WO2012059963A1 - 電源ノイズ低減回路及び電源ノイズ低減方法 - Google Patents

電源ノイズ低減回路及び電源ノイズ低減方法 Download PDF

Info

Publication number
WO2012059963A1
WO2012059963A1 PCT/JP2010/006657 JP2010006657W WO2012059963A1 WO 2012059963 A1 WO2012059963 A1 WO 2012059963A1 JP 2010006657 W JP2010006657 W JP 2010006657W WO 2012059963 A1 WO2012059963 A1 WO 2012059963A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
resistor
noise reduction
voltage
supply noise
Prior art date
Application number
PCT/JP2010/006657
Other languages
English (en)
French (fr)
Inventor
佐藤 俊之
Original Assignee
ヴェリジー(シンガポール) プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴェリジー(シンガポール) プライベート リミテッド filed Critical ヴェリジー(シンガポール) プライベート リミテッド
Priority to JP2012541638A priority Critical patent/JPWO2012059963A1/ja
Priority to CN201080069667.7A priority patent/CN103168412B/zh
Priority to KR1020137012794A priority patent/KR101727784B1/ko
Priority to US13/883,278 priority patent/US9537384B2/en
Publication of WO2012059963A1 publication Critical patent/WO2012059963A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/005Gas-filled discharge tubes with solid cathode specially adapted as noise generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2050/0054Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
    • B60W2050/0056Low-pass filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply noise reduction circuit and a power supply noise reduction method for reducing noise included in a constant voltage output outputted from a power supply to a load.
  • a power supply noise reduction circuit for reducing noise included in a constant voltage output output from a power supply to a semiconductor device has been put into practical use.
  • Such a power supply noise reduction circuit is roughly classified into a passive low-pass filter composed of only passive elements and an active low-pass filter composed of active elements.
  • bypass capacitor As a passive filter, a combination of a so-called bypass capacitor and a choke coil is generally used.
  • the bypass capacitor is configured to include a capacitor (AC shunt circuit) connected in parallel with the load.
  • AC shunt circuit By holding the impedance of the capacitor against the noise signal at a low value, the capacitor bypasses the noise current, and the load This suppresses the inflow of noise to the
  • the choke coil prevents noise current from passing through by inserting it in series with the power line from the constant voltage source to the load, and further reduces the noise voltage by the ratio between the series impedance of the power line and the parallel impedance of the bypass capacitor. By dividing the voltage and increasing the impedance ratio, the noise suppression effect is enhanced, thereby suppressing the noise application to the load.
  • a filter circuit using an operational amplifier is generally used as a constant voltage source as an active filter.
  • a constant voltage stabilization circuit usually serves as a filter. Fulfill.
  • the filter circuit inserted into the power supply line outside the power supply is also a so-called dropper-type simple constant voltage, such as a three-terminal regulator or shunt regulator, for voltage conversion with voltage step-down and DC voltage stabilization including ripple removal.
  • a power supply circuit is generally used, and noise can be reduced as a secondary effect of constant voltage stabilization accompanied by voltage step-down (see, for example, Patent Document 1).
  • the lower the noise frequency the smaller the inductive reactance becomes, so the noise suppression effect of the filter becomes smaller.
  • Inserting a resistor whose impedance does not depend on frequency in series with the coil can improve the suppression effect in the low frequency range, but there are new problems such as voltage drop with respect to the power supply voltage and power loss and heat generation due to the resistor. Therefore, it is difficult to use a large resistance value in order to improve the amount of low-frequency noise improvement, and there is a problem that a sufficient noise reduction effect cannot be obtained after all.
  • the power supply voltage is stabilized with a voltage drop to reduce noise secondary. Since the voltage can be supplied only to the load (voltage lower than the power supply voltage), and the voltage supplied from the power supply cannot be supplied to the load as it is, for example, a power supply with a programmable voltage value of constant voltage output When it is desired to supply a desired power supply voltage to the load using the circuit, there is a problem that the circuit cannot be applied.
  • the present invention has been made in view of such a conventional problem, and it is not necessary to increase the size of a circuit element, and does not cause a voltage drop of a power supply voltage.
  • the purpose is to provide.
  • the present invention is a power supply noise reduction circuit for reducing noise included in a constant voltage output output from a power supply to a load, A first resistor inserted in a power line extending from a power source to the load; a low-pass filter connected to a load end of the first resistor and outputting a first voltage with reduced noise from the constant voltage output; and the low-pass filter A unity gain amplifier that drives the first voltage output by the filter and outputs the first voltage to a load terminal of the first resistor.
  • the low-pass filter is configured by connecting a second resistor and a capacitor in series.
  • the present invention according to claim 3 is the present invention according to claim 2, further comprising filter switching means for switching a bypass path for bypassing the second resistor.
  • the present invention according to claim 4 is the present invention according to claim 2 or 3, further comprising a third resistor for reducing an input voltage to the unity gain amplifier by dividing the voltage with the second resistor.
  • the amplifier switching means for switching on and off the output path from the unity gain amplifier to the load end of the first resistor. Is provided.
  • the present invention according to claim 6 is a power supply noise reduction method for reducing the noise via a power supply noise reduction circuit for reducing noise included in a constant voltage output output from a power supply to a load.
  • the power supply noise reduction circuit is connected to a first resistor inserted in a power supply line from the power supply to the load, and a load terminal of the first resistor, and a first voltage that reduces the noise from the constant voltage output.
  • a low-pass filter configured by connecting a second resistor and a capacitor in series, and driving the first voltage output from the low-pass filter to a load end of the first resistor.
  • the power supply noise reduction circuit switches the on / off of the output path from the unity gain amplifier to the load end of the first resistor.
  • the output path is turned off via the amplifier switching means, and in the connection step, the output path is turned on via the amplifier switching means.
  • the power supply noise reduction circuit by driving the first voltage via the unity gain amplifier, noise can be reduced without causing a voltage drop of the power supply voltage, and the voltage supplied from the power supply Can be supplied to the load as it is, for example, even when a desired power supply voltage is supplied to the load using a power supply with programmable constant voltage output, the power supply noise reduction circuit can be applied. Become.
  • the low-pass filter is configured by connecting the second resistor and the capacitor in series, the low-pass filter can be easily configured.
  • the third aspect of the present invention it is possible to quickly and easily switch the power supply noise reduction circuit by bypassing the second resistor by the filter switching means. It is possible to start the power supply noise reduction circuit at an arbitrary time when supply is necessary, and to stop the power supply noise reduction circuit at an arbitrary time when supply of power is no longer necessary.
  • the third resistor for lowering the input voltage to the unity gain amplifier is provided by dividing the voltage with the second resistor, the power supply for the constant voltage output of the power supply is provided.
  • the constant voltage output of the noise reduction circuit is slightly lower, which prevents power from being supplied from the unity gain amplifier to the load.
  • the unity gain amplifier has almost no power burden and should be supplied with power to absorb noise power. That's fine.
  • the output of the unity gain amplifier is turned off by the amplifier switching means when the constant voltage power source rises or falls, so that the voltage of the constant voltage power source and the unity gain amplifier are switched off. It is possible to prevent current generation due to the output voltage difference.
  • the second resistor before the power supply is turned on, the second resistor is bypassed, and after the power supply is turned on and the capacitor is immediately charged, the second resistor is connected.
  • the power supply noise reduction circuit can be started almost at the same time as the power is turned on, and the power supply noise reduction circuit is started at any time when power supply with low noise is required. The power supply noise reduction circuit can be stopped.
  • the seventh aspect of the present invention before the power supply is turned on, driving of the power supply line by the unity gain amplifier is stopped, the power supply is turned on to charge the capacitor, and the output voltage of the unity gain amplifier is Becomes equal to the output voltage of the power supply line, and after the power supply noise reduction circuit is started, the unity gain amplifier starts driving the power supply line.
  • the constant voltage power supply rise and fall times can be made the same as without the power supply noise reduction circuit.
  • FIG. 1 is a block diagram of a constant voltage power supply circuit including a power supply noise reduction circuit according to an embodiment of the present invention. It is a flowchart of a power supply noise reduction process.
  • FIG. 3 is a graph showing the result of analyzing the noise from the output terminal by a spectrum analyzer.
  • A is the analysis result when the power supply noise reduction circuit is turned off, and
  • B is the power supply noise reduction circuit. Is an analysis result when the power supply noise reduction circuit is turned on, and is an analysis result when the first capacitor having a capacity different from that of FIG. Show.
  • the power supply noise reduction circuit and the power supply noise reduction method according to this embodiment are for reducing noise included in a constant voltage output output from a power supply to a load.
  • the power supply noise reduction circuit includes a circuit that is configured independently of various devices and circuits such as a constant voltage power supply device, and that that is incorporated in these various devices and circuits. The latter case corresponds to, for example, a case where a low noise constant voltage power supply device is configured as a whole by incorporating a power supply noise reduction circuit into the content of the constant voltage power supply device.
  • the power supply noise reduction circuit may be configured to operate in cooperation with other devices. For example, control of active elements included in the power supply noise reduction circuit may be controlled by an external control device. Good.
  • the specific configuration of the power supply is arbitrary, and includes, for example, DPS (Device Power Supply). Further, the specific configuration of the load is arbitrary, but in particular, a device that requires a low power supply noise level (for example, a semiconductor device for audio use) is applicable.
  • DPS Device Power Supply
  • the specific configuration of the load is arbitrary, but in particular, a device that requires a low power supply noise level (for example, a semiconductor device for audio use) is applicable.
  • a power supply noise reduction circuit is provided in a power supply circuit incorporated in the semiconductor tester, and an active element of the power supply noise reduction circuit (specifically, Describes a case in which a first relay and a second relay described later are controlled by a control unit provided inside the semiconductor tester.
  • FIG. 1 is a block diagram of a power supply circuit including a power supply noise reduction circuit according to the present embodiment.
  • the power supply circuit 1 shown in FIG. 1 includes a power supply 2, an output terminal (AVDD terminal) 3, a GND terminal 4, a first capacitor 5, and a power supply noise reduction circuit (Active Noise Suppressor) 10.
  • AVDD terminal an output terminal
  • GND terminal a GND terminal
  • first capacitor 5 a capacitor
  • a power supply noise reduction circuit Active Noise Suppressor
  • the power source 2 supplies DC power to the load, and here is configured as a DPS.
  • the positive electrode of the power supply 2 is connected to the output terminal 3 via the power supply line L 1, and power is supplied to the load via the output terminal 3.
  • the negative electrode of the power source 2 is connected to the GND terminal 4 via the GND line L2.
  • Monitor lines L3 and L4 are connected to the power supply line L1 and the GND line L2, respectively.
  • the monitor lines L3 and L4 are connected to the power supply 2, and the monitor voltage supplied from the power supply 2 is monitored by the monitor lines L3 and L4. Is fed back to the power source 2 through the above, and known feedback power source control is performed.
  • the first capacitor 5 is inserted in a line L5 connecting the power supply line L1 and the GND line L2, and constitutes a series RC circuit together with a first resistor 20 described later of the power supply noise reduction circuit 10.
  • the power supply noise reduction circuit 10 is for reducing noise supplied from the power supply 2 to the load.
  • the power supply noise reduction circuit 10 includes a first resistor 20, a main circuit 30, and a drive power supply 50. .
  • the first resistor 20 is inserted into the power supply line L1, and in the state where the power supply noise reduction circuit 10 is switched off, the first resistor 5 is configured with the first capacitor 5 as described above to form the power supply noise. In a state where the reduction circuit 10 is switched on, noise reduction is performed in cooperation with a low-pass filter 31 described later.
  • the main circuit 30 is inserted into a line L6 connecting the power supply line L1 and the GND line L2, and includes a low-pass filter 31, a unity gain amplifier 32, and a third resistor 33.
  • the main circuit 30 is modularized into one chip, and includes a PF terminal 34, a GF terminal 35, an UP5V terminal 36, a CHG terminal 37, an OUT terminal 38, a + PW terminal 39, and a -PW terminal 40.
  • lines connecting these terminals 34 to 40 are outlines of the main circuit 30 formed into one chip.
  • the low-pass filter 31 is connected to the load end of the first resistor 20 with high impedance and outputs a first voltage with reduced noise from a constant voltage output.
  • the low-pass filter 31 includes a second resistor 41 and a second capacitor. 42 is connected in series.
  • the values of the second resistor 41 and the second capacitor 42 are set so that the time constant of the low-pass filter 31 is as large (long) as possible.
  • a bypass path L7 for bypassing the second resistor 41 is connected to both ends of the second resistor 41.
  • the bypass path L7 is connected to a second path for switching the bypass path L7 between connection and disconnection.
  • One relay (filter switching means) 43 is provided.
  • the first relay 43 is driven by a control signal input to the CHG terminal 37 from a control unit provided inside the semiconductor tester, and when the bypass path L7 is switched to connection (short circuit), the second resistance 41 Is in a bypass state (non-use state), and when the bypass path L7 is switched to a non-connection (disconnection), the second resistor 41 is in a non-bypass state (use state).
  • the driving power for the first relay 43 is supplied via the UP5V terminal 36.
  • the unity gain amplifier 32 drives the first voltage V1 output from the low-pass filter 31 with a low impedance and outputs the first voltage V1 to the load end of the first resistor 20.
  • the input end of the unity gain amplifier 32 is connected to the second resistor 41.
  • the second capacitors 42 are connected to each other, and their output ends are connected to the load end of the second resistor 41 via the output path L8.
  • the output path L8 is provided with a second relay (amplifier switching means) 44 for switching the output path L8 between connection and disconnection.
  • the second relay 44 is driven by a control signal input to the OUT terminal 38 from a control unit provided inside the semiconductor tester, and when the output path L8 is switched to connection (short circuit), the unity gain amplifier 32 is used. Is output to the load end of the second resistor 41, and the output path L8 is switched to non-connected (disconnected), the output of the unity gain amplifier 32 to the load end of the second resistor 41 is stopped. .
  • the driving power for the second relay 44 is supplied via the UP5V terminal 36.
  • the third resistor 33 is inserted between the input terminal of the unity gain amplifier 32 and the ground terminal of the second capacitor 42.
  • the reason for providing the third resistor 33 in this way is as follows. That is, when there is no third resistor 33, the voltage at the load end of the first resistor 20 (hereinafter referred to as the second voltage) V2 and the constant voltage output (hereinafter referred to as the third voltage) V3 of the unity gain amplifier 32 are Are almost identical to each other.
  • the unity gain amplifier 32 is driven at an extremely low impedance, power is supplied to the load from the unity gain amplifier 32 closer to the load than the power source 2, but power is supplied to the unity gain amplifier 32. This is a problem because there is no power to continue to supply.
  • the third resistor 33 by providing the third resistor 33, the first voltage V1 input to the unity gain amplifier 32 is slightly lowered by voltage division with the second resistor 41, so that the unity gain amplifier 32 can be set at a lower input voltage. I am going to drive. However, if the third resistance is smaller than necessary, the noise removal performance of the low-pass filter 31 deteriorates, and the first voltage V1 becomes lower in proportion to the third resistance. As a result, the output voltage of the unity gain amplifier 32 is reduced. Since the direct current in a large negative direction (suction direction) flows through the unity gain amplifier 32 as the voltage decreases, it is preferable to use as large a resistor as possible as the third resistor 33.
  • the drive power supply 50 is a power supply for driving the unity gain amplifier 32.
  • an insulation type DC-DC converter is used, and the DC power converted into a predetermined voltage by the drive power supply 50 is + PW.
  • the signal is input from the terminal 39 and the ⁇ PW terminal 40 to the main circuit 30 and supplied to the unity gain amplifier 32 via a line (not shown) inside the main circuit 30.
  • the active element of the power supply noise reduction circuit 10 is controlled when the power supply is turned on when the power supply 2 is switched from OFF to ON, and then the final state of the control is changed until the power supply 2 is switched OFF again. maintain. Thereafter, similarly, every time the power supply 2 is switched from OFF to ON, the active element of the power supply noise reduction circuit 10 is controlled.
  • This control is programmed in advance as a power supply noise reduction process, and a control unit (not shown) provided in the semiconductor tester executes the program to switch the power supply 2 on and off, and the CHG terminal 37 and OUT. A control signal is output to the terminal 38.
  • FIG. 2 is a flowchart of power supply noise reduction processing.
  • the step is abbreviated as “S”.
  • the control unit controls the first relay 43 to connect the bypass path L7 to place the second resistor 41 in a bypass state, and controls the second relay 44 to disconnect the output path L8.
  • SA1 the state (SA1)
  • SA2 the power source 2 is switched from OFF to ON (SA2).
  • SA2 the state (SA2)
  • SA2 the power source 2 is switched from OFF to ON
  • a part of the power supply current supplied from the power supply 2 flows into the first capacitor 5 and the second capacitor 42 at the same time, and charges the first capacitor 5 and the second capacitor 42.
  • the control unit waits for elapse of the rise time of the power supply 2 (charge completion time of the first capacitor 5).
  • the time constant of the low-pass filter 33 can be made substantially zero, so that the first power supply 2 is completely started up (the charging of the first capacitor 5 is completed).
  • the charging of the two capacitors 42 is also completed. That is, the startup time of the power supply noise reduction circuit 10 is the same as the rise time of the power supply 2.
  • the rise time of the power supply 2 can be determined in advance by a rise characteristic of each power supply or a rise time program. If the rise time of the power supply 2 is not limited, the bypass of the second resistor 41 is unnecessary and can be omitted.
  • the control unit controls the first relay 43 to disconnect the bypass path L7 and bring the second resistor 41 into a non-bypass state.
  • the output path L8 is connected and the output of the unity gain amplifier 32 is output to the load end of the second resistor 41 (SA4).
  • SA4 the control unit controls the first relay 43 to disconnect the bypass path L7 and bring the second resistor 41 into a non-bypass state.
  • the unity gain amplifier 32 drives the first voltage V1 input to the input terminal.
  • the input terminal of the unity gain amplifier 32 is high impedance, almost no current flows through the unity gain amplifier 32.
  • the voltage whose noise is reduced by the low-pass filter 31 is driven by the unity gain amplifier 32 as described above, so that the voltage at the load end of the first resistor 20 and the power line of the AVDD terminal 3 is forcibly unity gain amplifier.
  • the noise voltage on the power supply line from the first resistor 20 to the AVDD terminal 3 continuously generated by the noise power output from the power supply 2 becomes a noise current. Is absorbed and consumed by the unity gain amplifier 32.
  • the second voltage V2 is lowered to V1, and then fed back to the power source 2 via the monitor line L4. It returns to the originally programmed voltage and converges and stabilizes.
  • FIG. 3 is a graph showing the result of analyzing the noise from the output terminal 3 with a spectrum analyzer.
  • (c) show analysis results when the power supply noise reduction circuit 10 is turned on in the circuit of FIG. 3A to 3C, the horizontal axis represents frequency (Hz) and the vertical axis represents noise level (dBv).
  • the noise reduction effect by the RC series circuit (passive low-pass filter) including the first resistor 20 and the first capacitor 5 is obtained to some extent.
  • the noise level is still as high as about -80 dBv.
  • the peak of the noise level can be greatly reduced to about ⁇ 100 dBv (10 ⁇ V) by turning on the power supply noise reduction circuit 10. From these, it was confirmed that the noise reduction effect by the power supply noise reduction circuit 10 according to the present embodiment is greater than that of the conventional passive filter.
  • the specific circuit configuration can be changed to various configurations by changing the configuration within the scope of the publicly known technology.
  • the low-pass filter 31 may be connected to the load end of the first resistor 20 and output a first voltage with reduced noise from a constant voltage output.
  • the filter 31 shown in FIG. It is also possible to employ a filter having characteristics. For example, when it is not necessary to consider the regulation when the power supply noise reduction circuit 10 is turned off, the first capacitor 5 may be omitted.
  • the first resistor 20 may be integrated into one chip with the main circuit 30.
  • the low-pass filter 31 and the unity gain amplifier 32 may be integrated to provide an amplifier having desired filter characteristics.
  • the power supply noise reduction circuit 10 has been described as being controlled by the control unit provided in the semiconductor tester. However, this control unit may be incorporated in the power supply circuit.

Abstract

【課題】回路素子を大型化する必要がなく、電源電圧の電圧降下を生じさせることもない、電源ノイズ低減回路及び電源ノイズ低減方法を提供すること。 【解決手段】電源2から負荷に出力される定電圧出力に含まれるノイズを低減するための電源ノイズ低減回路10であって、電源2から負荷に至る電源線L1に挿入された第1抵抗20と、この第1抵抗20の負荷端に接続され、定電圧出力からノイズを低減した第1電圧を出力するフィルタ31と、このフィルタ31にて出力された第1電圧を駆動して第1抵抗20の負荷端に出力するユニティゲインアンプ32とを備える。

Description

電源ノイズ低減回路及び電源ノイズ低減方法
 この発明は、電源から負荷に出力される定電圧出力に含まれるノイズを低減するための電源ノイズ低減回路及び電源ノイズ低減方法に関する。
 半導体テスタにより半導体デバイスの試験を行う際には、当該半導体デバイスを電源からの電力によって駆動して試験を行うが、この電源から出力される定電圧出力にノイズ(雑音成分)が含まれている場合には、正確な試験を行うことが困難になる。そのため、従来から、電源から半導体デバイスに対して出力される定電圧出力に含まれるノイズを低減するための電源ノイズ低減回路が実用化されている。このような電源ノイズ低減回路は、受動素子のみで構成されたパッシブローパスフィルタと、能動素子を用いて構成されたアクティブローパスフィルタに大別される。
 パッシブフィルタとしては、いわゆるパスコン(バイパスコンデンサ)とチョークコイルの組み合わせによるものが一般的である。パスコンは、負荷と並列に接続されたコンデンサ(交流シャント回路)を含んで構成されており、このコンデンサのノイズ信号に対するインピーダンスを低い値に保持することで、コンデンサに雑音電流をバイパスさせて、負荷へのノイズの流入を抑制するものである。一方、チョークコイルは、定電圧源から負荷に至る電源線に直列に挿入することによりノイズ電流の通過を阻止し、さらには電源線の直列インピーダンスと、パスコンの並列インピーダンスとの比によりノイズ電圧を分圧し、インピーダンス比を大きくすることにより、ノイズ抑制効果を高めることで、負荷へのノイズ印加を抑制するものである。
 一方、アクティブフィルタとして定電圧源に用いられるものは、オペアンプを用いたフィルタ回路等が一般的であるが、大電力を扱う定電圧電源回路では、通常、定電圧安定化回路がフィルタとしての役割を果たす。また、電源装置外部の給電線に挿入するフィルタ回路も、三端子レギュレータやシャントレギュレータ等の、電圧降圧を伴う電圧変換とリプル除去を含む直流電圧安定化を目的としたいわゆるドロッパー型の簡易定電圧電源回路によるものが一般的で、電圧降圧を伴う定電圧安定化の副次的な効果としてノイズを低減することができる(例えば、特許文献1参照)。
特開2002-238245号公報
 しかしながら、このような従来のパッシブローパスフィルタとアクティブローパスフィルタには、以下のような問題があった。
 まず、パッシブローパスフィルタに関しては、ノイズの周波数が音声周波数帯域以下の周波数の如き低い周波数である場合や、ノイズ源のインピーダンスが低い場合には、パスコンの容量値を非常に大きくしたり、チョークコイルのインダクダンス値を非常に大きくしたりする必要が生じるため、電源ノイズ低減回路の部品形状が大きくなってしまう。このため、実装設計上の制約により、電源ノイズ低減回路の実用化が困難になったり、電源ノイズ低減回路を適用できる装置が限定されてしまうことが多かった。
 また、このようにパスコンの容量値を非常に大きくしたり、チョークコイルのインダクタンス値を非常に大きくしたりした場合には、これらの素子の組み合わせによる時定数が大きくなるために電源ノイズ低減回路の応答時間が非常に長くなり、電源電圧の立ち上がり時間や立下り時間が長くなるという問題があった。特に、半導体テスタのように半導体デバイスを極めて短時間に試験する必要がある装置で、被試験半導体デバイスに低ノイズの定電圧電源を供給しなければならない場合は、1つの半導体デバイスを試験する間にも、電源電圧の印加と停止を頻繁に行ったり、電源電圧のステップ変化を与えたりする必要があるために、電源電圧の立ち上がり時間や立下り時間の増加が試験時間全体の増加に直結してしまうという問題があった。
 さらに、パスコンの容量値を非常に大きくしたり、チョークコイルのインダクタンス値を非常に大きくした場合には、比較的に低い周波数域から位相回転が大きくなり、電源電圧の立ち上がり時や立下り時に回路が発振しやすくなることや、過渡時間におけるコンデンサやチョークコイルの通過電流変動量が大きいために、電源、負荷、及び供給経路全体への電気的な悪影響(例えば突入電流の増大等)を与えるため、この悪影響に対してさらに設計上の対策を施すことが必要になる等、弊害が多いという問題があった。
 さらにまた、チョークコイルを使用する場合には、ノイズの周波数が低い程、誘導リアクタンスが小さくなるため、フィルタのノイズ抑圧効果は小さくなる。インピーダンスが周波数に依存しない抵抗器をコイルと直列に挿入すれば、低周波域での抑圧効果を改善できるが、電源電圧に対する電圧降下の発生や、抵抗器による電力損失と発熱という新たな問題が生じるため、低周波ノイズ改善量を向上させるために大きな抵抗値を使用することは難しく、結局は、十分なノイズ低減効果を得ることができないという問題があった。
 一方、三端子レギュレータやシャントレギュレータのようなアクティブな回路では、電源電圧を電圧降下を伴って安定化させることにより副次的にノイズを低減するものであるため、あらかじめ回路設計時に決定した固定の電圧(電源電圧より低い電圧)値でしか負荷に供給することができず、電源から供給された電圧をそのまま負荷に供給することができないので、例えば、定電圧出力の電圧値がプログラム可能な電源を用いて所望の電源電圧を負荷に供給したいような場合には、当該回路を適用することができない等の問題があった。
 本発明は、このような従来の問題に鑑みてなされたもので、回路素子を大型化する必要等がなく、電源電圧の電圧降下を生じさせることもない、電源ノイズ低減回路及び電源ノイズ低減方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、請求項1に係る本発明は、電源から負荷に出力される定電圧出力に含まれるノイズを低減するための電源ノイズ低減回路であって、前記電源から前記負荷に至る電源線に挿入された第1抵抗と、前記第1抵抗の負荷端に接続され、前記定電圧出力から前記ノイズを低減した第1電圧を出力するローパスフィルタと、前記ローパスフィルタにて出力された前記第1電圧を駆動して前記第1抵抗の負荷端に出力するユニティゲインアンプとを備える。
 請求項2に係る本発明は、請求項1に係る本発明において、前記ローパスフィルタを、第2抵抗とコンデンサを直列接続して構成した。
 請求項3に係る本発明は、請求項2に係る本発明において、前記第2抵抗をバイパスするためのバイパス路を切り替えるフィルタ切り替え手段を備える。
 請求項4に係る本発明は、請求項2又は3に係る本発明において、前記第2抵抗との分圧により、前記ユニティゲインアンプに対する入力電圧を低下させるための第3抵抗を備える。
 請求項5に係る本発明は、請求項1から4のいずれか一項に係る本発明において、前記ユニティゲインアンプから前記第1抵抗の負荷端に至る出力路のオンとオフを切り替えるアンプ切り替え手段を備える。
 請求項6に係る本発明は、電源から負荷に出力される定電圧出力に含まれるノイズを低減するための電源ノイズ低減回路を介して、前記ノイズを低減するための電源ノイズ低減方法であって、前記電源ノイズ低減回路は、前記電源から前記負荷に至る電源線に挿入された第1抵抗と、前記第1抵抗の負荷端に接続され、前記定電圧出力から前記ノイズを低減した第1電圧を出力するローパスフィルタであって、第2抵抗とコンデンサを直列接続して構成されたローパスフィルタと、前記ローパスフィルタにて出力された前記第1電圧を駆動して前記第1抵抗の負荷端に出力するユニティゲインアンプと、前記第2抵抗をバイパスするためのバイパス路を切り替えるフィルタ切り替え手段と、を備えて構成され、前記電源をオンにする前に、前記ローパスフィルタ切り替え手段を介して前記第2抵抗をバイパスするように前記バイパス路を切り替えるバイパス工程と、前記バイパス工程の後に、前記電源をオンにすることにより、前記コンデンサをチャージするチャージ工程と、前記チャージ工程の後に、前記フィルタ切り替え手段を介して前記第2抵抗を接続するように前記バイパス路を切り替える接続工程とを含む。
 請求項7に係る本発明は、請求項6に係る本発明において、前記電源ノイズ低減回路は、前記ユニティゲインアンプから前記第1抵抗の負荷端に至る出力路のオンとオフを切り替えるアンプ切り替え手段とを備えて構成され、前記バイパス工程において、前記アンプ切り替え手段を介して前記出力路をオフにし、前記接続工程において、前記アンプ切り替え手段を介して前記出力路をオンにする。
 請求項1に係る本発明によれば、ユニティゲインアンプを介して第1電圧を駆動することで、電源電圧の電圧降下を生じさせることなくノイズ低減を行うことができ、電源から供給された電圧をそのまま負荷に供給することができるので、例えば、定電圧出力がプログラム可能な電源を用いて所望の電源電圧を負荷に供給したいような場合にも、電源ノイズ低減回路を適用することが可能になる。また、大容量コンデンサやインダクタンス値の大きいコイルを使用する必要がないので、従来のように大容量コンデンサ、大インダクタンスのコイル、あるいは抵抗値や許容損失値の大きい抵抗器を使用することによる弊害(電源ノイズ低減回路の部品形状の大型化、時定数が大きくなることによる試験時間の長時間化、発振がしやすくなることや過渡時間での電流振動量が大きくなることにより設計上の対策が必要になること等)を解消することが可能になる。
 また、請求項2に係る本発明によれば、ローパスフィルタを、第2抵抗とコンデンサを直列接続して構成したので、ローパスフィルタを簡易に構成することが可能になる。
 また、請求項3に係る本発明によれば、フィルタ切り替え手段により第2抵抗をバイパスすることで、電源ノイズ低減回路の起動と停止を迅速かつ容易に切り替えることが可能になり、低ノイズによる電源供給が必要となった任意の時間に電源ノイズ低減回路を起動し、電源供給が不要となった任意の時間に電源ノイズ低減回路を停止することができる。
 また、請求項4に係る本発明によれば、第2抵抗との分圧により、ユニティゲインアンプに対する入力電圧を低下させるための第3抵抗を備えたので、電源の定電圧出力に対して電源ノイズ低減回路の定電圧出力はわずかに低くなり、ユニティゲインアンプから負荷に電力が供給されることを防止し、ユニティゲインアンプの電力負担はほとんどなく、ノイズ電力を吸収するための電力を供給すればよい。
 また、請求項5に係る本発明によれば、アンプ切り替え手段により、定電圧電源の立ち上がり時や立下り時に、ユニティゲインアンプの出力路をオフすることにより、定電圧電源の電圧とユニティゲインアンプの出力電圧差による電流発生を防止することが可能になる。
 また、請求項6に係る本発明によれば、電源をオンにする前には、第2抵抗をバイパスし、電源をオンしてコンデンサを即座にチャージした後に、第2抵抗を接続するので、電源ノイズ低減回路は電源オンとほぼ同時の起動完了が可能となり、低ノイズによる電源供給が必要となった任意の時間に電源ノイズ低減回路を起動し、電源供給が不要となった任意の時間に電源ノイズ低減回路を停止することができる。
 また、請求項7に係る本発明によれば、電源をオンにする前には、ユニティゲインアンプによる電源ラインの駆動を停止し、電源をオンしてコンデンサをチャージし、ユニティゲインアンプの出力電圧が電源ラインの出力電圧と等しくなり、電源ノイズ低減回路の起動が完了した後に、ユニティゲインアンプによる電源ラインの駆動を開始するので、電源ノイズ低減回路の起動と停止時に電源ラインに電気的な影響を与えることなく、電源ノイズ低減回路のない場合と変わらない、定電圧電源の立ち上がり、立下り時間が可能となる。
本発明の実施の形態に係る電源ノイズ低減回路を含む定電圧電源回路のブロック図である。 電源ノイズ低減処理のフローチャートである。 図3は、出力端子からのノイズをスペクトラムアナライザにより解析した結果を示すグラフであり、(a)は、電源ノイズ低減回路をオフ状態とした場合の解析結果、(b)は、電源ノイズ低減回路をオフ状態とした場合の解析結果であって(a)とは異なる容量の第1コンデンサを配置した場合の解析結果、(c)は、電源ノイズ低減回路をオン状態とした場合の解析結果を示す。
 以下に添付図面を参照して、本発明の実施の形態を詳細に説明する。まず、〔I〕実施の形態の基本的な概念について説明した後、〔II〕実施の形態の具体的内容について説明し、〔III〕最後に、実施の形態に対する変形例について説明する。ただし、この実施の形態によって本発明が限定されるものではない。
〔I〕実施の形態の基本的概念
 まず、実施の形態の基本的概念について説明する。この実施の形態に係る電源ノイズ低減回路及び電源ノイズ低減方法は、電源から負荷に出力される定電圧出力に含まれるノイズを低減するためのものである。電源ノイズ低減回路は、定電圧電源装置の如き各種の装置や回路から独立して構成されるものの他、これら各種の装置や回路に組み込まれるものを含む。後者の場合としては、例えば、電源ノイズ低減回路を定電圧電源装置の内容に組み込むことで全体として低ノイズ定電圧電源装置を構成した場合が該当する。また、電源ノイズ低減回路は他の装置と協同して動作するように構成してもよく、例えば、電源ノイズ低減回路に含まれる能動素子の制御を、外部の制御装置で制御するようにしてもよい。
 電源の具体的な構成は任意であり、例えば、DPS(Device Power Supply)を含む。さらに、負荷の具体的な構成も任意であるが、特に、低い電源雑音レベルが要求されるデバイス(例えば、オーディオ用途の半導体デバイス)が該当する。
 以下では、半導体デバイスを半導体テスタにて試験する場合において、半導体テスタの内部に組み込まれた電源回路に電源ノイズ低減回路を設けた場合であって、この電源ノイズ低減回路の能動素子(具体的には、後述する第1リレー及び第2リレー)を当該半導体テスタの内部に設けた制御部によって制御する場合について説明する。
〔II〕実施の形態の具体的内容
 次に、実施の形態の具体的内容について説明する。最初に、電源ノイズ低減回路の構成について説明し、その後、この電源ノイズ低減回路を用いて行われる電源ノイズ低減方法について説明する。
(構成)
 図1は本実施の形態に係る電源ノイズ低減回路を含む電源回路のブロック図である。この図1に示す電源回路1は、電源2、出力端子(AVDD端子)3、GND端子4、第1コンデンサ5、及び電源ノイズ低減回路(Active Noise Suppressor)10を備えて構成されている。なお、この図1には、各回路素子の設定値を参考のために記載しているが、この設定値は適宜変更することが可能である。
 電源2は、負荷に直流電力を供給するものであり、ここでは、DPSとして構成されている。この電源2の正極は電源線L1を介して出力端子3に接続され、この出力端子3を介して負荷に電力が供給される。一方、電源2の負極はGND線L2を介してGND端子4に接続されている。これら電源線L1及びGND線L2には、それぞれモニタ線L3、L4が接続されており、このモニタ線L3、L4が電源2に接続され、電源2から供給されたモニタ電圧がモニタ線L3、L4を介して電源2にフィードバックされることで、公知のフィードバック電源制御が行われる。
 第1コンデンサ5は、電源線L1とGND線L2を結ぶ線路L5に挿入されており、電源ノイズ低減回路10の後述する第1抵抗20と共に直列RC回路を構成する。このように直列RC回路を設けることで、電源ノイズ低減回路10が作動OFFに切り替えられている状態において、電源2から負荷に供給される直流電力の高周波ノイズ成分を直列RC回路により低減し、直流電力の最低限のレギュレーションを確保することが可能となる。
 電源ノイズ低減回路10は、電源2から負荷に供給されるノイズを低減するためのものであり、具体的には、第1抵抗20、主回路30、及び駆動電源50を備えて構成されている。
 第1抵抗20は、電源線L1に挿入されており、電源ノイズ低減回路10が作動OFFに切り替えられている状態においては、上述のように第1コンデンサ5と共に直列RC回路を構成し、電源ノイズ低減回路10が作動ONに切り替えられている状態においては、後述するローパスフィルタ31と協同してノイズ低減を行う。
 主回路30は、電源線L1とGND線L2を結ぶ線路L6に挿入されており、ローパスフィルタ31、ユニティゲインアンプ32、及び第3抵抗33を備えて構成されている。この主回路30は、1チップにモジュール化されており、PF端子34、GF端子35、UP5V端子36、CHG端子37、OUT端子38、+PW端子39、及び-PW端子40を備える。なお、図1において、これら各端子34~40を結ぶ線は、1チップ化された主回路30の外形線である。
 ローパスフィルタ31は、第1抵抗20の負荷端に高インピーダンスで接続され、定電圧出力からノイズを低減した第1電圧を出力するものであり、具体的には、第2抵抗41と第2コンデンサ42を直列接続して構成されている。ここでは、ローパスフィルタ31の時定数が極力大きく(長く)なるように、これら第2抵抗41と第2コンデンサ42の値が設定される。
 この第2抵抗41の両端には、当該第2抵抗41をバイパスするためのバイパス路L7が接続されており、このバイパス路L7には、当該バイパス路L7を接続又は非接続に切り替えるための第1リレー(フィルタ切り替え手段)43が設けられている。この第1リレー43は、半導体テスタの内部に設けた制御部からCHG端子37に入力された制御信号により駆動され、バイパス路L7が接続(短絡)に切り替えられた場合には、第2抵抗41がバイパス状態(非使用状態)とされ、バイパス路L7が非接続(断線)に切り替えられた場合には、第2抵抗41が非バイパス状態(使用状態)とされる。なお、この第1リレー43の駆動用電源は、UP5V端子36を介して供給される。
 また、ユニティゲインアンプ32は、ローパスフィルタ31にて出力された第1電圧V1を低インピーダンスで駆動して第1抵抗20の負荷端に出力するものであり、その入力端は第2抵抗41と第2コンデンサ42の相互間に接続されており、その出力端は出力路L8を介して第2抵抗41の負荷端に接続されている。
 また出力路L8には、当該出力路L8を接続又は非接続に切り替えるための第2リレー(アンプ切り替え手段)44が設けられている。この第2リレー44は、半導体テスタの内部に設けた制御部からOUT端子38に入力された制御信号により駆動され、出力路L8が接続(短絡)に切り替えられた場合には、ユニティゲインアンプ32の出力が第2抵抗41の負荷端に出力され、出力路L8が非接続(断線)に切り替えられた場合には、第2抵抗41の負荷端へのユニティゲインアンプ32の出力が停止される。なお、この第2リレー44の駆動用電源は、UP5V端子36を介して供給される。
 第3抵抗33は、ユニティゲインアンプ32の入力端と第2コンデンサ42の接地端との間に挿入されている。このように第3抵抗33を設ける理由は以下の通りである。すなわち、この第3抵抗33がない場合には、第1抵抗20の負荷端の電圧(以下、第2電圧)V2と、ユニティゲインアンプ32の定電圧出力(以下、第3電圧)V3とが、相互にほぼ同一になる。そして、ユニティゲインアンプ32を極めてローインピーダンスで駆動した場合には、電源2よりも負荷に近いユニティゲインアンプ32から当該負荷に電力が供給されることになるが、ユニティゲインアンプ32には電力を供給し続けるパワーがないため、問題になる。そこで、第3抵抗33を設けることで、第2抵抗41との分圧により、ユニティゲインアンプ32に入力される第1電圧V1をわずかに下げることで、ユニティゲインアンプ32を低めの入力電圧で駆動することとしている。ただし、第3抵抗が必要以上に小さいと、ローパスフィルタ31のノイズ除去性能が悪化し、また、第1電圧V1が第3抵抗に比例して低くなり、その結果、ユニティゲインアンプ32の出力電圧がより下がることにより、ユニティゲインアンプ32に大きな負方向(吸い込み方向)の直流電流が流れるため、第3抵抗33としては、可能な限り大きい抵抗を使用することが好ましい。
 駆動電源50は、ユニティゲインアンプ32を駆動するための電源であり、ここでは、絶縁型DC-DCコンバータが使用されており、この駆動電源50にて所定電圧に変換された直流電力が、+PW端子39及び-PW端子40から主回路30に入力され、この主回路30の内部の図示しない線路を介してユニティゲインアンプ32に供給される。
(電源ノイズ低減方法)
 次に、電源ノイズ低減方法について説明する。ここでは、電源2をオフからオンに切り替えた際の電源立ち上げ時に、電源ノイズ低減回路10の能動素子を制御し、その後は、電源2が再びオフに切り替えられる迄、当該制御の最終状態を維持する。以降同様に、電源2をオフからオンに切り替える毎に、電源ノイズ低減回路10の能動素子を制御する。この制御は電源ノイズ低減処理として予めプログラム化されており、半導体テスタの内部に設けた図示しない制御部が当該プログラムを実行することにより、電源2のオンとオフの切り替えと、CHG端子37及びOUT端子38への制御信号の出力を行う。
 図2は、電源ノイズ低減処理のフローチャートである。以下では、ステップを「S」と略記する。まず、制御部は、第1リレー43を制御することでバイパス路L7を接続して第2抵抗41をバイパス状態にすると共に、第2リレー44を制御することで出力路L8を非接続状態した状態で(SA1)、電源2をオフからオンに切り替える(SA2)。すると、電源2から供給された電源電流の一部が第1コンデンサ5と第2コンデンサ42に同時に流入し、当該第1コンデンサ5と第2コンデンサ42をチャージする。
 次いで、制御部は、電源2の立ち上がり時間(第1コンデンサ5のチャージ完了時間)の経過を待つ。この時、第2抵抗41をバイパスさせているので、ローパスフィルタ33の時定数をほぼゼロとすることが可能となるため、電源2の立ち上がり完了(第1コンデンサ5のチャージ完了)と同時に、第2コンデンサ42のチャージも完了する。つまり、電源ノイズ低減回路10の起動時間は、電源2の立ち上がり時間と同じになる。この電源2の立ち上がり時間は、電源個別の立ち上がり特性や、立ち上がり時間のプログラムにより、前もって定めることができる。なお、電源2の立ち上がり時間に制約がない場合には、第2抵抗41のバイパスは不要になるために省略することができ、この場合には、第2コンデンサ42のチャージ完了を待って後述するSA4に移行することができるが、第2抵抗41と第2コンデンサ42による時定数は非常に長くないと意味がないため、立ち上がり時間は長くなる。
 このように電源2の立ち上がりが完了した後(SA3、Yes)、制御部は、第1リレー43を制御することでバイパス路L7を非接続として第2抵抗41を非バイパス状態にすると共に、第2リレー44を制御することで出力路L8を接続状態にしてユニティゲインアンプ32の出力を第2抵抗41の負荷端に出力する(SA4)。すると、電源2から供給された電源電圧の一部がローパスフィルタ31に印加され、このフィルタ31によってノイズが低減され、第1電圧V1(平均電圧。より正確には、第3抵抗33によって分圧された、平均電圧より若干低い電圧)が取り出されて、ユニティゲインアンプ32の入力端に入力される。
 この状態において、ユニティゲインアンプ32は、入力端に入力された第1電圧V1を駆動する。ここで、ユニティゲインアンプ32の入力端はハイインピーダンスであることから、このユニティゲインアンプ32には電流はほとんど流れない。以降、このように、ローパスフィルタ31でノイズが低減された電圧をユニティゲインアンプ32で駆動することで、第1抵抗20の負荷端とAVDD端子3の電源線の電圧は強制的にユニティゲインアンプ32の駆動するノイズが低減された直流電圧と同値になり、電源2から出力されるノイズ電力により連続的に生じる第1抵抗20からAVDD端子3に至る電源線上のノイズ電圧は、ノイズ電流となってユニティゲインアンプ32に吸収され消費される。さらに、ユニティゲインアンプ32の出力電圧V1が電源2の設定電圧より若干低いため、第2電圧V2はV1に低下した後、モニタ線L4を介して電源2にフィードバックされ、公知のフィードバック補正により、本来プログラムされた電圧に復帰し、収束、安定する。
(試験結果)
 最後に、電源ノイズ低減回路10の性能試験の結果について説明する。図3は、出力端子3からのノイズをスペクトラムアナライザにより解析した結果を示すグラフであり、(a)には、図1の回路において電源ノイズ低減回路10をオフ状態とした場合の解析結果(第1抵抗20=1.0Ω、第1コンデンサ5=10μF(15.9kHz))、(b)には、図1の回路において電源ノイズ低減回路10をオフ状態とした場合の解析結果(第1抵抗20=1.0Ω、第1コンデンサ5=100μF(1.6kHz))、(c)には、図1の回路において電源ノイズ低減回路10をオン状態とした場合の解析結果をそれぞれ示す。これら図3(a)~(c)において、横軸は、周波数(Hz)、縦軸は、ノイズレベル(dBv)を示す。
 図(a)(b)から判るように、電源ノイズ低減回路10をオフ状態とした状態では、第1抵抗20と第1コンデンサ5によるRC直列回路(パッシブローパスフィルタ)によるノイズ低減効果がある程度得られるものの、ノイズレベルが約-80dBvと依然として高い。これに対して、図(c)から判るように、電源ノイズ低減回路10をオン状態とすることで、ノイズレベルのピークが約-100dBv(10μV)に大幅に低減できている。これらのことから、従来のパッシブフィルタよりも、本実施の形態に係る電源ノイズ低減回路10によるノイズ低減効果が大きいことが確認された。
〔III〕本実施の形態に対する変形例
 以上、本発明の実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。
(解決しようとする課題や発明の効果について)
 また、発明が解決しようとする課題や発明の効果は、前記した内容に限定されるものではなく、本発明によって、前記に記載されていない課題を解決したり、前記に記載されていない効果を奏することもでき、また、記載されている課題の一部のみを解決したり、記載されている効果の一部のみを奏することがある。
(具体的な回路構成について)
 具体的な回路構成は、図1に示した構成以外にも、当該構成を公知技術の範囲内で変更することで、様々な構成とすることができる。例えば、ローパスフィルタ31は、第1抵抗20の負荷端に接続され、定電圧出力からノイズを低減した第1電圧を出力するものであればよく、図1に示したフィルタ31以外にも所望の特性を有するフィルタを採用することもできる。また、例えば、電源ノイズ低減回路10の作動オフ時のレギュレーションを考慮する必要がない場合には、第1コンデンサ5を省略してもよい。また、第1抵抗20についても、主回路30と一体に1チップ化してもよい。さらには、ローパスフィルタ31とユニティゲインアンプ32を一体化し、所望のフィルタ特性を有するアンプとしてもよい。
(主回路やフィルタの構成数について)
 上記実施の形態では、主回路30の内部に、フィルタ31、ユニティゲインアンプ32、及び第3抵抗33をそれぞれ一つのみ設けているが、これらフィルタ31、ユニティゲインアンプ32、及び第3抵抗33(実際には、さらにPF端子34とGF端子35)の組み合わせを複数組設けることで、複数電源用の電源ノイズ低減回路10を構成してもよい。
(制御部について)
 上記実施の形態では、電源ノイズ低減回路10を、半導体テスタの内部に設けた制御部によって制御するものとして説明したが、この制御部を電源回路の内部に組み込んでもよい。
  1 電源回路
  2 電源
  3 出力端子
  4 GND端子
  5 第1コンデンサ
 10 電源ノイズ低減回路
 20 第1抵抗
 30 主回路
 31 ローパスフィルタ
 32 ユニティゲインアンプ
 33 第3抵抗
 34 PF端子
 35 GF端子
 36 UP5V端子
 37 CHG端子
 38 OUT端子
 39 +PW端子
 40 -PW端子
 41 第2抵抗
 42 第2コンデンサ
 43 第1リレー
 44 第2リレー
 50 駆動電源
 L1 電源線
 L2 GND線
 L3、L4 モニタ線
 L5、L6 線路
 L7 バイパス路
 L8 出力路
 V1 第1電圧
 V2 第2電圧
 V3 第3電圧

Claims (7)

  1.  電源から負荷に出力される定電圧出力に含まれるノイズを低減するための電源ノイズ低減回路であって、
     前記電源から前記負荷に至る電源線に挿入された第1抵抗と、
     前記第1抵抗の負荷端に接続され、前記定電圧出力から前記ノイズを低減した第1電圧を出力するローパスフィルタと、
     前記ローパスフィルタにて出力された前記第1電圧を駆動して前記第1抵抗の負荷端に出力するユニティゲインアンプと、
     を備えた電源ノイズ低減回路。
  2.  前記ローパスフィルタを、第2抵抗とコンデンサを直列接続して構成した、
     請求項1に記載の電源ノイズ低減回路。
  3.  前記第2抵抗をバイパスするためのバイパス路を切り替えるフィルタ切り替え手段、
     を備えた請求項2に記載の電源ノイズ低減回路。
  4.  前記第2抵抗との分圧により、前記ユニティゲインアンプに対する入力電圧を低下させるための第3抵抗、
     を備えた請求項2又は3に記載の電源ノイズ低減回路。
  5.  前記ユニティゲインアンプから前記第1抵抗の負荷端に至る出力路のオンとオフを切り替えるアンプ切り替え手段、
     を備えた請求項1から4のいずれか一項に記載の電源ノイズ低減回路。
  6.  電源から負荷に出力される定電圧出力に含まれるノイズを低減するための電源ノイズ低減回路を介して、前記ノイズを低減するための電源ノイズ低減方法であって、
     前記電源ノイズ低減回路は、
     前記電源から前記負荷に至る電源線に挿入された第1抵抗と、
     前記第1抵抗の負荷端に接続され、前記定電圧出力から前記ノイズを低減した第1電圧を出力するローパスフィルタであって、第2抵抗とコンデンサを直列接続して構成されたローパスフィルタと、
     前記ローパスフィルタにて出力された前記第1電圧を駆動して前記第1抵抗の負荷端に出力するユニティゲインアンプと、
     前記第2抵抗をバイパスするためのバイパス路を切り替えるフィルタ切り替え手段と、を備えて構成され、
     前記電源をオンにする前に、前記ローパスフィルタ切り替え手段を介して前記第2抵抗をバイパスするように前記バイパス路を切り替えるバイパス工程と、
     前記バイパス工程の後に、前記電源をオンにすることにより、前記コンデンサをチャージするチャージ工程と、
     前記チャージ工程の後に、前記フィルタ切り替え手段を介して前記第2抵抗を接続するように前記バイパス路を切り替える接続工程と、
     を含む電源ノイズ低減方法。
  7.  前記電源ノイズ低減回路は、前記ユニティゲインアンプから前記第1抵抗の負荷端に至る出力路のオンとオフを切り替えるアンプ切り替え手段とを備えて構成され、
     前記バイパス工程において、前記アンプ切り替え手段を介して前記出力路をオフにし、
     前記接続工程において、前記アンプ切り替え手段を介して前記出力路をオンにする、
     請求項6に記載の電源ノイズ低減方法。
PCT/JP2010/006657 2010-11-02 2010-11-12 電源ノイズ低減回路及び電源ノイズ低減方法 WO2012059963A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012541638A JPWO2012059963A1 (ja) 2010-11-02 2010-11-12 電源ノイズ低減回路及び電源ノイズ低減方法
CN201080069667.7A CN103168412B (zh) 2010-11-02 2010-11-12 电源噪声减小电路和电源噪声减小方法
KR1020137012794A KR101727784B1 (ko) 2010-11-02 2010-11-12 전원 노이즈 저감 회로 및 전원 노이즈 저감 방법
US13/883,278 US9537384B2 (en) 2010-11-02 2010-11-12 Power supply noise reduction circuit and power supply noise reduction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010246763 2010-11-02
JP2010-246763 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012059963A1 true WO2012059963A1 (ja) 2012-05-10

Family

ID=46024097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006657 WO2012059963A1 (ja) 2010-11-02 2010-11-12 電源ノイズ低減回路及び電源ノイズ低減方法

Country Status (5)

Country Link
US (1) US9537384B2 (ja)
JP (1) JPWO2012059963A1 (ja)
KR (1) KR101727784B1 (ja)
CN (1) CN103168412B (ja)
WO (1) WO2012059963A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048803B (zh) * 2014-11-04 2018-06-26 湖南绿智传感技术有限公司 一种用于微弱信号检测的直流电源电路
FR3034929B1 (fr) * 2015-04-08 2019-03-22 Schneider Electric Industries Sas Systeme de filtrage actif
DE102016103514A1 (de) * 2016-02-29 2017-08-31 Valeo Schalter Und Sensoren Gmbh Filtereinrichtung zum Filtern einer Versorgungsspannung eines Ultraschallsensors eines Kraftfahrzeugs, Ultraschallsensorvorrichtung sowie Kraftfahrzeug
JP7103026B2 (ja) * 2018-07-30 2022-07-20 株式会社デンソー 電池監視装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113660A (ja) * 1983-11-22 1985-06-20 Fuji Electric Co Ltd スイツチング電源
JPS61214771A (ja) * 1985-03-19 1986-09-24 Fujitsu Ltd ノイズ除去フイルタ回路
JPH0477094A (ja) * 1990-07-16 1992-03-11 Matsushita Electric Ind Co Ltd 車載用音響再生装置
JPH07303030A (ja) * 1994-05-02 1995-11-14 Hitachi Ltd 半導体集積回路
JP2001085996A (ja) * 1999-09-09 2001-03-30 Mitsubishi Electric Corp 高速ロックアップ回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670230A (en) * 1970-12-21 1972-06-13 Ibm Active filter capacitor for power supply switching regulators
US4220926A (en) * 1977-08-26 1980-09-02 Plessey Handel Und Investments Ag. Noise detector employing plural delay circuits
US5408193A (en) * 1993-09-03 1995-04-18 Trimble Navigation Limited Active circuit filter for reducing conducted radiation from a load back to its power supply
US6489755B1 (en) * 2000-09-18 2002-12-03 Adtran, Inc. Active ripple and noise filter for telecommunication equipment powering
US7443229B1 (en) * 2001-04-24 2008-10-28 Picor Corporation Active filtering
US6784728B2 (en) * 2002-07-31 2004-08-31 Northrop Grumman Corporation Low noise switched low pass filter with benign transients
JP4127259B2 (ja) * 2004-09-30 2008-07-30 日本電気株式会社 電源ノイズ低減回路およびその低減方法
US7471016B2 (en) * 2005-12-19 2008-12-30 O2Micro International Limited Low pass filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113660A (ja) * 1983-11-22 1985-06-20 Fuji Electric Co Ltd スイツチング電源
JPS61214771A (ja) * 1985-03-19 1986-09-24 Fujitsu Ltd ノイズ除去フイルタ回路
JPH0477094A (ja) * 1990-07-16 1992-03-11 Matsushita Electric Ind Co Ltd 車載用音響再生装置
JPH07303030A (ja) * 1994-05-02 1995-11-14 Hitachi Ltd 半導体集積回路
JP2001085996A (ja) * 1999-09-09 2001-03-30 Mitsubishi Electric Corp 高速ロックアップ回路

Also Published As

Publication number Publication date
US9537384B2 (en) 2017-01-03
KR20140001903A (ko) 2014-01-07
JPWO2012059963A1 (ja) 2014-05-12
CN103168412B (zh) 2017-04-05
KR101727784B1 (ko) 2017-04-17
US20130308354A1 (en) 2013-11-21
CN103168412A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
US7880449B2 (en) Capacitor start-up apparatus and method with fail-safe short circuit protection
US7091704B2 (en) Three-phase three-wire active power filter
DE102009037859B4 (de) Eingangsschaltung für ein elektrisches Gerät, Verwendung einer Eingangsschaltung und elektrisches Gerät
KR102439713B1 (ko) 스위칭 레귤레이터 동기 노드 스너버 회로
WO2012059963A1 (ja) 電源ノイズ低減回路及び電源ノイズ低減方法
JPH0265601A (ja) 車両用電力変換装置
US20230179090A1 (en) Active electromagnetic interference filter with damping network
CN108631630B (zh) 电力转换装置以及电力转换系统
JP2004104976A (ja) 電力変換装置
US20150061411A1 (en) Eletronic circuit with a current ripple filter
CN114900034B (zh) 一种通信设备电源接口处的低频滤波方法
JP3818831B2 (ja) 系統連系インバータ装置
Wang et al. Impedance characteristics modeling of a two-terminal active capacitor
CN209805675U (zh) 应用于t-con板的逻辑电压转换电路
US8680824B2 (en) Inverter circuit with a driver gate receiving a voltage lower than zero and related method for supplying an inverted voltage
EP1876694A1 (en) Booster circuit
JP3595521B2 (ja) スイッチング電源装置
RU63134U1 (ru) Стабилизирующий преобразователь переменного трехфазного напряжения в постоянное
CN114142718B (zh) 有源功率因数校正电路、开关电源和交通工具
CN217623149U (zh) 一种异常检测电路、电池管理系统及电动汽车
CN210297543U (zh) 一种电源控制器的供电电路
CN219068050U (zh) 一种多级调压供电装置
US11949346B2 (en) Inverter apparatus, control module of inverter apparatus, and control methods thereof
JP2013128372A (ja) 直流電源回路
CN206292653U (zh) 一种电压转换电路及家电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012794

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883278

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10859220

Country of ref document: EP

Kind code of ref document: A1