WO2012060416A1 - イオンミリング装置 - Google Patents

イオンミリング装置 Download PDF

Info

Publication number
WO2012060416A1
WO2012060416A1 PCT/JP2011/075306 JP2011075306W WO2012060416A1 WO 2012060416 A1 WO2012060416 A1 WO 2012060416A1 JP 2011075306 W JP2011075306 W JP 2011075306W WO 2012060416 A1 WO2012060416 A1 WO 2012060416A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ion
axis
milling apparatus
tilt
Prior art date
Application number
PCT/JP2011/075306
Other languages
English (en)
French (fr)
Inventor
岩谷 徹
宏史 武藤
高須 久幸
上野 敦史
朝子 金子
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to CN201180051255.5A priority Critical patent/CN103180929B/zh
Priority to JP2012541899A priority patent/JP5491639B2/ja
Priority to DE112011103677.9T priority patent/DE112011103677B4/de
Priority to KR1020137011419A priority patent/KR101470267B1/ko
Priority to US13/883,539 priority patent/US20130220806A1/en
Publication of WO2012060416A1 publication Critical patent/WO2012060416A1/ja
Priority to US15/011,980 priority patent/US10008365B2/en
Priority to US16/012,423 priority patent/US11133153B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20207Tilt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes

Definitions

  • the present invention relates to an ion milling apparatus and an ion milling method for producing a sample observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • An ion milling device is a device for polishing the surface or cross section of metal, glass, ceramic, etc. by irradiating an argon ion beam, etc., and a pretreatment device for observing the surface or cross section of a sample with an electron microscope It is suitable as.
  • a soft sample such as a polymer material or aluminum has a problem that the observation surface is crushed or deep scratches remain due to abrasive particles.
  • a hard sample such as glass or ceramic is difficult to polish, and a composite material in which a soft material and a hard material are laminated has a problem that cross-sectional processing is extremely difficult.
  • ion milling can polish hard samples and composite materials that can be processed without damaging the surface morphology even with soft samples. There is an effect that a mirror-shaped cross section can be easily obtained.
  • an ion beam irradiation means for irradiating a sample with an ion beam disposed in a vacuum chamber, and an inclination having an inclination axis disposed in the vacuum chamber and in a direction substantially perpendicular to the ion beam.
  • a sample preparation apparatus comprising: a stage; a sample holder disposed on the tilt stage; and holding the sample; and a shielding material positioned on the tilt stage and blocking a part of an ion beam that irradiates the sample.
  • the sample preparation apparatus disclosed in Patent Document 1 is an ion milling apparatus for cross-section processing (cross-section milling).
  • an ion milling apparatus there is a plane milling apparatus that processes a sample surface with an ion beam while rotating the sample. In this way, even in an apparatus for processing a sample by irradiating an ion beam in the same manner, the movement of the sample at the time of ion beam irradiation is different, so that it is necessary to use another apparatus.
  • An ion milling apparatus comprising: a support base disposed on the tilt stage and supporting a sample holding member for holding the sample; a rotation axis parallel to a second axis perpendicular to the first axis; and a tilt A drive mechanism that has an axis and rotates or tilts the support base, the tilt stage tilts, the support base rotates or reciprocates, and the ion beam is irradiated, and the tilt stage is non-tilted
  • an ion milling apparatus including a switching unit that switches the state of irradiation with the ion beam by tilting the support table in a reciprocating manner is proposed.
  • the setting stage of the sample stage and the unit that holds the sample have the same rotational tilt axis (the same movement), so the processing observation window Is placed in the same direction as the sample stage. Therefore, if the sample stage is the front of the apparatus, the processing observation window is the front or back of the apparatus, and it is difficult to install and operate the observation apparatus (microscope).
  • plane milling processing a surface perpendicular to the ion beam axis (90 ° tilt angle of the sample stage) smoothly) cannot be performed only by using the rotation tilt mechanism of the cross-section milling device as a rotation mechanism, A milling device for each cross-section and plane was required.
  • an ion milling apparatus characterized by facilitating observation of a processing observation surface mainly by milling and further capable of processing both cross-sectional milling and surface milling will be described.
  • an ion beam source that is attached to a vacuum chamber and irradiates a sample with an ion beam, a sample holder that fixes the sample, and a part of the sample fixed to the sample holder are shielded.
  • An ion milling apparatus comprising: a sample mask unit fine movement mechanism capable of XY driving; a sample unit base in which the sample mask unit fine movement mechanism can be installed in a vacuum chamber; and an optical microscope for observing a shielding positional relationship between the mask and the sample.
  • Sample mask unit or sample unit of sample mask unit fine movement mechanism The fixed part to the base is a rear part of the sample mask unit or the sample mask unit fine movement mechanism, a rotating part is provided on the sample unit base, the sample stage is provided on the front surface of the vacuum chamber, and the ion is provided on the right or left side.
  • the sample rotation and tilt mechanism has a rotation function, and includes a tilt mechanism in which a tilt axis is formed in a direction perpendicular to the sample rotation axis, and the ion beam axis and the sample rotation axis (when the stage tilt angle is 90 degrees).
  • a tilt mechanism in which a tilt axis is formed in a direction perpendicular to the sample rotation axis, and the ion beam axis and the sample rotation axis (when the stage tilt angle is 90 degrees).
  • an ion milling apparatus equipped with an ion source for irradiating an argon ion beam will be described as an example.
  • the ion beam is not limited to an argon ion beam, and various ion beams can be applied. It is.
  • FIG. 1 shows the configuration of an ion milling apparatus.
  • An ion source 1 is installed on the upper surface of the vacuum chamber 15, and a sample stage 8 is installed on the front surface.
  • a sample mask unit fine movement mechanism 4 is mounted on the sample unit base 5.
  • the lower surface of the sample mask unit fine movement mechanism 4 (the opposite side of the mask surface irradiated with the ion beam) and the upper surface of the sample unit base 5 are brought into contact with each other and fixed with screws.
  • the sample unit base 5 is configured to be able to rotate and tilt at an arbitrary angle with respect to the optical axis of the ion beam, and the direction and angle of rotation are controlled by the sample stage 8. By rotating and tilting the sample stage 8, the sample 3 placed on the sample mask unit fine movement mechanism 4 can be set at a predetermined angle with respect to the optical axis of the ion beam.
  • the rotational tilt axis of the sample stage 8 and the position of the upper surface of the sample (the lower surface of the mask) are matched to produce a smooth processed surface efficiently.
  • the sample mask unit fine movement mechanism 4 is configured to be movable in the front and rear, right and left directions in the direction perpendicular to the optical axis of the ion beam, that is, in the X direction and the Y direction.
  • the sample unit base 5 is arranged via a sample stage 8 (rotation mechanism) mounted on a flange 10 that also serves as a part of the container wall of the vacuum chamber 15, and the flange 10 is pulled out along the linear guide 11.
  • a sample stage 8 rotation mechanism
  • the sample unit base 5 is configured to be pulled out of the vacuum chamber. In this way, the sample stage drawing mechanism is configured.
  • FIG. 2A is a plan view
  • FIG. 2B is a side view
  • a configuration in which at least the sample holder 23 and its rotation mechanism, and the mask 2 and its fine adjustment mechanism are integrally formed is referred to as a sample mask unit (main body) 21.
  • a sample holder rotating ring 22 and a sample holder rotating screw 28 are provided as a rotating mechanism of the sample holder 23 so that the sample holder can be rotated perpendicularly to the optical axis of the ion beam.
  • the sample holder rotating ring 22 is configured to rotate by turning the sample holder rotating screw 28, and the reverse rotation is returned by the spring pressure of the spring 29.
  • the sample mask unit 21 has a mechanism capable of finely adjusting the position and rotation angle of the mask, and can be attached to and detached from the sample mask unit fine movement mechanism 4.
  • the sample mask unit 21 and the sample mask unit fine movement mechanism 4 are two parts, but may be composed of one part. (In the embodiment, for easy understanding, the sample mask unit and the sample mask unit fine movement mechanism will be described separately).
  • the mask 2 is fixed to the mask holder 25 with a mask fixing screw 27.
  • the mask holder 25 moves along the linear guide 24 by operating a mask fine adjustment mechanism (that is, a mask position adjustment unit) 26, thereby finely adjusting the positions of the sample 3 and the mask 2.
  • the sample holder 23 is inserted and fixed to the sample holder rotating ring 22 from the lower side.
  • the sample 3 is bonded and fixed to the sample holder 23.
  • the position of the sample holder 23 in the height direction is adjusted by the sample holder position control mechanism 30, and the sample holder 23 is brought into close contact with the mask 2.
  • FIG. 3 shows another example of the sample mask unit 21.
  • the sample holder fixing bracket 35 is used, and the other configuration is basically the same as the example shown in FIG.
  • FIG. 3A shows a state in which the sample holder 23 to which the sample 3 is fixed is mounted in the sample mask unit 21, and
  • FIG. 3B shows that the sample holder 23 to which the sample 3 is fixed is removed from the sample mask unit 21. Indicates the state.
  • FIG. 4 is an explanatory view showing a method of making the cross section of the sample and the mask parallel to each other.
  • the sample holder rotating screw 28 is rotated to adjust the position in the X1 direction, and fine adjustment is performed under the microscope as described later so that the cross section of the sample 3 and the ridge line of the mask 2 are parallel.
  • the mask fine adjustment mechanism 26 is set to rotate so that the cross section of the sample 3 slightly protrudes from the mask, for example, approximately 50 ⁇ m.
  • FIG. 5 shows a configuration of the sample stage drawing mechanism 60.
  • the sample stage drawing mechanism 60 includes the linear guide 11 and the flange 10 fixed to the linear guide 11.
  • the sample unit base 5 fixed to the sample stage mounted on the flange 10 is drawn from the vacuum chamber 15 along the linear guide 11. It is.
  • the sample mask unit fine movement mechanism 4 in which the sample mask unit 21 is installed on the sample unit base 5 is installed, that is, the mask 2, the sample holder 23, and the sample 3 are pulled out from the vacuum chamber 15.
  • the sample mask unit fine movement mechanism 4 provided with the sample mask unit 21 has a configuration that is detachably fixed to the sample unit base 5. Accordingly, when the sample mask unit fine movement mechanism 4 provided with the sample mask unit 21 is pulled out of the vacuum chamber 15, the sample mask unit fine movement mechanism 4 provided with the sample mask unit 21 is made detachable from the sample unit base 5. (Sample mask unit 21 attachment / detachment standby).
  • FIG. 5 shows a state where the sample mask unit fine movement mechanism 4 on which the sample mask unit 21 is installed is detached from such a detachable state. This attachment / detachment is performed manually or with an appropriate instrument.
  • the optical microscope 40 for observing the shielding positional relationship between the mask 2 and the sample 3 is configured separately from the vacuum chamber 15 as shown in FIG. 6, and can be arranged at an arbitrary location.
  • the optical microscope 40 includes a known loupe 12 and loupe fine movement mechanism 13. Further, the optical microscope 40 is provided with a fixed base 42 for installing the sample mask unit fine movement mechanism 4 in which the sample mask unit 21 removed from the observation table 41 is installed, and is reproducible by a positioning shaft and a hole.
  • the sample mask unit fine movement mechanism 4 in which the sample mask unit 21 is installed at a predetermined position is installed on the fixed base 42.
  • FIG. 7 shows a state in which the sample mask unit fine movement mechanism 4 provided with the sample mask unit 21 is fixed on the fixed base 42.
  • FIG. 8 is an explanatory view showing a method of aligning the portion of the sample 3 where the cross-sectional polishing is desired with the center of the ion beam.
  • a photosensitive paper or the like is attached to the sample holder 23, and the trace formed by irradiating the ion beam, that is, the center of the beam and the center of the loupe are driven by the loupe fine movement mechanism 13 to drive X2 and Y2.
  • By adjusting the position of the fixing base 42 in the X3 and Y3 directions to match the center of the loupe it is possible to match the center of the ion beam and the part to be cross-polished.
  • the sample mask unit fine movement mechanism 4 provided with the sample mask unit 21 is detached from the sample unit base 5 and mounted on the fixed base 42 of the optical microscope 40. Then, the mask 2 has its shielding position relative to the sample 3 adjusted by a mask position adjustment unit (mask fine adjustment mechanism).
  • FIG. 9 is an explanatory diagram showing a method of mirror-polishing the cross section of the sample 3 with an ion beam.
  • the sample 3 not covered with the mask 2 can be removed along the mask 2 in the depth direction, and the surface of the cross section of the sample 3 can be mirror-polished.
  • the sample mask unit fine movement mechanism 4 provided with the sample mask unit 21 provided with the mask 2 in which the shielding positional relationship with respect to the sample is adjusted at the time of ion milling is returned to the sample unit base 5 and attached.
  • the sample mask unit fine movement mechanism 4 on which the sample mask unit 21 is installed is detached from the sample unit base 5 and mounted on the fixed base 42 of the optical microscope 40.
  • the sample mask unit fine movement mechanism 4 in which the sample mask unit 21 provided with the mask 2 having the adjusted mask position relative to the sample is adjusted in the vacuum chamber 15 is adjusted during ion milling.
  • An ion milling method is configured to return and attach to the sample unit base 5.
  • FIG. 10 shows the configuration of an ion milling apparatus that can perform both cross-section milling and planar milling.
  • a processing observation window 7 is mounted on the upper surface of the vacuum chamber 15, an ion source is mounted on the left side surface (or right side surface), a sample stage is mounted on the front surface, and a shutter 101 is provided between the sample and the processing observation window 7.
  • the shutter 101 is installed to prevent sputtered particles from accumulating on the processing observation window 7.
  • the vacuum chamber 15 usually has a box shape that forms a space for forming a vacuum atmosphere, or a similar shape, but the observation window is located above the box (in a gravitational environment, the direction of the gravitational field).
  • the ion source is provided on the side wall surface of the box (the surface adjacent to the upper surface of the box and perpendicular to the direction of the gravitational field). That is, the processing observation window is provided on the wall surface of the vacuum chamber in a direction perpendicular to the plane including the tilt axis of the sample stage and the ion beam irradiation orbit.
  • an optical microscope or an electron microscope can be installed in the opening for the processing observation window in addition to providing a window capable of vacuum sealing.
  • the sample unit base 5 is provided with a rotating body 9 on which a sample holding member (member holding the sample including the sample mask unit fine movement mechanism 4) can be placed.
  • the rotating body 9 supports the sample holding member. Functions as a support base.
  • the sample unit base 5 includes a rotating body 9, a gear 50, and a bearing 51 as shown in FIG.
  • the sample mask unit fine movement mechanism 4 is provided with a mask unit fixing portion (including screws) 52 on the rear surface of the sample mask unit fine movement mechanism 4 as shown in FIG.
  • the sample mask unit fine movement mechanism 4 is mounted on the sample unit base 5 by contacting the fixed surface (rear surface) of the sample mask unit fine movement mechanism 4 and the upper surface of the rotating body 9 of the sample unit base 5 with the mask unit fixing portion 52. Screw fixed.
  • the sample unit base 5 is not rotated and tilted, but can be rotated and tilted at an arbitrary angle with respect to the optical axis of the ion beam irradiated from the side surface direction of the vacuum chamber 15 by the rotating body 9 mounted on the sample unit base 5.
  • the sample stage 8 is configured to control the rotational tilt direction and tilt angle.
  • the method of rotating and tilting the rotating body 9 of the sample unit base 5 may be either of FIG. 11 and FIG. 12 (using the shaft coupling 53).
  • the sample 3 placed on the sample mask unit fine movement mechanism 4 can be set at a predetermined angle with respect to the optical axis of the ion beam.
  • the rotation axis of the rotating body 9 of the sample unit base 5 and the position of the sample upper surface (mask lower surface) are matched to produce an efficient smooth processed surface.
  • the sample mask unit fine movement mechanism 4 is configured to be movable in the front and rear, right and left directions in the direction perpendicular to the optical axis of the ion beam, that is, in the X and Y directions.
  • the sample mask unit fine movement is not performed by using the sample mask unit 21 or the mask unit fixing portion 52 to the sample unit base 5 of the sample mask unit fine movement mechanism 4 as shown in FIG. A method using the lower surface of the mechanism 4 may be used.
  • loupe fine movement mechanism 13 for adjusting the beam center and the loupe center is performed on the fixed base 42 side.
  • the loupe fine movement mechanism 13 may employ either this example or the example shown in FIG. Otherwise, the same operation as in the example of FIG. 6 is performed.
  • the ion milling apparatus illustrated in FIG. 10 is provided with a rotation function in the sample rotation tilt mechanism as illustrated in FIG. 14 and a tilt mechanism having a rotation tilt axis perpendicular to the ion beam axis. .
  • an eccentric mechanism for shifting the ion beam axis when the inclination angle is 90 degrees and the rotation axis of the sample mask unit fine movement mechanism 4 is provided.
  • a system using a shaft coupling as shown in FIG. 15 may be used. However, when a shaft coupling is used, it must be installed in the rotating inclined portion as shown in FIG. 15 and the eccentric mechanism must be installed below the rotating body of the sample unit base 5.
  • Cross section milling apparatus for milling a sample through a mask and creating a smooth surface
  • a sample rotation function as shown in FIGS. 14 and 15 and arbitrarily determining an ion beam incident angle and an eccentric amount.
  • planar milling smoothly processing a surface perpendicular to the ion beam axis (when the tilt angle of the sample stage is 90 degrees)
  • cross-sectional milling and planar milling need to change the distance between the ion source and the sample depending on the performance of the ion source, a movable mechanism of the ion source or sample stage is provided in the direction of the ion beam axis. Therefore, since the distance between the ion source and the sample when performing cross-section milling and plane milling is determined by the ion source, the cross-section milling or plane milling is recognized based on the position of the sample stage on which the sample is mounted or the position of the ion source. It has a function of switching cross-section milling or plane milling mode (for example, rotation tilt or rotation).
  • FIG. 19 shows the relationship between the irradiation direction of the ion beam during cross-sectional milling and the rotation axis or tilt axis (hereinafter simply referred to as the rotation axis) of each rotation mechanism or tilt mechanism (hereinafter simply referred to as the rotation mechanism).
  • FIG. 20 is a diagram showing the relationship between the irradiation direction of the ion beam and the respective rotation axes during planar milling.
  • an axis 1901 expressed by a broken line is parallel to an axis expressed by a one-dot chain line in the upper diagram of FIG. 10, for example, an axis parallel to the rotation axis of the rotating body 9 illustrated in FIG. is there.
  • an axis 1902 expressed by a two-dot chain line is an axis parallel to the rotation axis of the sample stage 8.
  • An axis 1903 represented by a one-dot chain line indicates the irradiation direction of the ion beam emitted from the ion source 1.
  • the axis 1901 is in a parallel relationship with the ion beam irradiated surface of the mask 2.
  • the axes 1901, 1902, and 1903 are orthogonal to each other, and in this example, the axes 1901 are installed so as to be parallel to the z-axis, the axes 1902 are parallel to the y-axis, and the axes 1903 are parallel to the x-axis.
  • reciprocating tilt driving is performed with a rotation axis parallel to the axis 1901 as the center of rotation so that a line along the ion beam trajectory is not formed on the cross section of the sample 3.
  • the mask surface is parallel to the axis 1901.
  • the sample 1904 is tilted at a predetermined angle by the sample stage 8 or reciprocally tilted within a predetermined angle range while rotating an axis parallel to the tilt axis 1905 of the shaft 1901.
  • the sample 1904 is rotated as an axis.
  • the apparatus has the second rotation axis (axis 1901 or axis 1905 (inclined reciprocating motion) on the sample stage having the first rotation axis (axis parallel to the axis 1902). (Including the case)))), rotation about the tilt center, or reciprocating tilt drive. That is, the apparatus illustrated in FIG. 10 performs reciprocal tilt driving during cross-sectional milling and rotation or reciprocal tilt driving of the sample during plane milling with a rotating mechanism mounted on the sample stage 8 and a plane. The tilting during milling is performed by a rotating mechanism that tilts the sample stage 8 itself.
  • the shaft 1905 indicates the center of rotation of the drive mechanism. However, in the case of planar milling, the sample center is rotated with the sample center decentered from the shaft 1905 in order to process a wide area on the sample. I do.
  • FIG. 21 is a diagram showing an example of an operation panel for setting operation conditions such as switching between a cross-section milling process and a plane milling process and a stage.
  • the processing mode setting unit 2101 is provided with buttons for selecting either flat milling (Flat) or cross-section milling (Cross-section), and either one can be selected alternatively.
  • the stage operation condition setting unit 2102 is provided with a button for selecting either tilt or reciprocating tilt (swing), and either one can be selected alternatively.
  • the stage operating condition setting unit 2102 is further provided with a setting unit for setting an inclination angle or an angle range (Angle) of the reciprocating inclination and a periodic speed (Speed) in the case of the reciprocating inclination.
  • the rotary table operating condition setting unit 2103 is provided with a setting unit for setting a reciprocating inclination angle (Angle) by the rotary table and a periodic speed (Speed) of the reciprocating inclination.
  • a setting unit that requires numeric input allows selection of an input window by a select key (Select), and selection of numeric values by “Up” and “Down” buttons. It is possible. Furthermore, the selected numerical value is registered by the enter key (Enter).
  • the stage mentioned here is, for example, the sample stage 8 in FIG. 10, and the rotary table is, for example, the rotating body 9 in FIG.
  • Cross-section milling requires reciprocal tilt drive of the rotary table, but does not require reciprocal tilt drive of the sample stage. Therefore, it is preferable to configure the control device of the milling device so that setting in the stage operation condition setting unit 2102 is prohibited or invalidated when cross-section milling is selected (Cross-Section button is selected).
  • the sample stage 8 is tilted during cross-section milling, an ion beam is irradiated to a portion unrelated to the object to be processed or the sample cross-section is processed obliquely. Then, when the sample stage 8 is in an inclined state, the operator may be alerted by performing control so as not to irradiate the ion beam or generating an error message. Further, the control may be automatically performed so that the inclination angle of the sample stage 8 is zero.
  • both the stage operation condition setting unit 2102 and the rotary table operation condition setting unit 2103 are effectively input. There is a need to.
  • the rotating body 9 was allowed to perform both reciprocating tilt driving during cross-sectional milling and rotational driving during planar milling, thereby enabling two different milling operations with one milling device.
  • the ion source 1 is installed on the side of the vacuum chamber 15.
  • the reason for adopting such a configuration is that the stage can be in a stable state when the tilt stage is not tilted (for example, during cross-section milling).
  • the ion source 1 is installed on the side of the vacuum chamber 15.
  • a processing observation window for confirming the processing cross section was installed above the vacuum chamber 15. According to such a configuration, it is possible to check the processing cross section at the time of cross section milling and the processing surface at the time of plane milling with one observation window.
  • FIG. 22 is a diagram illustrating an example of a control device of the ion milling apparatus illustrated in FIG.
  • the switching unit 2201 corresponds to the operation panel in FIG. 21, and selection information in the switching unit 2201 is transmitted to the calculation unit 2207 via the input interface 2205 provided in the control device 2202.
  • the control signal generation unit 2209 reads the control signal from the control signal storage unit 2208 based on the input signal, and transmits the signal to the output interface 2206.
  • the driving mechanisms 2203 and 2204 execute driving under the conditions selected by the switching unit 2201 based on the received control signal.
  • the drive mechanism 2203 is a drive mechanism that drives the tilt stage
  • the drive mechanism 2204 is a drive mechanism that drives a rotary table mounted on the tilt stage.
  • a sensor for recognizing the trapezoid shape may be provided so that the processing mode is automatically selected.
  • the calculation device that recognizes the sensor and the sensor information corresponds to the switching unit.
  • FIG. 23 is a flowchart showing a determination process for generating a message for comparing the machining mode and the apparatus state and prompting the operator to set the apparatus correctly.
  • a processing mode is selected on the operation panel illustrated in FIG. 21 (step 2301).
  • the control signal generation unit 2209 of the calculation unit 2207 determines which processing mode is selected (step 2302), and determines whether the sample holder corresponding to the processing mode is installed on the sample stage (step 2302). If the cross-section machining is selected, the determination is made in step 2303, and if the plane machining is selected, the determination is made in step 2304).
  • Whether the predetermined sample holder is installed is determined by providing a sensor (sensor unit 2210) in the vacuum chamber for determining the difference between the two and whether the sample holder is installed.
  • a sensor sensor unit 2210 in the vacuum chamber for determining the difference between the two and whether the sample holder is installed.
  • the apparatus state monitoring unit 2211 built in the calculation unit 2207 A predetermined signal is transmitted to the display unit 2212 and an error message is generated (step 2305).
  • the error message may be displayed as “Err” on the display unit of the operation panel illustrated in FIG. 21, or other display means or an alarm generator may be used.
  • step 2306 when cross-section milling is selected in step 2302, it is determined whether the tilt angle of the sample stage 8 is zero (step 2306). If it is not zero, an error message is generated. By generating such a message, it is possible to grasp that the stage state is not suitable for cross-section milling, and the possibility of performing erroneous machining can be suppressed.
  • step 2307 after confirming that the stage tilt angle is properly set, the process proceeds to a state in which the conditions for the reciprocating tilt drive of the rotary table can be input (step 2307).
  • step 2302 both the tilting stage and the rotary stage are driven, and the process shifts to a state where both conditions can be set (step 2308).
  • step 2309 it is determined that other conditions (ion beam current, processing time, etc.) to be set are set (step 2309), and processing is started (step 2310).
  • step 2306 when the stage is tilted (when the tilt angle is other than 0 °), the tilt stage may be controlled so that it automatically enters the non-tilt state.
  • the processing mode setting information, the type of the mounted holder, and the apparatus state are recognized, and by comparing these information, it is easy to determine whether or not the current setting state is appropriate. Therefore, it is possible to prevent processing based on an incorrect setting.
  • the cross-section milling and the planar milling need to change the distance between the ion source and the sample depending on the performance of the ion source, so the processing mode is automatically set according to the setting of the position of the sample stage. You may make it switch. Furthermore, an error message may be generated when the setting of the position of the sample stage and the selection of the processing mode are contradictory. Also in this case, an incorrect setting can be suppressed by performing the setting through the steps illustrated in FIG. Further, a control mechanism for automatically controlling the sample stage position may be provided by selecting the processing mode.
  • sample mask unit fine movement mechanism 4 on which the sample mask unit 21 is mounted is detachable from the apparatus main body, it is possible to remove the sample mask unit fine movement mechanism 4 from the apparatus and attach the sample surface unit to the apparatus.
  • flat surface milling is performed with the sample surface unit installed, milling processing other than the sample is minimized, and the sample unit is not damaged at all.
  • the progress of milling can be confirmed by installing an optical microscope 57 as shown in FIG. 17 above the processing observation window of the ion milling apparatus exemplified in FIG.
  • the processing can be finished and the sample can be taken out, which leads to an improvement in throughput.
  • an electron microscope 58 may be installed as illustrated in FIG. This is used to check the progress of processing while the sample is being milled by an ion beam.
  • the method of use is to stop milling once, open the dirt prevention shutter, and then observe with the electron microscope 58.
  • the electron beam irradiation is terminated, the anti-stain shutter is closed, and then the ion beam is irradiated again to start milling.
  • the image is enlarged to a necessary magnification and a necessary image is acquired.
  • the sample mask unit fine movement mechanism 4 or the sample surface unit is removed from the apparatus, the sample is mounted on the sample unit for the electron microscope, the sample unit is attached to the apparatus, and it can be used as a normal electron microscope.
  • an ion milling apparatus in which the processing observation window 7 is installed on the upper surface of the vacuum chamber 15, the ion source 1 is installed on the left side surface (or the right side surface), and the sample stage 8 is installed on the front surface. Therefore, both the installation and observation of the processing surface observation device are easy. Furthermore, both cross-section milling and surface milling can be processed with a single device.
  • both cross-sectional milling and planar milling can be performed with one apparatus. Furthermore, the operability is greatly improved by installing the observation apparatus on the upper part of the vacuum chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 本発明のイオンミリング装置は、真空チャンバ内(15)に配置されイオンビームに直交する第1の軸に平行な傾斜軸を持つ傾斜ステージ(8)と、前記第1の軸に直交する第2の軸に平行な回転軸及び傾斜軸を持ち試料(3)を回転或いは傾斜させる駆動機構(9、51)と、前記傾斜ステージを傾斜させながら試料を回転或いは往復傾斜させてイオンビームを照射する状態と、前記傾斜ステージを非傾斜状態とすると共に前記試料を往復傾斜させてイオンビームを照射する状態とを切り替えることを可能にする切替部を備えている。 これにより、同一の真空チャンバ内で試料の断面加工と平面加工とを行うことが可能なイオンミリング装置が実現された。

Description

イオンミリング装置
 本発明は、走査電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などで観察される試料を作製するためのイオンミリング装置およびイオンミリング方法に関する。
 イオンミリング装置は、金属,ガラス,セラミックなどの表面あるいは断面を、アルゴンイオンビームを照射するなどして研磨するための装置であり、電子顕微鏡により試料の表面あるいは断面を観察するための前処理装置として好適である。
 電子顕微鏡による試料の断面観察において、従来は観察したい部位の近傍を例えばダイヤモンドカッター,糸のこぎり等を使用して切断した後、切断面を機械研磨し、電子顕微鏡用の試料台に取り付けて像を観察していた。
 機械研磨の場合、例えば高分子材料やアルミニウムのように柔らかい試料では、観察表面がつぶれる、あるいは研磨剤の粒子によって深い傷が残るといった問題があった。又、例えばガラスあるいはセラミックのように固い試料では研磨が難しく、柔らかい材料と固い材料とが積層された複合材料では、断面加工が極めて難しいという問題があった。
 これに対し、イオンミリングは、柔らかい試料でも表面の形態がつぶれることなく加工できる、固い試料および複合材料の研磨が可能である。鏡面状態の断面を容易に得ることができるという効果がある。
 特許文献1には、真空チャンバ内に配置され、試料にイオンビームを照射するためのイオンビーム照射手段と、前記真空チャンバ内に配置され、前記イオンビームにほぼ垂直な方向の傾斜軸をもつ傾斜ステージと、その傾斜ステージ上に配置され、前記試料を保持する試料ホルダと、前記傾斜ステージ上に位置し、前記試料を照射するイオンビームの一部を遮る遮蔽材とを備えた試料作製装置であり、前記傾斜ステージの傾斜角を変化させながら、前記イオンビームによる試料加工を行う試料作製装置が記載されている。
特開2005-91094号公報
 特許文献1に開示された試料作製装置は、断面加工(断面ミリング)用のイオンミリング装置である。一方、イオンミリング装置には、試料を回転させつつ、試料表面をイオンビームによって加工する平面ミリング用の装置がある。このように同じようにイオンビームを照射して試料を加工する装置であっても、イオンビーム照射時の試料の動きが異なるが故に、別装置とする必要があった。
 以下に、断面加工と平面加工の両方を同じ真空チャンバ内にて行うことを目的とするイオンミリング装置を説明する。
 上記目的を達成するための一態様として、試料にイオンビームを照射するためのイオン源と、真空チャンバ内に配置され、前記イオンビームに直交する第1の軸に平行な傾斜軸を持つ傾斜ステージを備えたイオンミリング装置において、前記傾斜ステージ上に配置され、前記試料を保持する試料保持部材を支持する支持台と、前記第1の軸に直交する第2の軸に平行な回転軸及び傾斜軸を持ち、前記支持台を回転、或いは傾斜させる駆動機構と、前記傾斜ステージを傾斜、前記支持台を回転或いは往復傾斜させて、前記イオンビームを照射する状態と、前記傾斜ステージを非傾斜状態とすると共に、前記支持台を往復傾斜させて、前記イオンビームを照射する状態を切り替える切替部を備えたイオンミリング装置を提案する。
 上記構成によれば、断面ミリングと平面ミリングの双方を1台の装置にて行うことができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
イオンミリング装置の概略構成図である。 試料マスクユニットの概略構成図である。 試料マスクユニットの他の例を示す図である。 試料の断面とマスクを平行にする方法を示した説明図である。 試料ユニットベースを引き出し、試料マスクユニットを設置した試料マスクユニット微動機構を着脱した状態を示す図である。 別体と設けられた光学顕微鏡に試料マスクユニットを設置した試料マスクユニット微動機構を装着する状態を示す図である。 試料マスクユニットを設置した試料マスクユニット微動機構を光学顕微鏡に装着した状態を示す図である。 アルゴンイオンビーム中心と試料の断面研磨したい部位とを合わせる方法を示した説明図である。 イオンミリングによる試料断面研磨方法を示した説明図である。 イオンミリング装置の概略構成図である。 試料マスクユニットを設置した試料マスクユニット微動機構と試料ユニットベースの構成図である。 試料マスクユニットを設置した試料マスクユニット微動機構と軸継手を使用した試料ユニットベースの構成図である。 別体と設けられた光学顕微鏡に試料マスクユニットを設置した試料マスクユニット微動機構を装着する状態を示す図である。 回転傾斜機構と偏心機構の構成図である。 回転傾斜機構と偏心機構(軸継手を使用した)の構成図である。 試料表面ユニットと試料ユニットベースの構成図である。 光学顕微鏡を搭載したイオンミリング装置の概略構成図である。 電子顕微鏡を搭載したイオンミリング装置の概略構成図である。 断面ミリング時のイオンビーム軌道と、回転傾斜機構の回転傾斜軸との関係を説明する図。 平面ミリング時のイオンビーム軌道と、回転傾斜機構の回転傾斜軸との関係を説明する図。 イオンミリング装置の操作パネルの概要を示す図。 イオンミリング装置の制御装置の概要を説明する図。 加工モードと加工条件の設定工程を示すフローチャート。
 断面ミリング装置(マスクを介して、試料をミリングし平滑な面を作成する装置)では、試料ステージと試料を保持するユニットの設置部が同じ回転傾斜軸(同じ動き)であるため、加工観察窓の設置位置は、試料ステージと同軸方向となるため、試料ステージを装置前面とすると、加工観察窓は装置前面または背面となり、観察装置(顕微鏡)の設置・操作が難しい。また、断面ミリング装置の回転傾斜機構を回転機構にするだけでは、平面ミリング(イオンビーム軸に対し垂直な面(試料ステージの傾斜角度90度)を平滑に加工する)を行うことができず、断面・平面それぞれのミリング装置が必要であった。
 本実施例では、主にミリングによる加工観察面の観察を容易にし、さらに断面ミリングおよび表面ミリング両者の加工ができることを特徴とするイオンミリング装置について説明する。
 本実施例では、イオンミリング装置の一例として、真空チャンバに取り付けられ、試料にイオンビームを照射するイオンビーム源と、試料を固定する試料ホルダ、該試料ホルダに固定された試料の一部を遮蔽するマスク(遮蔽部)、前記試料ホルダを回転する試料回転機構および前記マスクと試料との遮蔽位置関係を調整するマスク位置調整部から構成される試料マスクユニットとイオンビームと垂直に試料マスクユニットをXY駆動できる試料マスクユニット微動機構と前記試料マスクユニット微動機構を真空チャンバ内で設置できる試料ユニットベースおよび前記マスクと試料との遮蔽位置関係を観測する光学顕微鏡とを備えたイオンミリング装置において、前記試料マスクユニットまたは前記試料マスクユニット微動機構の試料ユニットベースへの固定部は、前記試料マスクユニットまたは前記試料マスクユニット微動機構の後部であり、前記試料ユニットベースに回転部を設け、前記真空チャンバの前面に前記試料ステージ、右または左側面に前記イオンビーム源、上面に加工観察窓を搭載し、試料と加工観察窓の間にシャッターを設けたことを特徴とするイオンミリング装置を説明する。
 また、前記試料の回転傾斜機構は回転機能を備え、前記試料の回転軸の垂直方向にチルト軸が構成されるチルト機構を備え、イオンビーム軸と試料の回転軸(ステージ傾斜角90度の場合)の偏心機構を設けたことを特徴とするイオンミリング装置を説明する。
 上記した構成によれば、ミリングによる加工観察面の観察を容易にし、さらに断面ミリングおよび表面ミリング両者の加工が可能となる。
 以下、実施例を図面に基づいて説明する。
 本実施例ではアルゴンイオンビームを照射するためのイオン源を搭載したイオンミリング装置を例に採って説明するが、イオンビームはアルゴンイオンビームに限られることはなく、種々のイオンビームの適用が可能である。
 図1はイオンミリング装置の構成を示したものである。真空チャンバ15の上面にイオン源1、前面に試料ステージ8が設置されている。
 試料ユニットベース5には、試料マスクユニット微動機構4が搭載される。搭載方法は、試料マスクユニット微動機構4の下面(イオンビームが照射されるマスク面の対面側)と試料ユニットベース5の上面を接触させて、ねじで固定される。試料ユニットベース5がイオンビームの光軸に対して任意の角度に回転傾斜できるように構成されており、回転傾斜させる方向と傾斜角度は、試料ステージ8により制御される。試料ステージ8を回転傾斜させることにより、試料マスクユニット微動機構4上に設置する試料3をイオンビームの光軸に対して所定の角度に設定することができる。更に、試料ステージ8の回転傾斜軸と試料上面(マスク下面)の位置を一致させて、効率良く平滑な加工面を作製している。また、試料マスクユニット微動機構4は、イオンビームの光軸に対して垂直方向の前後左右、すなわち、X方向とY方向に移動できるように構成される。
 試料ユニットベース5は、真空チャンバ15の容器壁の一部を兼ねるフランジ10に搭載されている試料ステージ8(回転機構)を介して配置されており、フランジ10をリニアガイド11に沿って引き出して真空チャンバ15を大気状態に開放した時に、試料ユニットベース5が真空チャンバの外部へ引き出されるように構成されている。このようにして、試料ステージ引出機構が構成される。
 試料マスクユニット21本体の構成を図2により説明する。図2の(a)は平面図、(b)は側面図である。実施例では、少なくとも試料ホルダ23とその回転機構、マスク2とその微調整機構とを一体に構成したものを試料マスクユニット(本体)21と称する。図2では、試料ホルダ23の回転機構として試料ホルダ回転リング22と試料ホルダ回転ねじ28が備えられており、イオンビームの光軸に対して、垂直に試料ホルダを回転できるようにしている。試料ホルダ回転リング22は、試料ホルダ回転ねじ28を回すことによって回転するように構成されており、逆回転はばね29のばね圧で戻るようになっている。
 試料マスクユニット21は、マスクの位置と回転角を微調整できる機構を持ち、試料マスクユニット微動機構4に取り付け、取り外しができる。本実施例では、試料マスクユニット21と試料マスクユニット微動機構4は2部品となっているが、1部品で構成されても良い。(実施例では判り易くするために、試料マスクユニットと試料マスクユニット微動機構を分けて説明する)。
 マスク2はマスクホルダ25にマスク固定ねじ27により固定される。マスクホルダ25はマスク微調整機構(すなわちマスク位置調整部)26を操作することによってリニアガイド24に沿って移動し、これにより試料3とマスク2の位置が微調整される。試料ホルダ23は、下部側より試料ホルダ回転リング22に挿入され固定される。試料3は試料ホルダ23に接着固定される。試料ホルダ位置制御機構30により試料ホルダ23の高さ方向の位置を調整し、試料ホルダ23をマスク2に密着させる。
 図3は、試料マスクユニット21の他の例を示す。この例にあっては、試料ホルダ固定金具35を使用しており、他の構成は図2に示す例と基本的に同一である。図3(a)は、試料3を固定した試料ホルダ23を試料マスクユニット21内に装着した状態を示し、図3(b)は試料3を固定した試料ホルダ23を試料マスクユニット21から取り外した状態を示す。
 図4は、試料の断面とマスクを平行にする方法を示した説明図である。試料ホルダ回転ねじ28を回してX1方向の位置調整を行い、試料3の断面とマスク2の稜線が平行になるよう後述するようにして顕微鏡下で微調整する。このとき、試料3の断面がマスクより僅かに突出、例えば50μm程度突出するようにマスク微調整機構26を回して設定する。
 図5は、試料ステージ引出機構60の構成を示す。試料ステージ引出機構60は、リニアガイド11とこれに固着されたフランジ10からなり、フランジ10に搭載された試料ステージに固着された試料ユニットベース5は、リニアガイド11に沿って真空チャンバ15から引き出される。この操作に伴って、試料ユニットベース5に試料マスクユニット21を設置した試料マスクユニット微動機構4を設置、すなわちマスク2,試料ホルダ23,試料3が真空チャンバ15から一体的に引き出される。
 本実施例において、試料マスクユニット21を設置した試料マスクユニット微動機構4は、試料ユニットベース5に着脱自在に固定される構成を有する。従って、試料マスクユニット21を設置した試料マスクユニット微動機構4が真空チャンバ15の外部に引き出されると、試料マスクユニット21を設置した試料マスクユニット微動機構4を試料ユニットベース5から着脱可能状態とされる(試料マスクユニット21の着脱スタンバイ)。
 図5は、このような着脱自在の状態から、試料マスクユニット21を設置した試料マスクユニット微動機構4が着脱された状態を示す。この着脱は人手によって、もしくは適当な器具によって行う。
 一方、マスク2と試料3との遮蔽位置関係を観測する光学顕微鏡40は、図6に示すように、真空チャンバ15から別体に構成され、任意の場所に配置することが可能とされる。そして、光学顕微鏡40は、周知のルーペ12,ルーペ微動機構13を備える。更に、光学顕微鏡40は、観測台41上に取り外された試料マスクユニット21を設置した試料マスクユニット微動機構4を装置するための固定台42が設けてあり、位置決め用の軸と穴によって再現性のある決まった位置に試料マスクユニット21を設置した試料マスクユニット微動機構4は、固定台42上に設置される。
 図7は、試料マスクユニット21を設置した試料マスクユニット微動機構4を固定台42上に固定した状態を示す。
 図8は、試料3の断面研磨したい部位をイオンビーム中心に合わせる方法を示した説明図である。感光紙等を試料ホルダ23に取り付け、イオンビームを照射することによりできた痕、すなわちビーム中心とルーペの中心をルーペ微動機構13でX2,Y2を駆動して合わせておく。図3で試料3を設置した後の試料マスクユニット本体21を設置した試料マスクユニット微動機構4を固定台42に設置する。固定台42のX3,Y3方向の位置を調整してルーペ中心に合わせることで、イオンビーム中心と断面研磨したい部位を合わせることができる。
 このように、マスク2と試料3との遮蔽位置関係の調整時に、試料マスクユニット21を設置した試料マスクユニット微動機構4は、試料ユニットベース5から取り外されて光学顕微鏡40の固定台42に装着され、マスク2は試料3に対する遮蔽位置関係がマスク位置調整部(マスク微調整機構)によって調整される。
 図9は、イオンビームで試料3の断面を鏡面研磨する方法を示した説明図である。アルゴンイオンビームを照射すると、マスク2で覆われていない試料3をマスク2に沿って、深さ方向に取り除くことができ、且つ、試料3の断面の表面を鏡面研磨することができる。
 このように、イオンミリング時に試料に対する遮蔽位置関係が調整されたマスク2を備えた試料マスクユニット21を設置した試料マスクユニット微動機構4が試料ユニットベース5に戻され、装着されることになる。
 以上のように、マスク2と試料3との遮蔽位置関係の調整時に、試料マスクユニット21を設置した試料マスクユニット微動機構4を試料ユニットベース5から取り外して光学顕微鏡40の固定台42に装着し、マスクの試料3に対する遮蔽位置関係を調整し、イオンミリング時に、試料に対する遮蔽位置関係が調整されたマスク2を備えた試料マスクユニット21を設置した試料マスクユニット微動機構4を真空チャンバ15内に戻し、試料ユニットベース5に装着するようにしたイオンミリング方法が構成される。
 図1に例示するようなイオンミリング装置では、断面ミリング加工を行うことができるが、平面ミリング加工を行うことができない。そこで、本実施例では、その両方の加工を可能とするイオンミリング装置を説明する。
 図10は、断面ミリング加工と平面ミリング加工の両方を行うことのできるイオンミリング装置の構成を示したものである。真空チャンバ15の上面に加工観察窓7、左側面(右側面でも良い)にイオン源、前面に試料ステージを搭載し、試料と加工観察窓7の間にシャッター101が設けられている。このシャッター101は、スパッタされた粒子が加工観察窓7に堆積することを防ぐために設置される。真空チャンバ15は、通常真空雰囲気を形成するための空間を形成する箱型形状、或いはそれに準ずる形状を為しているが、観察窓は箱の上方(重力のある環境で、重力場の向かう方向と反対の方向)に設けられ、イオン源は箱の側方壁面(箱の上方面に隣接する面であって、重力場の向かう方向と垂直な方向)に設けられる。即ち、加工観察窓は、試料ステージの傾斜軸と、イオンビームの照射軌道を含む平面に直交する方向であって、真空チャンバの壁面に設けられる。なお、後述するように、加工観察窓用の開口には、真空封止が可能な窓を設ける以外にも、光学顕微鏡や電子顕微鏡を設置することができる。
 試料ユニットベース5には、試料保持部材(試料マスクユニット微動機構4を含む試料を保持する部材)を載置可能な回転体9が設けられており、回転体9は、試料保持部材を支持する支持台として機能する。試料ユニットベース5は、図11のように回転体9と歯車50とベアリング51により構成されている。試料マスクユニット微動機構4は図11のように試料マスクユニット微動機構4の後面にマスクユニット固定部(ネジ含む)52を設置している。試料ユニットベース5への試料マスクユニット微動機構4の搭載方法は、試料マスクユニット微動機構4の固定面(後面)と試料ユニットベース5の回転体9上面を接触させて、マスクユニット固定部52によりねじ固定される。試料ユニットベース5は回転傾斜されず、試料ユニットベース5に搭載されている回転体9により、真空チャンバ15側面方向より照射されるイオンビームの光軸に対して任意の角度に回転傾斜できるように構成されており、回転傾斜させる方向と傾斜角度は、試料ステージ8により制御される。
 ここで、試料ユニットベース5の回転体9を回転傾斜させる方法は、図11,図12(軸継手53を使用)のどちらでも良い。試料ユニットベース5の回転体9を回転傾斜させることにより、試料マスクユニット微動機構4上に設置する試料3をイオンビームの光軸に対して所定の角度に設定することができる。更に、試料ユニットベース5の回転体9の回転軸と試料上面(マスク下面)の位置を一致させて、効率良い平滑な加工面を作製している。また、試料マスクユニット微動機構4は、イオンビームの光軸に対して垂直方向の前後左右、すなわち、X方向とY方向に移動できるように構成される。
 装置と別体の光学顕微鏡40への設置は、図13のように試料マスクユニット21または試料マスクユニット微動機構4の試料ユニットベース5へのマスクユニット固定部52を使用せず、試料マスクユニット微動機構4の下面を使用する方法でも良い。
 図6の例と異なる点は、ビーム中心とルーペ中心を調整するルーペ微動機構13を固定台42側で行う点である。このルーペ微動機構13は、本例或いは図6の例のどちらを採用しても良い。それ以外については、図6の例と同様の作業を行う。
 図10に例示したイオンミリング装置には、図14に例示するように試料の回転傾斜機構に回転機能が設けられ、且つイオンビーム軸に垂直方向の回転傾斜軸を持つ傾斜機構が設けられている。更に、図14のように傾斜角を90度とした際のイオンビーム軸と試料マスクユニット微動機構4の回転軸をずらす偏心機構を設ける。ここで、図15のように軸継手を使用する方式でも良い。但し、軸継手を使用する場合には、図15のように回転傾斜部内に設置し、偏心機構は試料ユニットベース5の回転体の下部に設置しなければならない。図14,図15のように試料の回転機能を有し、イオンビーム入射角,偏心量を任意に決めることにより、断面ミリング(マスクを介して、試料をミリングし平滑な面を作成する装置)でありながら、平面ミリング(イオンビーム軸に対し垂直な面(試料ステージの傾斜角度90度時)を平滑に加工する)が可能になる。
 但し、断面ミリングと平面ミリングはイオン源の性能によって、イオン源と試料間の距離を変更する必要があるため、イオンビーム軸の方向にイオン源又は試料ステージの可動機構を設けている。従ってイオン源により、断面ミリングと平面ミリングを行う際のイオン源と試料間距離が決定するので、試料を搭載している試料ステージの位置又はイオン源の位置により断面ミリング又は平面ミリングを認識し、断面ミリング又は平面ミリングモード(例えば、回転傾斜又は回転)を切り替える機能を有している。
 ここで、異なる2種の加工が可能となる理由を更に詳述する。以下、本実施例にて例示する装置が、断面ミリング加工と平面ミリング加工の双方を実施し得る原理について詳述する。図19は断面ミリングの際のイオンビームの照射方向と、各回転機構或いは傾斜機構(以下、単に回転機構と称する)の回転軸或いは傾斜軸(以下、単に回転軸と称する)との関係を示す図であり、図20は平面ミリングの際のイオンビームの照射方向と、各回転軸との関係を示す図である。
 図19において、破線にて表現される軸1901は、図10の上図にて一点鎖線で表現した軸と平行であり、例えば図11に例示する回転体9の回転軸にも平行な軸である。更に二点鎖線で表現される軸1902は、試料ステージ8の回転軸に平行な軸である。また、一点鎖線で表現される軸1903は、イオン源1から放出されるイオンビームの照射方向を示している。また、軸1901は、マスク2のイオンビーム被照射面と平行な関係にある。
 また、軸1901,1902,1903は直交しており、本例の場合、軸1901がz軸、軸1902がy軸、軸1903がx軸に平行になるように設置される。
 断面ミリングのときには、試料3の断面にイオンビーム軌道に沿った筋が形成されないように、軸1901に平行な回転軸を回転中心とした往復傾斜駆動を行う。このとき、マスク面は軸1901に平行となる。また、平面ミリングのときには、図20に例示するように、試料1904を試料ステージ8によって所定角度に傾斜、或いは所定角度範囲で往復傾斜駆動しつつ、軸1901の傾斜軸1905に平行な軸を回転軸として試料1904を回転させる。
 以上のように、本実施例装置は、第1の回転軸(軸1902に平行な軸)を有する試料ステージ上にて、第2の回転軸(軸1901、或いは軸1905(傾斜往復運動を行う場合を含む))を回転、或いは傾斜中心とした回転、或いは往復傾斜駆動を行い得るものである。即ち、図10に例示する装置は、断面ミリングのときの往復傾斜駆動と、平面ミリングのときの試料の回転或いは往復傾斜駆動を、試料ステージ8上に搭載される回転機構にて行うと共に、平面ミリングのときの傾斜を、試料ステージ8自体を傾斜させる回転機構にて行うことを特徴としている。なお、図20では軸1905は駆動機構の回転中心を示しているが、平面ミリングの場合には、試料上の広範囲の領域を平面加工するため、試料中心を軸1905から偏心させた状態で回転を行う。
 図21は、断面ミリング加工と、平面ミリング加工の切り替えと、ステージ等の動作条件を設定する操作パネルの一例を示す図である。加工モード設定部2101には、平面ミリング(Flat)か、断面ミリング(Cross-section)かを選択するボタンが配置されており、どちらか一方の択一的な選択が可能となっている。また、ステージ動作条件設定部2102には、傾斜(tilt)か、往復傾斜(swing)かを選択するボタンが配置されており、どちらか一方の択一的な選択が可能となっている。ステージ動作条件設定部2102には更に、傾斜角度、或いは往復傾斜の角度範囲(Angle)と、往復傾斜の場合の周期速度(Speed)を設定する設定部が設けられている。更に、回転テーブル動作条件設定部2103には、回転テーブルによる往復傾斜角度(Angle)と、往復傾斜の周期速度(Speed)を設定する設定部が設けられている。
 図21に例示する操作パネルでは、数値入力が必要な設定部については、セレクトキー(Select)により、入力窓の選択を可能とすると共に、“Up”,“Down”ボタンによって、数値の選択を可能としている。更にエンターキー(Enter)によって、選択された数値の登録を行う。ここで言うところのステージとは、例えば図10の試料ステージ8であり、回転テーブルとは、例えば図11の回転体9のことである。
 断面ミリング加工には、回転テーブルの往復傾斜駆動を要する反面、試料ステージの往復傾斜駆動を必要としない。よって、断面ミリング加工を選択(Cross-Sectionのボタンを選択)したとき、ステージ動作条件設定部2102における設定を禁止、或いは無効とするようにミリング装置の制御装置を構成しておくと良い。また、断面ミリング時に試料ステージ8を傾斜してしまうと、加工対象とは関係のない部分にイオンビームを照射したり、試料断面を斜めに加工してしまうことになるため、断面ミリング加工を選択したとき、試料ステージ8が傾斜した状態にある場合に、イオンビームの照射を行わないような制御を行ったり、エラーメッセージを発生することで、操作者に注意を促すようにしても良い。また、自動的に、試料ステージ8の傾斜角度をゼロにするように制御を行っても良い。
 また、平面ミリング加工には、試料ステージ8の傾斜と、回転テーブルの回転或いは往復傾斜の双方を用いるため、ステージ動作条件設定部2102と、回転テーブル動作条件設定部2103の双方の入力を有効にする必要がある。
 本実施例装置では、回転体9に、断面ミリング時の往復傾斜駆動と、平面ミリング時の回転駆動の両方を行わせることによって、1のミリング装置で2つの異なるミリング加工を可能とした。
 なお、図10に例示する装置では、イオン源1が真空チャンバ15の側方に設置されている。このような構成とする理由は、傾斜ステージの非傾斜時(例えば断面ミリング時)に、ステージを安定した状態とすることできるからである。傾斜ステージの非傾斜状態で、断面加工を行うためには、イオンビームを側方から照射する必要があり、そのためにイオン源1が真空チャンバ15の側方に設置されている。また、それに伴って加工断面を確認するための加工観察窓を真空チャンバ15の上方に設置した。このような構成によれば、断面ミリング時の加工断面の確認と、平面ミリング時の加工面の確認を1つの観察窓で行うことが可能となる。
 図22は、図10に例示するイオンミリング装置の制御装置の一例を示す図である。切替部2201は、図21の操作パネルに相当するものであり、切替部2201における選択情報は、制御装置2202に設けられた入力インターフェース2205を介して、演算部2207に伝達される。演算部2207では、制御信号発生部2209が、入力信号に基づいて、制御信号記憶部2208より制御信号を読み出し、その信号を出力インターフェース2206に伝達する。駆動機構2203,2204では、受信した制御信号に基づいて、切替部2201にて選択した条件の駆動を実行する。
 駆動機構2203は、傾斜ステージを駆動する駆動機構であり、駆動機構2204は、傾斜ステージ上に搭載された回転テーブルを駆動する駆動機構である。なお、本実施例では、切替部2201による加工モードの選択によって、断面ミリング加工を行うか、平面ミリング加工を行うかの選択を行う例を示しているが、これに限ることはなく、例えば試料台形状を認識するセンサを備えておき、自動的に加工モードを選択するようにしても良い。この場合、センサと当該センサ情報を認識する演算装置が、切替部に相当することになる。
 また、切替部による加工モード選択と、装置状態とを比較して、当該選択、或いは装置状態が適切ではない場合に、エラーメッセージを発生することによって、誤った条件に基づく加工をしないように、操作者へ警報を発生することもできる。
 図23は、加工モードと装置状態を比較し、正確な装置設定を操作者に促すメッセージを発生するための判断工程を示すフローチャートである。まず、装置の電源をオンにした上で、図21に例示したような操作パネル上にて、加工モードを選択する(ステップ2301)。ここで演算部2207の制御信号発生部2209では、いずれの加工モードが選択されたかを判断し(ステップ2302)、その加工モードに見合った試料ホルダが試料ステージ上に設置されているかを判断する(断面加工が選択されている場合には、ステップ2303、平面加工が選択されている場合には、ステップ2304にて判断を実施する)。
 所定の試料ホルダが設置されているか否かの判断は、両者の違い、及び試料ホルダの設置の有無を判断するためのセンサ(センサ部2210)を真空チャンバ内に備えておくことによって実施する。このセンサが、試料ホルダ自体が設置されていない、或いは設定された加工モードに不適な試料ホルダが設置されている旨の信号を発生した場合、演算部2207に内蔵された装置状態監視部2211は、所定の信号を表示部2212に伝達し、エラーメッセージを発生する(ステップ2305)。エラーメッセージは、図21に例示した操作パネルの表示部上に“Err”のような表示を行うようにしても良いし、他の表示手段或いは警報発生器を用いるようにしても良い。
 次に、ステップ2302にて、断面ミリングを選択した場合に、試料ステージ8の傾斜角がゼロになっているかを判定(ステップ2306)し、ゼロでない場合にエラーメッセージを発生する。このようなメッセージ発生によって、断面ミリングに適さないステージ状態となっていることを把握することが可能となり、誤った加工を行う可能性を抑制することができる。ステップ2307にて、ステージ傾斜角が適正に設定されていることを確認した上で、回転テーブルの往復傾斜駆動の条件の入力を可能とする状態に移行する(ステップ2307)。
 また、ステップ2302にて、平面ミリングを選択した場合には、傾斜ステージと回転ステージの双方を駆動することになるため、両者の条件設定を可能とする状態に移行する(ステップ2308)。
 以上のようなステップを経由して、更に他に設定すべき条件(イオンビーム電流,加工時間等)が設定されていることを判定(ステップ2309)し、加工を開始する(ステップ2310)。
 上述のような工程を経て、加工を行うことによって、2種類の加工を行い得る装置において、誤った選択を行うことがなくなり、容易に加工条件設定を行うことが可能となる。また、ステップ2306にて、ステージが傾斜していた場合(傾斜角0°以外の場合)、自動的に非傾斜状態となるように、傾斜ステージを制御するようにしても良い。
 以上のように、加工モードの設定情報と、装着されたホルダの種類、及び装置状態を認識すると共に、これらの情報を比較することによって、現在の設定状態が適切なものか否かを容易に判断することができ、誤った設定に基づく加工を未然に防ぐことが可能となる。
 また、上述したように、断面ミリングと平面ミリングはイオン源の性能によって、イオン源と試料間の距離を変更する必要があるため、試料ステージの位置の設定に応じて、自動的に加工モードを切り替えるようにしても良い。更に、試料ステージの位置設定と、加工モードの選択が矛盾するような場合に、エラーメッセージを発生するようにしても良い。この場合も図23に例示するような工程を経て、設定を行うことによって、誤った設定を抑制することが可能となる。また、加工モードの選択によって、自動的に試料ステージ位置を制御する制御機構を設けるようにしても良い。
 試料マスクユニット21を搭載している試料マスクユニット微動機構4は装置本体から着脱可能なので、試料マスクユニット微動機構4を装置から取り外し、試料表面ユニットを装置に取り付けることが可能である。試料表面ユニットを設置して平面ミリングを行った場合、試料以外のミリング加工が最小限となり、試料ユニットのダメージが皆無となる。
 また、図10等に例示したイオンミリング装置の加工観察窓の上部に、図17のように光学顕微鏡57を設置することにより、ミリング加工の進捗が確認できる。所望の加工範囲まで加工が完了した時点で、加工を終了し、試料を取り出すことができるため、スループットの向上につながる。
 更に、図17に例示した光学顕微鏡57に替えて、図18に例示するように電子顕微鏡58を設置しても良い。イオンビームにより試料をミリング加工している途中で、加工の進捗を確認するために使用する。使用方法は、ミリング加工を一度停止し、汚れ防止用シャッターを開放後、電子顕微鏡58による観察を行う。所望の加工範囲が得られていない場合には、電子ビーム照射を終了し、汚れ防止用シャッターを閉じた後、再度イオンビームを照射し、ミリング加工を開始する。所望の加工範囲が得られている場合には、必要となる倍率まで拡大し、必要となる画像を取得する。
 装置より試料マスクユニット微動機構4または試料表面ユニットを取り外し、電子顕微鏡用の試料ユニットに試料を搭載し、試料ユニットを装置に取り付け、通常の電子顕微鏡としても使用可能としている。
 本実施例に例示したイオンミリング装置によれば、真空チャンバ15の上面に加工観察窓7、左側面(右側面でも良い)にイオン源1、前面に試料ステージ8を設置したイオンミリング装置が可能となり、加工面観察装置の設置,観察共、容易となる。更に、断面ミリングおよび表面ミリング両者の加工が一つの装置で可能となる。
 近年、特に半導体分野で、複合材料を電子顕微鏡で断面観察することが重要となってきており、複合材料の断面を鏡面研磨する重要性が増している。本実施例により、断面ミリングおよび平面ミリングの両者を一つの装置で行うことが可能になった。更に観察装置を真空チャンバ上部に設置することにより、操作性が極めて向上する。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
 1 イオン源
 2 マスク
 3 試料
 4 試料マスクユニット微動機構
 5 試料ユニットベース
 6 真空排気系
 7 加工観察窓
 8 試料ステージ
 9 回転体
 10 フランジ
 11,24 リニアガイド
 12 ルーペ
 13 ルーペ微動機構
 15 真空チャンバ
 21 試料マスクユニット
 22 試料ホルダ回転リング
 23 試料ホルダ
 25 マスクホルダ
 26 マスク微調整機構
 27 マスク固定ネジ
 28 試料ホルダ回転ねじ
 30 試料ホルダ位置制御機構
 35 試料ホルダ固定金具
 40,57 光学顕微鏡
 41 観測台
 42 固定台
 50 歯車
 51 ベアリング
 52 マスクユニット固定部
 53 軸継手
 54 直動機器
 55 モータ
 56 試料表面ユニット
 58 電子顕微鏡
 60 試料ステージ引出機構

Claims (18)

  1.  試料にイオンビームを照射するためのイオン源と、
     真空チャンバ内に配置され、前記イオンビームに直交する第1の軸に平行な傾斜軸を持つ傾斜ステージを備えたイオンミリング装置において、
     前記傾斜ステージ上に配置され、前記試料を保持する試料保持部材を支持する支持台と、
     前記第1の軸に直交する第2の軸に平行な回転軸及び傾斜軸を持ち、前記支持台を回転、或いは傾斜させる駆動機構と、
     前記傾斜ステージを傾斜させながら、前記支持台を回転或いは往復傾斜させて、前記イオンビームを照射する状態と、前記傾斜ステージを非傾斜状態とすると共に、前記支持台を往復傾斜させて、前記イオンビームを照射する状態を切り替える切替部を備えたことを特徴とするイオンミリング装置。
  2.  請求項1において、
     前記イオンビーム軸と前記支持台の回転軸を偏心させる機構を備えたことを特徴とするイオンミリング装置。
  3.  請求項2において、
     前記試料保持部材は、前記イオンビームの一部を遮ると共に、前記第2の軸に平行に位置付けられる面を有する遮蔽部を備え、当該試料保持部材は前記支持台に着脱可能に構成されていることを特徴とするイオンミリング装置。
  4.  請求項2において、
     前記切替部による切り替えに応じて、前記傾斜ステージを傾斜させながら、前記支持台を回転或いは往復傾斜させて、前記イオンビームを照射する状態と、前記傾斜ステージを非傾斜状態とすると共に、前記支持台を往復傾斜させて、前記イオンビームを照射する状態を切り替える制御装置を備えたことを特徴とするイオンミリング装置。
  5.  請求項1において、
     前記真空チャンバには、観察窓が設けられていることを特徴とするイオンミリング装置。
  6.  請求項5において、
     前記観察窓は、前記真空チャンバの天井面に設けられていることを特徴とするイオンミリング装置。
  7.  請求項6において、
     前記真空チャンバの天井面と異なる面には、前記イオン源が設置されていることを特徴とするイオンミリング装置。
  8.  請求項5において、
     前記試料のイオンビーム照射位置と、前記観察窓との間の空間に移動可能なシャッタが設けられていることを特徴とするイオンミリング装置。
  9.  請求項1において、
     前記真空チャンバには、光学顕微鏡、或いは電子顕微鏡が設けられていることを特徴とするイオンミリング装置。
  10.  請求項9において、
     前記光学顕微鏡、或いは電子顕微鏡は、前記真空チャンバの天井面に設けられていることを特徴とするイオンミリング装置。
  11.  請求項10において、
     前記真空チャンバの天井面と異なる面には、前記イオン源が設置されていることを特徴とするイオンミリング装置。
  12.  請求項9において、
     前記試料のイオンビーム照射位置と、前記光学顕微鏡、或いは電子顕微鏡との間の空間に移動可能なシャッタが設けられていることを特徴とするイオンミリング装置。
  13.  真空チャンバに取り付けられ、試料にイオンビームを照射するイオン源と、当該イオン源から放出されるイオンビームの照射方向に対し、垂直な方向の傾斜軸を持つ傾斜ステージを備えたイオンミリング装置において、
     前記試料ステージ上に設置され、前記傾斜軸に直交する回転傾斜軸を有する回転体と、前記真空チャンバの壁面であって、前記傾斜軸と前記イオンビームの照射軌道が為す平面に直交する方向に設けられる加工観察用の開口とを備えたことを特徴とするイオンミリング装置。
  14.  請求項13において、
     前記試料位置を、前記試料ステージ上にて偏心させる偏心機構を備えたことを特徴とするイオンミリング装置。
  15.  請求項13において、
     前記回転体上に試料マスクユニットを備え、当該試料マスクユニットは、前記回転傾斜軸に平行するイオンビームの遮蔽面を有する遮蔽部を有することを特徴とするイオンミリング装置。
  16.  請求項13において、
     前記イオンビーム源と前記試料の距離により、断面ミリングと表面ミリングのモードが切り替わることを特徴とするイオンミリング装置。
  17.  請求項13において、
     前記加工観察用開口の上部に光学顕微鏡を配置することを特徴とするイオンミリング装置。
  18.  請求項13において、
     前記加工観察用開口部に、電子顕微鏡のカラムを配置することを特徴とするイオンミリング装置。
PCT/JP2011/075306 2010-11-05 2011-11-02 イオンミリング装置 WO2012060416A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180051255.5A CN103180929B (zh) 2010-11-05 2011-11-02 离子铣削装置
JP2012541899A JP5491639B2 (ja) 2010-11-05 2011-11-02 イオンミリング装置
DE112011103677.9T DE112011103677B4 (de) 2010-11-05 2011-11-02 Ionenätzvorrichtung
KR1020137011419A KR101470267B1 (ko) 2010-11-05 2011-11-02 이온 밀링 장치
US13/883,539 US20130220806A1 (en) 2010-11-05 2011-11-02 Ion milling device
US15/011,980 US10008365B2 (en) 2010-11-05 2016-02-01 Ion milling device
US16/012,423 US11133153B2 (en) 2010-11-05 2018-06-19 Ion milling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-248022 2010-11-05
JP2010248022 2010-11-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/883,539 A-371-Of-International US20130220806A1 (en) 2010-11-05 2011-11-02 Ion milling device
US15/011,980 Division US10008365B2 (en) 2010-11-05 2016-02-01 Ion milling device

Publications (1)

Publication Number Publication Date
WO2012060416A1 true WO2012060416A1 (ja) 2012-05-10

Family

ID=46024529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075306 WO2012060416A1 (ja) 2010-11-05 2011-11-02 イオンミリング装置

Country Status (6)

Country Link
US (3) US20130220806A1 (ja)
JP (2) JP5491639B2 (ja)
KR (1) KR101470267B1 (ja)
CN (2) CN105047511B (ja)
DE (2) DE112011106139B3 (ja)
WO (1) WO2012060416A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121080A1 (ja) * 2015-01-30 2016-08-04 株式会社 日立ハイテクノロジーズ イオンミリングのマスク位置調整方法、マスク位置を調整できる電子顕微鏡、試料ステージに搭載されるマスク調整装置、およびイオンミリング装置の試料マスク部品
WO2017145371A1 (ja) * 2016-02-26 2017-08-31 株式会社日立ハイテクノロジーズ イオンミリング装置、及びイオンミリング方法
JP2017199603A (ja) * 2016-04-28 2017-11-02 日新イオン機器株式会社 イオンビームエッチング装置
WO2018011946A1 (ja) * 2016-07-14 2018-01-18 株式会社日立ハイテクノロジーズ イオンミリング装置
WO2018029778A1 (ja) * 2016-08-09 2018-02-15 株式会社日立ハイテクノロジーズ 荷電粒子線装置
DE112015006787T5 (de) 2015-09-25 2018-04-26 Hitachi High-Technologies Corporation Ionenätzsystem
JP2018190628A (ja) * 2017-05-09 2018-11-29 日本電子株式会社 試料ホルダーユニット及び試料観察装置
JP2019003732A (ja) * 2017-06-12 2019-01-10 日本電子株式会社 試料ホルダーシステム及び試料観察装置
JP2019160575A (ja) * 2018-03-13 2019-09-19 日本電子株式会社 イオンミリング装置及び試料ホルダー
JP2019207878A (ja) * 2019-07-08 2019-12-05 株式会社日立ハイテクノロジーズ イオンミリング装置、及びイオンミリング方法
JP2020053406A (ja) * 2019-12-24 2020-04-02 株式会社日立ハイテク イオンミリング装置、及びイオンミリング方法
CN111758144A (zh) * 2018-02-28 2020-10-09 株式会社日立高新技术 离子铣削装置及离子铣削装置的离子源调整方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529264B2 (ja) * 2014-01-22 2019-06-12 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置および試料観察方法
CN103831675B (zh) * 2014-03-19 2016-03-30 中国科学院光电技术研究所 一种大口径光学元件的离子束加工装置及方法
CN106233419B (zh) 2014-05-09 2017-11-28 株式会社日立高新技术 离子蚀刻装置以及试料加工方法
CN105158516B (zh) * 2015-08-20 2018-10-16 上海华力微电子有限公司 一种集成电路分析中透射电镜平面样品的制备方法
DE102015219298B4 (de) * 2015-10-06 2019-01-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Präparation einer Probe für die Mikrostrukturdiagnostik sowie Probe für die Mikrostrukturdiagnostik
DE112016005621B4 (de) * 2016-02-03 2022-03-31 Hitachi High-Tech Corporation Probenhalter, Ionenätzvorrichtung, Probenbearbeitungsverfahren, Probenbetrachtungsverfahren und Probenbearbeitungs- und Betrachtungsverfahren
JP2017174504A (ja) * 2016-03-18 2017-09-28 株式会社日立ハイテクサイエンス 複合荷電粒子ビーム装置
JP6753679B2 (ja) * 2016-03-25 2020-09-09 株式会社日立ハイテクサイエンス 制御装置、荷電粒子ビーム装置、プログラム及び加工品を生産する方法
CN105973674B (zh) * 2016-07-01 2017-03-29 中国科学院地质与地球物理研究所 一种大面积薄区透射电镜样品的制备方法
JP6928943B2 (ja) * 2017-03-28 2021-09-01 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
DE102018204940B4 (de) * 2018-03-29 2023-03-30 Leica Microsystems Cms Gmbh Optisches System mit verkippter Beleuchtungsebene und Verfahren zum Beleuchten eines Probenvolumens in einem optischen System mit verkippter Beleuchtungsebene
DE102018212511B4 (de) * 2018-07-26 2020-02-06 Carl Zeiss Microscopy Gmbh Aufnahmevorrichtung, Probenhalter-System und Verfahren zur Präparation mikroskopischer Proben
JP6808691B2 (ja) * 2018-08-09 2021-01-06 日本電子株式会社 試料搬送装置及び電子顕微鏡
JP6851348B2 (ja) * 2018-08-15 2021-03-31 日本電子株式会社 真空装置及び復旧支援方法
CN110355455B (zh) * 2019-08-02 2020-06-16 中国科学院地质与地球物理研究所 氩离子切割装置
CN110605467B (zh) * 2019-09-20 2020-08-04 中国科学院地质与地球物理研究所 离子切割校准装置、校准方法及离子切割装置
CN110993475B (zh) * 2019-12-05 2020-08-28 山东省分析测试中心 一种用于断口分析的扫描电镜万向转动样品台及扫描电镜
JP2020194789A (ja) * 2020-08-11 2020-12-03 株式会社日立ハイテク イオンミリング方法、およびイオンミリング装置
JP7208195B2 (ja) * 2020-08-14 2023-01-18 日本電子株式会社 イオンミリング装置および試料ホルダー
KR102465468B1 (ko) * 2020-12-21 2022-11-09 (주)코셈 착탈 가능한 계단형 지그와, 이를 이용하여 시료의 높이를 조절하는 홀더, 및 이 홀더를 포함하는 시료대
JP7312777B2 (ja) * 2021-02-26 2023-07-21 日本電子株式会社 試料加工装置および試料加工方法
WO2023112131A1 (ja) * 2021-12-14 2023-06-22 株式会社日立ハイテク イオンミリング装置
WO2024034052A1 (ja) * 2022-08-10 2024-02-15 株式会社日立ハイテク イオンミリング装置及びそれを用いた加工方法
WO2024053073A1 (ja) * 2022-09-08 2024-03-14 株式会社日立ハイテク イオンミリング装置、断面ミリング処理方法及び断面ミリングホルダ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091094A (ja) * 2003-09-16 2005-04-07 Jeol Ltd 試料作製装置および試料作製方法
JP2006269342A (ja) * 2005-03-25 2006-10-05 Hitachi High-Tech Science Systems Corp イオンミリング装置
JP2009170117A (ja) * 2008-01-11 2009-07-30 Hitachi High-Technologies Corp イオンミリング装置
JP2009245783A (ja) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp イオンミリング装置及びイオンミリング方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622212B2 (ja) * 1983-05-31 1994-03-23 株式会社東芝 ドライエッチング方法
JPH0733589B2 (ja) * 1989-07-01 1995-04-12 株式会社日立サイエンスシステムズ イオンミリング方法及び装置
DE4027746A1 (de) 1990-09-01 1992-03-05 Metallgesellschaft Ag Verfahren und vorrichtung zur bekaempfung von in meerwasser freischwimmenden medusen
JP2932650B2 (ja) * 1990-09-17 1999-08-09 松下電器産業株式会社 微細構造物の製造方法
JPH04182394A (ja) * 1990-11-16 1992-06-29 Sanyo Electric Co Ltd 単結晶超電導体の製造方法
US5229615A (en) * 1992-03-05 1993-07-20 Eaton Corporation End station for a parallel beam ion implanter
JPH06162975A (ja) * 1992-11-17 1994-06-10 Origin Electric Co Ltd 荷電粒子照射装置およびビームセンサ
JP2992682B2 (ja) * 1996-11-26 1999-12-20 セイコーインスツルメンツ株式会社 集積回路の断面観察方法
US5922179A (en) * 1996-12-20 1999-07-13 Gatan, Inc. Apparatus for etching and coating sample specimens for microscopic analysis
JPH10188873A (ja) * 1996-12-24 1998-07-21 Hitachi Ltd イオンミリング装置
JP2001242106A (ja) * 2000-03-01 2001-09-07 Jeol Ltd オージェ電子分光装置およびオージェ電子分光分析法
JP4335497B2 (ja) * 2002-07-12 2009-09-30 エスアイアイ・ナノテクノロジー株式会社 イオンビーム装置およびイオンビーム加工方法
US7150811B2 (en) * 2002-11-26 2006-12-19 Pei Company Ion beam for target recovery
US7611610B2 (en) * 2003-11-18 2009-11-03 Fei Company Method and apparatus for controlling topographical variation on a milled cross-section of a structure
EP1780764A1 (en) * 2005-11-01 2007-05-02 FEI Company Stage assembly, particle-optical apparatus comprising such a stage assembly, and method of treating a sample in such an apparatus
US7420189B2 (en) * 2006-04-04 2008-09-02 Olympus Corporation Ultra precise polishing method and ultra precise polishing apparatus
JP4891712B2 (ja) 2006-09-05 2012-03-07 株式会社日立ハイテクノロジーズ 類似度分布を利用したテンプレートマッチング方法を用いた検査装置
JP2008204905A (ja) * 2007-02-22 2008-09-04 Hitachi High-Tech Science Systems Corp イオンミリング装置、及びイオンミリング加工方法
JP2011154920A (ja) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp イオンミリング装置,試料加工方法,加工装置、および試料駆動機構
JP5612493B2 (ja) * 2010-03-18 2014-10-22 株式会社日立ハイテクサイエンス 複合荷電粒子ビーム装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091094A (ja) * 2003-09-16 2005-04-07 Jeol Ltd 試料作製装置および試料作製方法
JP2006269342A (ja) * 2005-03-25 2006-10-05 Hitachi High-Tech Science Systems Corp イオンミリング装置
JP2009170117A (ja) * 2008-01-11 2009-07-30 Hitachi High-Technologies Corp イオンミリング装置
JP2009245783A (ja) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp イオンミリング装置及びイオンミリング方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121080A1 (ja) * 2015-01-30 2016-08-04 株式会社 日立ハイテクノロジーズ イオンミリングのマスク位置調整方法、マスク位置を調整できる電子顕微鏡、試料ステージに搭載されるマスク調整装置、およびイオンミリング装置の試料マスク部品
US10269534B2 (en) 2015-01-30 2019-04-23 Hitachi High-Technologies Corporation Mask position adjustment method of ion milling, electron microscope capable of adjusting mask position, mask adjustment device mounted on sample stage and sample mask component of ion milling device
DE112015006787T5 (de) 2015-09-25 2018-04-26 Hitachi High-Technologies Corporation Ionenätzsystem
US10361065B2 (en) 2015-09-25 2019-07-23 Hitachi High-Technologies Corporation Ion milling system
DE112015006787B4 (de) 2015-09-25 2021-11-25 Hitachi High-Tech Corporation Ionenätzsystem
JPWO2017145371A1 (ja) * 2016-02-26 2018-11-08 株式会社日立ハイテクノロジーズ イオンミリング装置、及びイオンミリング方法
US11621141B2 (en) 2016-02-26 2023-04-04 Hitachi High-Tech Corporation Ion milling device and ion milling method
WO2017145371A1 (ja) * 2016-02-26 2017-08-31 株式会社日立ハイテクノロジーズ イオンミリング装置、及びイオンミリング方法
JP2017199603A (ja) * 2016-04-28 2017-11-02 日新イオン機器株式会社 イオンビームエッチング装置
WO2018011946A1 (ja) * 2016-07-14 2018-01-18 株式会社日立ハイテクノロジーズ イオンミリング装置
JPWO2018011946A1 (ja) * 2016-07-14 2019-04-04 株式会社日立ハイテクノロジーズ イオンミリング装置
US11257654B2 (en) 2016-07-14 2022-02-22 Hitachi High-Tech Corporation Ion milling apparatus
US10832889B2 (en) 2016-08-09 2020-11-10 Hitachi High-Tech Corporation Charged particle beam device
WO2018029778A1 (ja) * 2016-08-09 2018-02-15 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JPWO2018029778A1 (ja) * 2016-08-09 2019-06-06 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP2018190628A (ja) * 2017-05-09 2018-11-29 日本電子株式会社 試料ホルダーユニット及び試料観察装置
JP2019003732A (ja) * 2017-06-12 2019-01-10 日本電子株式会社 試料ホルダーシステム及び試料観察装置
CN111758144A (zh) * 2018-02-28 2020-10-09 株式会社日立高新技术 离子铣削装置及离子铣削装置的离子源调整方法
CN111758144B (zh) * 2018-02-28 2023-06-02 株式会社日立高新技术 离子铣削装置及离子铣削装置的离子源调整方法
JP2019160575A (ja) * 2018-03-13 2019-09-19 日本電子株式会社 イオンミリング装置及び試料ホルダー
JP2019207878A (ja) * 2019-07-08 2019-12-05 株式会社日立ハイテクノロジーズ イオンミリング装置、及びイオンミリング方法
JP2020053406A (ja) * 2019-12-24 2020-04-02 株式会社日立ハイテク イオンミリング装置、及びイオンミリング方法

Also Published As

Publication number Publication date
KR20130077884A (ko) 2013-07-09
JP2014139938A (ja) 2014-07-31
KR101470267B1 (ko) 2014-12-05
US20180301318A1 (en) 2018-10-18
JP5491639B2 (ja) 2014-05-14
CN103180929A (zh) 2013-06-26
DE112011103677B4 (de) 2017-10-05
CN105047511A (zh) 2015-11-11
DE112011106139B3 (de) 2018-10-11
US20130220806A1 (en) 2013-08-29
DE112011103677T5 (de) 2013-08-22
US10008365B2 (en) 2018-06-26
US20160163508A1 (en) 2016-06-09
JPWO2012060416A1 (ja) 2014-05-12
US11133153B2 (en) 2021-09-28
CN103180929B (zh) 2015-06-10
JP5943950B2 (ja) 2016-07-05
CN105047511B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
JP5491639B2 (ja) イオンミリング装置
JP6710270B2 (ja) イオンミリング装置、及びイオンミリング方法
JP4675701B2 (ja) イオンミリング装置およびイオンミリング方法
KR101249134B1 (ko) 하전 입자빔 장치
JP5480110B2 (ja) イオンミリング装置及びイオンミリング加工方法
JP4398396B2 (ja) イオンミリング装置
EP3944285B1 (en) Ion milling apparatus and method of manufacturing sample
JP2009245783A (ja) イオンミリング装置及びイオンミリング方法
JP5331342B2 (ja) イオンミリング装置
JP6831443B2 (ja) イオンミリング装置、及びイオンミリング方法
JP4504880B2 (ja) 真空排気系を利用したシリンダを用いたイオンビーム電流測定機構
JP4455432B2 (ja) イオンミリング装置およびイオンミリング方法
JP6427601B2 (ja) イオンミリングのマスク位置調整方法、電子顕微鏡およびマスク調整装置
JP6828095B2 (ja) イオンミリング方法
WO2013121938A1 (ja) 荷電粒子線装置、試料マスクユニット、および変換部材
JP2020194789A (ja) イオンミリング方法、およびイオンミリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541899

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137011419

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883539

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011103677

Country of ref document: DE

Ref document number: 1120111036779

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838066

Country of ref document: EP

Kind code of ref document: A1