WO2012062177A1 - 一种空心传动轴 - Google Patents

一种空心传动轴 Download PDF

Info

Publication number
WO2012062177A1
WO2012062177A1 PCT/CN2011/081759 CN2011081759W WO2012062177A1 WO 2012062177 A1 WO2012062177 A1 WO 2012062177A1 CN 2011081759 W CN2011081759 W CN 2011081759W WO 2012062177 A1 WO2012062177 A1 WO 2012062177A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
steel tube
hollow steel
spiral
spiral rib
Prior art date
Application number
PCT/CN2011/081759
Other languages
English (en)
French (fr)
Inventor
王京福
刁新华
王丽君
Original Assignee
山东中泰新能源集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东中泰新能源集团有限公司 filed Critical 山东中泰新能源集团有限公司
Priority to DK11839183.8T priority Critical patent/DK2587076T3/da
Priority to ES11839183T priority patent/ES2728430T3/es
Priority to JP2013516993A priority patent/JP5420113B2/ja
Priority to EP11839183.8A priority patent/EP2587076B1/en
Priority to US13/700,931 priority patent/US8715094B2/en
Publication of WO2012062177A1 publication Critical patent/WO2012062177A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/023Shafts; Axles made of several parts, e.g. by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm

Definitions

  • the invention relates to the technical field of transmissions, in particular to a hollow transmission shaft. Background of the invention
  • the transmission shaft for transmitting power is bound to develop in the direction of large-scale and high-power. More typical is the large-scale vertical axis wind power generation system in megawatts.
  • the biggest bottleneck at present is how the vertical axis of the ultra-high wind wheel mechanism transmits huge torque to the ground power generation equipment, which also restricts the vertical axis wind power system to large and special.
  • the hollow steel tube with a wall thickness of several tens of millimeters and a wall thickness can only transmit the torque of kilowatt-level power, and it is still difficult to adapt to the needs of a large vertical-axis wind power generation system. Summary of the invention
  • the present invention provides a hollow transmission shaft which is light in weight, strong in bending and torsion resistance, and can be used with a large vertical axis wind power generation system.
  • the technical solution adopted by the present invention to solve the technical problem is as follows:
  • the hollow transmission shaft comprises a hollow steel pipe, and a core shaft is axially disposed at a central position of the hollow steel pipe, and a spiral rib plate is arranged between the core shaft and the hollow steel pipe.
  • the large-diameter track surface of the spiral rib plate and the inner diameter surface of the hollow steel pipe wall are spirally connected by welding, casting, rolling, etc., the small-diameter track surface of the spiral rib plate is spirally connected with the outer diameter surface of the mandrel, and the spiral hoist angle of the spiral rib plate 10 degrees to 45 degrees, and make the spiral
  • the direction of the spiral angle of the rib is opposite to the direction of the working moment M;
  • the hollow steel tube may be a variable diameter hollow steel tube.
  • the beneficial effects of the invention are: Mainly due to the welding of the counter-torque spiral ribs in the hollow drive shaft, thereby replacing the solid shaft or reducing the wall thickness of the hollow drive shaft, so that the axial force generated by the weight of the large vertical shaft is greatly increased.
  • the reduction also reduces the weight of the drive shaft and reduces the manufacturing cost.
  • the direction of the spiral angle of the spiral rib is opposite to the direction of the working torque M, which fully exerts the bending and torsion resistance of the spiral rib, and improves the torsional and bending resistance of the pipe of the same diameter, thickness and material. 5 ⁇ 10 times.
  • the maximum torque of the hollow drive shaft without the spiral rib is 1200 KN.m.
  • the maximum torque of the hollow drive shaft is increased to 5800KN'm. Therefore, the technical problem of transmitting large torque of the transmission shaft is better solved, and the promotion and use of the large vertical axis wind power generation device is also provided.
  • the invention can be widely used in various types of ship propeller power transmission, large-capacity vehicle power transmission, and various types of power transmission for transmitting high-power torque used in equipment manufacturing industries such as steel, petroleum, and mining. It can be foreseen that the present invention will make a significant contribution to the transmission of power in the large-scale and over-sized equipment manufacturing industry in China. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic structural view of a hollow rotating shaft according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1;
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 4 is a schematic structural view of a hollow rotating shaft according to another embodiment of the present invention
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4;
  • Figure 6 is a cross-sectional view taken along line B-B of Figure 4 .
  • a hollow drive shaft with a counter-torque spiral rib plate comprising a hollow steel tube, a mandrel axially disposed at a central position of the hollow steel tube, a spiral rib plate between the mandrel and the hollow steel tube, and a large diameter of the spiral rib plate
  • the track surface is spirally connected with the inner diameter surface of the hollow steel pipe wall, and the small-diameter track surface of the spiral rib plate is spirally connected with the outer diameter surface of the mandrel, and the spiral rising angle direction of the spiral rib plate is opposite to the transmission direction of the working torque M.
  • the large-diameter track surface of the spiral rib plate and the inner diameter surface of the hollow steel pipe wall may be spirally connected by welding, casting, rolling, or the like.
  • the spiral hoisting angle of the spiral rib can be about 10 to 45 degrees.
  • the hollow steel pipe may be a reduced diameter hollow steel pipe.
  • the solid shaft is reduced or the wall thickness of the hollow drive shaft is reduced, so that the axial force generated by the weight of the large vertical shaft is greatly reduced, and the lightening is also reduced.
  • the weight of the drive shaft reduces manufacturing costs.
  • the direction of the spiral angle of the spiral rib is opposite to the direction of the working torque M, which fully exerts the bending and torsion resistance of the spiral rib, and improves the torsional and bending resistance of the pipe of the same diameter, thickness and material. 5 ⁇ 10 times.
  • the maximum torque of the hollow drive shaft without the spiral rib is 1200 KN.m.
  • the maximum torque of the hollow drive shaft is increased to 5800KN.m. Therefore, the technical problem of transmitting large torque of the transmission shaft is better solved, and the promotion of the use of the large vertical axis wind power generation device is also provided.
  • the invention can be widely used in various types of ship propeller power transmission, large-sized carrier vehicle power transmission, and various types of power transmission for transmitting high-power torque used in equipment manufacturing industries such as steel, petroleum, and mining. It is foreseeable that the present invention will make a significant contribution to the transmission of power in the large-scale and over-sized equipment manufacturing industry in China. The invention will now be further described in conjunction with a specific example.
  • a hollow drive shaft with a counter-torque spiral rib is used in conjunction with a large vertical-axis wind power generator.
  • the total height of the drive shaft is about 100m, and the material is Q345.
  • the diameter of the shaft is about 3.5m, the diameter of the top of the shaft is about 1.1m.
  • the shaft body is composed of a hollow steel tube 3 with a unequal thickness and a diameter from bottom to top.
  • the wall thickness of the hollow steel tube 3 at the bottom is about 80mm, and the wall thickness of the hollow steel tube 3 at the top is about 15mm, a mandrel 1 is axially disposed at a central position of the hollow steel pipe 3, and a spiral rib 2 is disposed between the mandrel 1 and the hollow steel pipe 3.
  • the spiral hoisting angle ⁇ of the spiral rib 1 is about 16.5.
  • the large-diameter track surface of the spiral rib plate 2 and the inner diameter surface of the hollow steel pipe 3 pipe wall are spirally connected by a full-welding method, and the small-diameter track surface of the spiral rib plate 2 and the outer diameter surface of the mandrel 1 are also spirally connected by a full-welding method, the spiral rib
  • the direction of the helix angle 4 of the plate 2 is opposite to the direction of transmission of the working torque , and the maximum torque of the drive shaft is about 5800 ⁇ .
  • the diameter of the mandrel is greater than or equal to 1/10 of the outer diameter of the hollow steel tube.
  • the thickness of the spiral rib is greater than or equal to 1/3 of the wall thickness of the hollow steel tube.
  • FIG. 4 is a schematic structural view of a hollow transmission shaft according to another embodiment of the present invention.
  • the hollow transmission shaft includes a hollow steel pipe 6, and a spiral rib plate 5 is disposed inside the hollow steel pipe 6.
  • the large-diameter track surface of the spiral rib plate 5 is spirally connected with the inner diameter surface of the hollow steel pipe 6 pipe wall, and the spiral rib plate
  • the direction of the spiral angle of 5 is opposite to the direction of transmission of the working moment ⁇ .
  • the large-diameter track surface of the spiral rib plate 5 and the inner diameter surface of the hollow steel pipe wall can be spirally connected by welding, casting, rolling, etc., and the spiral angle 7 of the spiral rib plate 5 can be about 10 to 45 degrees.
  • the hollow steel pipe 6 shown may be a reduced diameter hollow steel pipe.
  • the thickness of the spiral rib 5 is greater than or equal to about 1/3 of the wall thickness of the hollow steel tube 6. It can be seen that the mandrel is no longer provided inside the hollow drive shaft in the above embodiment, that is, the mandrel is not necessary for implementing the present invention.
  • the spiral ribs are generally arranged on the inner wall of the hollow steel pipe like a spiral staircase in the building.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

一种空心传动轴,包括空心钢管(3),在空心钢管(3)的中心位置轴向地设有一芯轴(1),芯轴(1)与空心钢管(3)之间设有螺旋筋板(2),螺旋筋板(2)的大径轨迹表面与空心钢管(3)管壁内径表面焊接,螺旋筋板(2)的小径轨迹表面与芯轴(1)外径表面焊接,螺旋筋板(2)的升角(4)为10〜45度,螺旋筋板(2)的螺旋升角(4)方向与工作力矩(M)传递方向相反。所述空心传动轴减少了传动轴壁厚和重量,降低了制造成本,增强了传动轴的抗弯、抗扭特性,解决了传动轴传递大转矩的技术难题,有利于大型垂直轴风力发电装置的推广使用,可在各类船舶螺旋浆动力传输、大型运载车辆动力传输以及其他大功率转矩的动力传输中广泛使用。

Description

一种空心传动轴
技术领域
本发明涉及传动装置技术领域, 具体说是一种空心传动轴。 发明背景
随着大功率内燃机、 发电机、 电动机的问世, 传输功率的传动轴也 必将向大型化、 大功率方向发展。 比较典型的是兆瓦级大型垂直轴风力 发电系统中, 目前最大的瓶颈就是超高风轮机构的垂直轴如何向地面发 电设备传递巨大的转矩, 这也是制约垂直轴风电系统向大型、 特大型化 发展中至今未能解决的技术难题。 如采用百米或百米以上高度、 两米左 右直径的实心轴传递, 其巨大的自身重量就难以使传动轴转动, 更谈不 上传递大功率力矩。 如采用空心管作为中心帆杆结构的传动轴, 这种数 米直径几十毫米壁厚的空心钢管也只能传递千瓦级功率的转矩, 仍然难 以适应大型垂直轴风力发电系统的需要。 发明内容
为了解决目前没有传递大功率转矩的传动轴, 本发明提供一种自身 重量轻, 抗弯、 抗扭机械性能强并可与大型垂直轴风力发电系统配套使 用的空心传动轴。
本发明解决其技术问题所采用的技术方案是: 这种空心传动轴包括 空心钢管, 主要是在空心钢管的中心位置轴向地设有一芯轴, 芯轴与空 心钢管之间设有螺旋筋板, 螺旋筋板的大径轨迹表面与空心钢管管壁内 径表面通过焊、 铸、 轧等方式螺旋连接, 螺旋筋板的小径轨迹表面与芯 轴外径表面螺旋连接, 螺旋筋板的螺旋升角为 10度〜 45度, 并使螺旋 筋板的螺旋升角方向与工作力矩 M传递方向相反;所说的空心钢管可以 是变径空心钢管。
本发明的有益效果是: 主要是由于在空心传动轴内焊接了反力矩螺 旋筋板, 因而取代了实心轴或减小了空心传动轴壁厚, 使大型立式轴重 量产生的轴向力大大减少, 也减轻了传动轴的重量, 降低了制造成本。 特别是螺旋筋板的螺旋升角方向与工作力矩 M传递方向相反,充分发挥 了螺旋筋板的抗弯、 抗扭特性, 使同等直径、 厚度、 材质管形件的抗扭、 抗弯性能提高 5~10倍。 经计算, 未设螺旋筋板的空心传动轴最大转矩 为 1200 KN.m, 增加了反力矩螺旋筋板之后, 空心传动轴最大转矩增大 为 5800KN'm。 因此比较好地解决了传动轴传递大转矩的技术难题, 也 为大型垂直轴风力发电装置的推广使用提供了保障。
本发明可在各类船舶螺旋浆动力传输、 大型运载车辆动力传输以及 钢铁、 石油、 矿山等装备制造业使用的各类传递大功率转矩的动力传输 中广泛使用。 可以预见, 本发明对我国装备制造业大型化、 超大化中的 动力传输必将作出重大贡献。 附图简要说明
图 1是本发明一个实施例的一种空心转动轴的结构示意图; 图 2是图 1的 A-A剖视图;
图 3是图 1的 B-B剖视图;
图 4是本发明另一实施例的一种空心转动轴的结构示意图; 图 5是图 4的 A-A剖视图;
图 6是图 4的 B-B剖视图。
图中 1. 芯轴, 2. 螺旋筋板, 3. 空心钢管, 4.螺旋升角, 5. 螺旋筋 板, 6. 空心钢管, 7.螺旋升角。 实施本发明的方式
为使本发明的实施例的目的、 技术方案及优点更加清楚明白, 以下 参照附图并举实施例, 对本发明实施例进一步详细说明。
一种带反力矩螺旋筋板的空心传动轴, 包括空心钢管, 在空心钢管 的中心位置轴向地设有一芯轴, 芯轴与空心钢管之间设有螺旋筋板, 螺 旋筋板的大径轨迹表面与空心钢管管壁内径表面螺旋连接, 螺旋筋板的 小径轨迹表面与芯轴外径表面螺旋连接, 螺旋筋板的螺旋升角方向与工 作力矩 M的传递方向相反。
其中, 螺旋筋板的大径轨迹表面与空心钢管管壁内径表面可以通过 焊、 铸、 轧等方式螺旋连接。
所述螺旋筋板的螺旋升角可以为大约 10~ 45度。
所述空心钢管可以是变径空心钢管。
根据本发明, 由于在空心传动轴内焊接了反力矩螺旋筋板, 因而取 代了实心轴或减小了空心传动轴壁厚, 使大型立式轴重量产生的轴向力 大大减少, 也减轻了传动轴的重量, 降低了制造成本。 特别是螺旋筋板 的螺旋升角方向与工作力矩 M传递方向相反,充分发挥了螺旋筋板的抗 弯、 抗扭特性, 使同等直径、 厚度、 材质管形件的抗扭、 抗弯性能提高 5~10倍。 经计算, 未设螺旋筋板的空心传动轴最大转矩为 1200 KN.m, 增加了反力矩螺旋筋板之后, 空心传动轴最大转矩增大为 5800KN.m。 因此比较好地解决了传动轴传递大转矩的技术难题, 也为大型垂直轴风 力发电装置的推广使用提供了保障。
本发明可在各类船舶螺旋浆动力传输、 大型运载车辆动力传输以及 钢铁、 石油、 矿山等装备制造业使用的各类传递大功率转矩的动力传输 中广泛使用。 可以预见, 本发明对我国装备制造业大型化、 超大化中的 动力传输必将作出重大贡献。 下面结合一具体的例子对本发明作进一步的说明。
如图 1、 2、 3所示, 示出的一种与大型垂直轴风力发电装置配套使 用的带反力矩螺旋筋板的空心传动轴, 传动轴总高约为 100m, 材质为 Q345 , 轴底部直径约 3.5m, 轴顶部直径约 1.1m, 轴体自下而上由不等 厚变径的空心钢管 3组成, 底部的空心钢管 3壁厚约为 80mm, 顶部的 空心钢管 3壁厚约为 15mm, 在空心钢管 3的中心位置轴向地设有一根 芯轴 1 , 芯轴 1与空心钢管 3之间设有螺旋筋板 2, 螺旋筋板 1的螺旋 升角 α值约为 16.5。,螺旋筋板 2的大径轨迹表面与空心钢管 3管壁内径 表面通过满焊方式螺旋连接, 螺旋筋板 2的小径轨迹表面与芯轴 1外径 表面也通过满焊方式螺旋连接, 螺旋筋板 2的螺旋升角 4方向与工作力 矩 Μ的传递方向相反, 传动轴最大转矩约为 5800ΚΝ·ηι。
根据一个实施例, 所述芯轴的直径大于或等于所述空心钢管外径的 1/10。
根据一个实施例, 所述螺旋筋板的厚度大于或等于所述空心钢管壁 厚的 1/3。
图 4示出本发明另一实施例提供的一种空心传动轴的结构示意图。 如图 4所示, 该空心传动轴包括空心钢管 6, 在空心钢管 6内部设有螺 旋筋板 5 , 螺旋筋板 5的大径轨迹表面与空心钢管 6管壁内径表面螺旋 连接, 螺旋筋板 5的螺旋升角方向与工作力矩 Μ的传递方向相反。
其中, 该螺旋筋板 5的大径轨迹表面与空心钢管管壁内径表面可以 通过焊、铸、轧等方式螺旋连接,螺旋筋板 5的螺旋升角 7可以约为 10~ 45度。
其中, 所示空心钢管 6可以是变径空心钢管。
其中, 所述螺旋筋板 5的厚度大于或等于所述空心钢管 6壁厚的约 1/3。 可见, 上述实施例中的空心传动轴内部不再设有芯轴, 也就是说, 芯轴对于实施本发明来说不是必要的。 而螺旋筋板就像大楼内的螺旋状 的楼梯一般设置在空心钢管的内壁上。
综上所述, 以上仅为本发明的部分实施例而已, 并非用于限定本发 明的保护范围。 凡在本发明的范围之内所作的任何修改、 等同替换、 改 进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种空心传动轴, 包括空心钢管(3), 其特征在于: 在空心钢管 (3) 的中心位置轴向地设有一芯轴 (1 ), 芯轴 (1 ) 与空心钢管 (3) 之间设有螺旋筋板( 2 ), 螺旋筋板( 2 )的大径轨迹表面与空心钢管( 3 ) 管壁内径表面螺旋连接, 螺旋筋板(2) 的小径轨迹表面与芯轴( 1 )外 径表面螺旋连接, 螺旋筋板(2) 的螺旋升角方向与工作力矩 M的传递 方向相反。
2、 根据权利要求 1所述空心传动轴, 其特征在于: 螺旋筋板(2) 的螺旋升角 (4) 为 10~45度。
3、 根据权利要求 1所述空心传动轴, 其特征在于: 空心钢管 (3) 是变径空心钢管。
4、 根据权利要求 1所述空心传动轴, 其特征在于: 所述芯轴(1 ) 的直径大于或等于所述空心钢管 (3)外径的 1/10。
5、根据权利要求 1所述空心传动轴,其特征在于:所述螺旋筋板( 2 ) 的厚度大于或等于所述空心钢管 ( 3 )壁厚的 1/3。
6、 一种空心传动轴, 包括空心钢管(6), 其特征在于: 在空心钢管 (6) 内部设有螺旋筋板(5), 螺旋筋板(5) 的大径轨迹表面与空心钢 管 (6)管壁内径表面螺旋连接, 螺旋筋板(5) 的螺旋升角方向与工作 力矩 M的传递方向相反。
7、 根据权利要求 6所述空心传动轴, 其特征在于: 螺旋筋板(5) 的螺旋升角 (7) 为 10~45度。
8、 根据权利要求 6所述空心传动轴, 其特征在于: 空心钢管 (6) 是变径空心钢管。
9、根据权利要求 6所述空心传动轴,其特征在于:所述螺旋筋板( 5 ) 的厚度大于或等于所述空心钢管 (6)壁厚的 1/3。
PCT/CN2011/081759 2010-11-12 2011-11-03 一种空心传动轴 WO2012062177A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK11839183.8T DK2587076T3 (da) 2010-11-12 2011-11-03 Hul drivaksel
ES11839183T ES2728430T3 (es) 2010-11-12 2011-11-03 Arbol de transmisión hueco
JP2013516993A JP5420113B2 (ja) 2010-11-12 2011-11-03 中空駆動軸
EP11839183.8A EP2587076B1 (en) 2010-11-12 2011-11-03 Hollow transmission shaft
US13/700,931 US8715094B2 (en) 2010-11-12 2011-11-03 Hollow transmission shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010541577.5 2010-11-12
CN201010541577A CN101982662B (zh) 2010-11-12 2010-11-12 带反力矩螺旋筋板的空心传动轴

Publications (1)

Publication Number Publication Date
WO2012062177A1 true WO2012062177A1 (zh) 2012-05-18

Family

ID=43619566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081759 WO2012062177A1 (zh) 2010-11-12 2011-11-03 一种空心传动轴

Country Status (7)

Country Link
US (1) US8715094B2 (zh)
EP (1) EP2587076B1 (zh)
JP (1) JP5420113B2 (zh)
CN (1) CN101982662B (zh)
DK (1) DK2587076T3 (zh)
ES (1) ES2728430T3 (zh)
WO (1) WO2012062177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112610590A (zh) * 2020-12-17 2021-04-06 南昌航空大学 一种带内腔加强筋的空心轴

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982662B (zh) * 2010-11-12 2012-09-26 山东中泰新能源集团有限公司 带反力矩螺旋筋板的空心传动轴
US10294982B2 (en) 2014-03-28 2019-05-21 The Boeing Company Systems, methods, and apparatus for supported shafts
US20150275959A1 (en) * 2014-03-28 2015-10-01 The Boeing Company Systems, methods, and apparatus for internally supported shafts
CN104776110A (zh) * 2015-04-13 2015-07-15 宋天顺 一种空心轴和一种转轴
US11131247B2 (en) 2018-01-30 2021-09-28 General Electric Company Additively manufactured rotating shaft
CN115195985B (zh) * 2022-05-31 2023-08-08 山东润金重工科技有限公司 一种船用螺旋桨轴锻件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2236597Y (zh) * 1995-12-15 1996-10-02 袁宋利 大口径中空螺旋硬管
US6409606B1 (en) * 1999-08-05 2002-06-25 Ntn Corporation Power transmission shaft
US20050043105A1 (en) * 2003-08-20 2005-02-24 Dine Donald W. Propeller shaft
CN201393124Y (zh) * 2009-03-20 2010-01-27 宁波东力机械制造有限公司 电动机的一种轴结构
CN201651013U (zh) * 2010-05-19 2010-11-24 安阳锦华中水处理设备有限公司 中空组合轴
CN101982662A (zh) * 2010-11-12 2011-03-02 山东中泰新能源发展有限公司 带反力矩螺旋筋板的空心传动轴
CN201836202U (zh) * 2010-11-12 2011-05-18 山东中泰新能源发展有限公司 带反力矩螺旋筋板的空心传动轴

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1833876A (en) * 1929-01-31 1931-11-24 Standard Oil Dev Co Pipe coil heat exchange equipment
US3099141A (en) * 1961-11-30 1963-07-30 Gen Electric Shaft for use in nuclear radiation environment
US3269146A (en) * 1963-01-25 1966-08-30 Max W Stanley Lightweight hollow drive shaft assembly
DE2302551A1 (de) * 1973-01-19 1974-08-01 Zeidler Willi Verfahren zur herstellung einer gelenkwelle im druckspritzverfahren
JPS59133813A (ja) * 1983-01-21 1984-08-01 Honda Motor Co Ltd 繊維強化合成樹脂製駆動軸とその製造方法
JPS607415U (ja) * 1983-06-28 1985-01-19 ユニ.ラバ−パ−ツ有限会社 ロ−ラ用シヤフトの構造
US4559998A (en) * 1984-06-11 1985-12-24 The Air Preheater Company, Inc. Recuperative heat exchanger having radiation absorbing turbulator
JPS61137111U (zh) * 1985-02-16 1986-08-26
DE4020998A1 (de) * 1990-07-02 1992-01-16 Gkn Automotive Ag Antriebswelle
JPH0449219U (zh) * 1990-08-30 1992-04-27
JPH06341516A (ja) * 1993-05-31 1994-12-13 Suzuki Motor Corp 四輪駆動車の動力伝達装置
JP4114022B2 (ja) * 1998-04-17 2008-07-09 株式会社ジェイテクト 動力伝達軸
JP2001279798A (ja) * 2000-03-30 2001-10-10 Sekisui Chem Co Ltd 螺旋案内路付き垂直下水管の製造方法
US7214135B2 (en) * 2003-08-29 2007-05-08 Torque-Traction Technologies, Llc Drive shaft having a damper insert
CN101174781A (zh) * 2007-10-24 2008-05-07 刘宝生 低速直驱式风力发电机主轴

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2236597Y (zh) * 1995-12-15 1996-10-02 袁宋利 大口径中空螺旋硬管
US6409606B1 (en) * 1999-08-05 2002-06-25 Ntn Corporation Power transmission shaft
US20050043105A1 (en) * 2003-08-20 2005-02-24 Dine Donald W. Propeller shaft
CN201393124Y (zh) * 2009-03-20 2010-01-27 宁波东力机械制造有限公司 电动机的一种轴结构
CN201651013U (zh) * 2010-05-19 2010-11-24 安阳锦华中水处理设备有限公司 中空组合轴
CN101982662A (zh) * 2010-11-12 2011-03-02 山东中泰新能源发展有限公司 带反力矩螺旋筋板的空心传动轴
CN201836202U (zh) * 2010-11-12 2011-05-18 山东中泰新能源发展有限公司 带反力矩螺旋筋板的空心传动轴

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112610590A (zh) * 2020-12-17 2021-04-06 南昌航空大学 一种带内腔加强筋的空心轴

Also Published As

Publication number Publication date
CN101982662B (zh) 2012-09-26
CN101982662A (zh) 2011-03-02
JP5420113B2 (ja) 2014-02-19
US20130079166A1 (en) 2013-03-28
EP2587076A1 (en) 2013-05-01
DK2587076T3 (da) 2019-06-11
US8715094B2 (en) 2014-05-06
ES2728430T3 (es) 2019-10-24
EP2587076B1 (en) 2019-03-06
JP2013530359A (ja) 2013-07-25
EP2587076A4 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2012062177A1 (zh) 一种空心传动轴
CN109557179B (zh) 提升机主轴裂纹在线监测系统及其工作方法
CN101363407A (zh) 一种风力发电机组
CN101723073A (zh) 油缸后置式可调螺距螺旋桨
CN207662853U (zh) 一种管道探伤装置
CN212609536U (zh) 装卸鹤管
CN106809367A (zh) 一种无人海洋机器人操舵装置
WO2012151815A1 (zh) 共轴异向旋转风翼车
CN201836202U (zh) 带反力矩螺旋筋板的空心传动轴
CN203129947U (zh) 一种潜孔钻机
CN111498786A (zh) 装卸鹤管
CN104653644B (zh) 高稳定性螺杆泵双向推力万向联轴器
CN201494619U (zh) 油缸后置式可调螺距螺旋桨
CN206682176U (zh) 汽车传动轴用橡胶复合法兰盘
JP5778922B2 (ja) 作業車
CN104772308B (zh) 一种软轴淤渣粉碎移送机
CN107681824A (zh) 提升机用永磁直驱电机
CN108016454A (zh) 密封管道高速列车的密封系统
CN207830348U (zh) 组合半轴、碳纤维等速驱动轴总成及汽车
CN206397956U (zh) 联轴器
CN220302257U (zh) 一种高刚度风力发电机组主轴结构
CN104228546A (zh) 一种轮胎式起重机运行装置
CN218118300U (zh) 一种双溃缩式的传动轴管
CN207294010U (zh) 一种快速卷扬功能部件
CN207598868U (zh) 船用平行直交双输出轴减速机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13700931

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011839183

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013516993

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE