WO2012063530A1 - 還元剤噴射弁の異常判定装置及び還元剤供給装置 - Google Patents

還元剤噴射弁の異常判定装置及び還元剤供給装置 Download PDF

Info

Publication number
WO2012063530A1
WO2012063530A1 PCT/JP2011/067023 JP2011067023W WO2012063530A1 WO 2012063530 A1 WO2012063530 A1 WO 2012063530A1 JP 2011067023 W JP2011067023 W JP 2011067023W WO 2012063530 A1 WO2012063530 A1 WO 2012063530A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
injection valve
agent injection
abnormality
passage
Prior art date
Application number
PCT/JP2011/067023
Other languages
English (en)
French (fr)
Inventor
成弘 大野
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to JP2012542830A priority Critical patent/JP5547815B2/ja
Priority to CN201180053777.9A priority patent/CN103189610B/zh
Priority to US13/882,348 priority patent/US9145817B2/en
Publication of WO2012063530A1 publication Critical patent/WO2012063530A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a reducing agent injection valve abnormality determination device and a reducing agent supply device for detecting an abnormality occurring in a reducing agent injection valve that injects a reducing agent for purifying nitrogen oxide in exhaust gas into an exhaust pipe. Is.
  • an exhaust purification device that removes nitrogen oxides (hereinafter referred to as “NO X ”) in exhaust gas discharged from an internal combustion engine, a NO X purification catalyst disposed in an exhaust passage, and an aqueous urea solution and a reducing agent in the liquid, such as unburned fuel and a reducing agent supply device for injecting upstream of the NO X purification catalyst device has been put into practical use.
  • NO X nitrogen oxides
  • a reducing agent supply device used in such an exhaust purification device includes a storage tank that stores a liquid reducing agent, a pump that sucks and pumps the reducing agent in the storage tank, and injects the reducing agent to be pumped into the exhaust pipe. And a reducing agent injection valve.
  • the reducing agent injection valve is attached so that the injection hole faces the exhaust pipe, and the reducing agent is directly injected into the exhaust pipe.
  • the urea aqueous solution is adjusted to a concentration (for example, 32.5% concentration, freezing point ⁇ -11 ° C.) at which the freezing point is the lowest so that it does not freeze even in a cold region. Used.
  • concentration for example, 32.5% concentration, freezing point ⁇ -11 ° C.
  • the concentration increases due to evaporation of the solvent in the urea aqueous solution, the freezing point increases, and the urea aqueous solution is likely to coagulate. Solidification of the urea aqueous solution may cause sticking of the valve body and blockage of the nozzle hole, and may cause open sticking that cannot be closed while the nozzle hole is open or closed sticking that keeps the nozzle hole closed.
  • Closed sticking includes those in which the valve body sticks in the closed state and those in which the aqueous urea solution coagulates in the nozzle hole (hereinafter referred to as “closed sticking” in this specification, unless otherwise specified). And “sticking of the valve body in the closed state” and “blocking of the nozzle hole”).
  • fine particles such as soot contained in the exhaust enter the reducing agent injection valve through the nozzle hole and adhere to the sliding part or seating part of the valve body and solidify. As a result, the above-described open sticking and closed sticking may occur.
  • the injection control is performed based on the commanded injection amount obtained by calculation in accordance with the flow rate of NO X discharged from the internal combustion engine. If this occurs, an error may occur between the actual injection amount and the commanded injection amount even though the reducing agent injection valve is controlled according to the commanded injection amount.
  • the reducing agent injection valve when the reducing agent injection valve is open and fixed, the reducing agent supplied into the exhaust pipe becomes excessive, and the reducing agent or a component generated based on the reducing agent is a catalyst. It flows out downstream or the reducing agent adheres directly to the inner surface of the exhaust pipe.
  • the action to be taken differs depending on whether the sticking is open sticking or closed sticking.
  • the reducing agent injection valve when the reducing agent injection valve is in an open and fixed state, the reducing agent will flow down while maintaining the reducing agent pumping state, so the pump is driven until the reducing agent melts. Need to be restricted.
  • the time for performing the control for melting the reducing agent is lengthened so that the injection of the reducing agent can be started at an early stage. There is a need. Therefore, when detecting the sticking abnormality of the reducing agent injection valve, it is desired to be able to accurately discriminate open sticking or closed sticking.
  • an object of the present invention is to provide a reducing agent injection valve abnormality detection device and a reducing agent supply device capable of accurately determining whether or not there is a sticking abnormality of the reducing agent injection valve.
  • a storage tank that contains a liquid reducing agent, a pump that pumps the reducing agent, a reducing agent injection valve that injects the reducing agent pumped by the pump into the exhaust pipe of the internal combustion engine, and a pump.
  • the reducing agent injection valve abnormality detecting device for detecting an abnormality in the fixing of the reducing agent injection valve in the reducing agent supply device having the reducing agent passage connected to the reducing agent injection valve, the reducing agent injection valve is opened.
  • Reducing agent recovery control means for performing control to recover the reducing agent in the reducing agent passage to the storage tank in the state where the instruction is given, and reduction in a state where the closing instruction of the reducing agent injection valve is given after the reducing agent recovery control.
  • the reducing agent injection valve abnormality determination device of the present invention after performing the control to temporarily collect the reducing agent in the reducing agent passage in a state in which the reducing agent injection valve is instructed to open, the reducing agent injection Control is performed to refill the reducing agent passage with the reducing agent in a state in which the valve closing instruction is given, and whether or not there is a sticking abnormality is determined based on the pressure change at that time.
  • the reducing agent injection valve is in a normal state, the inside of the reducing agent passage is filled with gas after the reducing agent recovery control, but the gas is compressed because there is no escape route when refilling the reducing agent. While the pressure rises.
  • the reducing agent injection valve is in the open fixed state, the reducing agent passage is filled with gas (air or exhaust) after the reducing agent recovery control, while the reducing agent passage is filled when the reducing agent is refilled.
  • the gas inside escapes from the nozzle hole, and the pressure rises while the reducing agent to be filled is discharged from the nozzle hole.
  • the reducing agent injection valve when the reducing agent injection valve is closed and fixed, the reducing agent remains in the reducing agent passage even after the reducing agent recovery control, and in the reducing agent passage even when the reducing agent is refilled.
  • the reducing agent is not escaped from the pressure, and the pressure rises while the reducing agent is compressed.
  • the sticking abnormality of the reducing agent injection valve can be accurately detected based on the pressure change.
  • the abnormality determining means is configured to be able to determine both open and closed adhering of the reducing agent injection valve based on a pressure change.
  • the abnormality determining means is configured to be able to determine both open and closed fixation, so that it can be in either an open fixed state or a closed fixed state. In addition, it is possible to distinguish and detect each sticking abnormality by a single control.
  • the determination of the sticking abnormality is performed during the reducing agent recovery control that is performed when the internal combustion engine is stopped.
  • the control for determining the sticking abnormality of the reducing agent injection valve is performed using the reducing agent recovery control performed when the internal combustion engine is stopped, thereby reducing the reducing agent injection during operation of the internal combustion engine. It is possible to carry out abnormality determination without interrupting.
  • a reducing agent supply device includes a reducing agent injection valve for injecting a pumped reducing agent into an exhaust pipe of an internal combustion engine, and a reducing agent passage connecting the pump and the reducing agent injection valve.
  • the reducing agent injection valve abnormality determination device that can accurately detect whether the reducing agent injection valve is openly fixed or closed, the fixing agent that has occurred is provided. Appropriate measures can be taken in accordance with the abnormality, and the risk that the reducing agent injection control may be continued while the reducing agent is in an excessive state or an insufficient state can be reduced.
  • FIG. 1 is an overall view showing a configuration example of an exhaust purification device according to an embodiment of the present invention. It is a block diagram which shows the structural example of the abnormality determination apparatus of the reducing agent injection valve which concerns on embodiment of this invention. It is a figure for demonstrating the state in a (2nd) reducing agent channel
  • FIG. 1 shows an example of the configuration of the exhaust emission control device 10.
  • This exhaust purification device 10 is an exhaust purification device configured to purify NO X in exhaust discharged from an internal combustion engine 1 mounted on a vehicle or the like using a reducing agent on a NO X purification catalyst 11. is there.
  • the exhaust purification device 10 includes a NO X purification catalyst 11 interposed in the middle of the exhaust pipe 3 connected to the exhaust system of the internal combustion engine 1, and a reducing agent in the exhaust pipe 3 upstream of the NO X purification catalyst 11.
  • the main components are a reducing agent supply device 20 for injecting and supplying, and a control processing device 40 for controlling the operation of the reducing agent supply device 20.
  • the NO X purification catalyst 11 has a function of promoting the reaction between the reducing agent injected into the exhaust pipe 3 (or a reducing component generated from the reducing agent) and NO X in the exhaust.
  • a NO X purification catalyst 11 a NO X selective reduction catalyst or a NO X storage catalyst is used.
  • the NO X selective reduction catalyst is a catalyst that has a function of adsorbing a reducing agent and selectively purifying NO X in exhaust gas flowing into the catalyst using the reducing agent.
  • an aqueous urea solution or unburned fuel is used as the reducing agent.
  • ammonia (NH 3 ) generated by decomposition of urea in the urea aqueous solution reacts with NO X , so that NO X becomes nitrogen (N 2 ) and water (H 2 O). ).
  • NO X is nitrogen (N 2), carbon dioxide (CO 2) and water Decomposed into (H 2 O).
  • NO X storage catalyst while the air-fuel ratio of the exhaust gas flowing in the catalyst occludes NO X in the lean state (fuel-lean state), release the NO X when the air-fuel ratio is switched to a state rich and a catalyst that functions to purify NO X with hydrocarbons in the exhaust gas (HC). NO X that has reacted with the hydrocarbon (HC) is decomposed into nitrogen (N 2 ), carbon dioxide (CO 2 ), and water (H 2 O).
  • unburned fuel as a reducing agent is injected and supplied into the exhaust pipe 3 in order to make the air-fuel ratio of the exhaust rich.
  • the reducing agent supply device 20 includes a storage tank 21 for storing a liquid reducing agent, a pump unit 22 having a pump 23 for pumping the reducing agent, and the reducing agent pumped by the pump 23 in the exhaust pipe 3. And a reducing agent injection valve 25 for injecting the gas into the tank.
  • the pump 23 and the reducing agent injection valve 25 are driven and controlled by the control processing device 40.
  • the storage tank 21 and the pump 23 are connected by a first reducing agent passage 31, and the pump 23 and the reducing agent injection valve 25 are connected by a second reducing agent passage 33.
  • a return passage 35 having the other end connected to the storage tank 21 is connected to the second reducing agent passage 33, and a relief valve 37 and an orifice 38 are connected to the return passage 35 from the second reducing agent passage 23 side.
  • the second reducing agent passage 33 is provided with a pressure sensor 27 for detecting the pressure Pu in the second reducing agent passage 33.
  • the reducing agent injection valve 25 is, for example, an electromagnetic valve that is switched between open / close by switching between energization / non-energization.
  • the reducing agent injection valve 25 directly injects the reducing agent into the exhaust pipe 3 and is attached to the outer peripheral portion of the exhaust pipe 3 so that the injection hole faces the exhaust pipe 3. Yes.
  • the pump 23 for example, an electric pump capable of adjusting the output Vpump according to the energization amount is used.
  • the output Vpump of the pump 23 is a deviation between the pressure Pu detected by the pressure sensor 27 and the target value Ptgt so that the pressure Pu in the second reducing agent passage 33 is maintained at the target value Ptgt. Feedback control is performed based on ⁇ P.
  • the pump unit 22 is provided with a reverting valve 24 for switching the flow direction of the reducing agent pumped by the pump 23.
  • the reverting valve 24 is constituted by an electromagnetic switching valve, for example, and is driven by the control processing device 40.
  • the reverting valve 24 while the reverting valve 24 is energized, the inlet side of the pump 23 and the first reducing agent passage 31, and the outlet side of the pump 23 and the second reducing agent passage 33 are connected. While the energization to the reverting valve 24 is stopped, the outlet side of the pump 23 and the first reducing agent passage 31 are connected to the inlet side of the pump 23 and the second reducing agent passage 33, respectively.
  • the energization to the reverting valve 24 is stopped, and the flow path is such that the reducing agent flows from the storage tank 21 side to the reducing agent injection valve 25 side. Is switched. Further, when performing a purge process for collecting the reducing agent in the storage tank 21, the reverting valve 24 is energized so that the reducing agent flows from the reducing agent injection valve 25 side to the storage tank 21 side. The road is switched. The purging process may be performed by rotating the pump 23 in the reverse direction without using the reverting valve 24.
  • the relief valve 37 is configured as a one-way valve that blocks the flow of the reducing agent from the storage tank 21 side to the second reducing agent passage 33 side, and the pressure Pu in the second reducing agent passage 33 is opened by the relief valve 37.
  • the valve opens when the valve pressure is exceeded.
  • the relief valve 37 is closed when the inside of the second reducing agent passage 33 is depressurized during the purge process for collecting the reducing agent from the inside of the reducing agent injection valve 25 and the second reducing agent passage 33. It becomes.
  • the orifice 38 provided on the downstream side of the relief valve 37 has a function of preventing the pressure in the second reducing agent passage 33 from pulsating more than necessary as the relief valve 37 is opened and closed.
  • FIG. 2 is a functional block diagram showing a part related to operation control of the reducing agent supply device 20 and abnormality detection of the reducing agent injection valve 25 in the configuration of the control processing device 40 of the present embodiment.
  • This control processing device 40 has a function as an abnormality detection device for the reducing agent injection valve according to the present invention.
  • the control processing device 40 is configured around a known microcomputer, and includes an ignition switch position detection means 41, a pressure detection means 43, a pump drive control means 45, a reverting valve drive control means 47, The reducing agent injection valve drive control means 49 and the abnormality determination means 51 are provided as main elements. Specifically, each of these means is realized by executing a program by a microcomputer.
  • control processing unit 40 is energized to a memory element (not shown) such as a RAM (Random Access Memory) and a ROM (Read Only Memory), a pump 23, a reverting valve 24, and a reducing agent injection valve 25.
  • a memory element such as a RAM (Random Access Memory) and a ROM (Read Only Memory)
  • pump 23 a pump 23
  • reverting valve 24 a reducing agent injection valve 25.
  • the drive circuit etc. which are not shown in figure are provided.
  • control processing device 40 receives detection signals from various sensors provided in the reducing agent supply device 20 and the internal combustion engine 1 as well as detection signals from the pressure sensor 27 and operation signals from the ignition switch. It has become.
  • the ignition switch position detecting means 41 is configured to detect the position of the ignition switch based on the operation signal of the ignition switch.
  • the pressure detection means 43 is configured to read the sensor signal of the pressure sensor 27 and detect the pressure Pu in the second reducing agent passage 33.
  • the pump drive control means 45 determines the detected pressure Pu and the target value Ptgt so that the pressure Pu in the second reducing agent passage 33 becomes a preset target value Ptgt.
  • the command output Vpump is obtained using the deviation ⁇ P of the pump 23, and the drive control of the pump 23 is performed.
  • the pump drive control means 45 is configured to perform drive control of the pump 23 at a predetermined output Vpump0 determined in advance for a predetermined time after the ignition switch is turned off when the internal combustion engine 1 is stopped. ing.
  • the reverting valve drive control means 47 stops energization to the reverting valve 24 during the operation of the internal combustion engine 1, and the flow path is arranged so that the reducing agent flows from the storage tank 21 side to the reducing agent injection valve 25 side. It is configured to switch.
  • the reverting valve drive control means 47 energizes the reverting valve 24 to execute the purge process when the internal combustion engine 1 is stopped, and the reducing agent is supplied from the reducing agent injection valve 25 side to the storage tank 21. It is configured to switch the flow path so as to flow to the side.
  • the reverting valve drive control means 47 is provided so that the reducing agent is refilled in the second reducing agent passage 33 in order to determine whether the reducing agent injection valve 25 is stuck abnormally after the start of the purge process. The energization to the reverting valve 24 is once stopped, and the flow path is switched so that the reducing agent flows from the storage tank 21 side to the reducing agent injection valve 25 side.
  • the pump drive control means 45 and the reverting valve drive control means 47 function as a reducing agent recovery control means and a reducing agent filling control means in the present invention as a whole. Yes. That is, by driving the pump 23 with the flow path held so that the reducing agent flows from the reducing agent injection valve 25 side to the storage tank 21 side, the reducing agent in the second reducing agent passage 33 is stored in the storage tank. 21 is recovered. Further, after the purge process is started, the reducing agent is refilled in the second reducing agent passage 33 by returning the flow path to the original state.
  • Reducing agent injection valve drive control means 49 during the operation of the internal combustion engine 1, the exhaust gas temperature Tgas, the catalyst temperature Tcat, NO X concentration N on the downstream side of the NO X purification catalyst 11, further relates to the operating state of the internal combustion engine 1 It is configured to determine the energization amount and energization time for the reducing agent injection valve 25 in accordance with the instructed injection amount Qu of the reducing agent calculated based on information or the like, and to perform drive control of the reducing agent injection valve 25. ing.
  • the reducing agent injection valve drive control means 49 controls the reducing agent injection valve 25 so that the reducing agent injection valve 25 is maintained in an open state so as to execute a purge process when the internal combustion engine 1 is stopped. It is comprised so that drive control may be carried out. However, the reducing agent injection valve drive control means 49 performs the reducing agent injection valve 25 in accordance with the switching of the reverting valve 24 in order to determine whether the reducing agent injection valve 25 is stuck abnormally after the start of the purge process. Is controlled so as to be once closed.
  • the abnormality determining means 51 is configured to execute a process for determining whether or not the reducing agent injection valve 25 is stuck abnormally. Specifically, the abnormality determination unit 51 determines whether the reducing agent injection valve 25 is stuck abnormally based on a change in the pressure Pu when the reducing agent is refilled in the second reducing agent passage 33 after the purge process is started. It is configured to determine the presence or absence.
  • FIGS. 3 to 5 illustrate the state in the second reducing agent passage 33 from the start of the purge process to the refilling of the reducing agent in each of the normal state, the open fixing state, and the closed fixing state. The figure for doing is shown.
  • FIGS. 3A to 3B show a state in the second reducing agent passage 33 when the reducing agent injection valve 25 is in a normal state.
  • the reducing agent injection valve 25 opens and closes in response to a valve opening or closing instruction from the control processing device 40. For this reason, during the purge process, the reducing agent is recovered while the gas (air or exhaust) is sucked into the second reducing agent passage 33 through the nozzle hole. Replaced with gas. Further, at the time of refilling with the reducing agent, there is no escape route for the gas in the second reducing agent passage 33, so that the gas in the second reducing agent passage 33 is compressed and the second reducing agent passage 33 is compressed. The inside is filled with a reducing agent.
  • FIGS. 4A to 4B show the state in the second reducing agent passage 33 when the reducing agent injection valve 25 is in the open fixed state.
  • the reducing agent injection valve 25 is always open regardless of whether the control processing device 40 opens or closes the valve. Therefore, during the purge process, the reducing agent is recovered while the gas is sucked into the second reducing agent passage 33 through the nozzle hole, so that the inside of the second reducing agent passage 33 is replaced with gas. Further, at the time of refilling of the reducing agent, the reducing agent is filled in the second reducing agent passage 33 while the gas in the second reducing agent passage 33 is discharged into the exhaust pipe 3 through the nozzle holes.
  • FIGS. 5A to 5B show a state in the second reducing agent passage 33 when the reducing agent injection valve 25 is closed and fixed.
  • the reducing agent injection valve 25 is always in a closed state regardless of the valve opening or closing instruction by the control processing device 40. Therefore, during the purge process, the reducing agent in the second reducing agent passage 33 cannot be sucked back, and the reducing agent remains in the second reducing agent passage 33.
  • the reductant is refilled, the reductant is further filled from the state in which the reductant remains in the second reductant passage 33.
  • FIG. 6 shows the transition of the pressure Pu in the second reducing agent passage 33 in each of the normal state, the open fixed state, and the closed fixed state of the reducing agent injection valve 25 shown in FIGS. .
  • the solid line indicates the pressure change in the normal state
  • the wavy line indicates the pressure change in the open fixed state
  • the alternate long and short dash line indicates the pressure change in the closed fixed state.
  • the inside of the second reducing agent passage 33 is depressurized by driving the pump 23.
  • the reducing agent injection valve 25 is open in the normal state and the open fixed state
  • the reducing agent injection valve 25 is closed in the closed fixed state, so that the pressure Pu at the closed fixed state is normal. And, it becomes a value smaller than the pressure Pu at the time of open fixing.
  • the pressure in the second reducing agent passage 33 is increased by driving the pump.
  • the pressure Pu at the time of closing and fixing in which a large amount of the reducing agent remains in the second reducing agent passage 33 is the second reducing agent. It rises more rapidly than the pressure Pu at the normal time when the passage 33 is filled with gas and at the time of open fixation.
  • the gas is discharged from the nozzle hole along with the refilling of the reducing agent at the time of open fixation, but there is no gas escape path in the normal state. For this reason, the rate of increase of the pressure Pu at the time of open fixing becomes slower than the rate of increase of the pressure Pu at the normal time.
  • the determination of whether there is open sticking or closed sticking based on the difference in pressure change is, for example, a pre-determined determination threshold value such as a pressure value after a predetermined time has elapsed, a pressure increase rate or a pressure increase amount within a predetermined time, etc. Can be implemented by comparing with However, methods other than those exemplified here may be used.
  • FIG. 7 shows a main flow of the abnormality determination method for the reducing agent injection valve 25 in the present embodiment.
  • step S1 of FIG. 7 when the control processing device 40 detects that the ignition switch is turned off, the process proceeds to step S2 and remains in the reducing agent injection valve 25 and the second reducing agent passage 33. A purge process for collecting the reducing agent in the storage tank 21 is performed.
  • FIG. 8 shows an example of a specific flow for performing the purge process.
  • the control processing device 40 turns on the energization of the reverting valve 24 so that the reducing agent flows from the reducing agent injection valve 25 side to the storage tank 21 side. While switching the path, the output Vpump of the pump 23 is set to a predetermined output Vpump0 set in advance.
  • control processing device 40 sets the drive duty of the reducing agent injection valve 25 to 100% and outputs a valve opening instruction in step S12, and then starts timer counting in step S13. Thereby, pressure reduction in the reducing agent injection valve 25 and the second reducing agent passage 33 is started.
  • control processing device 40 performs control to refill the second reducing agent passage 33 with the reducing agent in step S ⁇ b> 3.
  • FIG. 9 shows an example of a specific flow for performing refilling of the reducing agent.
  • the control processing device 40 determines whether or not the timer value T started in step S13 in FIG. 8 has reached a predetermined reference value T0.
  • the process proceeds to step S22, and the control processing device 40 stops energization of the reducing agent injection valve 25 while maintaining the output of the pump 23, and the reverting valve 24. And the flow path is switched so that the reducing agent flows from the storage tank 21 side to the reducing agent injection valve 25 side.
  • step S23 the control processing device 40 once resets the timer value and starts timer counting again. As a result, refilling of the reducing agent into the reducing agent injection valve 25 and the second reducing agent passage 33 is started.
  • control processing device 40 determines whether the reducing agent injection valve 25 is abnormal in step S ⁇ b> 4.
  • FIG. 10 shows an example of a specific flow for carrying out the abnormality determination of the reducing agent injection valve 25.
  • the control processing device 40 determines whether or not the timer value T started in step S23 of FIG. 9 has reached a predetermined reference value T1. When the timer value T reaches the reference value T1, the process proceeds to step S32.
  • the control processing device 40 detects the pressure Pu in the second reducing agent passage 33, and then proceeds to step S33, where the detected pressure Pu is detected. It is determined whether or not it is equal to or greater than a first determination threshold value Pu1.
  • the first determination threshold value Pu1 is a value that is obtained and stored in advance through experiments or the like as a threshold value for determining whether the reducing agent injection valve 25 is closed or stuck. If the detected pressure Pu is greater than or equal to the first determination threshold value Pu1, the process proceeds to step S34, where the control processing device 40 sets a flag indicating the occurrence of closed sticking, and then resets the timer value in step S38. To complete the abnormality determination. On the other hand, when the detected pressure Pu is less than the first determination threshold value Pu1, the process proceeds to step S35, and this time, it is determined whether or not the detected pressure Pu is less than the second determination threshold value Pu2. .
  • the second determination threshold value Pu2 is a value that is obtained in advance through experiments or the like and stored as a threshold value for determining whether the reducing agent injection valve 25 is stuck open. If the detected pressure Pu is less than the second determination threshold Pu2, the process proceeds to step S36, where the control processing device 40 sets a flag indicating the occurrence of open sticking, and then resets the timer value in step S38. To complete the abnormality determination. On the other hand, if the detected pressure Pu is equal to or higher than the second determination threshold value Pu2, the process proceeds to step S37, and the control processing device 40 resets both the flag indicating open fixation and the flag indicating close fixation. In step S38, the timer value is reset and the abnormality determination is terminated.
  • the pressure Pu after a lapse of a predetermined time from the start of refilling of the reducing agent is compared with the first determination threshold Pu1 and the second determination threshold Pu2, and the open fixing or the closed fixing is performed.
  • the presence / absence is determined, but as described above, the pressure increase rate and the pressure increase amount in a predetermined period may be obtained and compared with a predetermined determination threshold value.
  • the control processing device 40 turns on the energization to the reducing agent injection valve 25 and the reverting valve 24 again in step S5 and restarts the purge processing. Then, after the predetermined time has elapsed, the driving of the pump 23 is also stopped and the purge process is terminated. As a result, the operation of the reducing agent supply device 20 is completely stopped. During this time, an instruction signal for notifying the driver or the like of the occurrence of an abnormality may be generated according to whether the reducing agent injection valve 25 is firmly fixed open or closed.
  • the reducing agent injection valve is configured based on the difference in pressure change that appears in the open fixing state, the closed fixing state, and the normal state. Open adhesion and closed adhesion can be distinguished and accurately detected.
  • the abnormality determination is performed using the purge process performed when the internal combustion engine 1 is stopped, the reducing agent injection control during operation of the internal combustion engine 1 is interrupted. It is possible to carry out abnormality determination without having to do so.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】還元剤噴射弁の固着異常の有無を精度良く判定することができる還元剤噴射弁の異常検出装置及び還元剤供給装置を提供する。 【解決手段】還元剤噴射弁の開弁指示がなされた状態で還元剤通路内の還元剤を貯蔵タンクに回収する制御を行う還元剤回収制御手段と、還元剤の回収制御後に、還元剤噴射弁の閉弁指示がなされた状態で還元剤通路に還元剤を再充填する制御を行う還元剤充填制御手段と、還元剤の再充填制御時における還元剤通路内の圧力変化に基づいて、還元剤噴射弁の固着異常の有無を判定する異常判定手段と、を備える。

Description

還元剤噴射弁の異常判定装置及び還元剤供給装置
 本発明は、排気中の窒素酸化物を浄化するための還元剤を排気管内に噴射する還元剤噴射弁に生じた異常を検出するための還元剤噴射弁の異常判定装置及び還元剤供給装置に関するものである。
 従来、内燃機関から排出される排気中の窒素酸化物(以下「NO」と称する。)を除去する排気浄化装置の一態様として、排気通路に配設されたNO浄化触媒と、尿素水溶液や未燃燃料等の液体の還元剤をNO浄化触媒の上流側で噴射する還元剤供給装置とを備えた装置が実用化されている。
 このような排気浄化装置に用いられる還元剤供給装置は、液体の還元剤を収容する貯蔵タンクと、貯蔵タンク内の還元剤を吸い上げて圧送するポンプと、圧送される還元剤を排気管内に噴射する還元剤噴射弁とを備えて構成されている。このうち還元剤噴射弁は、噴孔が排気管内に臨むように取り付けられ、還元剤を直接的に排気管内に噴射するようになっている。
 ここで、還元剤として尿素水溶液が用いられる場合、尿素水溶液は、寒冷地においても凍結しないように、凝固点が最も低くなる濃度(例えば32.5%濃度、凝固点≒-11℃)に調整されて用いられる。しかしながら、尿素水溶液中の溶媒が蒸発するなどして濃度が上昇した場合には、凝固点が上昇し、尿素水溶液が凝固しやすくなる。尿素水溶液の凝固は弁体の固着や噴孔の閉塞の原因となり、噴孔が開いたまま閉じられなくなる開固着や、噴孔が閉じられたままとなる閉固着を生じさせるおそれがある。閉固着には、閉弁状態で弁体が固着するものや、噴孔内で尿素水溶液が凝固するものがある(以下、本明細書において「閉固着」という場合には、特に説明がない限り、「閉弁状態での弁体の固着」及び「噴孔の閉塞」を含むものとする。)。
 また、還元剤の種類にかかわらず、排気に含まれるスス等の微粒子が、噴孔を介して還元剤噴射弁内に侵入し、弁体の摺動部分や着座部分等に付着して固化することにより、上述した開固着や閉固着を生じる場合もある。
 還元剤噴射弁は、内燃機関から排出されるNOの流量等に応じて演算で求められる指示噴射量に基づいて噴射制御が行われるようになっているために、還元剤噴射弁の固着異常を生じると、指示噴射量に応じて還元剤噴射弁を制御しているにもかかわらず実際の噴射量と指示噴射量とに誤差が生じるおそれがある。
 そして、例えば、還元剤噴射弁が開固着状態となっている場合には、排気管内に供給される還元剤が過剰状態となって、還元剤あるいは還元剤をもとに生成される成分が触媒下流側に流出したり、還元剤が直接排気管の内面に付着したりすることになる。一方、還元剤噴射弁が閉固着状態となっている場合には、排気管内に供給される還元剤が不足し、NOの還元効率が低下することになるとともに、内燃機関の停止時に還元剤を貯蔵タンクに回収することが困難となる。そこで、還元剤噴射弁に生じた固着異常を検出できるように構成された装置が種々提案されている(例えば特許文献1を参照)。
特開2008-169770号公報(全文、全図)
 ところで、還元剤噴射弁の固着異常が生じている場合において、その固着が開固着であるか閉固着であるかによってとるべき対応が異なってくる。例えば、還元剤噴射弁が開固着状態となっている場合には、還元剤の圧送状態を維持したままでは還元剤が垂れ流し状態になるために、還元剤が融解するまでの間ポンプの駆動を制限する必要がある。また、還元剤噴射弁が閉固着状態となっている場合には、還元剤の噴射を早期に開始することができるように、還元剤を融解させるための制御を実施する時間を長くしたりする必要がある。したがって、還元剤噴射弁の固着異常を検出する場合には、開固着又は閉固着を精度よく判別できるようにすることが望まれている。
 本発明の発明者はこのような課題に鑑みて、還元剤通路から一旦還元剤を回収する制御を実施した後に、還元剤通路内に還元剤を再充填する制御を実施し、再充填時の還元剤通路内の圧力変化に基づいて還元剤噴射弁の固着異常を検出することによりこのような問題を解決できることを見出し、本発明を完成させたものである。したがって、本発明は、還元剤噴射弁の固着異常の有無を精度良く判定することができる還元剤噴射弁の異常検出装置及び還元剤供給装置を提供することを目的とする。
 本発明によれば、液体の還元剤が収容された貯蔵タンクと、還元剤を圧送するポンプと、ポンプによって圧送された還元剤を内燃機関の排気管内に噴射する還元剤噴射弁と、ポンプと還元剤噴射弁とを接続する還元剤通路と、を備えた還元剤供給装置における還元剤噴射弁の固着異常を検出するための還元剤噴射弁の異常検出装置において、還元剤噴射弁の開弁指示がなされた状態で還元剤通路内の還元剤を貯蔵タンクに回収する制御を行う還元剤回収制御手段と、還元剤の回収制御後に、還元剤噴射弁の閉弁指示がなされた状態で還元剤通路に還元剤を再充填する制御を行う還元剤充填制御手段と、還元剤の再充填制御時における還元剤通路内の圧力変化に基づいて、還元剤噴射弁の固着異常の有無を判定する異常判定手段と、を備えることを特徴とする還元剤噴射弁の異常検出装置が提供され、上述した課題を解決することができる。
 すなわち、本発明の還元剤噴射弁の異常判定装置によれば、還元剤噴射弁の開弁指示がなされた状態で還元剤通路内の還元剤を一旦回収する制御を実施した後に、還元剤噴射弁の閉弁指示がなされた状態で還元剤通路内に還元剤を再充填する制御を実施し、そのときの圧力変化に基づいて固着異常の有無が判定されるようになっている。
 このとき、還元剤噴射弁が正常な状態であれば、還元剤の回収制御後には還元剤通路内が気体で満たされる一方、還元剤の再充填時には気体の抜け道がないため、気体が圧縮されながら圧力が上昇する。また、還元剤噴射弁が開固着状態となっている場合には、還元剤の回収制御後には還元剤通路内が気体(空気や排気)で満たされる一方、還元剤の再充填時には還元剤通路内の気体が噴孔から逃され、さらに充填される還元剤が噴孔から排出されながら圧力が上昇する。さらに、還元剤噴射弁が閉固着状態となっている場合には、還元剤の回収制御後においても還元剤通路内に還元剤が残されるとともに、還元剤の再充填時においても還元剤通路内から還元剤が逃されることがなく、還元剤が圧縮されながら圧力が上昇する。
 同じ加圧状態における気体と液体との圧縮率には差があることから、開固着状態、閉固着状態、正常状態それぞれにおいて現れる圧力変化は互いに異なるものとなる。したがって、本発明によれば、上記の圧力変化に基づいて、還元剤噴射弁の固着異常を精度よく検出することができる。
 また、本発明の還元剤噴射弁の異常判定装置を構成するにあたり、異常判定手段は、圧力変化に基づいて還元剤噴射弁の開固着及び閉固着をともに判定可能に構成されることが好ましい。
 本発明において、異常判定手段が、開固着と閉固着とをともに判定可能に構成されることにより、開固着状態となっている場合又は閉固着状態となっている場合のいずれの場合であっても、一回の制御でそれぞれの固着異常を区別して検出することができる。
 また、本発明の還元剤噴射弁の異常判定装置を構成するにあたり、固着異常の判定を、内燃機関の停止時に実施される還元剤の回収制御時に実施することが好ましい。
 本発明において、還元剤噴射弁の固着異常を判定する制御を、内燃機関の停止時に実施される還元剤の回収制御時を利用して実施することにより、内燃機関の運転中の還元剤噴射制御を中断することなく異常判定を実施することができる。
 また、本発明のさらに別の態様は、上述したいずれかの還元剤噴射弁の異常検出装置と、液体の還元剤が収容される貯蔵タンクと、還元剤を圧送するためのポンプと、ポンプによって圧送された還元剤を内燃機関の排気管内に噴射するための還元剤噴射弁と、ポンプと還元剤噴射弁とを接続する還元剤通路と、を備えた還元剤供給装置である。
 すなわち、本発明の還元剤供給装置によれば、還元剤噴射弁の開固着又は閉固着を精度よく検出することができる還元剤噴射弁の異常判定装置を備えているために、生じている固着異常に応じて適切な対応をとることが可能になり、還元剤の過剰状態又は不足状態のままで還元剤の噴射制御が継続されるおそれを低減することができる。
本発明の実施の形態に係る排気浄化装置の構成例を示す全体図である。 本発明の実施の形態に係る還元剤噴射弁の異常判定装置の構成例を示すブロック図である。 還元剤噴射弁が正常な状態での(第2の)還元剤通路内の状態を説明するための図である。 還元剤噴射弁の開固着状態での(第2の)還元剤通路内の状態を説明するための図である。 還元剤噴射弁の閉固着状態での(第2の)還元剤通路内の状態を説明するための図である。 還元剤の再充填時における(第2の)還元剤通路内の圧力変化について説明するための図である。 還元剤噴射弁の異常判定方法の一例を示すフローチャート図である。 パージ処理を実施するための制御の具体例を示すフローチャート図である。 還元剤を再充填するための制御の具体例を示すフローチャート図である。 還元剤噴射弁の異常判定の具体例を示すフローチャート図である。
 以下、適宜図面を参照して、本発明の還元剤噴射弁の異常判定装置及び還元剤供給装置に関する実施の形態について具体的に説明する。ただし、以下の実施の形態は、本発明の一態様を示すものであって本発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。
 なお、それぞれの図中、同じ符号を付してあるものについては同一の部材が示され、適宜説明が省略されている。
1.排気浄化装置の全体的構成
 まず、本発明の実施の形態にかかる還元剤噴射弁の異常判定装置が備えられた排気浄化装置の全体的構成の概略について説明する。
 図1は、排気浄化装置10の構成の一例を示している。この排気浄化装置10は、車両等に搭載された内燃機関1から排出される排気中のNOを、NO浄化触媒11上で還元剤を用いて浄化するように構成された排気浄化装置である。
 排気浄化装置10は、内燃機関1の排気系に接続された排気管3の途中に介装されたNO浄化触媒11と、NO浄化触媒11の上流側において排気管3内に還元剤を噴射供給するための還元剤供給装置20と、還元剤供給装置20の動作制御を行う制御処理装置40とを主たる構成要素として備えている。
 NO浄化触媒11は、排気管3内に噴射された還元剤(あるいは当該還元剤から生成される還元成分)と、排気中のNOとの反応を促進させる機能を有している。NO浄化触媒11としては、NO選択還元触媒やNO吸蔵触媒が用いられる。
 NO選択還元触媒は、還元剤を吸着するとともに、この還元剤を用いて、触媒中に流入する排気中のNOを選択的に浄化する機能を有する触媒である。NO選択還元触媒を用いる場合においては、尿素水溶液や未燃燃料が還元剤として用いられる。還元剤として尿素水溶液を用いる場合には、尿素水溶液中の尿素の分解によって生成されるアンモニア(NH)がNOと反応することにより、NOが窒素(N)及び水(HO)に分解される。また、還元剤として未燃燃料を用いる場合には、未燃燃料中の炭化水素(HC)がNOと反応することにより、NOが窒素(N)、二酸化炭素(CO)及び水(HO)に分解される。
 また、NO吸蔵触媒は、触媒中に流入する排気の空燃比がリーンの状態(燃料希薄状態)においてNOを吸蔵する一方、空燃比がリッチの状態に切り替えられたときにNOを放出し、排気中の炭化水素(HC)を用いてNOを浄化する機能を有する触媒である。炭化水素(HC)と反応したNOは窒素(N)、二酸化炭素(CO)及び水(HO)に分解される。NO吸蔵触媒を用いる場合においては、排気の空燃比をリッチの状態とするために、還元剤としての未燃燃料が排気管3内に噴射供給される。
2.還元剤供給装置
 還元剤供給装置20は、液体の還元剤を収容する貯蔵タンク21と、還元剤を圧送するポンプ23を有するポンプユニット22と、ポンプ23により圧送された還元剤を排気管3内に噴射する還元剤噴射弁25とを備えている。このうち、ポンプ23及び還元剤噴射弁25は、制御処理装置40によって駆動制御が実行されるものとなっている。
 また、貯蔵タンク21とポンプ23とは第1の還元剤通路31で接続され、ポンプ23と還元剤噴射弁25とは第2の還元剤通路33で接続されている。第2の還元剤通路33には、他端が貯蔵タンク21に接続されたリターン通路35が接続されており、リターン通路35にはリリーフ弁37及びオリフィス38が第2の還元剤通路23側から順に備えられている。さらに、第2の還元剤通路33には、第2の還元剤通路33内の圧力Puを検出するための圧力センサ27が備えられている。
 このうち、還元剤噴射弁25は、例えば、通電/非通電の切り替えにより開弁/閉弁の切り替えが行われる電磁弁が用いられる。本実施形態において、還元剤噴射弁25は、排気管3内に直接的に還元剤を噴射するものであり、噴孔が排気管3内に臨むように排気管3の外周部に取り付けられている。
 ポンプ23は、例えば、通電量によって出力Vpumpを調節可能な電動ポンプが用いられる。本実施形態において、ポンプ23の出力Vpumpは、第2の還元剤通路33内の圧力Puが目標値Ptgtに維持されるように、圧力センサ27によって検出される圧力Puと目標値Ptgtとの偏差ΔPに基づいてフィードバック制御されるようになっている。
 また、ポンプユニット22には、ポンプ23によって圧送される還元剤の流れる向きを切り替えるためのリバーティングバルブ24が備えられている。リバーティングバルブ24は、例えば電磁切替弁によって構成され、制御処理装置40によって駆動されるようになっている。本実施形態においては、リバーティングバルブ24に通電されている間、ポンプ23の入口側と第1の還元剤通路31、及び、ポンプ23の出口側と第2の還元剤通路33がそれぞれ接続され、リバーティングバルブ24への通電が停止している間、ポンプ23の出口側と第1の還元剤通路31、及び、ポンプ23の入口側と第2の還元剤通路33がそれぞれ接続される。
 そして、排気管3内への還元剤の噴射制御を行う場合には、リバーティングバルブ24への通電は停止され、還元剤が貯蔵タンク21側から還元剤噴射弁25側へ流れるように流路が切り替えられる。また、還元剤を貯蔵タンク21に回収するパージ処理を行う場合には、リバーティングバルブ24への通電が行われ、還元剤が還元剤噴射弁25側から貯蔵タンク21側へと流れるように流路が切り替えられる。なお、リバーティングバルブ24を用いないで、ポンプ23を逆回転させることでパージ処理を実施できるように構成されていてもよい。
 リリーフ弁37は貯蔵タンク21側から第2の還元剤通路33側への還元剤の流れを遮断する一方向弁として構成され、第2の還元剤通路33内の圧力Puがリリーフ弁37の開弁圧を上回ったときに開弁するようになっている。また、リリーフ弁37は、還元剤噴射弁25及び第2の還元剤通路33内から還元剤を回収するパージ処理時においては、第2の還元剤通路33内が減圧されることによって閉弁状態となる。リリーフ弁37の下流側に備えられたオリフィス38は、リリーフ弁37の開閉に合わせて第2の還元剤通路33内の圧力を必要以上に脈動させないようにする機能を有している。
3.制御処理装置(異常判定装置)
 図2は、本実施形態の制御処理装置40の構成のうち、還元剤供給装置20の動作制御及び還元剤噴射弁25の異常検出に関連する部分を、機能的なブロックで表したものである。この制御処理装置40が本発明にかかる還元剤噴射弁の異常検出装置としての機能を有している。
 制御処理装置40は、公知のマイクロコンピュータを中心に構成されたものであり、イグニッションスイッチ位置検出手段41と、圧力検出手段43と、ポンプ駆動制御手段45と、リバーティングバルブ駆動制御手段47と、還元剤噴射弁駆動制御手段49と、異常判定手段51とを主たる要素として備えて構成されている。具体的に、これらの各手段は、マイクロコンピュータによるプログラムの実行によって実現されるものとなっている。
 この他、制御処理装置40には、RAM(Random Access Memory)及びROM(Read Only Memory)等の図示しない記憶素子や、ポンプ23、リバーティングバルブ24、還元剤噴射弁25への通電を行うための図示しない駆動回路等が備えられている。また、制御処理装置40には、圧力センサ27の検出信号やイグニッションスイッチの操作信号をはじめとして、還元剤供給装置20や内燃機関1等に備えられた種々のセンサの検出信号が入力されるようになっている。
 イグニッションスイッチ位置検出手段41は、イグニッションスイッチの操作信号に基づいて、イグニッションスイッチの位置を検出するように構成されている。また、圧力検出手段43は、圧力センサ27のセンサ信号を読み込み、第2の還元剤通路33内の圧力Puを検出するように構成されている。
 ポンプ駆動制御手段45は、内燃機関1の運転時においては、第2の還元剤通路33内の圧力Puがあらかじめ設定された目標値Ptgtとなるように、検出される圧力Puと目標値Ptgtとの偏差ΔPを用いて指示出力Vpumpを求め、ポンプ23の駆動制御を行うように構成されている。
 また、ポンプ駆動制御手段45は、内燃機関1の停止時においては、イグニッションスイッチがオフにされた後、所定時間、あらかじめ定められた所定の出力Vpump0でポンプ23の駆動制御を行うように構成されている。
 リバーティングバルブ駆動制御手段47は、内燃機関1の運転時においてはリバーティングバルブ24への通電を停止し、還元剤が貯蔵タンク21側から還元剤噴射弁25側へと流れるように流路を切り替えるように構成されている。
 また、リバーティングバルブ駆動制御手段47は、内燃機関1の停止時においては、パージ処理を実行するためにリバーティングバルブ24への通電を行い、還元剤が還元剤噴射弁25側から貯蔵タンク21側へと流れるように流路を切り替えるように構成されている。ただし、パージ処理の実行開始後に還元剤噴射弁25の固着異常の判定を実施するため、第2の還元剤通路33内に還元剤が再充填されるように、リバーティングバルブ駆動制御手段47は、一旦リバーティングバルブ24への通電を停止して、還元剤が貯蔵タンク21側から還元剤噴射弁25側へと流れるように流路を切り替えるようになっている。
 本実施形態の制御処理装置40においては、ポンプ駆動制御手段45及びリバーティングバルブ駆動制御手段47が、全体として、本発明における還元剤回収制御手段及び還元剤充填制御手段として機能するようになっている。すなわち、還元剤が還元剤噴射弁25側から貯蔵タンク21側へと流れるように流路を保持した状態でポンプ23を駆動させることにより、第2の還元剤通路33内の還元剤が貯蔵タンク21に回収される。また、パージ処理の開始後に、流路を元の状態に復帰させることにより、第2の還元剤通路33内に還元剤が再充填される。
 還元剤噴射弁駆動制御手段49は、内燃機関1の運転時においては、排気温度Tgas、触媒温度Tcat、NO浄化触媒11の下流側におけるNO濃度N、さらには内燃機関1の運転状態に関する情報等に基づいて算出される還元剤の指示噴射量Quに応じて、還元剤噴射弁25への通電量及び通電時間を決定して、還元剤噴射弁25の駆動制御を行うように構成されている。
 また、還元剤噴射弁駆動制御手段49は、内燃機関1の停止時においては、パージ処理を実行すべく、還元剤噴射弁25が開弁状態で維持されるように、還元剤噴射弁25を駆動制御するように構成されている。ただし、パージ処理の実行開始後に還元剤噴射弁25の固着異常の判定を実施するために、還元剤噴射弁駆動制御手段49は、上述したリバーティングバルブ24の切り替えに合わせて還元剤噴射弁25を一旦閉弁状態とするように制御を行うようになっている。
 異常判定手段51は、還元剤噴射弁25の固着異常の有無を判定するための処理を実行するように構成されている。具体的に、異常判定手段51は、パージ処理の開始後、第2の還元剤通路33内に還元剤が再充填されるときの圧力Puの変化に基づいて還元剤噴射弁25の固着異常の有無を判定するように構成されている。
 ここで、図3~図5は、正常状態、開固着状態、閉固着状態それぞれの状態における、パージ処理の開始から還元剤の再充填時にかけての第2の還元剤通路33内の状態を説明するための図を示している。
 まず、図3(a)~(b)は、還元剤噴射弁25が正常な状態にある場合の第2の還元剤通路33内の状態を示している。この場合には、制御処理装置40による開弁又は閉弁の指示に応じて還元剤噴射弁25が開閉する。そのため、パージ処理時においては、噴孔を介して第2の還元剤通路33内に気体(空気や排気)が吸い込まれながら還元剤が回収されるために、第2の還元剤通路33内は気体に置き換えられる。また、還元剤の再充填時においては、第2の還元剤通路33内の気体の抜け道がないために、第2の還元剤通路33内の気体が圧縮されながら、第2の還元剤通路33内に還元剤が充填される。
 また、図4(a)~(b)は、還元剤噴射弁25が開固着状態となっている場合の第2の還元剤通路33内の状態を示している。この場合には、制御処理装置40の開弁又は閉弁の指示にかかわらず、還元剤噴射弁25は常に開弁した状態となっている。そのため、パージ処理時においては、噴孔を介して第2の還元剤通路33内に気体が吸い込まれながら還元剤が回収されるために、第2の還元剤通路33内は気体に置き換えられる。また、還元剤の再充填時においては、第2の還元剤通路33内の気体が噴孔を介して排気管3内に排出されながら、第2の還元剤通路33内に還元剤が充填される。
 また、図5(a)~(b)は、還元剤噴射弁25が閉固着状態となっている場合の第2の還元剤通路33内の状態を示している。この場合には、制御処理装置40による開弁又は閉弁の指示にかかわらず、還元剤噴射弁25は常に閉弁した状態となっている。そのため、パージ処理時においては、第2の還元剤通路33内の還元剤を吸い戻すことができずに、第2の還元剤通路33内に還元剤が残される。また、還元剤の再充填時においては、第2の還元剤通路33内に還元剤が残されている状態から、さらに還元剤が充填される。
 図6は、図3~図5に示される還元剤噴射弁25の正常状態、開固着状態、閉固着状態それぞれの状態における、第2の還元剤通路33内の圧力Puの推移を示している。実線が正常状態の圧力変化を示し、波線が開固着状態の圧力変化を示し、一点鎖線が閉固着状態の圧力変化を示している。
 パージ処理が実施されているt1~t2の期間、ポンプ23の駆動によって第2の還元剤通路33内は減圧される。このとき、正常状態及び開固着状態では還元剤噴射弁25が開弁している一方、閉固着状態では還元剤噴射弁25が閉弁しているため、閉固着時の圧力Puが、正常時及び開固着時の圧力Puよりも小さい値となる。
 その後、還元剤が再充填されるt2~t3の期間、ポンプ23の駆動によって第2の還元剤通路33内は昇圧される。このとき、還元剤の圧縮率が気体の圧縮率よりも大きいことから、第2の還元剤通路33内に多量の還元剤が残されている閉固着時の圧力Puは、第2の還元剤通路33内が気体で満たされている正常時及び開固着時の圧力Puよりも急激に上昇する。
 また、第2の還元剤通路33内が気体で満たされているとしても、開固着時には還元剤の再充填に伴って気体が噴孔から排出される一方、正常状態においては気体の抜け道がないことから、開固着時の圧力Puの上昇速度は、正常時の圧力Puの上昇速度に比べて緩慢になる。
 したがって、一旦パージ処理を実施した後に還元剤を再充填したときの圧力変化を見ることによって、還元剤噴射弁の開固着及び閉固着を判別することが可能となっている。
 この圧力変化の違いに基づく開固着又は閉固着の有無の判定は、例えば、所定時間経過後の圧力値や、所定時間内での圧力上昇速度又は圧力増加量等を、あらかじめ規定される判定閾値と比較することによって実施することができる。ただし、ここに例示した以外の方法であってもよい。
4.還元剤噴射弁の異常判定方法
 次に、本実施形態の制御処理装置40によって行われる還元剤噴射弁25の異常判定方法の一例について、図7~図10のフローチャートに基づいて説明する。このうち、図7は、本実施形態における還元剤噴射弁25の異常判定方法のメインフローを示している。
 まず、図7のステップS1において、制御処理装置40が、イグニッションスイッチがオフにされたことを検出すると、ステップS2に進んで、還元剤噴射弁25及び第2の還元剤通路33内に残留する還元剤を貯蔵タンク21内に回収するパージ処理を実施する。
 図8は、パージ処理を実施するための具体的なフローの一例を示している。このフローの例では、まず、ステップS11において、制御処理装置40は、リバーティングバルブ24への通電をオンにして、還元剤が還元剤噴射弁25側から貯蔵タンク21側へと流れるように流路を切り替えるとともに、ポンプ23の出力Vpumpを、あらかじめ設定した所定の出力Vpump0にセットする。
 次いで、制御処理装置40は、ステップS12において還元剤噴射弁25の駆動デューティを100%にセットして開弁指示を出力した後、ステップS13においてタイマカウントを開始する。これによって、還元剤噴射弁25及び第2の還元剤通路33内の減圧が開始される。
 図7に戻り、パージ処理が開始された後、制御処理装置40は、ステップS3において、第2の還元剤通路33内に還元剤を再充填する制御を実施する。
 図9は、還元剤の再充填を実施するための具体的なフローの一例を示している。このフローの例では、まず、ステップS21において、制御処理装置40は、図8のステップS13で開始されたタイマ値Tが所定の基準値T0に到達したか否かを判別する。そして、タイマ値Tが基準値T0に到達したときにはステップS22に進み、制御処理装置40は、ポンプ23の出力を維持したまま、還元剤噴射弁25への通電を停止するとともに、リバーティングバルブ24への通電を停止して、還元剤が貯蔵タンク21側から還元剤噴射弁25側へと流れるように流路を切り替える。次いで、制御処理装置40は、ステップS23において、タイマ値を一旦リセットするとともに再びタイマカウントを開始する。これによって、還元剤噴射弁25及び第2の還元剤通路33内への還元剤の再充填が開始される。
 図7に戻り、還元剤の再充填が開始された後、制御処理装置40は、ステップS4において、還元剤噴射弁25の異常判定を実施する。
 図10は、還元剤噴射弁25の異常判定を実施するための具体的なフローの一例を示している。このフローの例では、まず、ステップS31において、制御処理装置40は、図9のステップS23で開始されたタイマ値Tが所定の基準値T1に到達したか否かを判別する。そして、タイマ値Tが基準値T1に到達したときにはステップS32に進み、制御処理装置40は、第2の還元剤通路33内の圧力Puを検出した後、ステップS33に進み、検出した圧力Puが第1の判定閾値Pu1以上であるか否かを判別する。
 この第1の判定閾値Pu1は、還元剤噴射弁25の閉固着の有無を判別するための閾値としてあらかじめ実験等によって求められて記憶されている値である。検出した圧力Puが第1の判定閾値Pu1以上となっている場合には、ステップS34に進み、制御処理装置40は閉固着発生を現わすフラグをセットした後、ステップS38においてタイマ値をリセットして異常判定を終了する。一方、検出した圧力Puが第1の判定閾値Pu1未満となっている場合には、ステップS35に進み、今度は、検出した圧力Puが第2の判定閾値Pu2未満であるか否かを判別する。
 この第2の判定閾値Pu2は、還元剤噴射弁25の開固着の有無を判別するための閾値としてあらかじめ実験等によって求められて記憶されている値である。検出した圧力Puが第2の判定閾値Pu2未満となっている場合には、ステップS36に進み、制御処理装置40は開固着発生を現わすフラグをセットした後、ステップS38においてタイマ値をリセットして異常判定を終了する。一方、検出した圧力Puが第2の判定閾値Pu2以上となっている場合には、ステップS37に進み、制御処理装置40は開固着を現わすフラグ及び閉固着を現わすフラグをともにリセットした後、ステップS38においてタイマ値をリセットして異常判定を終了する。
 ここで説明した異常判定のフローの例は、還元剤の再充填開始から所定時間経過後の圧力Puを第1の判定閾値Pu1及び第2の判定閾値Pu2と比較して開固着又は閉固着の有無を判定するものであるが、すでに述べたように、所定期間における圧力上昇速度や圧力増加量を求めて、所定の判定閾値と比較するようにしてもよい。
 図7に戻り、異常判定が終了した後、制御処理装置40は、ステップS5において、再び還元剤噴射弁25及びリバーティングバルブ24への通電をオンにして、パージ処理を再開させる。そして、所定時間経過後にはポンプ23の駆動も停止させてパージ処理を終了する。これによって、還元剤供給装置20の動作は完全に停止する。この間、還元剤噴射弁25の開固着又は閉固着に応じて、運転者等に対して異常の発生を知らせる指示信号を生成するようにしてもよい。
 以上説明した本実施形態の還元剤噴射弁の異常判定装置及び還元剤供給装置によれば、開固着状態、閉固着状態、正常状態それぞれにおいて現れる圧力変化の違いに基づいて、還元剤噴射弁の開固着及び閉固着を区別して精度よく検出することができる。また、本実施形態においては、内燃機関1の停止時に実施されるパージ処理を利用して異常判定が実施されるようになっているために、内燃機関1の運転中の還元剤噴射制御を中断することなく異常判定を実施することができる。

 

Claims (4)

  1.  液体の還元剤が収容された貯蔵タンクと、前記還元剤を圧送するポンプと、前記ポンプによって圧送された前記還元剤を内燃機関の排気管内に噴射する還元剤噴射弁と、前記ポンプと前記還元剤噴射弁とを接続する還元剤通路と、を備えた還元剤供給装置における前記還元剤噴射弁の固着異常を検出するための還元剤噴射弁の異常検出装置において、
     前記還元剤噴射弁の開弁指示がなされた状態で前記還元剤通路内の前記還元剤を前記貯蔵タンクに回収する制御を行う還元剤回収制御手段と、
     前記還元剤の回収制御後に、前記還元剤噴射弁の閉弁指示がなされた状態で前記還元剤通路に前記還元剤を再充填する制御を行う還元剤充填制御手段と、
     前記還元剤の再充填制御時における前記還元剤通路内の圧力変化に基づいて、前記還元剤噴射弁の固着異常の有無を判定する異常判定手段と、
     を備えることを特徴とする還元剤噴射弁の異常検出装置。
  2.  前記異常判定手段は、前記圧力変化に基づいて前記還元剤噴射弁の開固着及び閉固着をともに判定可能に構成されることを特徴とする請求項1に記載の還元剤噴射弁の異常検出装置。
  3.  前記固着異常の判定を、前記内燃機関の停止時に実施される前記還元剤の回収制御時に実施することを特徴とする請求項1又は2に記載の還元剤噴射弁の異常検出装置。
  4.  請求項1~3のいずれか一項に記載された還元剤噴射弁の異常検出装置と、液体の還元剤が収容される貯蔵タンクと、前記還元剤を圧送するためのポンプと、前記ポンプによって圧送された前記還元剤を内燃機関の排気管内に噴射するための還元剤噴射弁と、前記ポンプと前記還元剤噴射弁とを接続する還元剤通路と、を備えた還元剤供給装置。

     
PCT/JP2011/067023 2010-11-08 2011-07-27 還元剤噴射弁の異常判定装置及び還元剤供給装置 WO2012063530A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012542830A JP5547815B2 (ja) 2010-11-08 2011-07-27 還元剤噴射弁の異常判定装置及び還元剤供給装置
CN201180053777.9A CN103189610B (zh) 2010-11-08 2011-07-27 还原剂喷射阀的异常判定装置及还原剂供给装置
US13/882,348 US9145817B2 (en) 2010-11-08 2011-07-27 Reducing agent injection valve abnormality detection unit and reducing agent supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-250181 2010-11-08
JP2010250181 2010-11-08

Publications (1)

Publication Number Publication Date
WO2012063530A1 true WO2012063530A1 (ja) 2012-05-18

Family

ID=46050688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067023 WO2012063530A1 (ja) 2010-11-08 2011-07-27 還元剤噴射弁の異常判定装置及び還元剤供給装置

Country Status (4)

Country Link
US (1) US9145817B2 (ja)
JP (1) JP5547815B2 (ja)
CN (1) CN103189610B (ja)
WO (1) WO2012063530A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113202A (ja) * 2011-11-29 2013-06-10 Hino Motors Ltd インジェクタの制御方法
JP2013234603A (ja) * 2012-05-09 2013-11-21 Bosch Corp 還元剤噴射弁の異常検出装置及び還元剤供給装置
WO2014038084A1 (ja) * 2012-09-10 2014-03-13 トヨタ自動車 株式会社 添加剤供給システムの制御装置
JP2014129765A (ja) * 2012-12-28 2014-07-10 Isuzu Motors Ltd 尿素scr用尿素水消費量診断装置
JP2016205363A (ja) * 2014-06-12 2016-12-08 トヨタ自動車株式会社 尿素水供給システム
JP2017129094A (ja) * 2016-01-22 2017-07-27 株式会社デンソー 異常判定装置
JP2017145744A (ja) * 2016-02-17 2017-08-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2019148252A (ja) * 2018-02-28 2019-09-05 株式会社デンソー 排気浄化システムの電子制御装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013101573A1 (de) * 2013-02-18 2014-08-21 Emitec France S.A.S Verfahren zum Beheizen einer Fördervorrichtung
JP2015017523A (ja) * 2013-07-10 2015-01-29 日野自動車株式会社 燃料添加弁の故障検出装置
US9399942B2 (en) * 2013-09-16 2016-07-26 International Engine Intellectual Property Company, Llc. Reductant delivery performance diagnostics system
CN103511038B (zh) * 2013-09-18 2016-01-13 潍柴动力股份有限公司 监控尿素喷嘴电磁阀卡死的方法和系统
FR3020832B1 (fr) * 2014-05-06 2016-05-27 Peugeot Citroen Automobiles Sa Procece de deblocage d'un systeme de reduction selective catalytique
CN206860262U (zh) * 2016-06-06 2018-01-09 天纳克(苏州)排放系统有限公司 集成装置以及尾气后处理系统
DE102016219536B4 (de) * 2016-10-07 2018-04-19 Continental Automotive Gmbh Verfahren und Vorrichtung zur Überwachung eines Drucksensors in einem hydraulischen System eines Kraftfahrzeugs
US10151229B2 (en) * 2016-11-28 2018-12-11 GM Global Technology Operations LLC Method for controlling an exhaust gas treatment system
JP6669093B2 (ja) 2017-02-02 2020-03-18 株式会社デンソー 異常診断装置および還元剤噴射システム
CN109869217B (zh) * 2017-12-05 2022-04-15 罗伯特·博世有限公司 用于尿素水溶液喷射系统的喷嘴阻塞诊断系统和方法
CN110748404B (zh) * 2018-07-24 2022-04-26 福爱电子(贵州)有限公司 一种电磁驱动的尿素泵obd诊断方法
FR3123091B1 (fr) * 2021-05-21 2023-04-07 Vitesco Technologies Procede d’identification d’un defaut d’injection d’uree dans une ligne d’echappement d’un vehicule
CN114233448B (zh) * 2021-12-22 2022-10-28 潍柴动力股份有限公司 一种尿素喷嘴保护方法、装置、车辆及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129945A (ja) * 2000-10-25 2002-05-09 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002213231A (ja) * 2000-07-24 2002-07-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007509275A (ja) * 2003-12-19 2007-04-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 配量弁の作動方法および装置
JP2008101564A (ja) * 2006-10-20 2008-05-01 Denso Corp エンジンの排気浄化装置
JP2011117440A (ja) * 2009-10-30 2011-06-16 Bosch Corp 還元剤噴射弁の異常検出装置及び異常検出方法、並びに内燃機関の排気浄化装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167698B1 (en) * 1999-12-21 2001-01-02 Ford Motor Company Exhaust gas purification system for a lean burn engine
JP4152833B2 (ja) * 2003-07-30 2008-09-17 日産ディーゼル工業株式会社 エンジンの排気浄化装置
JP5092410B2 (ja) 2007-01-12 2012-12-05 トヨタ自動車株式会社 内燃機関還元剤添加弁診断装置
JP4906525B2 (ja) 2007-01-26 2012-03-28 ボッシュ株式会社 還元剤噴射弁の詰まり判定装置及び還元剤噴射弁の詰まり判定方法
JP4165896B2 (ja) * 2007-02-19 2008-10-15 ボッシュ株式会社 還元剤経路の詰まり判定装置及び還元剤経路の詰まり判定方法
JP4895888B2 (ja) * 2007-03-29 2012-03-14 Udトラックス株式会社 還元剤添加システムの解凍判定装置及びエンジンの排気浄化装置
JP5139765B2 (ja) 2007-10-12 2013-02-06 ボッシュ株式会社 還元剤供給システムの制御装置及び制御方法
JP4840703B2 (ja) * 2007-11-16 2011-12-21 トヨタ自動車株式会社 排気浄化システムの異常診断装置
JP5475243B2 (ja) 2008-03-07 2014-04-16 ボッシュ株式会社 還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置
JP4557063B2 (ja) * 2008-07-18 2010-10-06 株式会社デンソー パティキュレートフィルタ再生装置及びその駆動方法
JP5633190B2 (ja) * 2010-05-25 2014-12-03 いすゞ自動車株式会社 復帰制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213231A (ja) * 2000-07-24 2002-07-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002129945A (ja) * 2000-10-25 2002-05-09 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007509275A (ja) * 2003-12-19 2007-04-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 配量弁の作動方法および装置
JP2008101564A (ja) * 2006-10-20 2008-05-01 Denso Corp エンジンの排気浄化装置
JP2011117440A (ja) * 2009-10-30 2011-06-16 Bosch Corp 還元剤噴射弁の異常検出装置及び異常検出方法、並びに内燃機関の排気浄化装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113202A (ja) * 2011-11-29 2013-06-10 Hino Motors Ltd インジェクタの制御方法
JP2013234603A (ja) * 2012-05-09 2013-11-21 Bosch Corp 還元剤噴射弁の異常検出装置及び還元剤供給装置
WO2014038084A1 (ja) * 2012-09-10 2014-03-13 トヨタ自動車 株式会社 添加剤供給システムの制御装置
JP2014129765A (ja) * 2012-12-28 2014-07-10 Isuzu Motors Ltd 尿素scr用尿素水消費量診断装置
JP2016205363A (ja) * 2014-06-12 2016-12-08 トヨタ自動車株式会社 尿素水供給システム
JP2017129094A (ja) * 2016-01-22 2017-07-27 株式会社デンソー 異常判定装置
JP2017145744A (ja) * 2016-02-17 2017-08-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2019148252A (ja) * 2018-02-28 2019-09-05 株式会社デンソー 排気浄化システムの電子制御装置
JP7035625B2 (ja) 2018-02-28 2022-03-15 株式会社デンソー 排気浄化システムの電子制御装置
DE102019201976B4 (de) 2018-02-28 2024-05-02 Denso Corporation Elektronische steuerungsvorrichtung zum bestimmen, ob eine fixierung eines harnstoffeinspritzers eines abgasreinigungssystems aufgetreten ist

Also Published As

Publication number Publication date
JPWO2012063530A1 (ja) 2014-05-12
US20130213014A1 (en) 2013-08-22
US9145817B2 (en) 2015-09-29
CN103189610A (zh) 2013-07-03
JP5547815B2 (ja) 2014-07-16
CN103189610B (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5547815B2 (ja) 還元剤噴射弁の異常判定装置及び還元剤供給装置
JP5592759B2 (ja) 還元剤噴射弁の異常判定装置及び異常判定方法並びに内燃機関の排気浄化装置
JP4964353B1 (ja) 還元剤供給装置の異常診断装置及び還元剤供給装置
JP6024478B2 (ja) 尿素scr用尿素水配管閉塞検出装置
WO2011145567A1 (ja) Scr解凍制御システム
JP5139765B2 (ja) 還元剤供給システムの制御装置及び制御方法
JP5475243B2 (ja) 還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置
US20110099983A1 (en) Reducing agent injection valve abnormality detection device and abnormality detection method, and internal combustion engine exhaust gas purification system
JP4706627B2 (ja) エンジンの排気浄化装置
KR101164422B1 (ko) 디젤 차량의 배기가스 저감장치
WO2014061377A1 (ja) 還元剤回収制御方法及び還元剤供給装置並びに電子制御装置
JP6663680B2 (ja) 還元剤噴射装置の制御装置
JP6088865B2 (ja) 還元剤供給装置の制御方法
JP2012127214A (ja) 還元剤供給装置及び内燃機関の排気浄化装置
JP2010037979A (ja) 排気浄化装置
JP6017866B2 (ja) 還元剤供給装置及び液体還元剤の回収制御方法並びに排気浄化装置
JP2012163029A (ja) 還元剤供給装置
JP6905910B2 (ja) 診断装置及び診断方法
JP2012127308A (ja) 還元剤供給装置及び内燃機関の排気浄化装置
WO2015001858A1 (ja) 還元剤供給装置及びその制御方法
JPWO2018047554A1 (ja) 制御装置
JP2014015856A (ja) 還元剤供給装置及び液体還元剤の回収制御方法並びに排気浄化装置
JP5914151B2 (ja) 還元剤噴射弁の異常検出装置及び還元剤供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542830

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13882348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840006

Country of ref document: EP

Kind code of ref document: A1