WO2012060050A1 - 石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法 - Google Patents

石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2012060050A1
WO2012060050A1 PCT/JP2011/005368 JP2011005368W WO2012060050A1 WO 2012060050 A1 WO2012060050 A1 WO 2012060050A1 JP 2011005368 W JP2011005368 W JP 2011005368W WO 2012060050 A1 WO2012060050 A1 WO 2012060050A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz glass
crucible
synthetic quartz
single crystal
glass material
Prior art date
Application number
PCT/JP2011/005368
Other languages
English (en)
French (fr)
Inventor
木村 明浩
克 松本
布施川 泉
三木 克彦
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to DE112011103417.2T priority Critical patent/DE112011103417B4/de
Priority to KR1020137011096A priority patent/KR101703691B1/ko
Priority to CN201180053097.7A priority patent/CN103201226B/zh
Priority to US13/824,874 priority patent/US9376336B2/en
Publication of WO2012060050A1 publication Critical patent/WO2012060050A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0272Pot furnaces
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling

Definitions

  • the present invention relates to a quartz glass crucible used for pulling a silicon single crystal by the Czochralski method, a method for producing the same, and a method for producing a silicon single crystal using such a quartz glass crucible.
  • CZ method A method called Czochralski method (CZ method) is widely used for the production of silicon single crystals.
  • a quartz glass crucible also called a quartz crucible
  • polycrystalline silicon polysilicon
  • Patent Literature 3 and Patent Literature 4 cristobalite formation (crystallization) on the surface of a silica glass crucible during the production of a silicon single crystal by the Czochralski method is described as follows. As the single crystal pulling progresses, the crystallization spreads in a ring shape. "" Such crystallization progresses to generate crystallization spots. The outer periphery of the crystallization spots is brown. "The crystallized spots increase with the lapse of time for pulling the single crystal, that is, the time when the silicon melt and the inner surface of the quartz crucible are in direct contact with each other.” The crystallization spots converge to a certain density and change after a predetermined time ”. Further, it is also described that “after such crystallization spots are generated, they begin to dissolve in the silicon melt, and the size of the crystallization spots gradually decreases”.
  • the formation of cristobalite on the quartz glass crucible surface is promoted when the concentration of impurities such as alkali metals in the crucible is high. Also, considering the influence on device characteristics, it is better that the impurity concentration is low. Therefore, the quartz glass crucible is required to have no bubbles and to have a low impurity concentration.
  • the direct method is a method in which a silicon compound such as silicon tetrachloride (SiCl 4 ) is hydrolyzed in an oxyhydrogen flame to directly deposit and vitrify the silicon compound.
  • the soot method is a method for producing synthetic quartz glass by the following procedure. First, a porous silica mass (soot) is synthesized by hydrolyzing a silicon compound such as silicon tetrachloride (SiCl 4 ) in an oxyhydrogen flame at about 1100 ° C., which is lower than the direct method.
  • Non-Patent Document 1 This is heat-treated in an appropriate gas such as a chlorine compound to remove moisture. Finally, the soot is pulled down while rotating at a temperature of about 1500 ° C. or higher, and the glass is vitrified by heating sequentially from the lower end (see Non-Patent Document 1).
  • an appropriate gas such as a chlorine compound
  • a quartz glass crucible is made using these synthetic quartz glasses, dislocation of silicon single crystals can be avoided, but the heat resistance of the crucible itself (also referred to as heat deformation resistance or deformation resistance) is low (that is, deformation at high temperatures). Is easy to do).
  • a synthetic quartz glass synthesized from a silane compound is crushed, heated and melted under vacuum, and formed into a crucible (Patent Document 5),
  • a synthetic quartz glass member produced by a direct flame method of a silane compound and having a hydrogen molecule content of 1 ⁇ 10 17 molecules / cm 3 or more is made into a synthetic quartz glass powder through each step of pulverization, particle size adjustment, and washing. Thereafter, there is a method in which this is electrically melted at 1500 to 1900 ° C. under vacuum and molded (Patent Document 6).
  • a synthetic quartz glass is pulverized, and the particle size at that time is defined as 600 ⁇ m or less, and this is vacuum-melted at 10 ⁇ 1 Torr and 1500 to 1900 ° C.
  • a synthetic quartz glass crucible with good heat resistance can be produced by reducing the content.
  • the arc melting method is a method for producing a silica glass crucible by supplying raw material powder into a rotating mold to form a crucible-like raw material powder layer, and arc discharge heating from the inside to melt. (For example, refer to Patent Document 7).
  • a synthetic quartz glass member has a hydrogen molecule content of 1 ⁇ 10 16 molecules / cm 3 or more, a strain point of 1130 ° C. or more, an OH group content, and a chlorine content of 1 ppm.
  • the following is highly pure and can have a viscosity at a high temperature of, for example, 10 10 poise or more at 1400 ° C., and thus can be used as a crucible material for pulling a silicon single crystal.
  • Patent Document 8 discloses a quartz glass piece obtained by melting a quartz raw material powder in an inert gas atmosphere and further purifying it by keeping it at a vacuum degree of 2000 ° C. or higher and 0.05 torr or higher for 5 hours or more.
  • a method of bonding to an inner surface of a quartz glass crucible, heating and melting and integrating is disclosed.
  • using the arc discharge, an oxyhydrogen flame burner, etc. is illustrated as the heating-melting method.
  • quartz glass crucibles are of high purity (ie, have few impurities) and have no bubbles in order to avoid dislocation of the silicon single crystal when pulling up the silicon single crystal by the Czochralski method. At the same time, the heat resistance of the crucible is also required.
  • the quartz material used in the method of Patent Document 8 is a quartz glass piece obtained by melting and purifying synthetic quartz powder. Therefore, there are not a few bubbles in the quartz glass piece. Therefore, even if a silicon single crystal is manufactured using the quartz glass crucible disclosed in Patent Document 8, there is a problem that the dislocation of the silicon single crystal cannot be sufficiently suppressed. Further, even with the heat melting method, it is difficult in practice to weld a glass piece to a quartz glass crucible with an oxyhydrogen flame burner because heat cannot be transferred well. Further, when the crucible is enlarged, there is a high possibility that the crucible and the plate material are cracked by a large temperature gradient due to local heating in the oxyhydrogen flame burner or arc discharge, and it is very difficult to actually weld.
  • the present invention has been made in view of these problems, and avoids dislocation of the silicon single crystal caused by the crucible itself in the production of the silicon single crystal and has a high heat resistance.
  • Another object of the present invention is to provide a method for producing a silicon single crystal using such a quartz glass crucible.
  • the present invention has been made to solve the above-mentioned problems, and includes a step of preparing a crucible base material made of quartz glass and having a crucible shape, a step of producing a synthetic quartz glass material by a direct method or a soot method,
  • the quartz comprising: a step of processing the synthetic quartz glass material into a crucible shape without crushing; and a step of welding the synthetic quartz glass material processed into the crucible shape to the inner surface of the crucible base material.
  • a method for producing a glass crucible is provided.
  • the synthetic quartz glass material produced by the direct method or the soot method is processed into a crucible shape without pulverization, the crucible is substantially free of bubbles and has an extremely low impurity concentration. It can be set as the synthetic quartz glass material which has a shape.
  • this synthetic quartz glass material is welded to the inner surface of the crucible base material made of quartz glass, the portion made of the synthetic quartz glass material of the quartz glass crucible is used as a silicon melt for producing a silicon single crystal. The inner surface of the crucible can be brought into contact, and dislocations of the silicon single crystal due to bubbles and cristobalite can be avoided.
  • the crucible base material can be heat-resistant because it is welded to the crucible base material. There is no problem, and the heat resistance of the quartz glass crucible can be ensured.
  • a synthetic quartz glass material processed into the crucible shape is arranged inside the crucible base material for the welding, and the inside of the synthetic quartz glass material is filled with polycrystalline silicon, and the polycrystalline silicon is made of silicon single-piece. It can be performed simultaneously by heating at the time of melting in the crystal puller.
  • the present invention also provides a method for producing a quartz glass crucible, wherein the quartz glass crucible is produced at the same time as the melting of the polycrystalline silicon, and subsequently, the czochral is produced from the silicon melt produced by the melting of the polycrystalline silicon.
  • a method for producing a silicon single crystal wherein the silicon single crystal is produced by pulling up the silicon single crystal by a ski method.
  • the synthetic quartz glass material and the crucible base material are welded simultaneously by heating when melting the polycrystalline silicon in the silicon single crystal pulling machine. If the crystals are pulled up, the number of steps can be reduced as a whole, and the crucible need not be cooled once. Therefore, the total energy and manufacturing time required for manufacturing a silicon single crystal can be reduced.
  • the fused silica glass material processed into the crucible shape is disposed inside the crucible base material, and the crucible base material and the synthetic material are synthesized using an electric furnace. It can also be performed by heating a quartz glass material.
  • the fused silica glass material processed into the crucible shape is disposed inside the crucible base material, and the crucible base material is placed in a silicon single crystal pulling machine.
  • the synthetic quartz glass material can also be heated.
  • welding of the synthetic quartz glass material and the crucible base material can also be performed by heating in an electric furnace or a pulling machine. And since the whole can be welded at once, a local temperature gradient does not arise and a crack does not generate
  • the synthetic quartz glass material in the method for producing a quartz glass crucible of the present invention, is preferably produced with a hydroxyl group content of 100 to 800 ppm.
  • the hydroxyl group (OH group) concentration of the synthetic quartz glass material is set to such a value, it is possible to more effectively suppress dislocation of the silicon single crystal.
  • the synthetic quartz glass material in the method for producing a quartz glass crucible of the present invention, is preferably produced as a plate having a thickness of 1 mm or more.
  • the synthetic quartz glass material is produced as a plate having a thickness of 1 mm or more, it is possible to prevent breakage during processing into a crucible shape. Moreover, after processing into a crucible shape and arrange
  • the crucible shape can be constituted from one or a plurality of the synthetic quartz glass materials in the processing of the synthetic quartz glass material into a crucible shape.
  • the processing of the synthetic quartz glass material into the crucible shape may be performed from one synthetic quartz glass material into a crucible shape, or a plurality of synthetic quartz glass materials may be combined by welding or the like to form a crucible shape.
  • the present invention also provides a quartz glass crucible produced by any one of the above-described methods for producing a quartz glass crucible.
  • the quartz glass crucible manufactured by the method for manufacturing a silica glass crucible of the present invention a synthetic quartz glass material that does not substantially contain bubbles and has an extremely low impurity concentration is applied to the inner surface of the crucible base material. Since it is a fused quartz glass crucible, the portion made of this synthetic quartz glass material can be used as the inner surface of the crucible that comes into contact with the silicon melt when producing a silicon single crystal, and the silicon single crystal caused by bubbles or cristobalite Can be avoided. Moreover, since it has a crucible base material, the heat resistance of a quartz glass crucible can be ensured.
  • the present invention comprises a crucible base material having a crucible shape made of quartz glass, and a crucible-shaped synthetic quartz glass material welded to the inner surface of the crucible base material, wherein the synthetic quartz glass material is directly
  • a quartz glass crucible characterized by being produced by a method or a soot method and substantially free of bubbles.
  • a synthetic quartz glass material produced by a direct method or a soot method that is, a synthetic quartz glass material substantially free of bubbles and having a very low impurity concentration, is used as the crucible base material. Since the quartz glass crucible is welded to the inner surface, dislocation of the silicon single crystal due to bubbles or cristobalite can be avoided when manufacturing the silicon single crystal. Moreover, the heat resistance of the quartz glass crucible can be ensured.
  • the synthetic quartz glass material preferably has a hydroxyl group content of 100 to 800 ppm.
  • the hydroxyl group concentration of the synthetic quartz glass material is such, it is possible to more effectively suppress the dislocation of the silicon single crystal.
  • the synthetic quartz glass material preferably has a thickness of 1 mm or more.
  • the thickness of the synthetic quartz glass material is 1 mm or more, it is possible to prevent breakage when filling polycrystalline silicon, which is a raw material of silicon single crystal.
  • the present invention is characterized in that a silicon single crystal is produced by holding a silicon melt inside any one of the above silica glass crucibles and pulling up the silicon single crystal from the silicon melt by the Czochralski method.
  • a method for producing a silicon single crystal is provided.
  • the silicon single crystal manufacturing method by the Czochralski method using the quartz glass crucible of the present invention avoids dislocation of the silicon single crystal caused by bubbles and cristobalite, thereby manufacturing the silicon single crystal. can do.
  • the quartz glass crucible which concerns on this invention, since it is produced by the direct method or the soot method and is not grind
  • a quartz glass crucible can be manufactured as an inner surface of the crucible in contact with the silicon melt when manufacturing a silicon single crystal. When a silicon single crystal is manufactured using such a quartz glass crucible, dislocation of the silicon single crystal due to bubbles or cristobalite can be avoided.
  • FIG. 1 shows a schematic cross-sectional view of the quartz glass crucible of the present invention.
  • the quartz glass crucible 10 of the present invention comprises at least a crucible base material 20 made of quartz glass and having a crucible shape, and a crucible-shaped synthetic quartz glass material 30 welded to the inner surface of the crucible base material 20.
  • This synthetic quartz glass material 30 is produced by a direct method or a soot method, and is substantially free of bubbles.
  • the synthetic quartz glass material 30 is obtained by welding a synthetic quartz glass material produced by a direct method or a soot method into a crucible shape without being pulverized and welded to the crucible base material 20. . Even if a synthetic quartz glass material 30 that is easily thermally deformed is used as a material constituting the crucible, it is welded to the crucible base material 20, so that the heat resistance can be borne by the crucible base material 20. Can be secured.
  • Such a quartz glass crucible 10 can be manufactured as follows.
  • a crucible base material 20 made of quartz glass and having a crucible shape is prepared (step a).
  • the crucible base material 20 prepared here may be a normal quartz glass crucible. However, in order to distinguish it from the quartz glass crucible manufactured according to the present invention, it is referred to as a “crucible base material” in the description of the present invention.
  • a quartz glass crucible currently used industrially may be used, and its production method is not particularly limited, and may be, for example, an arc melting method currently practiced industrially.
  • the arc melting method for example, as disclosed in Patent Document 7, raw material powder is supplied into a rotating mold to form a crucible-like raw material powder layer, and arc discharge is heated from the inside to melt.
  • This is a method for producing a quartz glass crucible.
  • the crucible base material can be manufactured by a sol-gel method, a slip cast method, or the like.
  • the inner surface of the crucible base material does not necessarily have to be a high-purity layer or a bubble-free layer.
  • a crucible-shaped synthetic quartz glass material 30 for welding to the inner surface of the crucible base material 20 is prepared as follows.
  • a synthetic quartz glass material is produced by a direct method or a soot method (step b).
  • a direct method or a soot method a synthetic quartz glass material substantially free of bubbles and having a very low impurity concentration can be produced.
  • the synthetic quartz glass material is a plate having a thickness of 1 mm or more. If the thickness of the synthetic quartz glass material is 1 mm or more, as will be described later, damage during processing into a crucible shape can be prevented. Further, as will be described later, it is possible to prevent breakage when filling polycrystalline silicon, which is a raw material of silicon single crystal. On the other hand, the thickness of the synthetic quartz glass material is preferably 10 mm or less. With such a thickness, the number of steps such as R processing does not increase excessively.
  • the plate-like synthetic quartz glass material is also commercially available for photomasks and the like, and can be easily obtained.
  • the synthetic quartz glass material is processed into a crucible shape without being crushed (step c). Thereby, it can be set as the synthetic quartz glass material 30 which has a crucible shape as shown in FIG.
  • the synthetic quartz glass material produced by the direct method or the soot method is processed without being crushed, so that it does not substantially contain bubbles and the crucible-shaped synthetic quartz glass material remains extremely low in impurity concentration. 30.
  • the number of steps is reduced, it can be prepared at a low cost.
  • processing without pulverizing the synthetic quartz glass material produced by the above direct method or soot method means that the synthetic quartz glass material is not processed into a powder (for example, a powder having an average particle size of 1 mm or less). It means that the synthetic quartz glass material manufactured by the direct method or the soot method is cut into a shape such as a block shape or a plate shape and processed.
  • the synthetic quartz glass material may be processed into a crucible shape, and the specific method is not particularly limited. Further, in the processing of the synthetic quartz glass material into the crucible shape, the crucible shape may be constituted by one synthetic quartz glass material, or the crucible shape may be constituted by a plurality of synthetic quartz glass materials.
  • a crucible shape from a single synthetic quartz glass material, for example, it can be pressed into a jig made of carbon or synthetic quartz while applying heat and processed into a crucible shape all at once.
  • a synthetic quartz glass material in the form of a plate, which facilitates processing.
  • each synthetic quartz glass material can be a synthetic quartz glass piece that can be easily processed into a crucible shape.
  • the individual shape of such a synthetic quartz glass piece is not particularly limited.
  • the plurality of synthetic quartz glass materials can be formed into a crucible shape from the plurality of synthetic quartz glass materials by welding using R processing or the like or an oxyhydrogen flame burner or the like. Such processing, welding, and the like may be performed before a step (step d) of welding to a crucible base material described later.
  • a plurality of synthetic quartz glass materials may constitute a crucible shape as a whole, and the crucible shape may be welded to the crucible base material, and it is not always necessary to integrate a plurality of synthetic quartz glass pieces by welding or the like in advance. Absent.
  • the crucible-shaped synthetic quartz glass material 30 is prepared through the steps b and c as described above.
  • step a The preparation of the crucible base material (step a) and the production of the synthetic quartz glass material and the processing into the crucible shape (step b and step c) can be performed independently, either of which can be performed first. Can be done in parallel.
  • the synthetic quartz glass material 30 processed into the crucible shape is welded to the inner surface of the crucible base material 20 (step d), and the quartz glass crucible 10 is manufactured.
  • This welding must be performed reliably. Specifically, for example, there are the following three methods.
  • first welding method In the first welding method, first, a synthetic quartz glass material 30 processed into a crucible shape is placed (set) inside the crucible base material 20. At this time, the crucible-shaped synthetic quartz glass material 30 may be either one processed from one synthetic quartz glass material into a crucible shape or one obtained by welding a plurality of synthetic quartz glass materials into a crucible shape. In this case, a synthetic quartz glass material integrated in advance is used. Next, the interior of the synthetic quartz glass material 30 is filled with polycrystalline silicon. Next, the crucible base material 20 and the crucible-shaped synthetic quartz glass material 30 are welded simultaneously with the melting of the polycrystalline silicon by heating when the polycrystalline silicon is melted in the silicon single crystal pulling machine. The power (input power for heating) and the heating time are arbitrary, and can be determined depending on the size of the puller, the crucible, etc., as in the case of normal melting of polycrystalline silicon.
  • the quartz glass crucible 10 is manufactured simultaneously with the melting of the polycrystalline silicon.
  • the silicon single crystal is subsequently pulled up from the silicon melt generated by the melting of the polycrystalline silicon by the Czochralski method in the pulling machine. Can be manufactured.
  • the synthetic quartz glass material 30 processed into a crucible shape is disposed inside the crucible base material 20, and the crucible base material 20 and the synthetic quartz glass material 30 are heated and welded using an electric furnace. Do.
  • a synthetic quartz glass material 30 processed into a crucible shape is disposed inside the crucible base material 20, and the crucible base material 20 and the synthetic quartz glass material 30 are heated in a silicon single crystal pulling machine. Perform welding.
  • the crucible base 20 is arranged inside the crucible base 20 so as to form a crucible shape as a whole without being integrated by welding or the like in advance. May be. In this case, these are simultaneously integrated and welded to the crucible base material in the welding step.
  • a jig made of carbon or synthetic quartz is set inside the crucible-shaped synthetic quartz glass material 30 and is crimped in such a manner as to be sandwiched between the crucible base material 20. You may let them.
  • the synthetic quartz glass material 30 processed into a crucible shape is composed of a plurality of glass pieces (in a state where they are not integrated by welding), so that the glass pieces located at the upper part do not slide down before being integrated, It is preferable that the crucible base material 20 is rotated or the body portion of the crucible base material 20 is not vertically but tapered upward. Further, power (input power for heating) and heating time are arbitrary and can be determined as necessary.
  • the crucible base material 20 and the synthetic quartz glass material 30 are attached so that the glass piece located at the top does not fall down before being welded to the crucible base material 20. It is preferable to weld at the upper end of the crucible, and it is preferable to provide a vent so that the atmospheric gas is not confined between the crucible base material 20 and the synthetic quartz glass material 30.
  • the welding of the crucible base material 20 and the crucible-shaped synthetic quartz glass material 30 needs to be performed reliably by carrying out the entire process simultaneously at the same time as described above. If this welding is carried out part by part using an oxyhydrogen flame burner, heat cannot be transferred well to the whole, which is very difficult in practice. In particular, when the crucible is large (for example, a diameter of 24 inches (60 cm) or more), the oxyhydrogen flame burner or arc discharge is highly likely to break the crucible or the plate due to a large temperature gradient due to local heating. It is very difficult to weld. Therefore, these methods are not desirable.
  • the quartz glass crucible 10 shown in FIG. 1 can be manufactured.
  • a silicon single crystal is manufactured by the Czochralski method using the quartz glass crucible 10 according to the present invention, a silicon single crystal is manufactured while avoiding dislocation of the silicon single crystal due to bubbles or cristobalite. be able to.
  • a silicon single crystal can be produced by the usual Czochralski method except that the quartz glass crucible 10 of the present invention is used. That is, a silicon single crystal is manufactured by holding a silicon melt inside the quartz glass crucible 10 of the present invention and pulling up the silicon single crystal from the silicon melt by the Czochralski method.
  • a known method related to the Czochralski method can be appropriately performed, such as growing a silicon single crystal while applying a magnetic field.
  • first welding method the synthesis in which the polycrystalline silicon is processed into the crucible shape with the crucible base 20 by heating when melting in the silicon single crystal pulling machine. Welding with the quartz glass material 30 is performed simultaneously with melting of the polycrystalline silicon. Also in this method, the subsequent pulling of the silicon single crystal from the silicon melt can be performed in the same manner as in the case of manufacturing a silicon single crystal by a normal Czochralski method.
  • the synthetic quartz glass material 30 after the welding constituting the quartz glass crucible 10 has a thickness of 1 mm or more.
  • the synthetic quartz glass material is produced as a plate having a thickness of 1 mm or more, and this is processed into a crucible shape to obtain a crucible base material. 20 or the like.
  • the synthetic quartz glass material 30 has a thickness of 1 mm or more, it is possible to prevent breakage when filling polycrystalline silicon, which is a silicon single crystal raw material.
  • contact between the silicon melt and the crucible base material 20 due to melting of the synthetic quartz glass material 30 can be prevented during the production of the silicon single crystal.
  • the silicon melt can be kept in contact with the surface of the synthetic quartz glass material 30 that is substantially free of bubbles and has an extremely low impurity concentration, thereby enabling more effective dislocation of the silicon single crystal. It can be avoided.
  • the synthetic quartz glass material is preferably produced with a hydroxyl group content of 100 to 800 ppm.
  • the regulation of the hydroxyl group content of the synthetic quartz glass material is based on the fact that the present inventors have found the following knowledge about the crystallization of a quartz glass crucible during the production of a silicon single crystal by the Czochralski method.
  • crystallization that is, cristobalite
  • synthetic quartz glass amorphous
  • impurities such as alkali metals
  • crystallization due to impurities is crystallization having a high degree of crystallinity called devitrification.
  • the present inventors have found that crystallization caused by a hydroxyl group is crystallization with a low crystallinity.
  • the outer periphery of these crystallized spots is brown, so they are sometimes called brown spots.”
  • the crystallization spots increase with the elapse of the single crystal pulling time, that is, the time when the silicon melt and the inner surface of the quartz crucible are in direct contact, but the crystallization spots converge to a certain density after a predetermined time. It will be changed ”. Further, it is also described that “after such crystallization spots are generated, they begin to dissolve in the silicon melt, and the size of the crystallization spots gradually decreases”. That is, crystallization and dissolution of the crystallized portion occur on the surface of the quartz glass crucible.
  • the inventors of the present invention in the crystallization with a high degree of crystallinity due to impurities, the size of the cristobalite to be peeled is large and reaches the solid-liquid interface of the silicon single crystal before it is completely dissolved in the silicon melt. Inducing crystallization of silicon single crystal, while crystallization with low crystallinity due to hydroxyl group, the size of cristobalite to be peeled is small, and silicon before reaching the solid-liquid interface of silicon single crystal It has been found that it dissolves in the melt and does not induce dislocation formation of the silicon single crystal.
  • the hydroxyl group content is 100 ppm or more, the crystallization rate on the inner surface of the quartz glass crucible is not too slow, the increase of brown spots during the production of the silicon single crystal is suppressed, and the dislocation of the silicon single crystal due to cristobalite peeling is suppressed. Can be suppressed.
  • the hydroxyl group content is 800 ppm or less, the crystallization of the crucible surface is not promoted excessively, the size of the cristobalite to be peeled is small, and the silicon single crystal can be prevented from undergoing dislocation.
  • the synthetic quartz glass material 30 constituting the quartz glass crucible 10 has high purity, crystallization based on impurities such as alkali metals does not need to be considered so much, and a material having a hydroxyl group content of 100 to 800 ppm is used.
  • the crystallization of the inner surface of the quartz glass crucible is moderately accelerated during the melting of the raw material polycrystalline silicon, and the size of the cristobalite to be peeled off is combined with the melting of the crucible surface at the start of the production of the silicon single crystal.
  • the hydroxyl group content of the synthetic quartz glass material 30 is more preferably 300 to 700 ppm, and most preferably 500 to 700 ppm.
  • the method for adjusting the hydroxyl group content of the synthetic quartz glass material is not particularly limited.
  • a flame burner is used as a multi-tube burner, and the raw material silane compound supplied from the center nozzle is supported. Control the surface temperature of the growth melt surface when producing synthetic quartz glass by changing the composition ratio of the mixed gas with oxygen gas as a flammable gas or by mixing an inert gas with the flammable gas Is possible.
  • Example 1 A synthetic quartz glass material having a hydroxyl group content of 50 ppm was prepared by the soot method. This synthetic quartz glass material was cut out, R-processed and welded in accordance with the inner surface shape of a crucible base material (hydroxyl content: 150 ppm) made of quartz glass having a diameter of 32 inches (800 mm) manufactured by an arc melting method. A crucible shape was adopted. A synthetic quartz glass material 30 processed into a crucible shape was placed in the crucible base material 20 (see FIG. 1), and 400 kg of polycrystalline silicon was filled therein.
  • a crucible base material hydroxyl content: 150 ppm
  • a synthetic quartz glass material 30 processed into a crucible shape was placed in the crucible base material 20 (see FIG. 1), and 400 kg of polycrystalline silicon was filled therein.
  • the crucible base material and the synthetic quartz glass material arranged in the crucible base material were set in a pulling machine, and the raw material polycrystalline silicon was melted. Simultaneously with melting of the polycrystalline silicon, a crucible base material and a synthetic quartz glass material were welded to obtain a quartz glass crucible 10. Thereafter, a 4000 gauss (0.4 Tesla) horizontal magnetic field was applied to pull up the 300 mm diameter silicon single crystal.
  • Example 2 A quartz glass crucible was produced in the same manner as in Example 1 except that a synthetic quartz glass material having a hydroxyl group content of 100 ppm was produced by the soot method, and the silicon single crystal was pulled up.
  • Example 3 A quartz glass crucible was produced in the same manner as in Example 1 except that a synthetic quartz glass material having a hydroxyl group content of 200 ppm was produced by the soot method, and the silicon single crystal was pulled up.
  • Example 4 A quartz glass crucible was produced in the same manner as in Example 1 except that a synthetic quartz glass plate having a hydroxyl group content of 600 ppm was produced by a direct method, and the silicon single crystal was pulled up.
  • Example 5 A quartz glass crucible was produced in the same manner as in Example 1 except that a synthetic quartz glass material having a hydroxyl group content of 800 ppm was produced by a direct method, and the silicon single crystal was pulled up.
  • Example 6 A quartz glass crucible was produced in the same manner as in Example 1 except that a synthetic quartz glass plate having a hydroxyl group content of 1200 ppm was produced by a direct method, and the silicon single crystal was pulled up.
  • a quartz glass crucible (having a hydroxyl group content of 150 ppm) with a diameter of 32 inches (800 mm) manufactured by the arc melting method was filled with 400 kg of polycrystalline silicon.
  • This quartz glass crucible was set in a pulling machine to melt the raw material polycrystalline silicon. Thereafter, a 4000 gauss (0.4 Tesla) horizontal magnetic field was applied to pull up the 300 mm diameter silicon single crystal. The above process was repeated 10 times.
  • Table 1 shows the number of dislocations of the silicon single crystals pulled up in Examples 1 to 6 and the comparative example.
  • the number of dislocations referred to here is the sum of the number of dislocations in the first pulling of each single crystal (that is, 0 or 1). This does not apply to dislocations. This is because the surface state (bubbles, crystallinity) of the crucible changes due to remelting.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

 本発明は、石英ガラスからなり、ルツボ形状を有するルツボ基材を準備する工程と、直接法又はスート法により合成石英ガラス材を作製する工程と、前記合成石英ガラス材を、粉砕することなくルツボ形状に加工する工程と、前記ルツボ形状に加工した合成石英ガラス材を、前記ルツボ基材の内面に溶着する工程とを含む石英ガラスルツボの製造方法である。これにより、シリコン単結晶の製造の際のルツボ自体に起因するシリコン単結晶の有転位化を回避し、かつ、高い耐熱性を有する石英ガラスルツボ及びその製造方法、並びにそのような石英ガラスルツボを用いたシリコン単結晶の製造方法が提供される。

Description

石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法
 本発明は、チョクラルスキー法によるシリコン単結晶の引き上げに用いられる石英ガラスルツボ及びその製造方法、並びにそのような石英ガラスルツボを用いたシリコン単結晶の製造方法に関する。
 シリコン単結晶の製造には、チョクラルスキー法(CZ法)と呼ばれる方法が広く採用されている。このチョクラルスキー法によるシリコン単結晶の製造では、一般に、石英ガラスルツボ(石英ルツボとも呼ばれる)の内部に多結晶シリコン(ポリシリコン)を充填し、加熱により溶融してシリコン融液とし、シリコン融液に種結晶を浸漬した後引き上げ、シリコン単結晶インゴットを育成する。
 従来より、シリコン単結晶の育成中に、高温下で石英ガラスルツボに含まれる気泡が膨張し、ルツボ内周面が剥離してシリコン単結晶が有転位化すること(例えば、特許文献1参照)や、石英ガラスルツボ表面がアモルファスからクリストバライトに変わり、このクリストバライトの剥離によってシリコン単結晶が有転位化すること(例えば、特許文献2参照)が言われている。
 チョクラルスキー法によるシリコン単結晶の製造中の石英ガラスルツボ表面のクリストバライト化(結晶化)については、特許文献3や特許文献4によると、「結晶化の初期段階では結晶生成核を基点として点状に発生し、単結晶引上げの進行にともなって、結晶化はリング状に広がる」、「このような結晶化の進展現象により結晶化斑点が生成される。この結晶化斑点の外周部は茶色を呈しているので、茶褐色斑点と呼ばれることもある。」、「結晶化斑点は、単結晶引上げ時間、すなわち、シリコン融液と石英ルツボの内表面とが直接接触する時間の経過とともに増加するが、所定の時間が経過すると結晶化斑点は一定の密度に収束して推移する」と記載されている。また、「かかる結晶化斑点はいったん生成した後、シリコン融液により溶解し始め、次第に結晶化斑点の大きさが小さくなる」とも記載されている。
 この石英ガラスルツボ表面のクリストバライト化は、ルツボ中のアルカリ金属などの不純物濃度が高いと促進されると言われている。また、デバイス特性への影響を考えても、不純物濃度は低い方が良い。よって、石英ガラスルツボには気泡がないことや不純物濃度が低いことが求められる。
 気泡が無く、不純物濃度も極めて低い合成石英ガラスの製造方法として、直接法やスート法が挙げられる。直接法とは、四塩化ケイ素(SiCl)などのケイ素化合物を酸水素火炎中で加水分解することにより直接堆積・ガラス化させて合成する方法である。また、スート法とは、以下のような手順で合成石英ガラスを製造する方法である。まず、直接法よりも低温の約1100℃で、四塩化ケイ素(SiCl)などのケイ素化合物を酸水素火炎中で加水分解することにより、多孔質のシリカのかたまり(スート)を合成する。これを、塩素系化合物などの適当なガス中で熱処理して水分を除去する。最後に、約1500℃以上の温度で回転させながらスートを引き下げて下端から順に加熱してガラス化していく(非特許文献1参照)。
 これらの合成石英ガラスを用いて石英ガラスルツボを作ればシリコン単結晶の有転位化を回避できるが、ルツボ自体の耐熱性(耐熱変形性、変形耐性とも言う)が低い(すなわち、高温下で変形しやすい)という問題がある。この耐熱性の問題を解決する方法として、例えば、(1)シラン化合物から合成された合成石英ガラスを粉砕し、真空下で加熱溶融し、ルツボに成形する方法(特許文献5)や、(2)シラン化合物の直接火炎法によって製造された、水素分子含有量が1×1017molecules/cm以上である合成石英ガラス部材を粉砕、粒度調整、洗浄の各工程を経て合成石英ガラス粉としたのち、これを真空下にて1500~1900℃で電気溶融し、成型する方法(特許文献6)が挙げられる。
 特許文献5の方法では、合成石英ガラスを粉砕し、その際の粒度を600μm以下と規定して、これを10-1Torr、1500~1900℃で真空加圧溶融をすることにより水酸基・塩素の含有量を低下させて耐熱性の良い合成石英ガラスルツボを作ることができる。真空加圧溶融なのでルツボ内に1mm以上の気泡は無い。これは、通常のアーク溶融法によって製造した石英ガラスルツボの気泡レベル(例えば、ルツボ1つあたり、1~2mmの気泡3個程度、2mm以上の気泡なし)よりも良好である。なお、アーク溶融法とは、回転している型内に原料粉を供給しルツボ状の原料粉体層を形成し、その内側からアーク放電加熱し溶融して石英ガラスルツボを製造する方法である(例えば、特許文献7参照)。
 また、特許文献6の方法によれば、合成石英ガラス部材を水素分子含有量が1×1016molecules/cm以上で歪点が1130℃以上、OH基含有量、塩素含有量がいずれも1ppm以下のものとしたものは、高純度であり、高温における粘度が例えば1400℃で1010ポイズ以上とすることができ、したがってこれをシリコン単結晶引き上げ用ルツボ材とすることができる。
 また、特許文献8には、石英原料粉を不活性ガス雰囲気下で溶融し、さらに2000℃以上、0.05torr以上の真空度に5時間以上保持して精製して得た石英ガラス片を、石英ガラスルツボの内表面に貼り合わせ、加熱溶融して一体化する方法が開示されている。また、その加熱溶融方法として、アーク放電や酸水素炎バーナ等を用いることが例示されている。
特開平6-329493号公報 特開2001-342029号公報 特開2001-240494号公報 特開平11-228291号公報 特開平8-40735号公報 特開平8-48532号公報 特開2005-239533号公報 特開2004-2082号公報 特開平4-295018号公報
非晶質シリカ材料応用ハンドブック、リアライズ社、1999年
 上記のように、チョクラルスキー法によるシリコン単結晶の引き上げの際のシリコン単結晶の有転位化の回避のため、石英ガラスルツボは高純度(すなわち、不純物が少ない)で、かつ気泡が無いものが求められ、さらに、同時にルツボの耐熱性も必要である。
 特許文献5及び特許文献6の方法のいずれも合成石英を粉砕しているため、アーク溶融法よりはルツボ内の気泡が少ないといえども皆無ではない。そのため、昨今のシリコン単結晶の大型化により石英ガラスルツボへの熱負荷も大きくなっている現状では、シリコン単結晶製造中にルツボ内の気泡が膨張してしまう。これが原因となってシリコン単結晶が有転位化する場合が多いという問題があった。
 また、特許文献8の方法で用いている石英材料は、合成石英の粉を溶融し、精製した石英ガラス片である。従って、石英ガラス片中に少なからず気泡が存在している。そのため、特許文献8に開示された石英ガラスルツボを用いてシリコン単結晶を製造しても、シリコン単結晶の有転位化を十分抑制できないという問題がある。また、加熱溶融方法にしても、ガラス片を石英ガラスルツボに酸水素炎バーナで溶着することは、うまく熱を伝えることができず、現実的には非常に難しい。また、ルツボが大型化すると、酸水素炎バーナやアーク放電では局所的な加熱による大きな温度勾配によりルツボや板材が割れる可能性が高く、現実に溶着するのは非常に困難である。
 本発明は、これらの問題点に鑑みてなされたもので、シリコン単結晶の製造の際のルツボ自体に起因するシリコン単結晶の有転位化を回避し、かつ、高い耐熱性を有する石英ガラスルツボ及びその製造方法、並びにそのような石英ガラスルツボを用いたシリコン単結晶の製造方法を提供することを目的とする。
 本発明は、上記課題を解決するためになされたもので、石英ガラスからなり、ルツボ形状を有するルツボ基材を準備する工程と、直接法又はスート法により合成石英ガラス材を作製する工程と、前記合成石英ガラス材を、粉砕することなくルツボ形状に加工する工程と、前記ルツボ形状に加工した合成石英ガラス材を、前記ルツボ基材の内面に溶着する工程とを含むことを特徴とする石英ガラスルツボの製造方法を提供する。
 このような方法であれば、直接法又はスート法により作製された合成石英ガラス材を粉砕することなくルツボ形状に加工するため、実質的に気泡を含まず、また、不純物濃度も極めて低いままルツボ形状を有する合成石英ガラス材とすることができる。また、この合成石英ガラス材を石英ガラスからなるルツボ基材の内面に溶着するので、石英ガラスルツボのうち、この合成石英ガラス材からなる部分を、シリコン単結晶を製造する際のシリコン融液と接触するルツボ内面とすることができ、気泡やクリストバライトに起因するシリコン単結晶の有転位化を回避することができる。
 また、ルツボを構成する材料としてこのような合成石英ガラス材を用いても、ルツボ基材に溶着するので耐熱性をルツボ基材に担わせることができ、合成石英ガラス材自体の熱変形等の問題は生じず、石英ガラスルツボの耐熱性を確保することができる。
 この場合、前記溶着を、前記ルツボ基材の内部に前記ルツボ形状に加工した合成石英ガラス材を配置し、該合成石英ガラス材の内部に多結晶シリコンを充填し、該多結晶シリコンをシリコン単結晶引上機内で溶融する際の加熱により同時に行うことができる。
 また、本発明は、このような石英ガラスルツボの製造方法によって、前記多結晶シリコンの溶融と同時に前記石英ガラスルツボを製造し、引き続き、前記多結晶シリコンの溶融によって生じたシリコン融液からチョクラルスキー法によりシリコン単結晶を引き上げることによってシリコン単結晶を製造することを特徴とするシリコン単結晶の製造方法を提供する。
 このように、合成石英ガラス材とルツボ基材との溶着を、シリコン単結晶引上機内で多結晶シリコンを溶融する際の加熱により同時に行うこととし、また、その後引き続き、シリコン融液からシリコン単結晶を引き上げることとすれば、全体として工程を減らすことができる上に、ルツボを一旦冷却する必要が無い。そのため、シリコン単結晶を製造するために必要な総エネルギーや製造時間を削減することができる。
 また、本発明の石英ガラスルツボの製造方法では、前記溶着を、前記ルツボ基材の内部に前記ルツボ形状に加工した合成石英ガラス材を配置し、電気炉を用いて、前記ルツボ基材及び合成石英ガラス材を加熱して行うこともできる。
 また、本発明の石英ガラスルツボの製造方法では、前記溶着を、前記ルツボ基材の内部に前記ルツボ形状に加工した合成石英ガラス材を配置し、シリコン単結晶引上機内において、前記ルツボ基材及び合成石英ガラス材を加熱して行うこともできる。
 このように、合成石英ガラス材とルツボ基材との溶着は、電気炉又は引上機内での加熱によって行うこともできる。そして、全体を一度に溶着できるので、局所的な温度勾配が生じることもなく、割れが発生することもない。
 また、本発明の石英ガラスルツボの製造方法では、前記合成石英ガラス材の作製において、前記合成石英ガラス材を水酸基含有量が100~800ppmのものとして作製することが好ましい。
 合成石英ガラス材の水酸基(OH基)濃度をこのようなものとすれば、シリコン単結晶の有転位化の抑制をより効果的に行うことができる。
 また、本発明の石英ガラスルツボの製造方法では、前記合成石英ガラス材の作製において、前記合成石英ガラス材を厚さ1mm以上の板状のものとして作製することが好ましい。
 このように、合成石英ガラス材を厚さ1mm以上の板状のものとして作製すれば、ルツボ形状への加工の際の破損を防止することができる。また、ルツボ形状に加工し、ルツボ基材の内部へ配置した後又はその後溶着する前に、シリコン単結晶の原料の多結晶シリコンを充填する際の破損を防止することができる。
 また、本発明の石英ガラスルツボの製造方法では、前記合成石英ガラス材のルツボ形状への加工において、一つの又は複数の前記合成石英ガラス材から前記ルツボ形状を構成することができる。
 このように、合成石英ガラス材のルツボ形状への加工は、一つの合成石英ガラス材からルツボ形状としてもよいし、複数の合成石英ガラス材を溶接等によって組み合わせてルツボ形状としてもよい。
 また、本発明は、上記のいずれかの石英ガラスルツボの製造方法によって製造されたことを特徴とする石英ガラスルツボを提供する。
 このように、本発明の石英ガラスルツボの製造方法によって製造された石英ガラスルツボであれば、実質的に気泡を含まず、また、不純物濃度も極めて低い合成石英ガラス材をルツボ基材の内面に溶着した石英ガラスルツボであるので、この合成石英ガラス材からなる部分を、シリコン単結晶を製造する際のシリコン融液と接触するルツボ内面とすることができ、気泡やクリストバライトに起因するシリコン単結晶の有転位化を回避することができる。また、ルツボ基材を有することから、石英ガラスルツボの耐熱性を確保することができる。
 また、本発明は、石英ガラスからなり、ルツボ形状を有するルツボ基材と、前記ルツボ基材の内面に溶着されたルツボ形状の合成石英ガラス材とを具備し、前記合成石英ガラス材は、直接法又はスート法により作製され、実質的に気泡を含まないものであることを特徴とする石英ガラスルツボを提供する。
 このような石英ガラスルツボであれば、直接法又はスート法により作製された合成石英ガラス材、すなわち、実質的に気泡を含まず、また、不純物濃度も極めて低い合成石英ガラス材をルツボ基材の内面に溶着した石英ガラスルツボであるので、シリコン単結晶を製造する際に、気泡やクリストバライトに起因するシリコン単結晶の有転位化を回避することができる。また、石英ガラスルツボの耐熱性を確保することができる。
 この場合、前記合成石英ガラス材は、水酸基含有量が100~800ppmであることが好ましい。
 合成石英ガラス材の水酸基濃度をこのようなものとすれば、シリコン単結晶の有転位化の抑制をより効果的に行うことができる。
 また、前記合成石英ガラス材は、厚さが1mm以上であることが好ましい。
 このように、合成石英ガラス材の厚さを1mm以上とすれば、シリコン単結晶の原料の多結晶シリコンを充填する際の破損を防止することができる。
 また、本発明は、上記のいずれかの石英ガラスルツボの内部にシリコン融液を保持し、該シリコン融液からチョクラルスキー法によりシリコン単結晶を引き上げることによってシリコン単結晶を製造することを特徴とするシリコン単結晶の製造方法を提供する。
 このように、本発明の石英ガラスルツボを用いたチョクラルスキー法によるシリコン単結晶の製造方法であれば、気泡やクリストバライトに起因するシリコン単結晶の有転位化を回避してシリコン単結晶を製造することができる。
 本発明に係る石英ガラスルツボの製造方法であれば、直接法又はスート法により作製され、粉砕もされていないことから、実質的に気泡を含まず、また、不純物濃度も極めて低い合成石英ガラス材を、シリコン単結晶を製造する際のシリコン融液と接触するルツボ内面として石英ガラスルツボを製造することができる。このような石英ガラスルツボを用いてシリコン単結晶の製造を行えば、気泡やクリストバライトに起因するシリコン単結晶の有転位化を回避することができる。
本発明の石英ガラスルツボの概略断面図である。
 以下、本発明をより詳細に説明するが、本発明はこれに限定されるものではない。
 図1に本発明の石英ガラスルツボの概略断面図を示した。
 本発明の石英ガラスルツボ10は、少なくとも、石英ガラスからなり、ルツボ形状を有するルツボ基材20と、ルツボ基材20の内面に溶着されたルツボ形状の合成石英ガラス材30とを具備する。この合成石英ガラス材30は、直接法又はスート法により作製され、実質的に気泡を含まないものである。
 合成石英ガラス材30は、後述するように、直接法又はスート法により作製した合成石英ガラス材を、粉砕することなくルツボ形状に加工して形成したものをルツボ基材20に溶着したものである。
 ルツボを構成する材料として熱変形しやすい合成石英ガラス材30を用いても、ルツボ基材20に溶着するので、耐熱性をルツボ基材20に担わせることができ、石英ガラスルツボ10の耐熱性を確保することができる。
 このような石英ガラスルツボ10は、以下のようにして製造することができる。
 まず、石英ガラスからなり、ルツボ形状を有するルツボ基材20を準備する(工程a)。
 ここで準備するルツボ基材20は、通常の石英ガラスルツボでよい。ただし、本発明によって製造する石英ガラスルツボとの区別のため、本発明の説明においては「ルツボ基材」と呼ぶ。本発明のルツボ基材は、現在工業的に使用されている石英ガラスルツボを用いれば良く、その製法も特に限定されず、例えば、現在工業的に実施されているアーク溶融法で良い。アーク溶融法とは、例えば特許文献7に開示されているような、回転している型内に原料粉を供給しルツボ状の原料粉体層を形成し、その内側からアーク放電加熱し溶融して石英ガラスルツボを製造する方法である。その他、ゾルゲル法や、スリップキャスト法等によりルツボ基材を製造することができる。この場合、ルツボ基材の内面は、必ずしも高純度層や無気泡層となっている必要はない。
 一方、ルツボ基材20の内面に溶着するための、ルツボ形状の合成石英ガラス材30を以下のようにして準備する。
 まず、直接法又はスート法により合成石英ガラス材を作製する(工程b)。直接法又はスート法によれば、実質的に気泡を含まず、また、不純物濃度も極めて低い合成石英ガラス材を作製することができる。
 このとき、合成石英ガラス材を厚さ1mm以上の板状のものとして作製することが好ましい。合成石英ガラス材の厚さが1mm以上であれば、後述のように、ルツボ形状への加工の際の破損を防止することができる。また、後述のように、シリコン単結晶の原料の多結晶シリコンを充填する際の破損も防止することができる。一方、合成石英ガラス材の厚さは10mm以下であることが望ましい。このような厚さであれば、R加工などの工数が増えすぎることがない。また、板状の合成石英ガラス材はフォトマスク用などとして市販もされており、容易に入手可能である。
 次に、合成石英ガラス材を、粉砕することなくルツボ形状に加工する(工程c)。これにより、図1に示したようなルツボ形状を有する、合成石英ガラス材30とすることができる。
 この工程では、直接法又はスート法により作製された合成石英ガラス材を粉砕することなく加工するため、実質的に気泡を含まず、また、不純物濃度も極めて低いまま、ルツボ形状の合成石英ガラス材30とすることができる。また、工程数も減少することから、安価に準備することができる。
 なお、上記の直接法又はスート法により作製された合成石英ガラス材を粉砕することなく加工するとは、合成石英ガラス材から粉末(例えば、平均粒径1mm以下の粉末)への加工をすることなく、直接法またはスート法により製造した合成石英ガラス材から塊状、板状等の形状に切り出し、加工することを意味する。
 この工程cでは、合成石英ガラス材がルツボ形状となるように加工すればよく、その具体的な方法は特に限定されない。また、合成石英ガラス材のルツボ形状への加工において、一つの合成石英ガラス材からルツボ形状を構成してもよいし、複数の合成石英ガラス材からルツボ形状を構成してもよい。
 一つの合成石英ガラス材からルツボ形状を構成するには、例えば、カーボン製や合成石英製の治具に熱をかけながら押し付け、一気にルツボ形状へと加工することができる。このような場合、合成石英ガラス材を板状としておけば加工が容易となり、好ましい。
 複数の合成石英ガラス材からルツボ形状を構成する場合には、各々の合成石英ガラス材をルツボ形状へと加工しやすい合成石英ガラス片とすることができる。このような合成石英ガラス片の個々の形状は特に限定されない。
 複数の合成石英ガラス材は、R加工等や酸水素炎バーナー等を用いた溶接により、複数の合成石英ガラス材からルツボ形状を構成するようにすることができる。このような加工及び溶接等は、後述のルツボ基材に溶着する工程(工程d)よりも前に行えばよい。また、複数の合成石英ガラス材が、全体としてルツボ形状を構成し、そのルツボ形状のままルツボ基材に溶着されればよく、必ずしも複数の合成石英ガラス片を予め溶接等により一体化する必要はない。
 以上のような工程b及び工程cを経て、ルツボ形状の合成石英ガラス材30が準備される。
 なお、ルツボ基材の準備(工程a)と、合成石英ガラス材の作製及びルツボ形状への加工(工程b及び工程c)とは独立に行うことができ、どちらを先に行ってもよいし、並行して行うこともできる。
 次に、ルツボ形状に加工した合成石英ガラス材30を、ルツボ基材20の内面に溶着し(工程d)、石英ガラスルツボ10を製造する。
 この溶着は確実に行う必要がある。具体的には、例えば、以下の3つの方法がある。
(第1の溶着方法)
 第1の溶着方法では、まず、ルツボ基材20の内部にルツボ形状に加工した合成石英ガラス材30を配置(セット)する。このときのルツボ形状の合成石英ガラス材30としては、一つの合成石英ガラス材からルツボ形状に加工したもの、複数の合成石英ガラス材を溶接してルツボ形状としたもののいずれでもよい。この場合、合成石英ガラス材は、予め一体化したものを用いるようにする。次に、合成石英ガラス材30の内部に多結晶シリコンを充填する。次に、多結晶シリコンをシリコン単結晶引上機内で溶融する際の加熱により、ルツボ基材20とルツボ形状の合成石英ガラス材30との溶着を多結晶シリコンの溶融と同時に行う。パワー(加熱のための投入電力)や加熱時間は任意であり、通常の多結晶シリコンの溶融と同様に、引上機、ルツボのサイズ等に依存して決定することができる。
 この方法によれば、多結晶シリコンの溶融と同時に石英ガラスルツボ10が製造される。この場合、多結晶シリコンの溶融及び石英ガラスルツボの製造の後、引き続き引上機内において、多結晶シリコンの溶融によって生じたシリコン融液からチョクラルスキー法によりシリコン単結晶を引き上げることによってシリコン単結晶を製造することができる。
 このようにすれば、石英ガラスルツボ10を製造した後シリコン単結晶を製造するまでの間に一旦冷却する必要が無い。そのため、シリコン単結晶を製造するために必要な総エネルギーを削減することができる。また、工程数の増加も最小限とすることができ、コストの上昇を抑えられるほか、内側のシリコン融液の存在により合成石英ガラス材のルツボ基材への溶着が均一に行われる利点もある。
(第2の溶着方法)
 第2の溶着方法では、ルツボ基材20の内部にルツボ形状に加工した合成石英ガラス材30を配置し、電気炉を用いて、ルツボ基材20及び合成石英ガラス材30を加熱して溶着を行う。
(第3の溶着方法)
 第3の溶着方法では、ルツボ基材20の内部にルツボ形状に加工した合成石英ガラス材30を配置し、シリコン単結晶引上機内において、ルツボ基材20及び合成石英ガラス材30を加熱して溶着を行う。
 第2又は第3の溶着方法の場合は、ルツボ形状の合成石英ガラス材30として、一つの合成石英ガラス材からルツボ形状に加工したもの、又は、複数の合成石英ガラス材からR加工等した後、溶接してルツボ形状としたものを、ルツボ基材20の内部に配置することができる。また、複数の合成石英ガラス材からR加工した後、予め溶接等により一体化することなく、複数のガラス片の状態のまま、全体としてルツボ形状を構成するようにルツボ基材20の内部に配置してもよい。この場合、これらは溶着工程で同時に一体化とルツボ基材への溶着が行われる。
 さらに、第2又は第3の溶着方法の場合は、例えばカーボン製や合成石英製などの治具を、ルツボ形状の合成石英ガラス材30の内側にセットし、ルツボ基材20と挟み込む形で圧着させても良い。特に、ルツボ形状に加工した合成石英ガラス材30が複数のガラス片からなる場合(溶接により一体化していない状態)は、上部に位置するガラス片が一体化する前にずり落ちてこないように、ルツボ基材20を回転させたり、もしくはルツボ基材20の胴体部を垂直ではなく上開きのテーパーをつけたりすることが好ましい。
 また、パワー(加熱のための投入電力)や加熱時間は任意であり、必要に応じて決定することができる。
 なお、第1~3の溶着方法のいずれの方法であっても、上部に位置するガラス片がルツボ基材20に溶着する前に倒れてこないようにルツボ基材20と合成石英ガラス材30をルツボ上端部で溶接しておくことが好ましく、さらに、ルツボ基材20と合成石英ガラス材30との間に雰囲気ガスが閉じ込められないよう、気抜きを設けることが好ましい。
 このルツボ基材20とルツボ形状の合成石英ガラス材30との溶着は、上記のように全体を一度に同時に行うことで確実に行うことが必要である。
 この溶着を、酸水素炎バーナーを用いて一部ずつ行おうとすると、全体にうまく熱を伝えることができず、現実的には非常に難しい。また、特にルツボが大型である場合(例えば、口径24インチ(60cm)以上)、酸水素炎バーナーやアーク放電では局所的な加熱による大きな温度勾配によりルツボや板材が割れる可能性が高く、現実に溶着するのは非常に困難である。従って、これらの方法は望ましくない。
 以上のような工程a~dを経て、図1に示した石英ガラスルツボ10を製造することができる。
 このような本発明に係る石英ガラスルツボ10を用いてチョクラルスキー法によりシリコン単結晶を製造すれば、気泡やクリストバライトに起因するシリコン単結晶の有転位化を回避してシリコン単結晶を製造することができる。
 本発明の石英ガラスルツボ10を用いること以外は、通常通りのチョクラルスキー法によってシリコン単結晶を製造することができる。すなわち、本発明の石英ガラスルツボ10の内部にシリコン融液を保持し、該シリコン融液からチョクラルスキー法によりシリコン単結晶を引き上げることによってシリコン単結晶を製造する。また、磁場をかけながらシリコン単結晶の育成を行うなど、チョクラルスキー法に関する公知の手法を適宜行うことができる。
 ただし、上記の「第1の溶着方法」の場合には、前述のように、多結晶シリコンをシリコン単結晶引上機内で溶融する際の加熱により、ルツボ基材20とルツボ形状に加工した合成石英ガラス材30との溶着を多結晶シリコンの溶融と同時に行う。この方法の場合も、その後のシリコン融液からのシリコン単結晶の引き上げは通常のチョクラルスキー法によるシリコン単結晶の製造の場合と同様に行うことができる。
 なお、石英ガラスルツボ10を構成する、溶着後の合成石英ガラス材30は厚さ1mm以上とすることが好ましい。このようにするためには、例えば、合成石英ガラス材の作製(工程b)において合成石英ガラス材を厚さ1mm以上の板状のものとして作製し、これをルツボ形状に加工してルツボ基材20に溶着することなどにより行うことができる。
 合成石英ガラス材30が厚さ1mm以上であれば、シリコン単結晶の原料の多結晶シリコンを充填する際の破損を防止することができる。また、シリコン単結晶の製造中に、合成石英ガラス材30の溶解による、シリコン融液とルツボ基材20の接触を防止することができる。これにより、シリコン融液を、実質的に気泡を含まず、また、不純物濃度も極めて低い合成石英ガラス材30の表面と常に接触させることができ、より効果的にシリコン単結晶の有転位化を回避することができる。
 また、合成石英ガラス材の作製(工程b)において、合成石英ガラス材を水酸基含有量が100~800ppmのものとして作製することが好ましい。
 この合成石英ガラス材の水酸基含有量の規定は、本発明者らが、チョクラルスキー法によるシリコン単結晶製造中の石英ガラスルツボの結晶化について、以下の知見を見出したことに基づく。
 水酸基含有量が高いと合成石英ガラス(アモルファス)の結晶化(すなわち、クリストバライト化)が促進される。前述のように、アルカリ金属などの不純物によってもアモルファスは結晶化するが、不純物起因の結晶化は、失透と呼ばれる程に結晶化度の高い結晶化である。一方、水酸基起因の結晶化は結晶化度の低い結晶化であることを、本発明者らは見出した。
 シリコン単結晶の製造開始から終了までの間で全くクリストバライト化が起きなければ、クリストバライトの剥離を起因としたシリコン単結晶の有転位化は発生しないが、現実には多少なりとも石英ガラスルツボ表面はクリストバライト化してしまう。この結晶化は、前述のように、特許文献3や特許文献4によると、「結晶化の初期段階では結晶生成核を基点として点状に発生し、単結晶引上げの進行にともなって、結晶化はリング状に広がる」、「このような結晶化の進展現象により結晶化斑点が生成される。この結晶化斑点の外周部は茶色を呈しているので、茶褐色斑点と呼ばれることもある。」、「結晶化斑点は、単結晶引上げ時間、すなわち、シリコン融液と石英ルツボの内表面とが直接接触する時間の経過とともに増加するが、所定の時間が経過すると結晶化斑点は一定の密度に収束して推移する」と記載されている。また、「かかる結晶化斑点はいったん生成した後、シリコン融液により溶解し始め、次第に結晶化斑点の大きさが小さくなる」とも記載されている。即ち、石英ガラスルツボ表面では結晶化とその結晶化部分の溶解が起きている。
 そこで、本発明者らは、不純物起因の結晶化度の高い結晶化では、剥離するクリストバライトのサイズが大きく、シリコン融液中に溶解し終える前にシリコン単結晶の固液界面に到達してしまい、シリコン単結晶の有転位化を誘起すること、一方、水酸基起因のように結晶化度の低い結晶化では、剥離するクリストバライトのサイズが小さく、シリコン単結晶の固液界面に到達する前にシリコン融液中に溶解し、シリコン単結晶の有転位化を誘起しないことを見出した。
 水酸基含有量が100ppm以上であれば、石英ガラスルツボ内表面の結晶化速度が遅すぎず、シリコン単結晶製造中の茶褐色斑点の増加が抑制され、クリストバライトの剥離によるシリコン単結晶の有転位化を抑制することができる。一方、水酸基含有量が800ppm以下であれば、ルツボ表面の結晶化が促進され過ぎることもなく、剥離するクリストバライトのサイズが小さく、シリコン単結晶が有転位化することを抑制することができる。石英ガラスルツボ10を構成する合成石英ガラス材30は、高純度であるため、アルカリ金属などの不純物に基づく結晶化はそれほど考慮する必要はなく、水酸基含有量が100~800ppmであるものを用いた場合は、原料の多結晶シリコンの溶融中に石英ガラスルツボ内表面の結晶化が適度に促進され、シリコン単結晶の製造を開始する頃にはルツボ表面の溶解も相まって、剥離するクリストバライトのサイズが小さくなり、シリコン単結晶の有転位化がより効果的に回避される。合成石英ガラス材30の水酸基含有量は300~700ppmであることがさらに好ましく、500~700ppmであることが最も好ましい。
 合成石英ガラス材の水酸基含有量の調整方法は特に限定されないが、例えば、特許文献9に開示されているように、火炎バーナーを多重管バーナーとし、その中心ノズルから供給される原料シラン化合物と支燃性ガスとしての酸素ガスとの混合ガスの組成比を変えることや、支燃性ガスに不活性ガスを混合することにより、合成石英ガラスを作製するときの成長溶融面の表面温度を制御することで可能である。
 以下、実施例及び比較例を挙げて本発明を具体的に説明するが、これらは本発明を限定するものではない。
(実施例1)
 スート法により、水酸基含有量が50ppmの合成石英ガラス材の板材を作製した。この合成石英ガラス材を、アーク溶融法で製造した口径32インチ(800mm)の石英ガラスからなるルツボ基材(水酸基含有量は150ppm)の内面形状に合わせて、切り出し、R加工し、溶接し、ルツボ形状とした。ルツボ形状に加工した合成石英ガラス材30をルツボ基材20内に配置し(図1参照)、その中に多結晶シリコンを400kg充填した。
 ルツボ基材及びその内部に配置された合成石英ガラス材を引上機にセットし、原料の多結晶シリコンを溶融した。この多結晶シリコンの溶融と同時にルツボ基材と合成石英ガラス材を溶着し、石英ガラスルツボ10とした。その後、4000ガウス(0.4テスラ)の水平磁場を印加して直径300mmのシリコン単結晶を引き上げた。
 以上の工程を、10回繰り返した。
(実施例2)
 合成石英ガラス材の板材として、スート法により、水酸基含有量が100ppmであるものを作製したこと以外は実施例1と同様に石英ガラスルツボを作製し、シリコン単結晶の引き上げを行った。
(実施例3)
 合成石英ガラス材の板材として、スート法により、水酸基含有量が200ppmであるものを作製したこと以外は実施例1と同様に石英ガラスルツボを作製し、シリコン単結晶の引き上げを行った。
(実施例4)
 合成石英ガラス材の板材として、直接法により、水酸基含有量が600ppmであるものを作製したこと以外は実施例1と同様に石英ガラスルツボを作製し、シリコン単結晶の引き上げを行った。
(実施例5)
 合成石英ガラス材の板材として、直接法により、水酸基含有量が800ppmであるものを作製したこと以外は実施例1と同様に石英ガラスルツボを作製し、シリコン単結晶の引き上げを行った。
(実施例6)
 合成石英ガラス材の板材として、直接法により、水酸基含有量が1200ppmであるものを作製したこと以外は実施例1と同様に石英ガラスルツボを作製し、シリコン単結晶の引き上げを行った。
(比較例)
 アーク溶融法で製造した口径32インチ(800mm)の石英ガラスルツボ(水酸基含有量は150ppm)に多結晶シリコン400kgを充填した。
 この石英ガラスルツボを引上機にセットし、原料の多結晶シリコンを溶融した。その後、4000ガウス(0.4テスラ)の水平磁場を印加して直径300mmのシリコン単結晶を引き上げた。
 以上の工程を、10回繰り返した。
 実施例1~6及び比較例で引き上げたシリコン単結晶の有転位化回数を表1に示す。ここで言う有転位化回数とは、各単結晶の1回目の引き上げにおける有転位化の回数(すなわち、0か1)を合計したものであり、有転位化した場合に再溶融した後の再度の有転位化は対象としない。なぜならば、再溶融によりルツボの表面状態(気泡、結晶化度)が変わってしまうからである。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、本発明に係る石英ガラスルツボの製造方法に従い、気泡が無く、不純物濃度も極めて低い合成石英ガラス材をルツボ内面部の構成材料とすれば、シリコン単結晶の有転位化を抑制できることがわかった。特に、水酸基含有量が600ppmの場合(実施例4)には、1回も有転位化することなく、シリコン単結晶を育成できた。
 なお、上記の各実施例及び比較例において、有転位化した場合には、その後に再溶融を行い、再びシリコン単結晶を育成しており、最終的には無転位のシリコン単結晶が得られている。しかし製造時間を短縮して生産性を向上するためには有転位化を回避することが求められるため、本発明は生産性向上に極めて有効である。しかも、シリコン融液に接しているのは、高純度の合成石英ガラスであるので、得られるシリコン単結晶の高純度化も図れる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (13)

  1.  石英ガラスからなり、ルツボ形状を有するルツボ基材を準備する工程と、
     直接法又はスート法により合成石英ガラス材を作製する工程と、
     前記合成石英ガラス材を、粉砕することなくルツボ形状に加工する工程と、
     前記ルツボ形状に加工した合成石英ガラス材を、前記ルツボ基材の内面に溶着する工程と
     を含むことを特徴とする石英ガラスルツボの製造方法。
  2.  前記溶着を、前記ルツボ基材の内部に前記ルツボ形状に加工した合成石英ガラス材を配置し、該合成石英ガラス材の内部に多結晶シリコンを充填し、該多結晶シリコンをシリコン単結晶引上機内で溶融する際の加熱により同時に行うことを特徴とする請求項1に記載の石英ガラスルツボの製造方法。
  3.  前記溶着を、前記ルツボ基材の内部に前記ルツボ形状に加工した合成石英ガラス材を配置し、電気炉を用いて、前記ルツボ基材及び合成石英ガラス材を加熱して行うことを特徴とする請求項1に記載の石英ガラスルツボの製造方法。
  4.  前記溶着を、前記ルツボ基材の内部に前記ルツボ形状に加工した合成石英ガラス材を配置し、シリコン単結晶引上機内において、前記ルツボ基材及び合成石英ガラス材を加熱して行うことを特徴とする請求項1に記載の石英ガラスルツボの製造方法。
  5.  前記合成石英ガラス材の作製において、前記合成石英ガラス材を水酸基含有量が100~800ppmのものとして作製することを特徴とする請求項1ないし請求項4のいずれか一項に記載の石英ガラスルツボの製造方法。
  6.  前記合成石英ガラス材の作製において、前記合成石英ガラス材を厚さ1mm以上の板状のものとして作製することを特徴とする請求項1ないし請求項5のいずれか一項に記載の石英ガラスルツボの製造方法。
  7.  前記合成石英ガラス材のルツボ形状への加工において、一つの又は複数の前記合成石英ガラス材から前記ルツボ形状を構成することを特徴とする請求項1ないし請求項6のいずれか一項に記載の石英ガラスルツボの製造方法。
  8.  請求項1ないし請求項7のいずれか一項に記載の石英ガラスルツボの製造方法によって製造されたことを特徴とする石英ガラスルツボ。
  9.  石英ガラスからなり、ルツボ形状を有するルツボ基材と、
     前記ルツボ基材の内面に溶着されたルツボ形状の合成石英ガラス材と
     を具備し、
     前記合成石英ガラス材は、直接法又はスート法により作製され、実質的に気泡を含まないものであることを特徴とする石英ガラスルツボ。
  10.  前記合成石英ガラス材は、水酸基含有量が100~800ppmであることを特徴とする請求項9に記載の石英ガラスルツボ。
  11.  前記合成石英ガラス材は、厚さが1mm以上であることを特徴とする請求項9又は請求項10に記載の石英ガラスルツボ。
  12.  請求項8ないし請求項11のいずれか一項に記載の石英ガラスルツボの内部にシリコン融液を保持し、該シリコン融液からチョクラルスキー法によりシリコン単結晶を引き上げることによってシリコン単結晶を製造することを特徴とするシリコン単結晶の製造方法。
  13.  請求項2に記載の石英ガラスルツボの製造方法によって、前記多結晶シリコンの溶融と同時に前記石英ガラスルツボを製造し、引き続き、前記多結晶シリコンの溶融によって生じたシリコン融液からチョクラルスキー法によりシリコン単結晶を引き上げることによってシリコン単結晶を製造することを特徴とするシリコン単結晶の製造方法。
PCT/JP2011/005368 2010-11-05 2011-09-26 石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法 WO2012060050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112011103417.2T DE112011103417B4 (de) 2010-11-05 2011-09-26 Verfahren zum Herstellen eines Quarzglastiegels und Verfahren zum Herstellen eines Silizium-Einkristalls
KR1020137011096A KR101703691B1 (ko) 2010-11-05 2011-09-26 석영 유리 도가니 및 그 제조 방법, 및 실리콘 단결정의 제조 방법
CN201180053097.7A CN103201226B (zh) 2010-11-05 2011-09-26 石英玻璃坩埚及其制造方法、以及单晶硅的制造方法
US13/824,874 US9376336B2 (en) 2010-11-05 2011-09-26 Quartz glass crucible, method for producing the same, and method for producing silicon single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-248818 2010-11-05
JP2010248818A JP5685894B2 (ja) 2010-11-05 2010-11-05 石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法

Publications (1)

Publication Number Publication Date
WO2012060050A1 true WO2012060050A1 (ja) 2012-05-10

Family

ID=46024178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005368 WO2012060050A1 (ja) 2010-11-05 2011-09-26 石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法

Country Status (6)

Country Link
US (1) US9376336B2 (ja)
JP (1) JP5685894B2 (ja)
KR (1) KR101703691B1 (ja)
CN (1) CN103201226B (ja)
DE (1) DE112011103417B4 (ja)
WO (1) WO2012060050A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051247A1 (en) * 2017-09-08 2019-03-14 Corner Star Limited HYBRID CUTTER ASSEMBLY FOR CZOCHRALSKI CRYSTAL GROWTH
WO2019133525A1 (en) * 2017-12-29 2019-07-04 Corner Star Limited Synthetic lined crucible assembly for czochralski crystal growth
JP7024700B2 (ja) * 2018-12-19 2022-02-24 株式会社Sumco 石英ガラスルツボ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002082A (ja) * 2002-05-30 2004-01-08 Japan Siper Quarts Corp 石英ガラスルツボとその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431254Y2 (ja) * 1986-04-28 1992-07-28
JPS6329493A (ja) 1986-07-23 1988-02-08 橋本 春夫 電子式螢光灯点灯装置
JP3078590B2 (ja) 1991-03-22 2000-08-21 信越化学工業株式会社 合成石英ガラスの製造方法
JP3215992B2 (ja) 1993-05-24 2001-10-09 三菱マテリアルクォーツ株式会社 シリコン単結晶引上げ用石英ルツボ
JPH0840735A (ja) 1994-07-29 1996-02-13 Shin Etsu Chem Co Ltd 合成石英ガラスルツボの製造方法
JPH0848532A (ja) 1994-08-04 1996-02-20 Shin Etsu Chem Co Ltd 高粘性合成石英ガラス部材およびその製造方法
JP2830990B2 (ja) * 1995-05-31 1998-12-02 信越石英株式会社 石英製二重ルツボの製造方法
JP4144060B2 (ja) 1998-02-20 2008-09-03 株式会社Sumco シリコン単結晶の育成方法
DE19962449C2 (de) 1999-12-22 2003-09-25 Heraeus Quarzglas Quarzglastiegel und Verfahren für seine Herstellung
JP2001240494A (ja) 2000-02-28 2001-09-04 Super Silicon Kenkyusho:Kk 単結晶成長方法
JP2001324029A (ja) 2000-05-15 2001-11-22 Mikuni Corp 空気制御弁
JP4424824B2 (ja) 2000-05-30 2010-03-03 ジャパンスーパークォーツ株式会社 石英ガラスルツボの製造方法
JP4841764B2 (ja) * 2001-07-23 2011-12-21 信越石英株式会社 シリコン単結晶引上げ用石英ガラスるつぼの製造方法及び装置
JP4086283B2 (ja) 2002-07-31 2008-05-14 信越石英株式会社 シリコン単結晶引上げ用石英ガラスルツボおよびその製造方法
JP4295018B2 (ja) 2003-06-03 2009-07-15 日立ビアメカニクス株式会社 穴明け加工方法
JP4641760B2 (ja) 2004-08-06 2011-03-02 信越石英株式会社 シリコン単結晶引上げ用石英ガラスルツボ
CN2884103Y (zh) 2006-02-17 2007-03-28 常州天合光能有限公司 直拉法单晶硅生产用石英坩埚
CN101624721A (zh) 2008-07-10 2010-01-13 日本超精石英株式会社 石英玻璃坩埚以及使用该石英玻璃坩埚的硅单晶提拉方法
CN201527173U (zh) 2009-06-10 2010-07-14 余姚市晶英电弧坩埚有限公司 一种复合层石英坩埚

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002082A (ja) * 2002-05-30 2004-01-08 Japan Siper Quarts Corp 石英ガラスルツボとその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YORIYUKI MURAKAWA, HISHOSHITSU SILICA ZAIRYO OYO HANDBOOK, REALIE CORP., 1999, pages 25 *

Also Published As

Publication number Publication date
CN103201226A (zh) 2013-07-10
US20130174777A1 (en) 2013-07-11
US9376336B2 (en) 2016-06-28
DE112011103417T5 (de) 2013-08-22
KR20140039133A (ko) 2014-04-01
CN103201226B (zh) 2015-08-05
JP2012101946A (ja) 2012-05-31
JP5685894B2 (ja) 2015-03-18
KR101703691B1 (ko) 2017-02-07
DE112011103417B4 (de) 2018-11-22

Similar Documents

Publication Publication Date Title
JP4166241B2 (ja) シリコン単結晶引上げ用石英ガラスルツボ及びその製造方法
JP4702898B2 (ja) シリコン単結晶引上げ用石英ガラスルツボの製造方法
US8163083B2 (en) Silica glass crucible and method for pulling up silicon single crystal using the same
JP4803784B2 (ja) シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP5741163B2 (ja) 石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法
JP5685894B2 (ja) 石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法
JP4161296B2 (ja) 石英ガラスルツボの製造方法
JP2018104248A (ja) シリコン単結晶引上げ用石英ガラスルツボ
JP2010280567A (ja) シリカガラスルツボの製造方法
JP4931106B2 (ja) シリカガラスルツボ
KR20100016435A (ko) 실리콘 단결정 인상용 석영유리 도가니 및 그 제조방법
JP5648642B2 (ja) シリコン単結晶の製造方法
JP4549008B2 (ja) 水素ドープシリカ粉及びそれを用いたシリコン単結晶引上げ用石英ガラスルツボ
JP7280160B2 (ja) シリカガラスルツボ
JP5668717B2 (ja) シリコン単結晶の製造方法
JP4874888B2 (ja) シリコン単結晶引上用石英ガラスルツボおよびその製造方法
JP5488519B2 (ja) 石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法
CN112725881A (zh) 高纯三氧化二铝晶体多级连熔装置及制备蓝宝石的方法
JPH07172977A (ja) 石英ガラス坩堝の製造方法
JP6070528B2 (ja) 石英ルツボの改質方法及びシリコン単結晶の製造方法
JPS62167213A (ja) シリコン多結晶インゴツトの製造方法
EP2143831A1 (en) Silica glass crucible and method for pulling up silicon single crystal using the same
JP2015051884A (ja) サファイア単結晶の製造方法
JP2014162698A (ja) サファイア単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824874

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137011096

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011103417

Country of ref document: DE

Ref document number: 1120111034172

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837704

Country of ref document: EP

Kind code of ref document: A1