distortion and astigmatism of the pupil mainly on the high magnification end side. If the upper limit value of the conditional expression (4) is exceeded, the spherical aberration of the pupil becomes small, but it becomes difficult to correct distortion. If the lower limit value of conditional expression (4) is not reached, the correction of astigmatism is insufficient, and the burden on other lenses increases.
  • the third lens group G3 includes, in order from the object side, a positive lens (for example, a lens surface having a strong refractive power on the object side compared to the lens surface on the eyepoint side).
  • 2 includes a cemented lens (a cemented lens CL3 in FIG. 2) including a biconvex lens L31 in FIG. 2 and a biconcave lens (biconcave lens L32 in FIG. 2).
  • the eyepiece zoom optical system 3 It is desirable to satisfy conditional expressions (5) and (6).
  • the radius of curvature In order to correct the spherical aberration and distortion of the pupil, it is necessary to set the radius of curvature so that the declination of the off-axis ray is reduced in the third lens group G3. Although the curvature radius of the lens surface on the object side of the positive lens L31 is reduced and the curvature radius of the lens surface on the eye point side of the biconcave lens L32 is increased, the generation of spherical aberration and distortion of the pupil can be reduced. If the radius of curvature of the lens surface on the object side of the positive lens L31 is reduced, the astigmatism fluctuation due to zooming is increased.
  • conditional expressions (5) and (6) are conditions necessary for suppressing fluctuation due to astigmatism magnification while correcting the spherical aberration and distortion of the pupil. If the upper limit of conditional expression (5) is exceeded, the radius of curvature of the lens surface on the eyepoint side of the biconcave lens L32 becomes small, and it becomes difficult to correct spherical aberration and distortion of the pupil. On the other hand, if the lower limit of conditional expression (5) is not reached, the radius of curvature of the object-side lens surface of the biconcave lens L32 becomes too small, and the fluctuation of astigmatism increases.
  • Conditional expression (6) is a condition for preferably correcting chromatic aberration within the range of conditional expression (5). If the lower limit of conditional expression (6) is not reached, it will be difficult to correct chromatic aberration.
  • the object-side lens surface of the positive lens L31 of the third lens group G3 has a height in the direction perpendicular to the optical axis as h, and from the tangential plane at the lens apex.
  • the distance along the optical axis to the position on the surface at height h (sag amount) is x (h)
  • the reciprocal of the radius of curvature of the reference sphere (paraxial radius of curvature) is c
  • the cone coefficient is ⁇
  • the aspherical surface is expressed by the following expression (a).
  • the eyepiece zoom optical system 3 may satisfy the following conditional expression (7) in the range of 0 ⁇ h ⁇ 15 with respect to the second derivative of the sag amount x of the object-side lens surface of the positive lens L31. desirable.
  • Conditional expression (7) is a condition for further correcting the astigmatism while further extending the eye relief ER and suppressing the spherical aberration of the pupil. If the upper limit value of conditional expression (7) is exceeded, the refractive power of the positive lens L31 with respect to off-axis light becomes too strong, the eye relief ER is shortened, and spherical aberration of the pupil occurs. Further, astigmatism occurs when the lower limit of conditional expression (7) is not reached.
  • the focal length (shortest focal length) of the entire high magnification end state is fm
  • the focal length of the first lens group G1 is f1
  • the second lens group G2 When the focal length is f2 and the focal length of the third lens group G3 is f3, it is desirable that the following conditional expressions (8) to (10) are satisfied.
  • Conditional expressions (8) to (10) normalize the focal lengths f1 to f3 of the lens groups G1 to G3 with the focal length (shortest focal length) fm of the entire system in the high magnification end state as the eyepiece zoom optical system 3.
  • an appropriate power distribution for each of the lens groups G1 to G3 is defined.
  • conditional expression (8) If the upper limit value of conditional expression (8) is exceeded, the refractive power of the first lens group G1 becomes weak, and the zooming effect of the first lens group G1 becomes small. As a result, the burden of the second lens group G2 on zooming becomes excessively large, and the aberration balance becomes poor. Further, since the angle of the off-axis light beam exiting the first lens group G1 is small, the off-axis light beam passes through a low position as a whole, and the eye relief ER is insufficient. On the other hand, if the lower limit value of conditional expression (8) is not reached, the refractive power of the first lens group G1 is too strong, making it difficult to correct coma. Furthermore, since the angle of the off-axis light beam that emerges from the first lens group G1 increases, the subsequent lens diameter increases.
  • conditional expression (9) If the upper limit value of conditional expression (9) is exceeded, the composite principal point of the second lens group G2 and the third lens group G3 moves to the eye point side, so that the intermediate image I ′ and the second lens group on the low magnification side. This is not preferable because the distance G2 becomes too close and dust and scratches on the lens surface are easily seen. On the other hand, if the lower limit of conditional expression (9) is not reached, the refractive power of the second lens group G2 becomes too strong, leading to an increase in astigmatism and pupil spherical aberration. In addition, it is difficult to ensure a sufficient eye relief ER.
  • conditional expression (10) If the upper limit of conditional expression (10) is exceeded, the composite principal point of the second lens group G2 and the third lens group G3 moves to the eye point side, so that dust and scratches on the lens surface are easily visible. On the other hand, if the lower limit of conditional expression (10) is not reached, the refractive power of the third lens group G3 becomes excessive, and the fluctuation of astigmatism increases.
  • FIG. 3 shows an eyepiece zoom optical system 3 according to the first example.
  • the eyepiece zoom optical system 3 according to the first example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a positive refractive power.
  • a third lens group G3, and an intermediate image I ′ of the object to be observed is formed between the first lens group G1 and the second lens group G2.
  • the first lens group G1 includes, in order from the object side, a cemented lens CL1 of a biconcave lens L11 and a positive meniscus lens L12 having a convex surface facing the object side, and a biconcave lens L13.
  • the second lens group G2 has a positive meniscus lens (positive single lens) L21 having a concave surface directed toward the object side and a biconvex lens (positive lens) L22 and a convex surface directed toward the eye point in order from the object side. It consists of a cemented lens (positive cemented lens) CL2 with a negative meniscus lens (negative lens) L23.
  • the third lens group G3 includes a cemented lens CL3 of a biconvex lens (positive lens) L31 and a biconcave lens L32 in order from the object side.
  • the positive meniscus lens (positive single lens) L21 constituting the second lens group G2 is closer to the eye point than the lens surface (sixth surface) on the object side.
  • the lens surface (seventh surface) has a strong positive refractive power.
  • the biconvex lens (positive lens) L31 constituting the third lens group G3 has a stronger refractive power on the object side lens surface (11th surface) than on the eyepoint side lens surface (12th surface).
  • the lens surface on the object side has an aspherical shape.
  • Table 1 below shows specifications of the eyepiece zoom optical system 3 according to the first example shown in FIG.
  • f represents the focal length of the entire eyepiece zoom optical system 3
  • 2 ⁇ represents the angle of view (apparent field of view) of the eyepiece zoom optical system 3
  • ER represents the eye relief.
  • the first column m is the number of each optical surface from the object side
  • the second column r is the radius of curvature of each optical surface
  • the third column d is from each optical surface to the next optical surface.
  • the fourth column nd indicates the refractive index with respect to the d-line
  • the fifth column ⁇ d indicates the Abbe number.
  • the refractive index 1.000 of air is omitted.
  • the curvature radius r, the surface interval d, the focal length f and other length units described in all the following specifications are generally “mm” unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, since equivalent optical performance can be obtained even when proportionally reduced, the unit is not limited to “mm”, and other appropriate units can be used.
  • the third lens group G3 is fixed on the optical axis, and the first lens group G1 and the second lens group G2 are optical axes.
  • the air gap d1 on the optical axis between the first lens group G1 and the second lens group G2 the air gap d2 on the optical axis between the second lens group G2 and the third lens group G3, and Eye relief ER changes.
  • Table 2 below shows the focal length and interval of the eyepiece zoom optical system 3, that is, the focal length f of the whole system, and the first surface vertex and front focus of the eyepiece zoom optical system 3 when ray tracing is performed from the object side.
  • the distance Ff along the optical axis with respect to the position (namely, the position of the object image I of the objective lens 1), the lens group spacings d1 and d2, and the eye relief ER. These values indicate values when the eyepiece zoom optical system 3 is in the low magnification end state, the intermediate focal length state, and the high magnification end state.
  • Table 3 shows values corresponding to the conditional expressions (1) to (10) of the eyepiece zoom optical system 3 according to the first example.
  • f1 is the focal length of the first lens group G1
  • f2 is the focal length of the second lens group G2
  • f3 is the focal length of the third lens group G3
  • f21 is the single focal length of the second lens group G2.
  • the focal length of the lens L21 is shown respectively.
  • conditional expression (7) the value of d 2 x / dh 2 when changing the value of h from 0.0 to 15.0 in increments of 1.0, as well as this conditional expression (7)
  • the lower limit value (left side) and the upper limit value (right side) are shown.
  • conditional expressions (1) to (10) are satisfied in the first embodiment.
  • FIG. 4 shows various aberrations of the eyepiece zoom optical system 3 according to the first embodiment in the low magnification end state, the intermediate focal length state and the high magnification end state, including spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration and coma aberration.
  • the figure is shown.
  • the spherical aberration diagram shows the aberration for the d-line, F-line and C-ray rays
  • the magnification chromatic aberration diagram shows the aberration for the F-line and C-ray rays
  • the astigmatism diagram the distortion aberration diagram and the coma aberration diagram.
  • the spherical aberration diagram shows the aberration amount with respect to the F number FN
  • the astigmatism diagram, the distortion aberration diagram, the magnification chromatic aberration diagram, and the coma aberration diagram show the aberration amount with respect to the half angle of view ⁇ .
  • a solid line indicates a sagittal image plane for each wavelength
  • a broken line indicates a meridional image plane for each wavelength.
  • FIG. 5 shows an eyepiece zoom optical system 3 according to the second embodiment.
  • the eyepiece zoom optical system 3 according to the second embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a positive refractive power.
  • a third lens group G3, and an intermediate image I ′ of the object to be observed is formed between the first lens group G1 and the second lens group G2.
  • the first lens group G1 includes, in order from the object side, a cemented lens CL1 of a biconcave lens L11 and a positive meniscus lens L12 having a convex surface facing the object side, and a biconcave lens L13.
  • the second lens group G2 has a positive meniscus lens (positive single lens) L21 having a concave surface directed toward the object side and a convex surface directed to the biconvex lens (positive lens) L22 and the eye point EP side in order from the object side. Further, it is composed of a cemented lens (positive cemented lens) CL2 with a negative meniscus lens (negative lens) L23.
  • the third lens group G3 includes a cemented lens CL3 of a biconvex lens (positive lens) L31 and a biconcave lens L32 in order from the object side.
  • the positive meniscus lens (positive single lens) L21 constituting the second lens group G2 is closer to the eye point than the lens surface (sixth surface) on the object side.
  • the lens surface (seventh surface) has a strong positive refractive power.
  • the biconvex lens (positive lens) L31 constituting the third lens group G3 has a stronger refractive power on the object side lens surface (11th surface) than on the eyepoint side lens surface (12th surface).
  • the lens surface on the object side has an aspherical shape.
  • Table 4 below shows the specifications of the eyepiece zoom optical system 3 according to the second example shown in FIG.
  • E ⁇ n represents “ ⁇ 10 ⁇ n ”.
  • the third lens group G3 is fixed on the optical axis and the first lens group G1 and the second lens group G2 are optical axes in zooming.
  • the air gap d1 on the optical axis between the first lens group G1 and the second lens group G2 the air gap d2 on the optical axis between the second lens group G2 and the third lens group G3, and Eye relief ER changes.
  • Table 5 below shows the focal length and interval of the eyepiece zoom optical system 3 according to the second embodiment.
  • Table 6 below shows values corresponding to the conditional expressions (1) to (10) of the eyepiece zoom optical system 3 according to the second example.
  • conditional expressions (1) to (10) are satisfied in the second embodiment.
  • FIG. 6 shows spherical aberration, astigmatism, distortion, lateral chromatic aberration, and coma aberration in the low magnification end state, intermediate focal length state, and high magnification end state of the eyepiece zoom optical system 3 according to the second embodiment.
  • the figure is shown.
  • the eyepiece zoom optical system 3 according to the second example has a wide apparent field of view of 60 ° or more on the low magnification side, and is sufficient over the entire zoom range.
  • Various aberrations are satisfactorily corrected while ensuring eye relief.
  • FIG. 7 shows an eyepiece zoom optical system 3 according to the third example.
  • the eyepiece zoom optical system 3 according to the third example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a positive refractive power.
  • a third lens group G3, and an intermediate image I ′ of the object to be observed is formed between the first lens group G1 and the second lens group G2.
  • the first lens group G1 includes, in order from the object side, a cemented lens CL1 including a biconcave lens L11 and a positive meniscus lens L12 having a convex surface facing the object side.
  • the second lens group G2 has a positive meniscus lens (positive single lens) L21 having a concave surface directed toward the object side and a convex surface directed to the biconvex lens (positive lens) L22 and the eye point EP side in order from the object side. Further, it is composed of a cemented positive lens CL2 with a negative meniscus lens (negative lens) L23.
  • the third lens group G3 includes a cemented lens CL3 of a biconvex lens (positive lens) L31 and a biconcave lens L32 in order from the object side.
  • the positive meniscus lens (positive single lens) L21 constituting the second lens group G2 is closer to the eye point than the lens surface (fourth surface) on the object side.
  • the lens surface (fifth surface) has a strong positive refractive power.
  • the biconvex lens (positive lens) L31 constituting the third lens group G3 has a stronger refractive power on the object side lens surface (ninth surface) than on the eye point side lens surface (tenth surface).
  • the lens surface on the object side has an aspherical shape.
  • Table 7 below shows specifications of the eyepiece zoom optical system 3 according to the third example shown in FIG.
  • the third lens group G3 in zooming, the third lens group G3 is fixed on the optical axis, and the first lens group G1 and the second lens group G2 are optical axes.
  • the air gap d1 on the optical axis between the first lens group G1 and the second lens group G2 the air gap d2 on the optical axis between the second lens group G2 and the third lens group G3, and Eye relief ER changes.
  • Table 8 below shows the focal length and interval of the eyepiece zoom optical system 3 according to the second example.
  • Table 9 shows values corresponding to the conditional expressions (1) to (10) of the eyepiece zoom optical system 3 according to the third example.
  • conditional expressions (1) to (10) are satisfied in this third embodiment.
  • FIG. 8 shows spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration in the low magnification end state, intermediate focal length state, and high magnification end state of the eyepiece zoom optical system 3 according to the third example.
  • the figure is shown.
  • the eyepiece zoom optical system 3 according to the third example has a wide apparent field of view of 60 ° or more on the low magnification side, and is sufficient over the entire zoom range.
  • Various aberrations are satisfactorily corrected while ensuring eye relief.
  • FIG. 9 shows an eyepiece zoom optical system 3 according to the fourth example.
  • the eyepiece zoom optical system 3 according to the fourth example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a positive refractive power.
  • a third lens group G3, and an intermediate image I ′ of the object to be observed is formed between the first lens group G1 and the second lens group G2.
  • the first lens group G1 includes, in order from the object side, a cemented lens CL1 of a biconcave lens L11 and a positive meniscus lens L12 having a convex surface facing the object side, and a biconcave lens L13.
  • the second lens group G2 in order from the object side, has a positive meniscus lens (positive single lens) L21 having a concave surface facing the object side, a biconvex lens (positive lens) L22, and a negative surface having a convex surface facing the eye point EP. It is composed of a cemented lens (positive cemented lens) CL2 with a meniscus lens (negative lens) L23, and a biconvex lens L24.
  • the third lens group G3 includes a cemented lens CL3 of a biconvex lens (positive lens) L31 and a biconcave lens L32 in order from the object side.
  • the positive meniscus lens (positive single lens) L21 constituting the second lens group G2 is closer to the eye point than the lens surface (sixth surface) on the object side.
  • the lens surface (seventh surface) has a strong positive refractive power.
  • the biconvex lens (positive lens) L31 constituting the third lens group G3 has a refractive power that is stronger on the object side lens surface (13th surface) than on the eyepoint side lens surface (14th surface).
  • the lens surface on the object side has an aspherical shape.
  • Table 10 below shows specifications of the eyepiece zoom optical system 3 according to the fourth example shown in FIG.
  • the third lens group G3 is fixed on the optical axis, and the first lens group G1 and the second lens group G2 are optical axes.
  • the air gap d1 on the optical axis between the first lens group G1 and the second lens group G2 the air gap d2 on the optical axis between the second lens group G2 and the third lens group G3, and Eye relief ER changes.
  • Table 11 below shows the focal length and interval of the eyepiece zoom optical system 3 according to the second example.
  • Table 12 below shows values corresponding to the conditional expressions (1) to (10) of the eyepiece zoom optical system 3 according to the fourth example.
  • conditional expressions (1) to (10) are satisfied in the fourth embodiment.
  • FIG. 10 shows spherical aberration, astigmatism, distortion, lateral chromatic aberration, and coma aberration in the low magnification end state, intermediate focal length state, and high magnification end state of the eyepiece zoom optical system 3 according to the fourth example.
  • the figure is shown.
  • the eyepiece zoom optical system 3 according to the fourth example has a wide apparent field of view of 60 ° or more on the low magnification side, and is sufficient over the entire zoom range.
  • Various aberrations are satisfactorily corrected while ensuring eye relief.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Telescopes (AREA)

Abstract

 低倍側でも広い見掛視界を有し、ズーム全域に亘り十分なアイレリーフを確保しつつ諸収差が良好に補正された接眼ズーム光学系及びこの接眼ズーム光学系を有する光学機器を提供する。 接眼ズーム光学系3は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有し、少なくとも1つの非球面を有する第3レンズ群G3と、を有し、第1レンズ群G1と第2レンズ群G2との間に中間像I'が形成される。また、変倍に際し、第3レンズ群G3は光軸上に固定され、第1レンズ群G1及び第2レンズ群G2は、中間像I'を挟んで互いに逆方向に移動するように構成されている。また、第2レンズ群G2は、物体側から順に、物体側のレンズ面に比べてアイポイント側のレンズ面が強い正の屈折力を有する正の単レンズL21と、正レンズL22と負レンズL23とからなる正の接合レンズCL2と、を有する。

Description

接眼ズーム光学系及び光学機器
 本発明は、接眼ズーム光学系及びこの接眼ズーム光学系を有する光学機器に関する。
 望遠鏡や双眼鏡等の光学機器に用いられる接眼ズーム光学系としては、物体側から順に、負の屈折力を有する移動レンズ群、視野絞りを挟んで正の屈折力を有する移動レンズ群、及び、正の屈折力を有する固定レンズ群の構成で変倍を実現するタイプが知られている。例えば、このようなタイプの接眼ズーム光学系としては、ズーム比が3倍で見掛視界が40°以上のものや、ズーム比が2倍で見掛視界が50°以上のものが知られている(例えば、特許文献1参照)。
特開2002-258167号公報
 しかしながら、従来の接眼ズーム光学系は、低倍から高倍まで収差は良好に補正されているものの、低倍時の見掛視界は40°乃至50°であり、固定倍の広視界接眼光学系と比較すると十分とは言えない。見掛視界を大きくしようとすれば、視野周辺部の諸収差、特に倍率色収差や歪曲色収差が著しく発生する。さらに、高倍側では、隠元豆効果(kidney bean effect)と称される、中間画角のケラレの原因となる瞳の球面収差の発生も問題となる。
 本発明はこのような課題に鑑みてなされたものであり、低倍側でも広い見掛視界を有し、ズーム全域に亘り十分なアイレリーフを確保しつつ諸収差が良好に補正された接眼ズーム光学系及びこの接眼ズーム光学系を有する光学機器を提供することを目的とする。
 前記課題を解決するために、本発明に係る接眼ズーム光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有し、少なくとも1つの非球面を有する第3レンズ群と、を有し、第1レンズ群と第2レンズ群との間に中間像が形成される。また、変倍に際し、第3レンズ群は光軸上に固定され、第1レンズ群及び第2レンズ群は、中間像を挟んで互いに逆方向に移動するように構成される。また、第2レンズ群は、物体側から順に、物体側のレンズ面に比べてアイポイント側のレンズ面が強い正の屈折力を有する正の単レンズと、正レンズと負レンズとからなる正の接合レンズと、を有する。そして、この変倍ズーム光学系は、第2レンズ群の焦点距離をf2とし、単レンズの焦点距離をf21とし、単レンズの媒質のアッベ数をνd21とし、第2レンズ群のC線に対する焦点距離をfC2,F線に対する焦点距離をfF2としたとき、次式
2.1 < f21/f2 < 2.8
νd21 > 55
f2/(fC2-fF2) > 90
の条件を満足する。
 このような接眼ズーム光学系において、第2レンズ群を構成する単レンズは、アイポイント側に凸面を向けたレンズであり、この単レンズの物体側のレンズ面の曲率半径をraとし、アイポイント側のレンズ面の曲率半径をrbとしたとき、次式
-2.2 ≦ (rb+ra)/(rb-ra) ≦ -1.0
の条件を満足することが好ましい。
 また、このような接眼ズーム光学系において、第3レンズ群は、物体側から順に、アイポイント側のレンズ面に比べて物体側のレンズ面が強い屈折力を有する正レンズと両凹レンズとからなる接合レンズからなり、第3レンズ群を構成する正レンズの媒質のd線に対する屈折率をnd31とし、アッベ数をνd31としたとき、次式
1.65 < nd31 < 1.74
νd31 > 50
の条件を満足することが好ましい。
 また、このような接眼ズーム光学系は、第3レンズ群を構成する正レンズの物体側のレンズ面は、光軸からの高さをhとし、この高さhにおけるサグ量をxとし、近軸曲率半径の逆数をcとしたとき、0≦h≦15の範囲において、次式
Figure JPOXMLDOC01-appb-M000002
の条件を満足する非球面であることが好ましい。
 また、このような接眼ズーム光学系は、高倍端状態の全系の焦点距離をfmとし、第1レンズ群の焦点距離をf1とし、第3レンズ群の焦点距離をf3としたとき、次式
2.5 < (-f1)/fm < 3.0
3.2 < f2/fm < 4.0
5.0 < f3/fm < 6.2
の条件を満足することが好ましい。
 また、本発明に係る光学機器は、上述の接眼ズーム光学系のいずれかを有する。
 本発明を以上のように構成すると、低倍側でも広い見掛視界を有し、ズーム全域に亘り十分なアイレリーフを確保しつつ諸収差が良好に補正された接眼ズーム光学系及びこの接眼ズーム光学系を有する光学機器を提供することができる。
接眼ズーム光学系を有する光学機器である望遠鏡光学系の構成を示す説明図である。 接眼ズーム光学系の構成、及び、変倍時のレンズ群の動作を説明するためのレンズ構成図であって、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 第1実施例に係る接眼ズーム光学系を示すレンズ構成図である。 上記第1実施例における諸収差図であって、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 第2実施例に係る接眼ズーム光学系を示すレンズ構成図である。 上記第2実施例における諸収差図であって、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 第3実施例に係る接眼ズーム光学系を示すレンズ構成図である。 上記第3実施例における諸収差図であって、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。 第4実施例に係る接眼ズーム光学系を示すレンズ構成図である。 上記第4実施例における諸収差図であって、(a)は低倍端状態を示し、(b)は中間焦点距離状態を示し、(c)は高倍端状態を示す。
 以下、本発明の好ましい実施形態について図面を参照して説明する。まず、本実施形態に係る接眼ズーム光学系を有する光学機器の光学系の一例として、図1に示す望遠鏡光学系TSについて説明する。この望遠鏡光学系TSは、物体側から順に、被観察物体の像(中間像)を結像する対物レンズ1と、この対物レンズ1により形成される倒立像を成立像に変換するプリズム2と、対物レンズ1により形成された中間像からの光を集光してアイポイントEPに位置する観察眼により物体の像を拡大観察するための接眼ズーム光学系3と、から構成されている。
 ここで、本実施形態に係る接眼ズーム光学系3は、図2に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とを有して構成される。また、この接眼ズーム光学系3は、対物レンズ1により形成される物体の像(中間像)Iが第1レンズ群G1及び第2レンズ群G2の間に形成されるように配置されている。そのため、対物レンズ1の中間像IはI′の位置に形成される。
 また、この接眼ズーム光学系3は、変倍に際し、第3レンズ群G3が光軸上に固定され、また、第1レンズ群G1及び第2レンズ群G2が両レンズ群G1,G2の間に形成される中間像I′をはさんで光軸に沿って互いに逆の方向に移動するように構成されている。なお、図2に示す接眼ズーム光学系3は、低倍端状態から高倍端状態の変倍に際し、第1レンズ群G1が光軸に沿って物体側に移動し、第2レンズ群G2が光軸に沿ってアイポイント側に移動するように構成されている。
 この接眼ズーム光学系3において、第2レンズ群G2は、物体側から順に、物体側のレンズ面に比べてアイポイント側のレンズ面が強い正の屈折力を有する正の単レンズ(図2におけるアイポイント側に凸面を向けた正メニスカスレンズL21)と、正レンズ(図2の両凸レンズL22)と負レンズ(図2のアイポイント側に凸面を向けた負メニスカスレンズL23)とからなる正の接合レンズ(図2における接合レンズCL2)と、を有する。
 このような構成の接眼ズーム光学系3において、第2レンズ群G2は、図2等からも明らかなように、最も光軸から高い位置を光線が通るレンズ群であり、屈折力も高いため、変倍における収差変動への影響は大きい。従って、収差変動を抑えるためには適切なパワー配置とアッベ数の選択が必要となる。そのため、この接眼ズーム光学系3は、第2レンズ群G2の焦点距離をf2とし、単レンズL21の焦点距離をf21としたとき、以下の条件式(1)を満足することが望ましい。
2.1 < f21/f2 < 2.8       (1)
 条件式(1)は第2レンズ群G2内における単レンズL21の適切な屈折力を規定するものである。この条件式(1)の上限値を上回ると、単レンズL21の屈折力が不足し、低倍側において、光線が以降のレンズの高い位置を通るようになるため倍率色収差の補正が過剰となりやすい。また、条件式(1)の下限値を下回ると、特に高倍側において、瞳の球面収差の補正が困難となり、更に十分なアイレリーフERが確保できなくなる。なお、アイレリーフERとは、接眼ズーム光学系3の最もアイポイントEP側のレンズ面からアイポイントEPまでの光軸上の距離である。
 また、この接眼ズーム光学系3は、単レンズL21の媒質のアッベ数をνd21としたとき、以下の条件式(2)を満足することが望ましい。
νd21 > 55                (2)
 条件式(2)は、条件式(1)の範囲における単レンズL21の媒質の適切なアッベ数を規定するものである。この条件式(2)の下限値を下回ると、単レンズL21の媒質の分散が大きくなるため、色消しを担う接合正レンズCL2へ入射高の波長による変化が大きくなる。また、この単レンズL21での偏角は変倍時のポジションによっても変化するので、結果的に倍率色収差の変倍に伴う変動が大きくなる。
 また、この接眼ズーム光学系3は、第2レンズ群G2の焦点距離をf2とし、第2レンズ群G2のC線(λ=656.3nm)に対する焦点距離をfC2,F線(λ=486.1nm)に対する焦点距離をfF2としたとき、次の条件式(3)を満足することが望ましい。
f2/(fC2-fF2) > 90        (3)
 条件式(3)は、変倍による倍率色収差の変動を小さくするための条件である。この条件式(3)の下限値を下回ると、変倍による倍率色収差の変動が大きくなる。
 また、本実施形態に係る接眼ズーム光学系3において、第2レンズ群G2の単レンズL21はアイポイント側に凸面を向けたレンズ(例えば、正メニスカスレンズ)であり、物体側の曲率半径をra、アイポイント側の曲率半径をrbとしたとき、次の条件式(4)を満足することが望ましい。
-2.2 ≦ (rb+ra)/(rb-ra) ≦ -1.0  (4)
 条件式(4)は、主に高倍端側での瞳の球面収差、歪曲収差と非点収差のバランスをとるための条件である。この条件式(4)の上限値を上回ると、瞳の球面収差は小さくなるものの歪曲収差の補正が困難となる。また、この条件式(4)の下限値を下回ると、非点収差の補正が不足し、他のレンズへの負担が大きくなる。
 また、本実施形態に係る接眼ズーム光学系3において、第3レンズ群G3は、物体側から順に、アイポイント側のレンズ面に比べて物体側のレンズ面が強い屈折力を有する正レンズ(例えば、図2における両凸レンズL31)と両凹レンズ(図2における両凹レンズL32)とからなる接合レンズ(図2における接合レンズCL3)を有して構成される。ここで、第3レンズ群G3を構成する正レンズL31の媒質のd線(λ=587.6nm)に対する屈折率をnd31とし、アッベ数をνd31としたとき、この接眼ズーム光学系3は次の条件式(5)及び(6)を満足することが望ましい。
1.65 < nd31 < 1.74       (5)
νd31 > 50                (6)
 瞳の球面収差と歪曲収差の補正には、第3レンズ群G3において軸外光線の偏角が小さくなるように曲率半径を設定する必要がある。正レンズL31の物体側のレンズ面の曲率半径を小さく、両凹レンズL32のアイポイント側のレンズ面の曲率半径を大きくとることで瞳の球面収差および歪曲収差の発生は小さくすることができるが、正レンズL31の物体側のレンズ面の曲率半径を小さくすると変倍による非点収差変動の増大を招く。
 上記条件式(5),(6)は、瞳の球面収差および歪曲収差を補正しつつ非点収差の変倍による変動を抑制するために必要な条件である。条件式(5)の上限値を上回ると両凹レンズL32のアイポイント側のレンズ面の曲率半径が小さくなり、瞳の球面収差と歪曲収差が補正しにくくなる。また、条件式(5)の下限値を下回ると両凹レンズL32の物体側のレンズ面の曲率半径が小さくなりすぎ、非点収差の変動が大きくなる。
 また、条件式(6)は条件式(5)の範囲内において色収差を好適に補正するための条件である。この条件式(6)の下限値を下回ると、色収差の補正が困難になる。
 また、本実施形態に係る接眼ズーム光学系3において、第3レンズ群G3の正レンズL31の物体側のレンズ面は、光軸に垂直な方向の高さをhとし、レンズ頂点における接平面から高さhにおける面上の位置までの光軸に沿った距離(サグ量)をx(h)とし、基準球面の曲率半径(近軸曲率半径)の逆数をcとし、円錐係数をκとし、n次の非球面係数をCnとしたとき、次式(a)で表現される非球面で構成されている。
Figure JPOXMLDOC01-appb-M000003
 このとき、接眼ズーム光学系3は、正レンズL31の物体側のレンズ面のサグ量xの二次微分に関して、0≦h≦15の範囲において、次の条件式(7)を満足することが望ましい。
Figure JPOXMLDOC01-appb-M000004
 条件式(7)は、非点収差を良好に補正しつつ、更にアイレリーフERの延長と瞳の球面収差の抑制とを実現するための条件である。この条件式(7)の上限値を上回ると、正レンズL31の軸外光に対する屈折力が強くなりすぎ、アイレリーフERが短くなるとともに、瞳の球面収差が発生してしまう。また、条件式(7)の下限値を下回ると、非点収差が発生する。
 また、本実施形態に係る接眼ズーム光学系3は、高倍端状態の全系の焦点距離(最短焦点距離)をfmとし、第1レンズ群G1の焦点距離をf1とし、第2レンズ群G2の焦点距離をf2とし、第3レンズ群G3の焦点距離をf3としたとき、次の条件式(8)~(10)を満足することが望ましい。
2.5 < (-f1)/fm < 3.0     (8)
3.2 < f2/fm < 4.0        (9)
5.0 < f3/fm < 6.2        (10)
 条件式(8)~(10)は、接眼ズーム光学系3としての高倍端状態の全系の焦点距離(最短焦点距離)fmで各レンズ群G1~G3の焦点距離f1~f3を規格化することによって、各レンズ群G1~G3に対する適切なパワー配分を規定している。
 条件式(8)の上限値を上回ると、第1レンズ群G1の屈折力が弱くなり、この第1レンズ群G1の変倍効果が小さくなる。その結果、変倍に対する第2レンズ群G2の負担が過度に大きくなり、収差のバランスが悪くなる。また、第1レンズ群G1を射出する軸外光線の角度が小さくなるので、全体的に軸外光線が低い位置を通ることになり、アイレリーフERが不足する。また、条件式(8)の下限値を下回ると、第1レンズ群G1の屈折力が強すぎ、コマ収差の補正が困難となる。さらに、第1レンズ群G1を射出する軸外光線の角度が大きくなるので、以降のレンズ径が増大する。
 条件式(9)の上限値を上回ると、第2レンズ群G2と第3レンズ群G3との合成主点がアイポイント側に移動するため、低倍側において中間像I′と第2レンズ群G2の距離が近くなりすぎ、レンズ表面のゴミやキズが見えやすくなり、好ましくない。また、条件式(9)の下限値を下回ると、第2レンズ群G2屈折力が強くなりすぎて、非点収差と瞳の球面収差の増大を招く。また、十分なアイレリーフERの確保が困難となる。
 条件式(10)の上限値を上回ると、第2レンズ群G2と第3レンズ群G3との合成主点がアイポイント側に移動するため、レンズ表面のゴミやキズが見えやすくなる。また、条件式(10)の下限値を下回ると、第3レンズ群G3の屈折力が過大となり、非点収差の変動が大きくなる。
 それでは、このような接眼ズーム光学系3について、4つの実施例を以下に示す。
[第1実施例]
 図3は、第1実施例に係る接眼ズーム光学系3を示している。この第1実施例に係る接眼ズーム光学系3は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有しており、第1レンズ群G1と第2レンズ群G2との間に被観察物体の中間像I′が形成されている。第1レンズ群G1は、物体側から順に、両凹レンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズCL1、及び、両凹レンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズ(正の単レンズ)L21、及び、両凸レンズ(正レンズ)L22とアイポイント側に凸面を向けた負メニスカスレンズ(負レンズ)L23との接合レンズ(正の接合レンズ)CL2から構成されている。また、第3レンズ群G3は、物体側から順に、両凸レンズ(正レンズ)L31と両凹レンズL32との接合レンズCL3から構成されている。
 この第1実施例に係る接眼ズーム光学系3において、第2レンズ群G2を構成する正メニスカスレンズ(正の単レンズ)L21は、物体側のレンズ面(第6面)に比べてアイポイント側のレンズ面(第7面)が強い正の屈折力を有している。また、第3レンズ群G3を構成する両凸レンズ(正レンズ)L31は、アイポイント側のレンズ面(第12面)に比べて物体側のレンズ面(第11面)が強い屈折力を有しているとともに、この物体側のレンズ面は非球面形状を有している。
 以下の表1に、この図3に示した第1実施例に係る接眼ズーム光学系3の諸元を示す。この表1において、fは接眼ズーム光学系3の全系の焦点距離を、2ωは接眼ズーム光学系3の画角(見掛視界)を、ERはアイレリーフを、それぞれ表している。また、表1において、第1欄mは物体側からの各光学面の番号を、第2欄rは各光学面の曲率半径を、第3欄dは各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄ndはd線に対する屈折率を、そして、第5欄νdはアッベ数をそれぞれ示している。ここで、空気の屈折率1.000は省略してある。なお、非球面形状に形成されたレンズ面には面番号の横に*を付している。この非球面形状は、上述の式(a)で表され、以下の表1には、この非球面式(a)で用いられる円錐係数κ及び非球面係数Cnの値を示す。
 ここで、以下の全ての諸元において記載される曲率半径r、面間隔d、焦点距離fその他長さの単位は、特記の無い場合、一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることはなく、他の適当な単位を用いることができる。
(表1)
全体諸元
f=17.5~8.75
2ω=64.0°~80.0°
ER=17.2~15.1

レンズデータ
m   r    d    nd    νd
 1  -66.438   1.5    1.5168   64.1
 2   17.5    4.5    1.7174   29.5
 3   36.5    3.7
 4  -36.5    1.2    1.5168   64.1
 5   64.0    d1
 6  -170.0    6.5    1.6516   58.5
 7  -36.5    0.2
 8   64.0   12.2    1.7292   54.7
 9  -34.0    2.0    1.8052   25.4
10  -80.0    d2
11*  24.468   8.1    1.6935   53.2
12  -60.0    1.5    1.8052   25.4
13  114.92   ER

非球面データ
第11面  κ=-0.72  C4=0  C6=0
 上述したように、本第1実施例に係る接眼ズーム光学系3は、変倍において、第3レンズ群G3が光軸上に固定され、第1レンズ群G1及び第2レンズ群G2が光軸上を移動するため、第1レンズ群G1と第2レンズ群G2との光軸上の空気間隔d1、第2レンズ群G2と第3レンズ群G3との光軸上の空気間隔d2、及び、アイレリーフERが変化する。以下の表2に、この接眼ズーム光学系3の焦点距離と間隔、すなわち、全系の焦点距離f、物体側から光線追跡を行った場合において接眼ズーム光学系3の第一面頂点と前側焦点の位置(すなわち対物レンズ1の物体像Iの位置)との光軸に沿った距離Ff、上記レンズ群間隔d1,d2、及び、アイレリーフERを示す。なお、これらの値は、この接眼ズーム光学系3の低倍端状態、中間焦点距離状態及び高倍端状態のときの値を示している。また、これらの説明は以降の実施例においても同様である。
(表2)
焦点距離と間隔
f    Ff    d1    d2    ER
17.5   14.49   18.44   18.89   17.2
12.4   17.70   29.70   10.83   14.7
 8.75   20.16   42.30    0.70   15.1
 以下の表3に、本第1実施例に係る接眼ズーム光学系3の上記条件式(1)~(10)に対応する値を示す。この表3において、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f3は第3レンズ群G3の焦点距離を、f21は第2レンズ群G2の単レンズL21の焦点距離をそれぞれ示す。なお、条件式(7)については、hの値を0.0~15.0まで1.0刻みで変化させたときの、d2x/dh2の値、並びに、この条件式(7)の下限値(左辺)及び上限値(右辺)を示す。これらの説明は以降の実施例においても同様である。
(表3)
f1= -25.3
f2= 31.2
f3= 48.0
f21=70.0

条件対応値
(1)f21/f2=2.2
(2)νd21=58.5
(3)f2/(fC2-fF2)=100.2
(4)(rb+ra)/(rb-ra)=-1.5
(5)nd31=1.69
(6)νd31=53.2
(7)h d2x/dh2  下限値(左辺)  上限値(右辺)
   0.0  0.04087     0.04087      0.04087
   1.0  0.04090     0.04085      0.04093
   2.0  0.04098     0.04079      0.04112
   3.0  0.04113     0.04069      0.04143
   4.0  0.04133     0.04054      0.04187
   5.0  0.04160     0.04036      0.04246
   6.0  0.04192     0.04014      0.04319
   7.0  0.04232     0.03989      0.04408
   8.0  0.04278     0.03959      0.04514
   9.0  0.04331     0.03927      0.04640
  10.0  0.04391     0.03890      0.04788
  11.0  0.04460     0.03851      0.04962
  12.0  0.04538     0.03809      0.05163
  13.0  0.04624     0.03764      0.05399
  14.0  0.04721     0.03716      0.05674
  15.0  0.04829     0.03666      0.05996
(8)(-f1)/fm=2.9
(9)f2/fm=3.6
(10)f3/fm=5.5
 このように、この第1実施例では、条件式(1)~(10)が充たされていることが分かる。
 図4に、この第1実施例に係る接眼ズーム光学系3の、低倍端状態、中間焦点距離状態及び高倍端状態における球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差の諸収差図を示す。ここで、球面収差図はd線、F線及びC線の光線に対する収差を示し、倍率色収差図はF線及びC線の光線に対する収差を示し、非点収差図、歪曲収差図及びコマ収差図はd線の光線に対する収差を示す。また、球面収差図はFナンバーFNに対する収差量を示し、非点収差図、歪曲収差図、倍率色収差図及びコマ収差図は半画角ωに対する収差量を示している。また、非点収差図において、実線は各波長に対するサジタル像面を示し、破線は各波長に対するメリジオナル像面を示す。なお、これらの諸収差図の説明は以降の実施例においても同様である。この図4に示す各収差図から明らかなように、本第1実施例に係る接眼ズーム光学系3は、低倍側で60°以上の広い見掛視界を有し、ズーム全域に亘り十分なアイレリーフを確保しつつ諸収差が良好に補正されている。
[第2実施例]
 図5は、第2実施例に係る接眼ズーム光学系3を示している。この第2実施例に係る接眼ズーム光学系3は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有しており、第1レンズ群G1と第2レンズ群G2との間に被観察物体の中間像I′が形成されている。第1レンズ群G1は、物体側から順に、両凹レンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズCL1、及び、両凹レンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズ(正の単レンズ)L21、及び、両凸レンズ(正レンズ)L22とアイポイントEP側に凸面を向けた負メニスカスレンズ(負レンズ)L23との接合レンズ(正の接合レンズ)CL2から構成されている。また、第3レンズ群G3は、物体側から順に、両凸レンズ(正レンズ)L31と両凹レンズL32との接合レンズCL3から構成されている。
 この第2実施例に係る接眼ズーム光学系3において、第2レンズ群G2を構成する正メニスカスレンズ(正の単レンズ)L21は、物体側のレンズ面(第6面)に比べてアイポイント側のレンズ面(第7面)が強い正の屈折力を有している。また、第3レンズ群G3を構成する両凸レンズ(正レンズ)L31は、アイポイント側のレンズ面(第12面)に比べて物体側のレンズ面(第11面)が強い屈折力を有しているとともに、この物体側のレンズ面は非球面形状を有している。
 以下の表4に、この図5に示した第2実施例に係る接眼ズーム光学系3の諸元を示す。なお、非球面データにおいて、「E-n」は「×10-n」を表している。
(表4)
全体諸元
f=17.5~8.75
2ω=63.0°~79.0°
ER=19.4~15.4

レンズデータ
m   r    d    nd    νd
 1  -66.0    1.3    1.51680  64.1
 2   18.5    4.0    1.76182  26.6
 3   32.884   4.0
 4  -35.308   1.3    1.51680  64.1
 5   66.0    d1
 6  -117.05   6.5    1.65160  58.5
 7  -35.308   0.2
 8   66.0   12.5    1.72916  54.7
 9  -32.884   2.0    1.80518  25.4
10  -71.95   d2
11*  24.0    8.2    1.67798  54.9
12  -60.0    1.5    1.80518  25.4
13  161.05   ER

非球面データ
第11面  κ=0  C4=-6.3E-6  C6=-1.3E-8
 上述したように、本第2実施例に係る接眼ズーム光学系3は、変倍において、第3レンズ群G3が光軸上に固定され、第1レンズ群G1及び第2レンズ群G2が光軸上を移動するため、第1レンズ群G1と第2レンズ群G2との光軸上の空気間隔d1、第2レンズ群G2と第3レンズ群G3との光軸上の空気間隔d2、及び、アイレリーフERが変化する。以下の表5に、この第2実施例に係る接眼ズーム光学系3の焦点距離と間隔を示す。
(表5)
焦点距離と間隔
f    Ff    d1    d2    ER
17.5   13.65   15.94   18.64   19.4
12.4   16.70   26.83   10.81   16.0
 8.75   19.03   38.84    1.12   15.4
 以下の表6に、本第2実施例に係る接眼ズーム光学系3の上記条件式(1)~(10)に対応する値を示す。
(表6)
f1= -24.0
f2= 31.5
f3= 45.0
f21=75.2

条件対応値
(1)f21/f2=2.4
(2)νd21=58.5
(3)f2/(fC2-fF2)=99.3
(4)(rb+ra)/(rb-ra)=-1.9
(5)nd31=1.68
(6)νd31=54.9
(7)h d2x/dh2  下限値(左辺)  上限値(右辺)
   0.0  0.04167     0.04167      0.04167
   1.0  0.04170     0.04164      0.04173
   2.0  0.04180     0.04158      0.04193
   3.0  0.04195     0.04147      0.04226
   4.0  0.04216     0.04132      0.04273
   5.0  0.04240     0.04113      0.04335
   6.0  0.04267     0.04090      0.04413
   7.0  0.04297     0.04063      0.04507
   8.0  0.04328     0.04032      0.04621
   9.0  0.04362     0.03997      0.04756
  10.0  0.04400     0.03959      0.04914
  11.0  0.04449     0.03917      0.05100
  12.0  0.04518     0.03873      0.05317
  13.0  0.04624     0.03825      0.05571
  14.0  0.04796     0.03775      0.05869
  15.0  0.05084     0.03722      0.06220
(8)(-f1)/fm=2.7
(9)f2/fm=3.6
(10)f3/fm=5.1
 このように、この第2実施例では、条件式(1)~(10)が充たされていることが分かる。
 図6に、この第2実施例に係る接眼ズーム光学系3の、低倍端状態、中間焦点距離状態及び高倍端状態における球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差の諸収差図を示す。この図6に示す各収差図から明らかなように、本第2実施例に係る接眼ズーム光学系3は、低倍側で60°以上の広い見掛視界を有し、ズーム全域に亘り十分なアイレリーフを確保しつつ諸収差が良好に補正されている。
[第3実施例]
 図7は、第3実施例に係る接眼ズーム光学系3を示している。この第3実施例に係る接眼ズーム光学系3は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有しており、第1レンズ群G1と第2レンズ群G2との間に被観察物体の中間像I′が形成されている。第1レンズ群G1は、物体側から順に、両凹レンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズCL1から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズ(正の単レンズ)L21、及び、両凸レンズ(正レンズ)L22とアイポイントEP側に凸面を向けた負メニスカスレンズ(負レンズ)L23との接合正レンズCL2から構成されている。また、第3レンズ群G3は、物体側から順に、両凸レンズ(正レンズ)L31と両凹レンズL32との接合レンズCL3から構成されている。
 この第3実施例に係る接眼ズーム光学系3において、第2レンズ群G2を構成する正メニスカスレンズ(正の単レンズ)L21は、物体側のレンズ面(第4面)に比べてアイポイント側のレンズ面(第5面)が強い正の屈折力を有している。また、第3レンズ群G3を構成する両凸レンズ(正レンズ)L31は、アイポイント側のレンズ面(第10面)に比べて物体側のレンズ面(第9面)が強い屈折力を有しているとともに、この物体側のレンズ面は非球面形状を有している。
 以下の表7に、この図7に示した第3実施例に係る接眼ズーム光学系3の諸元を示す。
(表7)
全体諸元
f=17.5~8.75
2ω=60.0°~76.0°
ER=18.0~16.4

レンズデータ
m   r    d    nd    νd
 1  -32.0    1.5    1.7000   48.1
 2   15.0    5.5    1.8052   25.4
 3   36.1    d1
 4 -1000.0    6.0    1.6204   60.3
 5  -48.5    0.2
 6   70.0   11.5    1.7292   54.7
 7  -34.5    1.5    1.8052   25.4
 8  -68.77    d2
 9*  24.468   8.2    1.6935   53.2
10  -56.5    1.5    1.8052   25.4
11  131.88   ER

非球面データ
第9面  κ=-0.78  C4=0  C6=0
 上述したように、本第3実施例に係る接眼ズーム光学系3は、変倍において、第3レンズ群G3が光軸上に固定され、第1レンズ群G1及び第2レンズ群G2が光軸上を移動するため、第1レンズ群G1と第2レンズ群G2との光軸上の空気間隔d1、第2レンズ群G2と第3レンズ群G3との光軸上の空気間隔d2、及び、アイレリーフERが変化する。以下の表8に、この第2実施例に係る接眼ズーム光学系3の焦点距離と間隔を示す。
(表8)
焦点距離と間隔
f    Ff    d1    d2    ER
17.5   11.44   20.15   20.00   18.0
12.1   14.73   32.74   11.14   15.6
 8.75   16.90   44.87    0.74   16.4
 以下の表9に、本第3実施例に係る接眼ズーム光学系3の上記条件式(1)~(10)に対応する値を示す。
(表9)
f1= -26.0
f2= 32.8
f3= 46.5
f21=82.0

条件対応値
(1)f21/f2=2.5
(2)νd21=60.3
(3)f2/(fC2-fF2)=97.0
(4)(rb+ra)/(rb-ra)=-1.1
(5)nd31=1.69
(6)νd31=53.2
(7)h d2x/dh2  下限値(左辺)  上限値(右辺)
   0.0  0.04087     0.04087      0.04087
   1.0  0.04089     0.04085      0.04093
   2.0  0.04096     0.04079      0.04112
   3.0  0.04107     0.04069      0.04143
   4.0  0.04123     0.04054      0.04187
   5.0  0.04144     0.04036      0.04246
   6.0  0.04169     0.04014      0.04319
   7.0  0.04200     0.03989      0.04408
   8.0  0.04236     0.03959      0.04514
   9.0  0.04276     0.03927      0.04640
  10.0  0.04323     0.03890      0.04788
  11.0  0.04376     0.03851      0.04962
  12.0  0.04434     0.03809      0.05163
  13.0  0.04500     0.03764      0.05399
  14.0  0.04572     0.03716      0.05674
  15.0  0.04652     0.03666      0.05996
(8)(-f1)/fm=3.0
(9)f2/fm=3.7
(10)f3/fm=5.3
 このように、この第3実施例では、条件式(1)~(10)が充たされていることが分かる。
 図8に、この第3実施例に係る接眼ズーム光学系3の、低倍端状態、中間焦点距離状態及び高倍端状態における球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差の諸収差図を示す。この図8に示す各収差図から明らかなように、本第3実施例に係る接眼ズーム光学系3は、低倍側で60°以上の広い見掛視界を有し、ズーム全域に亘り十分なアイレリーフを確保しつつ諸収差が良好に補正されている。
[第4実施例]
 図9は、第4実施例に係る接眼ズーム光学系3を示している。この第4実施例に係る接眼ズーム光学系3は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有しており、第1レンズ群G1と第2レンズ群G2との間に被観察物体の中間像I′が形成されている。第1レンズ群G1は、物体側から順に、両凹レンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズCL1、及び、両凹レンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズ(正の単レンズ)L21、両凸レンズ(正レンズ)L22とアイポイントEP側に凸面を向けた負メニスカスレンズ(負レンズ)L23との接合レンズ(正の接合レンズ)CL2、及び、両凸レンズL24から構成されている。また、第3レンズ群G3は、物体側から順に、両凸レンズ(正レンズ)L31と両凹レンズL32との接合レンズCL3から構成されている。
 この第4実施例に係る接眼ズーム光学系3において、第2レンズ群G2を構成する正メニスカスレンズ(正の単レンズ)L21は、物体側のレンズ面(第6面)に比べてアイポイント側のレンズ面(第7面)が強い正の屈折力を有している。また、第3レンズ群G3を構成する両凸レンズ(正レンズ)L31は、アイポイント側のレンズ面(第14面)に比べて物体側のレンズ面(第13面)が強い屈折力を有しているとともに、この物体側のレンズ面は非球面形状を有している。
 以下の表10に、この図9に示した第4実施例に係る接眼ズーム光学系3の諸元を示す。
(表10)
全体諸元
f=17.5~8.74
2ω=64.0°~80.0°
ER=18.5~15.0

レンズデータ
m   r    d    nd    νd
 1  -60.0    1.5    1.51680  64.1
 2   18.5    4.0    1.75520  27.5
 3   32.884   4.0
 4  -35.308   1.3    1.51680  64.1
 5   93.795   d1
 6  -180.0    5.5    1.69680  55.5
 7  -40.0    0.2
 8  180.0   10.8    1.72916  54.7
 9  -31.5    1.8    1.80518  25.4
10  -90.0    0.2
11  150.0    4.5    1.72916  54.7
12  -119.051   d2
13*  25.0    8.2    1.69350  53.2
14  -60.0    1.5    1.80518  25.4
15  123.327   ER

非球面データ
第13面  κ=-0.58  C4=0  C6=0
 上述したように、本第4実施例に係る接眼ズーム光学系3は、変倍において、第3レンズ群G3が光軸上に固定され、第1レンズ群G1及び第2レンズ群G2が光軸上を移動するため、第1レンズ群G1と第2レンズ群G2との光軸上の空気間隔d1、第2レンズ群G2と第3レンズ群G3との光軸上の空気間隔d2、及び、アイレリーフERが変化する。以下の表11に、この第2実施例に係る接眼ズーム光学系3の焦点距離と間隔を示す。
(表11)
焦点距離と間隔
f    Ff    d1    d2    ER
17.5   13.52   15.58   18.39   18.5
12.4   16.81   26.56   10.69   15.2
 8.74   19.29   38.90    0.83   15.0
 以下の表12に、本第4実施例に係る接眼ズーム光学系3の上記条件式(1)~(10)に対応する値を示す。
(表12)
f1= -24.8
f2= 30.5
f3= 48.5
f21=72.6

条件対応値
(1)f21/f2=2.4
(2)νd21=55.5
(3)f2/(fC2-fF2)=120.7
(4)(rb+ra)/(rb-ra)=-1.6
(5)nd31=1.69
(6)νd31=53.2
(7)h d2x/dh2  下限値(左辺)  上限値(右辺)
   0.0  0.04000     0.04000      0.04000
   1.0  0.04004     0.03998      0.04006
   2.0  0.04016     0.03992      0.04023
   3.0  0.04037     0.03983      0.04052
   4.0  0.04065     0.03969      0.04094
   5.0  0.04103     0.03952      0.04148
   6.0  0.04150     0.03932      0.04217
   7.0  0.04206     0.03908      0.04300
   8.0  0.04273     0.03880      0.04399
   9.0  0.04350     0.03849      0.04516
  10.0  0.04440     0.03815      0.04654
  11.0  0.04543     0.03778      0.04814
  12.0  0.04660     0.03739      0.05000
  13.0  0.04793     0.03696      0.05217
  14.0  0.04944     0.03651      0.05468
  15.0  0.05115     0.03604      0.05762
(8)(-f1)/fm=2.8
(9)f2/fm=3.5
(10)f3/fm=5.5
 このように、この第4実施例では、条件式(1)~(10)が充たされていることが分かる。
 図10に、この第4実施例に係る接眼ズーム光学系3の、低倍端状態、中間焦点距離状態及び高倍端状態における球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差の諸収差図を示す。この図10に示す各収差図から明らかなように、本第4実施例に係る接眼ズーム光学系3は、低倍側で60°以上の広い見掛視界を有し、ズーム全域に亘り十分なアイレリーフを確保しつつ諸収差が良好に補正されている。
3 接眼ズーム光学系  TL 望遠鏡光学系(光学機器)
G1 第1レンズ群  G2 第2レンズ群  G3 第3レンズ群

Claims (6)

  1.  物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有し、少なくとも1つの非球面を有する第3レンズ群と、を有し、
     前記第1レンズ群と前記第2レンズ群との間に中間像が形成され、
     変倍に際し、前記第3レンズ群は光軸上に固定され、前記第1レンズ群及び前記第2レンズ群は、前記中間像を挟んで互いに逆方向に移動するように構成され、
     前記第2レンズ群は、物体側から順に、物体側のレンズ面に比べてアイポイント側のレンズ面が強い正の屈折力を有する正の単レンズと、正レンズと負レンズとからなる正の接合レンズと、を有し、
     前記第2レンズ群の焦点距離をf2とし、前記単レンズの焦点距離をf21とし、前記単レンズの媒質のアッベ数をνd21とし、前記第2レンズ群のC線に対する焦点距離をfC2,F線に対する焦点距離をfF2としたとき、次式
    2.1 < f21/f2 < 2.8
    νd21 > 55
    f2/(fC2-fF2) > 90
    の条件を満足することを特徴とする接眼ズーム光学系。
  2.  前記第2レンズ群を構成する前記単レンズは、アイポイント側に凸面を向けたレンズであり、
     前記単レンズの物体側のレンズ面の曲率半径をraとし、アイポイント側のレンズ面の曲率半径をrbとしたとき、次式
    -2.2 ≦ (rb+ra)/(rb-ra) ≦ -1.0
    の条件を満足することを特徴とする請求項1に記載の接眼ズーム光学系。
  3.  前記第3レンズ群は、物体側から順に、アイポイント側のレンズ面に比べて物体側のレンズ面が強い屈折力を有する正レンズと両凹レンズとからなる接合レンズからなり、
     前記第3レンズ群を構成する前記正レンズの媒質のd線に対する屈折率をnd31とし、アッベ数をνd31としたとき、次式
    1.65 < nd31 < 1.74
    νd31 > 50
    の条件を満足することを特徴とする請求項1または2に記載の接眼ズーム光学系。
  4.  前記第3レンズ群を構成する前記正レンズの物体側のレンズ面は、光軸からの高さをhとし、前記高さhにおけるサグ量をxとし、近軸曲率半径の逆数をcとしたとき、0≦h≦15の範囲において、次式
    Figure JPOXMLDOC01-appb-M000001
    の条件を満足する非球面であることを特徴とする請求項1~3のいずれか一項に記載の接眼ズーム光学系。
  5.  高倍端状態の全系の焦点距離をfmとし、前記第1レンズ群の焦点距離をf1とし、前記第3レンズ群の焦点距離をf3としたとき、次式
    2.5 < (-f1)/fm < 3.0
    3.2 < f2/fm < 4.0
    5.0 < f3/fm < 6.2
    の条件を満足することを特徴とする請求項1~4のいずれか一項に記載の接眼ズーム光学系。
  6.  請求項1~5のいずれか一項に記載の接眼ズーム光学系を有することを特徴とする光学機器。
PCT/JP2011/073608 2010-11-08 2011-10-14 接眼ズーム光学系及び光学機器 WO2012063596A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11839640.7A EP2639619B1 (en) 2010-11-08 2011-10-14 Ocular zoom optical assembly and optical apparatus
US13/883,826 US8958151B2 (en) 2010-11-08 2011-10-14 Ocular zoom optical system and optical instrument
CN201180053843.2A CN103221869B (zh) 2010-11-08 2011-10-14 目镜变焦光学系统及光学设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-249416 2010-11-08
JP2010249416A JP5632714B2 (ja) 2010-11-08 2010-11-08 接眼ズーム光学系及び光学機器

Publications (1)

Publication Number Publication Date
WO2012063596A1 true WO2012063596A1 (ja) 2012-05-18

Family

ID=46050749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073608 WO2012063596A1 (ja) 2010-11-08 2011-10-14 接眼ズーム光学系及び光学機器

Country Status (5)

Country Link
US (1) US8958151B2 (ja)
EP (1) EP2639619B1 (ja)
JP (1) JP5632714B2 (ja)
CN (1) CN103221869B (ja)
WO (1) WO2012063596A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155744A (zh) * 2013-05-14 2014-11-19 信泰光学(深圳)有限公司 变焦镜头
CN112764221A (zh) * 2020-12-31 2021-05-07 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912769B2 (ja) * 2012-03-30 2016-04-27 株式会社 ニコンビジョン 接眼レンズ及び光学機器
CN103631012B (zh) * 2013-08-06 2016-01-27 宁波舜宇电子有限公司 具有玻璃非球面的变焦目镜
TWI712828B (zh) * 2016-07-07 2020-12-11 日商尼康股份有限公司 目鏡光學系統及頭戴式顯示器
CN114690386B (zh) * 2020-12-30 2023-10-24 信泰光学(深圳)有限公司 光学变倍系统
CN112666711B (zh) * 2020-12-31 2024-05-28 深圳纳德光学有限公司 一种可调屈光度的目镜光学系统及头戴显示装置
CN114488491B (zh) * 2022-03-07 2022-10-28 浙江大学 大孔径激光直写物镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457223A (en) * 1987-07-02 1989-03-03 Zeiss Jena Veb Carl Variable focal distance eye piece lens
JPH06175048A (ja) * 1992-12-09 1994-06-24 Nikon Corp 接眼ズームレンズ系
JPH0980326A (ja) * 1995-09-12 1997-03-28 Fuji Photo Optical Co Ltd 接眼ズームレンズ系
JPH09251131A (ja) * 1996-03-14 1997-09-22 Nikon Corp 接眼ズームレンズ系
JP2001242390A (ja) * 2000-02-29 2001-09-07 Asahi Optical Co Ltd 接眼変倍光学系
JP2002258167A (ja) 2001-02-28 2002-09-11 Fuji Photo Optical Co Ltd 接眼ズームレンズ
JP2011002545A (ja) * 2009-06-17 2011-01-06 Nikon Vision Co Ltd 接眼ズームレンズ及び光学機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2958110B2 (ja) * 1990-11-30 1999-10-06 旭光学工業株式会社 アフォーカル変倍光学系
JP5380294B2 (ja) * 2007-10-04 2014-01-08 株式会社 ニコンビジョン ズーム接眼レンズ系

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457223A (en) * 1987-07-02 1989-03-03 Zeiss Jena Veb Carl Variable focal distance eye piece lens
JPH06175048A (ja) * 1992-12-09 1994-06-24 Nikon Corp 接眼ズームレンズ系
JPH0980326A (ja) * 1995-09-12 1997-03-28 Fuji Photo Optical Co Ltd 接眼ズームレンズ系
JPH09251131A (ja) * 1996-03-14 1997-09-22 Nikon Corp 接眼ズームレンズ系
JP2001242390A (ja) * 2000-02-29 2001-09-07 Asahi Optical Co Ltd 接眼変倍光学系
JP2002258167A (ja) 2001-02-28 2002-09-11 Fuji Photo Optical Co Ltd 接眼ズームレンズ
JP2011002545A (ja) * 2009-06-17 2011-01-06 Nikon Vision Co Ltd 接眼ズームレンズ及び光学機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155744A (zh) * 2013-05-14 2014-11-19 信泰光学(深圳)有限公司 变焦镜头
CN112764221A (zh) * 2020-12-31 2021-05-07 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN112764221B (zh) * 2020-12-31 2024-05-28 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置

Also Published As

Publication number Publication date
EP2639619A4 (en) 2017-10-18
US8958151B2 (en) 2015-02-17
CN103221869B (zh) 2015-07-29
EP2639619A1 (en) 2013-09-18
US20130293968A1 (en) 2013-11-07
JP2012103308A (ja) 2012-05-31
JP5632714B2 (ja) 2014-11-26
CN103221869A (zh) 2013-07-24
EP2639619B1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP5632714B2 (ja) 接眼ズーム光学系及び光学機器
US11994746B2 (en) Zoom lens, optical apparatus and method for manufacturing the zoom lens
JP3713250B2 (ja) 接眼変倍光学系
JP5345042B2 (ja) ズームレンズ
JP4997845B2 (ja) ファインダー光学系とこれを有する光学機器
JP3353355B2 (ja) 接眼ズームレンズ系、及び該接眼ズームレンズ系を含む望遠鏡及び双眼鏡
EP2642327B1 (en) Eyepiece, eyepiece provided with added lens, and optical apparatus
JP5377402B2 (ja) 接眼レンズ及びこの接眼レンズを備える光学機器
JP2020012908A (ja) ズームレンズ及び撮像装置
JP5358308B2 (ja) 接眼ズームレンズ及び光学機器
JP2014074932A (ja) ズームレンズ系、撮像装置及びカメラ
US6606203B2 (en) Ocular zoom lens
US9229215B2 (en) Ocular lens and optical apparatus
JP5581182B2 (ja) 接眼光学系、及び、光学装置
JP5380444B2 (ja) リレーズーム系
JPH09251131A (ja) 接眼ズームレンズ系
JPH11160631A (ja) 広視野接眼レンズ
JPH085916A (ja) ズームレンズ
JP7146706B2 (ja) 接眼レンズおよび光学装置
JP4423587B2 (ja) ズームレンズ
JPH09251132A (ja) 接眼ズームレンズ系
JP4284641B2 (ja) ズームレンズ
JPH10104693A (ja) ケプラー式ファインダー
JP2005107279A (ja) 実像式変倍ファインダー
JPH11133312A (ja) 無限遠物体から近接物体まで合焦可能な観察光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011839640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13883826

Country of ref document: US