JP4706627B2 - エンジンの排気浄化装置 - Google Patents

エンジンの排気浄化装置 Download PDF

Info

Publication number
JP4706627B2
JP4706627B2 JP2006325290A JP2006325290A JP4706627B2 JP 4706627 B2 JP4706627 B2 JP 4706627B2 JP 2006325290 A JP2006325290 A JP 2006325290A JP 2006325290 A JP2006325290 A JP 2006325290A JP 4706627 B2 JP4706627 B2 JP 4706627B2
Authority
JP
Japan
Prior art keywords
reducing agent
freezing
urea water
engine
addition valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006325290A
Other languages
English (en)
Other versions
JP2008138583A (ja
Inventor
宏明 永友
正博 岡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006325290A priority Critical patent/JP4706627B2/ja
Priority to DE102007047906A priority patent/DE102007047906A1/de
Publication of JP2008138583A publication Critical patent/JP2008138583A/ja
Application granted granted Critical
Publication of JP4706627B2 publication Critical patent/JP4706627B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、エンジンの排気浄化装置に係り、特に尿素SCR(Selective Catalytic Reduction)システムに好適に採用される排気浄化装置に関する。
近年、自動車等に適用されるエンジン(特にディーゼルエンジン)において、排気中のNOx(窒素酸化物)を高い浄化率で浄化する排気浄化装置として、尿素SCRシステムの開発が進められており、一部実用化に至っている。尿素SCRシステムとしては次の構成が知られている。
すなわち、尿素SCRシステムでは、エンジン本体に接続された排気管にSCR触媒が設けられるとともに、その上流側に、還元剤としての尿素水(尿素水溶液)を排気管内に添加する尿素水添加弁が設けられている。尿素水添加弁には、尿素水供給管を介して尿素水タンクが接続されており、例えば尿素水タンク内に配設されたポンプが吐出駆動されることで、尿素水が、尿素水タンクから尿素水供給管を通じて尿素水添加弁に供給されるようになっている。
かかるシステムにおいては、尿素水添加弁により排気管内に尿素水が添加されることで、排気と共に尿素水がSCR触媒に供給され、該SCR触媒上でのNOxの還元反応によって排気が浄化される。NOxの還元に際しては、尿素水が排気熱で加水分解されることによりアンモニア(NH3)が生成され、SCR触媒にて選択的に吸着された排気中のNOxに対しアンモニアが添加される。そして、同SCR触媒上で、アンモニアに基づく還元反応が行われることによってNOxが還元、浄化されることになる。
ところで、上述した尿素SCRシステムにおいて、還元剤として使用される尿素水は使用温度範囲内の低温域(例えば−11℃)で凍結し、その凍結に伴い尿素水の使用に支障が生じる。そこで、尿素水の凍結対策として、エンジン冷却水の一部を尿素水タンクに導く冷却水循環配管を設けるとともに、その冷却水循環配管の途中に冷却水遮断弁を設け、エンジン始動時に冷却水遮断弁を開いて冷却水循環配管に冷却水を循環させるようにした技術が提案されている(例えば、特許文献1参照)。
特開2006−125331号公報
上記特許文献1等の従来技術の場合、エンジン始動後において尿素水を解凍することで尿素水の使用(尿素水の添加によるNOxの還元、浄化)が可能となるが、これは尿素水の凍結が生じた際においてその凍結後に有効となり得る対策であり、凍結防止については何ら対策が講じられていない。そのため、凍結発生により生じる不都合自体は解消できないと考えられる。すなわち、尿素水が凍結すると体積が約7%増加することに着眼すると、その体積増加が原因で尿素水供給管等にて破損が生じるおそれがあると考えられる。
本発明は、還元剤添加弁や還元剤供給部の保護を図りつつ、還元剤の添加による好適なる排気浄化を行わせることができるエンジンの排気浄化装置を提供することを主たる目的とするものである。
以下、上記課題を解決するための手段、及びその作用効果について説明する。
本発明におけるエンジンの排気浄化装置では、エンジン運転時において還元剤供給部から還元剤添加弁に液状の還元剤が供給され、その還元剤が還元剤添加弁の噴出口から排気通路内に添加供給される。これにより、排気浄化用触媒(還元触媒)において還元剤の添加に基づく特定の排気浄化反応が促進される。そして、かかる排気浄化装置において、本発明(請求項1)では特に、エンジンの停止後において、還元剤添加弁や還元剤供給部に残留する還元剤の凍結変化に応じて前記還元剤添加弁を開弁させて前記噴出口から残留還元剤を排気通路内に放出させるようにしている。
要するに、エンジン運転時には、還元剤添加弁やその他還元剤供給部(還元剤通路等)が還元剤で満たされた状態にあり、エンジン停止後には、同じくそれらが還元剤で満たされた状態のままとなる。この場合、寒冷地において夜間等に還元剤(残留還元剤)が凍結すると、その体積が増え、それに起因して還元剤添加弁や還元剤供給部で破損等の不都合が生じるおそれがある。この点本発明では、エンジン停止後において、残留還元剤の凍結変化に応じて還元剤添加弁が開弁されて、還元剤の体積増加に伴う圧力上昇により残留還元剤が放出されるため、還元剤の体積増加による還元剤添加弁や還元剤供給部の破損等が抑制できる。その結果、還元剤添加弁や還元剤供給部の保護を図りつつ、還元剤の添加による好適なる排気浄化を行わせることができる。
請求項2に記載の発明では、エンジンの停止後において、前記還元剤添加弁等の残留還元剤が凍結状態に移行する凍結移行過程にあることを判定し、その凍結移行過程にある旨判定した場合に前記還元剤添加弁を開弁させる。つまり、凍結移行過程においては、還元剤が液相状態から固相状態に移行し、その状態移行に際して還元剤の体積が増加する。かかる場合、上記のように凍結移行過程にあることを判定することで、当該凍結移行過程での体積増加に合わせて残留還元剤を放出することができる。したがって、凍結による還元剤の体積増加分を還元剤添加弁等から適切に排出することができる。
凍結判定の手法として具体的には、請求項3に記載したように、エンジン停止後における還元剤温度(還元剤添加弁等における残留還元剤の温度)に基づいて前記凍結移行過程にあることを判定すると良い。すなわち、還元剤の温度が凝固点温度まで低下すると、還元剤が徐々に凍結状態に移行しはじめる。この場合、エンジン停止後における還元剤温度を逐次検出することで、還元剤が凍結移行過程にあることが判定できる。
なお、還元剤温度は、還元剤添加弁や還元剤供給部(配管等)に設けたセンサ等により直接計測したり、還元剤添加弁の周囲温度(排気管の温度、外気温、エンジン水温等)に基づいて推定したりすることで検出されると良い。
又は、請求項4に記載したように、エンジン停止後における還元剤圧力(還元剤添加弁等における残留還元剤の圧力)に基づいて前記凍結移行過程にあることを判定すると良い。すなわち、凍結移行過程では、還元剤の体積増加に伴う圧力変化が生じる。この場合、エンジン停止後における還元剤圧力を逐次検出することで、還元剤が凍結移行過程にあることが判定できる。
請求項5に記載の発明では、前記凍結移行過程において前記還元剤添加弁を複数回開弁させる。これにより、凍結移行過程において還元剤の凍結が徐々に進行する場合にも、体積増加分の還元剤を確実に放出できる。
前述のとおり還元剤温度や還元剤圧力によって凍結移行過程の判定が可能となるが、同過程を誤差無く判定することは困難であると考えられる。この点、請求項6に記載したように、前記凍結移行過程に相当する時期に対してその直前の液相状態と直後の固相状態とを含む状態移行期であることを判定し、前記状態移行期において前記還元剤添加弁を開弁させると良い。これにより、凍結移行過程の判定に多少の誤差があったとしても、体積増加分の還元剤を漏れなく排出することができる。
上記した還元剤放出処理はエンジン停止後に行われるものであり、例えば自動車への適用を想定すると、凍結判定や還元剤添加弁の駆動を実施する都度、車載制御装置(ECU)を起動させるとともに、センサやアクチュエータ等に電力供給を行う必要がある。凍結判定に関しては、例えば、エンジン停止後において、所定時間が経過する都度、前記凍結移行過程にあるかどうかが繰り返し判定される。かかる場合、エンジン停止中における電力消費が極力低減されることが望ましい。そこで、請求項7に記載したように、還元剤添加弁の開弁による還元剤放出後は、前記凍結判定手段による凍結判定を停止すると良い。これにより、還元剤の放出後も不要に凍結判定等が実施されることが抑制され、ひいては消費電力の低減を図ることができる。
また、請求項8に記載したように、エンジンの停止時における外気温等の温度情報に基づいて、残留還元剤の温度が、同還元剤の凝固点温度を基に設定した基準温度(例えば、凝固点温度+10℃)以下になる時期を予測し、その予測時期において前記凍結移行過程にあるかどうかを判定すると良い。この場合、残留還元剤が凍結状態に移行しそうな時期にのみ凍結判定が行われるため、やはり消費電力の低減を図ることができる。
請求項9に記載の発明では、エンジンの停止時又は停止直後に、前記還元剤添加弁等の残留還元剤が凍結状態に移行する凍結移行時期を予測する。そして、予測した凍結移行時期にて前記還元剤添加弁を開弁させる。つまり、エンジン停止後における還元剤の温度遷移はある程度予測できると考えられ、それ故、凍結移行時期の予測も可能であると考えられる。かかる場合にも、凍結移行過程での体積増加に合わせて残留還元剤を放出することができ、凍結による還元剤の体積増加分を還元剤添加弁等から適切に排出することができる。
エンジン停止後における還元剤の温度遷移は、外気温等に応じて変わると考えられる。そこで、請求項10に記載したように、エンジンの停止時又はその停止直後における外気温等の温度情報に基づいて、前記凍結移行時期を予測すると良い。
請求項11に記載の発明では、前記凍結移行時期(予測時期)において前記還元剤添加弁を複数回開弁させる。これにより、凍結移行時期において還元剤の凍結が徐々に進行する場合にも、体積増加分の還元剤を確実に放出できる。
特に、エンジン停止時又は停止直後に凍結移行時期を予測する場合、実際の凍結移行過程を精度良く推測することは困難であるため、凍結移行時期を比較的長めの期間とする必要がある。かかる場合において、凍結移行時期で還元剤添加弁の開弁(還元剤放出)を複数回実施することにより、実際の凍結移行過程において確実に還元剤の放出が実施できる。
一般に、還元剤供給部には還元剤を圧送する圧送ポンプが設けられ、その圧送ポンプの駆動により還元剤添加弁に対して還元剤が圧送される。かかる構成では、エンジンの停止直後に、還元剤添加弁等の内部に圧力が残り、同内部圧力が大気圧に比して高圧となる。このように還元剤添加弁等の内部に圧力が残ると、凍結変化時の体積増加に際して内部圧力の高圧化が顕著になり、還元剤添加弁等の破損が一層懸念される。そこで、請求項12に記載したように、エンジンの停止直後において、前記残留還元剤の凍結変化に関係なく前記還元剤添加弁を一時的に開弁させると良い。これにより、還元剤添加弁等の内部圧力の低減を図ることができる。
本排気浄化装置において、前記還元剤は尿素水溶液であり、前記排気浄化用触媒は、尿素水溶液から生成されるアンモニアによりNOxを還元するNOx還元反応を前記排気浄化反応とし、そのNOx還元反応を促進するものであると良い(請求項13)。
尿素SCRシステムに代表されるように、尿素水溶液を還元剤として用いるNOx浄化装置は、排気中のNOxを高い浄化率で浄化する排気浄化装置として期待されている。したがって本発明は、尿素SCRシステムに適用して特に有益である。また、例えば自動車の分野でこの排気浄化装置を採用し、ディーゼルエンジン搭載の車両等にこの装置を装着した場合には、燃焼過程でNOxの発生を許容して燃費及びPMを改善することなども可能になり、ひいては自動車の性能向上や排気清浄化に大きく貢献することができるようになる。
以下、本発明に係る排気浄化装置を具体化した一実施形態について図面を参照しつつ説明する。本実施形態の排気浄化装置は、選択還元型触媒を用いて排気中のNOxを浄化するものであり、尿素SCRシステムとして構築されている。はじめに、図1を参照してこのシステムの構成について詳述する。図1は、本実施形態に係る尿素SCRシステムの概要を示す構成図である。
図1に示すように、本システムは、自動車に搭載されたディーゼルエンジン(図示略)により排出される排気を浄化対象として、大きくは、排気を浄化するための各種アクチュエータ及び各種センサ、並びにECU(電子制御ユニット)30等を有して構築されている。
エンジン排気系の構成として具体的には、図示しないエンジン本体に接続された排気管11が設けられており、その排気管11にはDPF(Diesel Particulate Filter)12と選択還元触媒(以下、SCR触媒という)13とが配設されている。また、排気管11においてDPF12とSCR触媒13との間には、還元剤としての尿素水(尿素水溶液)を排気管11内に添加供給するための尿素水添加弁15が設けられている。なお、図示のとおり排気管11は複数の管材が連結されて構成されているが、ここではそれらを総じて排気管11としている。
排気管11においてSCR触媒13の下流側には、NOx検出部(NOxセンサ)と排気温検出部(排気温センサ)とが共に内蔵された排気センサ16が設けられており、同SCR触媒13の下流側にて、排気中のNOx量(ひいてはSCR触媒13によるNOxの浄化率)、及び排気の温度が検出されるようになっている。排気管11の更に下流には、余剰のアンモニア(NH3)を除去するためのアンモニア除去装置(例えば酸化触媒)や、排気中のアンモニア量を検出するためのアンモニアセンサ等が必要に応じて設けられる。
DPF12は、排気中のPM(粒子状物質)を捕集する連続再生式のPM除去用フィルタである。DPF12は白金系の酸化触媒を担持しており、PM成分の1つである可溶性有機成分(SOF)とともに、HCやCOを除去することができるようになっている。ちなみに、DPF12に捕集されたPMは、ディーゼルエンジンにおけるメイン燃料噴射後のポスト噴射等により燃焼除去でき(再生処理に相当)、これによりDPF12の継続使用が可能となっている。
SCR触媒13はNOxの還元反応(排気浄化反応)を促進するものであり、例えば、
4NO+4NH3+O2→4N2+6H2O …(式1)
6NO2+8NH3→7N2+12H2O …(式2)
NO+NO2+2NH3→2N2+3H2O …(式3)
のような反応を促進して排気中のNOxを還元する。そして、これらの反応においてNOxの還元剤となるアンモニア(NH3)を添加供給するものが、同SCR触媒13の上流側に設けられた尿素水添加弁15である。
尿素水添加弁15は、既存の燃料噴射弁(インジェクタ)とほぼ同様の構成を有するものであり、公知の構成が採用できるため、ここでは構成を簡単に説明する。尿素水添加弁15は、電磁ソレノイド等からなる駆動部と、尿素水を流通させる尿素水通路や、先端噴出口15aを開閉するためのニードルを有する弁体部とを備えた電磁式開閉弁として構成されており、ECU30からの駆動信号に基づき開弁又は閉弁する。すなわち、前記駆動信号に基づき電磁ソレノイドが通電されると、該通電に伴いニードルが開弁方向に移動し、そのニードル移動に伴い先端噴出口15aから尿素水が添加(噴射)される。
尿素水添加弁15に対しては、尿素水タンク21から尿素水が逐次供給されるようになっており、次に、尿素水供給系の構成について説明する。
尿素水タンク21は給液キャップ付きの密閉容器にて構成されており、その内部に所定濃度の尿素水が貯蔵されている。なお、タンク内尿素水の凍結対策として、尿素水タンク21にヒータを付設したり、タンク周りに断熱シート等の断熱材を配設したりすることも可能である。
尿素水タンク21内には、尿素水に浸漬した状態で尿素水ポンプ22が設けられている。尿素水ポンプ22は、ECU30からの駆動信号により回転駆動される電動式ポンプである。尿素水ポンプ22には尿素水供給管23の一端が接続されており、同尿素水供給管23の他端は尿素水添加弁15に接続されている。尿素水供給管23内は尿素水通路となっている。尿素水ポンプ22が回転駆動されることにより、尿素水が汲み上げられ尿素水供給管23を通じて尿素水添加弁15側に吐出(圧送)される。尿素水ポンプ22は、尿素水タンク21内において尿素水に浸漬した状態で設けられる以外に、尿素水供給管23の中途部分に設けられる構成であっても良い。
尿素水供給管23には、尿素水を濾過するためのフィルタ24と、尿素水の圧力を調整するための圧力調整弁25とが設けられている。したがって、尿素水ポンプ22から吐出(圧送)された尿素水はフィルタ24により異物が除去され、その後、圧力調整弁25により所定の供給圧力に調整される。圧力調整の結果、余剰となった尿素水はリターン配管26を通じて尿素水タンク21に戻されるようになっている。また、尿素水供給管23には、尿素水供給管23内の尿素水の圧力を検出するための圧力センサ27と、同尿素水の温度を検出するための温度センサ28とが設けられている。なお、尿素水タンク21、尿素水ポンプ22、尿素水供給管23等が「還元剤供給部」に相当する。
上記システムの中で電子制御ユニットとして主体的に排気浄化に係る制御を行う部分がECU30である。ECU30は、周知のマイクロコンピュータ(図示略)を備え、各種センサの検出値に基づいて所望とされる態様で尿素水添加弁15をはじめとする各種アクチュエータを操作することにより、排気浄化に係る各種の制御を行うものである。具体的には、例えば尿素水添加弁15の通電時間や尿素水ポンプ22の駆動量等を制御することにより、排気管11内に、適切な時期に適正な量の尿素水を添加供給する。なお、ECU30には、上述した排気センサ16、圧力センサ27、温度センサ28の他に、水温センサ31や外気温センサ32の検出信号が逐次入力されるようになっている。
本実施形態に係る上記システムでは、エンジン運転時において、尿素水ポンプ22の駆動により尿素水タンク21内の尿素水が尿素水供給管23を通じて尿素水添加弁15に圧送され、尿素水添加弁15により排気管11内に尿素水が添加供給される。すると、排気管11内において排気と共に尿素水がSCR触媒13に供給され、SCR触媒13においてNOxの還元反応が行われることによってその排気が浄化される。NOxの還元に際しては、例えば、
(NH2)2CO+H2O→2NH3+CO2 …(式4)
のような反応をもって、尿素水が排気熱で加水分解されることによりアンモニア(NH3)が生成され、SCR触媒13にて選択的に吸着された排気中のNOxに対し、このアンモニアが添加される。そして、同SCR触媒13上で、そのアンモニアに基づく還元反応(上記反応式(式1)〜(式3))が行われることによって、NOxが還元、浄化されることになる。
ところで、還元剤として用いられる尿素水は−11℃で凍結し、その凍結に伴い体積が7%程度増加する。この場合、エンジン停止後において尿素水供給系の各構成部品(尿素水添加弁15や尿素水供給管23)に尿素水が残留しており、その残留尿素水の体積が凍結により増加すると、尿素水添加弁15や尿素水供給管23において破損のおそれが生じる。そこで本実施形態では、尿素水凍結対策として、エンジン停止後において、尿素水の凍結変化を監視するとともに、その凍結変化に伴い体積増加する際に尿素水添加弁15を一時的に開状態(ON)とし、その開弁によって尿素水添加弁15や尿素水供給管23の残留尿素水を排気管11内に放出する。そしてこれにより、尿素水凍結時の体積増加による部品損傷等の不都合を抑制することとしている。
図2は、残留尿素水の放出処理を示すフローチャートであり、本処理はエンジン停止後にECU30により実行される。具体的には、ECU30にはエンジン停止後の経過時間を計測するタイマ(ソークタイマ)が設けられており、エンジン停止後、所定時間(例えば10〜数10分)が経過する都度、ECU30内のマイクロコンピュータが一時的に自動起動されて図2の演算処理が実行されるようになっている。
図2において、ステップS11では、今現在エンジンが停止状態であるか否かを判定し、続くステップS12では、尿素水放出の実行条件が成立しているか否かを判定する。同実行条件は、エンジン停止後において、尿素水添加弁15や尿素水供給管23内の残留尿素水が凍結する可能性があるか否かを判定するものであり、例えばエンジン停止時の外気温を記憶しておき、同外気温が所定のしきい値温度(例えば0℃)以下である場合に、残留尿素水が凍結する可能性があるとして実行条件が成立したとする。
また、ステップS13では、エンジン停止後における残留尿素水の放出が未完了であるか否かを判定する。その判定には、例えば、尿素水放出完了フラグが用いられ、同フラグがセット状態である場合に、尿素水放出が完了していると判定される。ステップS11〜S13のいずれかがNOの場合、そのまま本処理を終了する。
ステップS11〜S13が全てYESの場合、ステップS14に進む。ステップS14では、その時の残留尿素水の温度を推定する。残留尿素水の温度推定手法は任意で良いが、本実施形態では、尿素水供給管23に設置した温度センサ28により尿素水の温度情報を取得し、その温度情報に基づいて残留尿素水の温度を推定する。その他、尿素水添加弁15に設置した温度センサ(図示略)、排気管11に設置した温度センサ(例えば、排気センサ16の排気温検出部)、水温センサ31、外気温センサ32の各検出結果の少なくともいずれかにより残留尿素水の温度を推定することも可能である。
その後、ステップS15では、上記ステップS14における尿素水温度の推定結果に基づいて、今現在、尿素水の凍結移行過程を含む状態移行期(凍結移行過程に相当する時期に対してその直前の液相状態と直後の固相状態とを含む時期)にあって尿素水添加弁15の開弁を要するか否かを判定する。具体的には、尿素水温度が所定の凍結温度域まで低下していなければ、状態移行期になく尿素水添加弁15の開弁が不要であると判定する。また、尿素水温度が所定の凍結温度域まで低下していれば、状態移行期にあり尿素水添加弁15の開弁を要すると判定する。前者の場合、ステップS18に進み、後者の場合、ステップS16に進む。凍結温度域は、尿素水の凍結温度(凝固点温度)を基準に設定されており、例えば凍結温度−5℃〜凍結温度+5℃の温度範囲(−11℃±5℃の温度範囲)である。
ステップS16では、尿素水添加弁15を一時的に開弁させる。そしてその後、ステップS17で所定時間待機した後、ステップS14に戻り、再び残留尿素水の温度を推定する。また、前記同様、尿素水添加弁15の開弁の要否判定、同尿素水添加弁15の開弁処理等を実行する(ステップS15〜S17)。
残留尿素水の温度が凍結温度域まで低下していない場合、又は残留尿素水の温度が凍結温度域まで低下した後さらに低温側に変化した場合には、ステップS15がNOとなり、ステップS18に進む。ステップS18では、今回のECU起動で、尿素水添加弁18が開弁駆動されて残留尿素水の放出(ステップS16)が実行されたか否かを判定する。そして、残留尿素水の放出が実行されていれば、ステップS19に進んで尿素水放出完了フラグをセットする。なお、尿素水放出完了フラグは、バックアップRAM等に保存される情報であり、同フラグ情報は継続的に保持され、次回のエンジン始動時(イグニッションオン時)にクリアされる。
尿素水放出完了フラグがセットされた後は、それ以降ECU30が起動されても、ステップS13がNOとなり、残留尿素水の温度推定や尿素水添加弁15の開弁処理などが不要に実施されないようになっている。
次に、エンジン停止後における残留尿素水の温度変化、圧力変化等を図3及び図4により説明する。ここで、図3には、上述した残留尿素水の放出処理を行わない場合について尿素水温度や尿素水圧力の変化を示し、図4には、上述した残留尿素水の放出処理を行った場合(本実施形態)について尿素水温度や尿素水圧力の変化を示している。なお図3,図4では、寒冷地で使用される車両について、エンジン停止後の外気温が極低温(−15℃程度)になる場合を想定しており、いずれも同じ変化率で尿素水温度が低下するものとしている。
図3では、エンジンの停止後、尿素水温度(尿素水添加弁15等の残留尿素水の温度)が周囲温度等に応じて低下する。そして、タイミングt1で尿素水温度が凝固点温度(−11℃)に達すると、その後、タイミングt2になるまで尿素水温度が凝固点温度で保持される。このとき、タイミングt1〜t2の期間では、尿素水が凍結移行過程にあり、体積増加に伴い尿素水圧力が上昇する。タイミングt1以前は、尿素水が液相状態となる期間であり、t1〜t2の期間は、同尿素水が液相→固相に移行する移行期間である。その後、尿素水が全て凍結すると、同尿素水が固相状態となり、その温度がさらに低下する。
上記のように尿素水が状態移行する場合、液相→固相移行時の圧力上昇(体積増加)に起因して、尿素水添加弁15や尿素水供給管23において破損のおそれが生じる。
上記不都合に対し、本実施形態では、図4に示すように、尿素水温度が所定の凍結温度域(−11℃±5℃の温度範囲)となるタイミングt11〜t14の期間(状態移行期)において、尿素水添加弁15が複数回開弁され、その開弁に伴い尿素水圧力が減じられる。すなわち、凍結移行過程において尿素水添加弁15が複数回開弁される。なお、タイミングt12〜t13は、尿素水温度が凝固点温度で保持される期間である(図3のt1〜t2の期間に相当)。図4では、残留尿素水の放出処理を行った場合の圧力変化を実線で、同放出処理を行っていない場合の圧力変化を二点鎖線で示している。
詳しくは、タイミングt11では、尿素水温度が所定の凍結温度域まで低下したことが判定され、それに伴い尿素水添加弁15が一時的に開弁される。このとき、尿素水添加弁15や尿素水供給管23内の残留尿素水が尿素水添加弁15の先端噴出口15aから排気管11内に放出され、その開弁によって尿素水圧力が大気圧レベルまで減じられる。タイミングt11以降、所定時間TAが経過するごとに尿素水添加弁15が一時的に開弁され、その都度、尿素水圧力が大気圧レベルまで減じられる。
上記のように尿素水の凍結移行過程において尿素水添加弁15が開弁されることで、凍結に伴う尿素水の体積増加に合わせて残留尿素水が放出される。このとき、凍結による尿素水の体積増加分が尿素水添加弁15から確実に排出される。
なお、エンジン停止中においては所定時間ごとにECU30が起動され、その起動に合わせて残留尿素水の温度モニタ等が行われる。そのため実際には、図4のように尿素水温度が凍結温度域に到達して直ちに尿素水添加弁15が開弁される訳ではなく、ECU起動時に尿素水温度が所定の温度域にあれば尿素水添加弁15が開弁される。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
エンジン停止後において、残留尿素水が凍結移行過程にあることを判定し、その凍結移行過程にある旨判定した場合に尿素水添加弁15を一時的に開弁させるようにしたため、尿素水の体積増加による尿素水添加弁15や尿素水供給管23等の破損が抑制できる。その結果、尿素水添加弁15や尿素水供給管23等の保護を図りつつ、尿素水の添加による好適なる排気浄化を行わせることができる。
エンジン停止後の凍結移行過程において尿素水添加弁15を所定の時間間隔で複数回開弁させるようにしたため、尿素水添加弁15を開弁した後、更に尿素水の凍結が進行する場合にも、尿素水の放出が可能となる。したがって、凍結による体積増加分の尿素水を確実に放出することができる。
凍結温度を含む凍結温度域(−11℃±5℃、状態移行期の温度域に相当)を設定し、尿素水温度が凍結温度域にある場合に尿素水添加弁15を開弁させるようにしたため、凍結移行過程直前の液相状態、同過程直後の固相状態においても尿素水添加弁15を開弁させて残留尿素水を放出することができる。これにより、凍結による体積増加分の尿素水を一層確実に放出することができる。また、尿素水が凍結移行過程にあることを誤差無く判定することは困難であると考えられるが、仮に凍結移行過程の判定に多少の誤差があったとしても、体積増加分の尿素水を漏れなく排出することができる。
尿素水添加弁15の開弁による尿素水の放出完了後は、残留尿素水の温度推定や尿素水添加弁15の開弁処理などが実施されないため、これらの処理を無駄に実施することに伴う電力消費が防止できる。これにより、エンジン停止中における電力消費を極力低減し、バッテリ上がり等の不都合を抑制することができる。
SCR触媒13に対する還元剤として尿素水を使用し、SCR触媒13が、尿素水から生成されるアンモニアによりNOxを還元するNOx還元反応(上記反応式(式1)〜(式3))を促進する構成とし、このシステムを、ディーゼルエンジン搭載の車両に装着した。これにより、燃焼過程でNOxの発生を許容して燃費及びPMを改善することなども可能になり、ひいては自動車の性能向上や排気クリーン化に大きく貢献することができるようになる。
本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されても良い。
上記実施形態では、エンジン停止後における尿素水温度(残留尿素水の温度)に基づいて凍結移行過程にあることを判定したが、これを変更し、エンジン停止後における尿素水圧力(残留尿素水の圧力)に基づいて凍結移行過程にあることを判定しても良い。すなわち、凍結移行過程では、尿素水の体積増加に伴う圧力変化が生じることから、その圧力変化を監視することで凍結移行過程にあることを判定する。具体的には、ECU30は、尿素水供給管23に設置した圧力センサ27の検出信号に基づいて尿素水圧力を検出し、その尿素水圧力の変化に基づいて凍結移行過程にあることを判定する。
エンジンの停止時における外気温等の温度情報に基づいて、残留尿素水の温度が、同尿素水の凝固点温度を基に設定した基準温度(例えば、凝固点温度+10℃)以下になる時期を予測し、その予測時期において凍結移行過程にあるかどうかを判定することも可能である。例えば、エンジン停止時の外気温やエンジン水温(エンジン暖機状態)に基づき、尿素水温度が基準温度(凝固点温度+10℃)以下になるのは、エンジン停止から4時間後である、又はエンジン停止から5時間後であるなどと予測する。そして、その予測時期にECU30を起動して残留尿素水の温度推定や尿素水添加弁15の開弁処理などを実施する。この場合、残留尿素水が凍結状態に移行しそうな時期にのみECU30が起動されて凍結判定等が行われることとなる。そのため、消費電力の低減を図ることができる。
上記実施形態では、エンジン停止後において残留尿素水の温度等を随時モニタすることで尿素水が凍結移行過程にあることを判定し、その凍結移行過程にて尿素水添加弁15を開弁したが、これを以下のように変更する。すなわち、エンジンの停止時又は停止直後に、尿素水添加弁15等の残留尿素水が凍結状態に移行する凍結移行時期を予測する。そして、予測した凍結移行時期にて尿素水添加弁15を開弁させる(この場合、エンジン停止後において尿素水温度等のモニタを実施しない)。例えば、エンジン停止時の外気温やエンジン水温(エンジン暖機状態)に基づき、エンジン停止後の凍結移行時期がいつになるのかを予測する。そして、その予測した凍結移行時期にてECU30を起動して尿素水添加弁15の開弁処理を実施する。本構成においても、上記のとおり、凍結移行過程での体積増加に合わせて残留尿素水を放出することができ、凍結による尿素水の体積増加分を尿素水添加弁15等から適切に排出することができる。かかる場合にも、凍結移行時期(予測時期)において尿素水添加弁15を複数回開弁させると良い。これにより、凍結移行時期において尿素水の凍結が徐々に進行する場合にも、体積増加分の尿素水を確実に放出することができる。
エンジン停止直後には、尿素水添加弁15等の内部に圧力が残り、同内部圧力が大気圧に比して高圧となる。このように尿素水添加弁15等の内部に圧力が残ると、凍結変化時の体積増加に際して内部圧力の高圧化が顕著になり、尿素水添加弁15等の破損が一層懸念される。そこで、エンジン停止直後において、残留尿素水の凍結変化に関係なく尿素水添加弁15を一時的に開弁させるようにする。これにより、尿素水添加弁15等の内部圧力の低減を図ることができる。
エンジン停止後における尿素水添加弁15の制御態様は、上記のように一定時間ごとに複数回開弁させる以外に、徐々に時間間隔を短くするようにして複数回開弁させても良い。また、エンジン停止後に尿素水添加弁15を1回のみ開弁させるようにすることも可能である。
エンジン停止時の外気温がしきい値温度(例えば0℃)以上である場合、又は夏期等においては、エンジン停止後におけるECU30の起動(尿素水放出のためのECU起動)を行わないようにすることも可能である。
尿素水添加弁として、エアアシスト式の添加弁を用いることも可能である。具体的には、コンプレッサ(車載コンプレッサ)で圧縮された圧縮空気を尿素水供給系に導き、その圧縮空気により尿素水を微粒化する構成とする。ちなみに、大型トラック等においては、ブレーキ圧を調整するためにエア供給源を搭載しているものもあるため、これをエアアシストのためのエア供給源として利用すると良い。
現状においては、車載ディーゼルエンジン用の尿素SCRシステムとしての需要を主に実用化が検討されているが、他のエンジン、例えばガソリンエンジン(火花点火式エンジン)用の尿素SCRシステムとしても実用化は可能である。また、尿素水以外の還元剤を用いる排気浄化システムにおいても本発明を同様に適用することが可能である。
発明の実施の形態における尿素SCRシステムの概略を示す構成図。 残留尿素水の放出処理を示すフローチャート。 エンジン停止後における尿素水温度や尿素水圧力の変化を示すタイムチャート。 エンジン停止後における尿素水温度や尿素水圧力の変化を示すタイムチャート。
符号の説明
11…排気管(排気通路)、12…DPF、13…SCR触媒(排気浄化用触媒)、15…尿素水添加弁(還元剤添加弁)、15a…先端噴出口、21…尿素水タンク、22…尿素水ポンプ、23…尿素水供給管(還元剤供給部)、30…ECU。

Claims (13)

  1. エンジンの排気通路であって排気浄化用触媒よりも上流側に設けられた還元剤添加弁を備え、還元剤供給部から供給される液状の還元剤を前記還元剤添加弁の噴出口から排気通路内に添加供給することで、前記排気浄化用触媒にて還元剤の添加に基づく特定の排気浄化反応を促進させるようにしたエンジンの排気浄化装置であって、
    前記エンジンの停止後において、前記還元剤添加弁や前記還元剤供給部に残留する還元剤の凍結変化に応じて前記還元剤添加弁を開弁させて、前記還元剤の体積増加に伴う圧力上昇により前記噴出口から残留還元剤を前記排気通路内に放出させる還元剤放出制御手段を備えたことを特徴とするエンジンの排気浄化装置。
  2. 前記エンジンの停止後において、前記還元剤添加弁等の残留還元剤が凍結状態に移行する凍結移行過程にあることを判定する凍結判定手段を備え、
    前記還元剤放出制御手段は、前記凍結判定手段により前記凍結移行過程にある旨判定した場合に、前記還元剤添加弁を開弁させる請求項1に記載のエンジンの排気浄化装置。
  3. 前記還元剤添加弁等に残留する還元剤の温度を検出する温度検出手段を備え、
    前記凍結判定手段は、エンジン停止後における前記温度検出手段の検出結果に基づいて前記凍結移行過程にあることを判定する請求項2に記載のエンジンの排気浄化装置。
  4. 前記還元剤添加弁等に残留する還元剤の圧力を検出する圧力検出手段を備え、
    前記凍結判定手段は、エンジン停止後における前記圧力検出手段の検出結果に基づいて前記凍結移行過程にあることを判定する請求項2に記載のエンジンの排気浄化装置。
  5. 前記還元剤放出制御手段は、前記凍結判定手段の判定結果に基づき、前記凍結移行過程において前記還元剤添加弁を複数回開弁させる請求項2乃至4のいずれかに記載のエンジンの排気浄化装置。
  6. 前記凍結判定手段は、前記凍結移行過程に相当する時期に対してその直前の液相状態と直後の固相状態とを含む状態移行期であることを判定し、
    前記還元剤放出制御手段は、前記状態移行期において前記還元剤添加弁を開弁させる請求項2乃至5のいずれかに記載のエンジンの排気浄化装置。
  7. 前記凍結判定手段は、エンジン停止後において、所定時間が経過する都度、前記凍結移行過程にあるかどうかを繰り返し判定するものであり、
    前記還元剤放出制御手段による還元剤放出後は、前記凍結判定手段による凍結判定を停止する請求項2乃至6のいずれかに記載のエンジンの排気浄化装置。
  8. 前記凍結判定手段は、前記エンジンの停止時における外気温等の温度情報に基づいて、残留還元剤の温度が、同還元剤の凝固点温度を基に設定した基準温度以下になる時期を予測し、その予測時期において前記凍結移行過程にあるかどうかを判定する請求項2乃至7のいずれかに記載のエンジンの排気浄化装置。
  9. 前記エンジンの停止時又は停止直後において、前記還元剤添加弁等の残留還元剤が凍結状態に移行する凍結移行時期を予測する凍結予測手段を備え、
    前記還元剤放出制御手段は、前記凍結予測手段により予測した凍結移行時期にて前記還元剤添加弁を開弁させる請求項1に記載のエンジンの排気浄化装置。
  10. 前記凍結予測手段は、前記エンジンの停止時又はその停止直後における外気温等の温度情報に基づいて、前記凍結移行時期を予測する請求項9に記載のエンジンの排気浄化装置。
  11. 前記還元剤放出制御手段は、前記凍結予測手段の予想結果に基づき、前記凍結移行時期において前記還元剤添加弁を複数回開弁させる請求項9又は10に記載のエンジンの排気浄化装置。
  12. 前記エンジンの停止直後において、前記残留還元剤の凍結変化に関係なく前記還元剤添加弁を一時的に開弁させる請求項1乃至11のいずれかに記載のエンジンの排気浄化装置。
  13. 前記還元剤は尿素水溶液であり、前記排気浄化用触媒は、尿素水溶液から生成されるアンモニアによりNOxを還元するNOx還元反応を前記排気浄化反応とし、そのNOx還元反応を促進するものである請求項1乃至12のいずれかに記載のエンジンの排気浄化装置。
JP2006325290A 2006-12-01 2006-12-01 エンジンの排気浄化装置 Expired - Fee Related JP4706627B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006325290A JP4706627B2 (ja) 2006-12-01 2006-12-01 エンジンの排気浄化装置
DE102007047906A DE102007047906A1 (de) 2006-12-01 2007-11-30 Abgasemissionssteuerungsvorrichtung für Verbrennungsmotor zum Einleiten einer Abgasreinigungsreaktion unter Verwendung eines Reduktionsmittels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325290A JP4706627B2 (ja) 2006-12-01 2006-12-01 エンジンの排気浄化装置

Publications (2)

Publication Number Publication Date
JP2008138583A JP2008138583A (ja) 2008-06-19
JP4706627B2 true JP4706627B2 (ja) 2011-06-22

Family

ID=39339063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325290A Expired - Fee Related JP4706627B2 (ja) 2006-12-01 2006-12-01 エンジンの排気浄化装置

Country Status (2)

Country Link
JP (1) JP4706627B2 (ja)
DE (1) DE102007047906A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974599B1 (ko) * 2008-08-07 2010-08-06 현대자동차주식회사 차량의 요소 분사량 제어장치 및 방법
CN102400742B (zh) * 2010-09-07 2013-12-25 博世汽车柴油系统股份有限公司 车辆scr系统及其还原剂供应装置
JP5087188B2 (ja) * 2010-12-27 2012-11-28 ボッシュ株式会社 排気浄化システム及び排気浄化システムの制御方法
JP5834773B2 (ja) * 2011-10-28 2015-12-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5834831B2 (ja) * 2011-11-28 2015-12-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
SE537640C2 (sv) * 2013-03-07 2015-09-01 Scania Cv Ab Förfarande vid ett SCR-system och ett SCR-system
JP6183297B2 (ja) * 2014-06-10 2017-08-23 株式会社デンソー 内燃機関の排気浄化装置
US10513960B2 (en) 2014-12-25 2019-12-24 Volvo Truck Corporation Exhaust purification device for engine
JP6217662B2 (ja) 2015-02-02 2017-10-25 トヨタ自動車株式会社 添加剤供給装置
JP6654469B2 (ja) * 2016-03-08 2020-02-26 株式会社Soken 内燃機関の制御装置
DE102018216239A1 (de) * 2018-09-24 2020-03-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Überwachen des Aggregatzustands einer gefriergefährdeten Flüssigkeit in einem Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027627A (ja) * 1998-07-13 2000-01-25 Hino Motors Ltd 排気ガス浄化触媒用還元剤保温装置及びそれを組込んだ排気ガス浄化装置
JP2002129945A (ja) * 2000-10-25 2002-05-09 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005504208A (ja) * 2001-09-25 2005-02-10 アルギロン ゲゼルシャフト ミット ベシュレンクテル ハフツング 内燃機関の排気ガス後処理装置用還元剤ポンプ
JP2005248823A (ja) * 2004-03-04 2005-09-15 Hino Motors Ltd 還元剤供給装置
JP2006516696A (ja) * 2003-11-04 2006-07-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の排気ガスに還元剤をもたらす装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027627A (ja) * 1998-07-13 2000-01-25 Hino Motors Ltd 排気ガス浄化触媒用還元剤保温装置及びそれを組込んだ排気ガス浄化装置
JP2002129945A (ja) * 2000-10-25 2002-05-09 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005504208A (ja) * 2001-09-25 2005-02-10 アルギロン ゲゼルシャフト ミット ベシュレンクテル ハフツング 内燃機関の排気ガス後処理装置用還元剤ポンプ
JP2006516696A (ja) * 2003-11-04 2006-07-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の排気ガスに還元剤をもたらす装置
JP2005248823A (ja) * 2004-03-04 2005-09-15 Hino Motors Ltd 還元剤供給装置

Also Published As

Publication number Publication date
DE102007047906A1 (de) 2008-06-05
JP2008138583A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4706627B2 (ja) エンジンの排気浄化装置
JP5326461B2 (ja) エンジンの排気浄化装置
JP4656039B2 (ja) エンジンの排気浄化装置
US10138793B2 (en) Exhaust gas purification system and method for controlling the same
JP4874364B2 (ja) 内燃機関の排気浄化装置
US9255511B2 (en) Exhaust purification system and method for controlling exhaust purification system
JP4978635B2 (ja) 排気浄化システムの制御装置
US8413427B2 (en) Dosing control systems and methods
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
JP2010065581A (ja) 内燃機関の排気浄化システム
US10844768B2 (en) Abnormality determination device
JP5136450B2 (ja) 排気浄化システムの異常診断装置
JP5051148B2 (ja) 排気浄化システムの異常診断装置
EP3025036B1 (en) Scr exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank
EP2682579B1 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
JP2010196522A (ja) 排気浄化システムの異常診断装置
KR102375062B1 (ko) 배기가스 제어 시스템의 순차 제어 방법 및 장치
US11131228B2 (en) Method for preventing a risk of freezing in a reducing-agent feeding device of a selective catalytic reduction system
US9759111B2 (en) Control techniques of exhaust purification system and exhaust purification system
JP2009228433A (ja) 尿素水供給装置及び排気浄化システム
WO2018047554A1 (ja) 制御装置
JP5698525B2 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP2017129094A (ja) 異常判定装置
US20190211727A1 (en) Injection controller
JP7464004B2 (ja) 尿素水供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

LAPS Cancellation because of no payment of annual fees