WO2012057298A1 - ベンゾオキサジン系組成物、およびその熱硬化物とワニス - Google Patents

ベンゾオキサジン系組成物、およびその熱硬化物とワニス Download PDF

Info

Publication number
WO2012057298A1
WO2012057298A1 PCT/JP2011/074886 JP2011074886W WO2012057298A1 WO 2012057298 A1 WO2012057298 A1 WO 2012057298A1 JP 2011074886 W JP2011074886 W JP 2011074886W WO 2012057298 A1 WO2012057298 A1 WO 2012057298A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
thermosetting composition
varnish
compound
Prior art date
Application number
PCT/JP2011/074886
Other languages
English (en)
French (fr)
Inventor
浩章 中尾
竹村 一也
Original Assignee
Jfeケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社 filed Critical Jfeケミカル株式会社
Priority to KR1020137010444A priority Critical patent/KR101476071B1/ko
Priority to CN201180051427.9A priority patent/CN103210009B/zh
Priority to US13/879,499 priority patent/US9315629B2/en
Priority to EP11836431.4A priority patent/EP2634200B1/en
Publication of WO2012057298A1 publication Critical patent/WO2012057298A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0683Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/06Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols and monomers containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C09D161/04, C09D161/18 and C09D161/20
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to a thermosetting composition containing a benzoxazine compound, and the thermoset and varnish thereof.
  • the benzoxazine compound cures without generating volatile byproducts when heated.
  • it since it has excellent heat resistance, flame retardancy, electrical properties, etc., it is used in a wide variety of applications such as electronic materials such as laminates, adhesives and sealants, and prepregs combined with carbon fibers.
  • it is also attracting attention as a molding material that replaces phenolic resins and epoxy resins.
  • benzoxazine compounds can be easily synthesized using phenols, amines, paraformaldehyde or formaldehyde aqueous solution as raw materials (for example, Patent Documents 1 to 4). 3).
  • the benzoxazine compound having excellent heat resistance has a problem of poor solubility in a low-boiling solvent due to its high crystallinity, and precipitation when stored at a low temperature for a long time.
  • many benzoxazine compounds use aniline as a main raw material, there is a problem of insufficient heat resistance due to deaniline during curing.
  • thermosetting composition containing a benzoxazine compound, and its thermoset and varnish, which are excellent in solvent solubility, heat resistance, flame retardancy and the like, are desired.
  • an object of the present invention is to provide a thermosetting composition containing a benzoxazine compound, which is excellent in solvent solubility, heat resistance and flame retardancy, and a thermoset and varnish thereof.
  • the present inventors contain a compound represented by the following formula (1) and a compound represented by the following formula (2) at a specific ratio. It has been found that a thermosetting composition containing a benzoxazine structure, which is excellent in solvent solubility, heat resistance and flame retardancy, can be obtained, and the thermoset and varnish can be provided. That is, the present invention includes the following [1] to [8].
  • R 1, R 2, R 3 and R 4 may be the same or different from each other, respectively, -H, -CH 3, -
  • Y is selected from the group consisting of —O—, —CH 2 —, and —C (CH 3 ) 2 —.
  • thermosetting composition Total number of moles of R 1 and R 2 of the compound represented by the formula (1) and R 3 and R 4 of the compound represented by the formula (2) in the thermosetting composition.
  • the total of the group represented by the above formula (i) in the compound represented by the above formula (1) and the group represented by the above formula (i) in the compound represented by the above formula (2) The thermosetting composition according to the above [1], wherein the number of moles is 1 to 50 mol%.
  • X is, -O -, - CH 2 - and -C (CH 3) 2 - is selected from the group consisting of.
  • thermoset obtained by curing the thermosetting composition according to any one of [1] to [3] with heat.
  • the present invention it is possible to provide a benzoxazine-based composition, its varnish, and its thermoset that are excellent in solvent solubility, heat resistance and flame retardancy.
  • the benzoxazine-based composition of the present invention, its varnish, or its thermoset can be used for electronic materials such as laminates, adhesives and sealants.
  • FIG. 1 is a graph showing the relationship between dynamic viscoelasticity (G ′) and heating time measured for Example 10.
  • the present invention is a thermosetting composition containing 30 to 70% by mass of a compound represented by the following formula (1) and 70 to 30% by mass of a compound represented by the following formula (2):
  • R 1 , R 2 , R 3 and R 4 are represented by —H, —CH 3 , —C (CH 3 ) 3 and the following formula (i), respectively.
  • Y is selected from the group consisting of —O—, —CH 2 —, and —C (CH 3 ) 2 —.
  • the compound represented by formula (1) will be described.
  • the “benzoxazine compound” of the present invention is a compound having a benzoxazine ring.
  • Phenols are preferably one or more selected from the group consisting of phenol, bisphenol A, bisphenol F, bisphenol S, 4,4′-dihydroxydiphenyl ether and 4,4′-biphenol. And one or two selected from the group consisting of bisphenol F and phenol are more preferable.
  • the compound represented by the above formula (1) is synthesized as a mixture (composition) when the phenols used for synthesis are a mixture of two or more phenols.
  • R 1 and R 2 of the compound represented by the above formula (1) depend on the phenols used for the synthesis, and the molar ratio of the synthesized compound depends on the molar ratio of the phenols.
  • the compound represented by the above formula (2) is also a kind of benzoxazine compound, as diamines, 4,4'-diaminodiphenylmethane, and phenols as phenol, p-cresol, t-butylphenol, bisphenol A.
  • Bisphenol F, bisphenol S and / or 4,4′-dihydroxydiphenyl ether as raw materials, mixed with paraformaldehyde or formaldehyde solution in a nonpolar solvent such as toluene, and diamines: phenols: paraformaldehyde or formaldehyde 1 : 2: It can be synthesized by reacting at a molar ratio of 4.1 to 4.5 (for example, under reflux of toluene).
  • Phenols are preferably one or more selected from the group consisting of phenol, bisphenol A, bisphenol F, bisphenol S, 4,4′-dihydroxydiphenyl ether and 4,4′-biphenol. And one or two selected from the group consisting of bisphenol F and phenol are more preferable.
  • the compound represented by the above formula (2) is synthesized as a mixture (composition) when the phenols used for synthesis are a mixture of two or more phenols.
  • R 3 and R 4 of the compound represented by the above formula (2) depend on the phenols used for the synthesis, and the molar ratio of the synthesized compound depends on the molar ratio of the phenols.
  • the compound represented by the formula (1) may be composed of one kind of compound as long as it can be represented by the formula (1), A mixture of two or more compounds may be used. The same applies to the compound represented by the formula (2).
  • thermosetting composition of the present invention is prepared by separately preparing and physically mixing the compound represented by the above formula (1) and the compound represented by the above formula (2) and / or Alternatively, by reacting at a predetermined ratio and chemically mixing in the first stage, 30 to 70% by mass of the compound represented by the formula (1) and 70 to 30% by mass of the compound represented by the formula (2) % Of the composition. Within the range of this composition ratio, the cold storage property of the varnish can be secured and the glass transition temperature of the thermoset can be increased.
  • thermosetting composition of this invention contains the compound represented by Formula (1) and the compound represented by Formula (2) as above-mentioned, the compound represented by Formula (1) And a compound represented by the formula (2). Moreover, the compound consisting of the compound represented by Formula (1), the compound represented by Formula (2), and the compound represented by Formula (3) mentioned later may be sufficient.
  • thermosetting composition containing a benzoxazine compound may be referred to as a “benzoxazine-based composition”.
  • the phenol is one or more selected from the group consisting of phenol, p-cresol and t-butylphenol.
  • the bifunctional phenol is 1 to 50 mol of all phenols. %, Preferably 5 to 20 mol%.
  • thermosetting composition with respect to the total number of moles of R 1 and R 2 of the compound represented by the above formula (1) and R 3 and R 4 of the compound represented by the above formula (2).
  • the total number of moles of the group represented by the formula (i) in the compound represented by the formula (1) and the group represented by the formula (i) in the compound represented by the formula (2) is The content is preferably 1 to 50 mol%, more preferably 5 to 20 mol%. Within this range, the solvent solubility will be better.
  • the main component concentration of these compositions is 50% or more from the viewpoint of solubility in a low boiling point solvent.
  • thermosetting composition of the present invention the compound represented by the following formula (3) is added to a total of 100 parts by mass of the compound represented by the above formula (1) and the compound represented by the above formula (2). On the other hand, it is preferable to further contain 0.1 to 30 parts by mass.
  • X is selected from the group consisting of —O—, —CH 2 —, and —C (CH 3 ) 2 —.
  • the compound represented by the above formula (3) is a kind of benzoxazine compound, aniline as amines, bisphenol A, bisphenol F and / or 4,4′-dihydroxydiphenyl ether as raw materials, toluene, etc.
  • Phenols are preferably one or more selected from the group consisting of phenol, bisphenol A, bisphenol F, bisphenol S, 4,4′-dihydroxydiphenyl ether and 4,4′-biphenol. And one or two selected from the group consisting of bisphenol F and phenol are more preferable.
  • the compound represented by the above formula (3) is 0.1 to 30 parts by mass with respect to a total of 100 parts by mass of the compound represented by the above formula (1) and the compound represented by the above formula (2). It is preferably contained, more preferably 5 to 10 parts by mass. It is because the solubility in a solvent becomes better if it is within this range.
  • thermosetting composition of the present invention may further contain a curing accelerator.
  • a curing accelerator such as 1-methylimidazole, 2-methylimidazole, 1, 2-dimethylimidazole, 2-phenylimidazole, are mentioned, for example.
  • Solvent solubility of the thermosetting composition of the present invention in a low-boiling solvent is preferably measured by the method described in the physical property measurement method described later, and acetone (boiling point: 56.5 ° C.) or methyl ethyl ketone (boiling point: 79.75).
  • the solubility with respect to 5 ° C. is desirably 60% or more, and more desirably 65% or more.
  • an organic solvent having a boiling point of 150 ° C. or lower under normal pressure is referred to as a low boiling point solvent.
  • the varnish of the present invention is represented by the varnish containing the compound represented by the above formula (1) and the compound represented by the formula (2) and an organic solvent for dissolving the compound, or represented by the formula (1). And a varnish containing a compound represented by formula (2) and a compound represented by formula (3), and an organic solvent for dissolving the compound.
  • the organic solvent is not particularly limited as long as it dissolves the above compound. Specifically, for example, nonpolar solvents such as toluene and xylene, N-methyl-2-pyrrolidone (NMP), N, N -Aprotic polar solvents such as dimethylacetamide (DMAc), alcohols, alkyl acetates and the like.
  • the varnish of this invention may contain a hardening accelerator further.
  • a hardening accelerator such as 1-methylimidazole, 2-methylimidazole, 1, 2-dimethylimidazole, 2-phenylimidazole, are mentioned, for example.
  • the cold storage property of the varnish of the present invention is preferably evaluated by the method described in the measurement method of physical properties described later, and there is no deposit that is visually recognized even when stored at 5 ° C. or lower for 2 weeks or more (Evaluation: None) ) Is desirable.
  • thermosetting composition of this invention consists of a compound represented by Formula (1) and a compound represented by Formula (2), or a compound represented by Formula (1) and Formula
  • the varnish of the present invention is an organic solvent that dissolves the thermosetting composition and the thermal composition. The varnish containing these may be sufficient.
  • thermosetting product of the present invention is produced by curing the above-described thermosetting composition of the present invention with heat. As thermosetting conditions, it can set suitably according to thermosetting compositions, such as 250 degreeC * 3 hours and 220 degreeC * 5 hours, for example.
  • the glass transition temperature (Tg) of the thermosetting product of the present invention is preferably measured by the method described in the physical property measurement method described later, and preferably 175 ° C. or more and less than 250 ° C.
  • the water absorption rate of the thermosetting product of the present invention is preferably measured by the method described in the physical property measurement method described later, desirably 1.0% or less, and more desirably 0.5% or less. .
  • the flame retardancy (UL94) of the thermosetting product of the present invention is preferably measured by the method described in the physical property measurement method described later, and is desirably UL-0, V-0 or V-1, 0 is more desirable.
  • the 5% weight loss temperature (Td 5%) of the thermosetting product of the present invention is preferably measured by the method described in the physical property measurement method described later, and is desirably 350 ° C. or higher and 450 ° C. or lower.
  • the purity (main component concentration) of the benzoxazine compound or benzoxazine-based composition, the solvent solubility of the thermosetting composition, the cold storage stability of the varnish, the glass transition temperature of the thermoset, the water absorption rate, 5% It is preferable to measure or evaluate the weight loss temperature, flame retardancy, and curing rate by the following methods.
  • ⁇ Purity (main component concentration)> By gel permeation chromatography (GPC), the carrier is tetrahydrofuran (THF), the measurement temperature is 40 ° C., the columns are measured in series with Shodex 801, 802, 802.5, and 803, and the sum of the peaks of the monomer is defined as purity.
  • thermosetting composition prepared by mixing the benzoxazine compound is gradually dissolved in acetone, and the point at which it is no longer dissolved is defined as the solubility (unit:%). Those having a solubility of 60% or more are acceptable.
  • Cold and cold storage properties A 60% by mass acetone solution of a thermosetting composition containing a benzoxazine ring is prepared and stored in a refrigerator at 5 ° C. or lower for about 1 month, and the presence or absence of a visually recognized precipitate is evaluated ( Evaluation: yes / no). Those with no deposit are acceptable.
  • Tg Glass transition temperature
  • the thermosetting composition is heated and cured at 250 ° C.
  • thermoset For 3 hours to prepare a thermoset.
  • This thermoset is heated using a differential scanning calorimeter (DSC) in a nitrogen atmosphere at a temperature rising rate of 20 ° C./min, and the glass transition temperature is determined from the specific heat change point (unit: ° C.). A glass transition temperature of 175 ° C. or higher is acceptable.
  • DSC differential scanning calorimeter
  • Water absorption The thermoset is immersed in water for 24 hours, and the mass increase rate before and after immersion is defined as the water absorption rate (unit:%). Those with a water absorption of 0.6% or less are acceptable.
  • thermosetting product is heated using a DTG-60 manufactured by Shimadzu Corporation in an air atmosphere at a temperature rising rate of 10 ° C./min, and the temperature at the time of 5% weight reduction is set to a 5% weight reduction temperature (unit: ° C).
  • Td 5% is an index of heat resistance, and the higher the temperature, the higher the heat resistance. Those with a temperature of 375 ° C. or higher are acceptable.
  • UL94 Flame Retardancy
  • Flame retardancy (UL94) is achieved by molding a thermoset into a strip-shaped test piece, supporting it vertically, applying a burner flame to the lower end for 10 seconds, then separating the burner flame from the test piece, and the flame disappears.
  • the flaming combustion duration and the flameless combustion duration after the second flame termination Judgment is made as follows based on the total time, the total flaming combustion time of the five test pieces, and the presence or absence of combustion drops (drip). Finish flamed combustion within 10 seconds for V-0 and V-1 and V-2 within 30 seconds for both the first and second time. Furthermore, the total of the duration of the second flammable combustion and the flameless combustion time should disappear within 30 seconds for V-0 and within 60 seconds for V-1 and V-2. Furthermore, the total flammable combustion time of the five test pieces shall be within 50 seconds for V-0 and within 250 seconds for V-1 and V-2.
  • thermo-cured product was measured for dynamic viscoelasticity (G ′) at a measurement temperature of 180 ° C. and 200 ° C., a frequency of 1 Hz, and a strain of 1% using a viscoelasticity measuring device PHYSICA MCR300 manufactured by Nippon Shibel Hegner Co., Ltd. .
  • BA type benzoxazine compound Aniline, BisA and 92% paraformaldehyde were reacted in toluene at a molar ratio of 1: 2: 4.1, respectively. After toluene was distilled off, Compound D (hereinafter referred to as “BA type”) was obtained. The purity measured by GPC was 85%.
  • OC type benzoxazine compound using modified phenol 4,4'-ODA, p-cresol, and 92% paraformaldehyde were respectively used at a molar ratio of 1: 2: 4.1. Reacted in toluene. After distilling off toluene, Compound F (hereinafter referred to as “OC type”) was obtained. The purity measured by GPC was 75%.
  • O-TB type Benzoxazine Compound Compound G
  • thermosetting composition The OP type and DP type were mixed at a mass ratio of 50:50, and melt mixed by heating near the softening temperature to prepare a thermosetting composition. Solvent solubility of this thermosetting composition was determined by dissolving the prepared thermosetting composition gradually in acetone and taking the point at which the thermosetting composition did not dissolve as the solubility [%]. Next, this thermosetting composition was dissolved in acetone to prepare a varnish having a solid content of 60% by mass. As for the cold storage property of this varnish, the prepared varnish was stored in a refrigerator at 5 ° C. or lower for 2 weeks, and the presence or absence of precipitates was evaluated [Yes / No].
  • thermosetting composition is thermoset by heating at 250 ° C. for 3 hours, and the glass transition temperature (Tg) [° C.], water absorption [%], flame retardancy (UL94), and 5 % Weight loss temperature (Td 5%) [° C.] was measured or evaluated according to the method described above. The above results are shown in Table 1.
  • thermosetting composition a varnish, and a thermoset were prepared by the same process as in Example 1 except that the mixing ratio of the O-P type and the DP type was changed to a mass ratio of 60:40.
  • the solvent solubility of the curable composition, the cold storage property of the varnish, the glass transition temperature, the water absorption, the flame retardancy, and the 5% weight loss temperature of the thermoset were measured or evaluated. These results are shown in Table 1.
  • thermosetting composition a varnish, and a thermoset were prepared by the same process as in Example 1 except that the mixing ratio of the O-P type and the DP type was 40:60 mass ratio.
  • the solvent solubility of the curable composition, the cold storage property of the varnish, the glass transition temperature, the water absorption, the flame retardancy, and the 5% weight loss temperature of the thermoset were measured or evaluated. These results are shown in Table 1.
  • thermosetting composition, varnish, and thermoset were prepared in the same manner as in Example 1 except that the O-P type and D-PB type were mixed and the mixing ratio was 50:50.
  • the solvent solubility of the thermosetting composition, the cold storage property of the varnish, the glass transition temperature, the water absorption rate, the flame retardancy and the 5% weight loss temperature of the thermosetting product were measured or evaluated. These results are shown in Table 1.
  • thermosetting composition is the same as in Example 1 except that the OP type, DP type and BA type are mixed and the mixing ratio is 45:45:10.
  • OP type, DP type and BA type are mixed and the mixing ratio is 45:45:10.
  • thermosetting composition a varnish and a thermoset are prepared by the above, solvent solubility of the thermosetting composition, cold storage property of the varnish, glass transition temperature, water absorption rate, flame retardancy and 5 of the thermoset. % Weight loss temperature was measured or evaluated. These results are shown in Table 1.
  • thermosetting composition The thermosetting composition, the varnish and the thermoset were prepared in the same manner as in Example 1 except that the DP type and the O-PB type were mixed and the mixing ratio was 50:50.
  • the solvent solubility of the thermosetting composition, the cold storage property of the varnish, the glass transition temperature, the water absorption rate, the flame retardancy and the 5% weight loss temperature of the thermosetting product were measured or evaluated. The above results are shown in Table 1.
  • thermosetting composition E a thermosetting composition, a varnish and a thermoset were prepared in the same manner as in Example 1. Solvent solubility of the thermosetting composition, cold storage of the varnish, Glass transition temperature, water absorption, flame retardancy and 5% weight loss temperature were measured or evaluated. These results are shown in Table 1.
  • thermosetting composition is the same as in Example 1 except that the O-P type, D-PB type, and B-A type are mixed and the mixing ratio is 40:50:10.
  • Prepare varnish and thermoset measure solvent solubility of thermosetting composition, cold storage stability of varnish, glass transition temperature, water absorption, flame retardancy and 5% weight loss temperature of thermoset or it was evaluated. These results are shown in Table 1.
  • thermosetting composition (“None” in this example) was prepared in the same manner as in Example 1 except that the OP type and DP type were mixed and the mixing ratio was 50:50.
  • An additive composition ”), a varnish and a thermoset were prepared.
  • the solvent solubility of the thermosetting composition, the cold storage property of the varnish, the glass transition temperature, the water absorption, the flame retardancy, and the 5% weight loss temperature of the thermoset were measured or evaluated. These results are shown in Table 1.
  • a thermosetting composition (referred to as “addition composition” in this example) in which 0.5% / solid content of 2-methylimidazole was added to this composition was prepared.
  • FIG. 1 shows the curing behavior with and without the addition of 2-methylimidazole.
  • thermosetting composition The thermosetting composition, the varnish and the thermoset were prepared in the same manner as in Example 1 except that the DP type and the OC type were mixed and the mixing ratio was 60:40.
  • the solvent solubility of the thermosetting composition, the cold storage property of the varnish, the glass transition temperature, the water absorption rate, the flame retardancy and the 5% weight loss temperature of the thermosetting product were measured or evaluated. These results are shown in Table 1.
  • thermosetting composition, varnish, and thermoset were prepared in the same manner as in Example 1 except that DP type and O-TB type were mixed and the mixing ratio was 60:40.
  • the solvent solubility of the thermosetting composition, the cold storage property of the varnish, the glass transition temperature, the water absorption rate, the flame retardancy, and the 5% weight loss temperature of the thermoset were measured or evaluated. These results are shown in Table 1.
  • thermosetting composition The thermosetting composition, the varnish and the thermoset were prepared in the same manner as in Example 1, except that the DP type and the O-PBH type were mixed and the mixing ratio was 40:60.
  • the solvent solubility of the thermosetting composition, the cold storage property of the varnish, the glass transition temperature, the water absorption rate, the flame retardancy and the 5% weight loss temperature of the thermosetting product were measured or evaluated. These results are shown in Table 1.
  • thermosetting composition The thermosetting composition, the varnish and the thermoset were prepared in the same manner as in Example 1 except that the DP type and the O-PO type were mixed and the mixing ratio was set to 40:60.
  • the solvent solubility of the thermosetting composition, the cold storage property of the varnish, the glass transition temperature, the water absorption rate, the flame retardancy and the 5% weight loss temperature of the thermosetting product were measured or evaluated. These results are shown in Table 1.
  • thermosetting composition The thermosetting composition, the varnish and the thermosetting product were prepared in the same manner as in Example 1 except that the DP type and the O-PBF type were mixed and the mixing ratio was 40:60.
  • the solvent solubility of the thermosetting composition, the cold storage property of the varnish, the glass transition temperature, the water absorption rate, the flame retardancy and the 5% weight loss temperature of the thermosetting product were measured or evaluated. These results are shown in Table 1.
  • ⁇ Comparative example 12> A composition was prepared in the same manner as in Example 1 except that the O-P type, D-PB type, and B-A type were mixed and the mixing ratio was 20:20:60. The physical properties were confirmed. These results are shown in Table 2.
  • thermosetting composition in low boiling point solvent (acetone), cold storage property of varnish, glass transition temperature of thermoset, water absorption (index of strength reduction due to water absorption), flame retardancy and 5% weight loss All of the temperatures (index of heat resistance) met the required performance.
  • Example 10 The graph shown in FIG. 1 is a graph showing the relationship between dynamic viscoelasticity (G ′) and heating time in Example 10.
  • G ′ dynamic viscoelasticity
  • the curing condition is within 30 minutes at 180 ° C., but the one with 0.5% / solid content of a curing accelerator (2-methylimidazole) is added at 180 ° C. and Each of the 200 ° C. cured within 30 minutes and shortened by more than half compared to those not added.
  • thermosetting compositions of Comparative Examples 2 to 4, 6 to 9, and 11 solvent solubility in a low boiling point solvent (acetone) did not satisfy the required performance.
  • the varnishes of Comparative Examples 1 to 12 did not satisfy the required performance in terms of cold storage stability.
  • the glass transition temperature, water absorption, and 5% weight loss temperature did not satisfy the required performance.
  • thermoset and varnish can be used for electronic materials such as laminates, adhesives and sealants, Can greatly contribute to the development of

Abstract

下記式(1)で表される化合物30~70質量%と、下記式(2)で表される化合物70~30質量%とを含有する熱硬化性組成物: 式(1)および式(2)において、R、R、RおよびRは、相互に同一であっても異なってもよく、それぞれ、-H、-CH、-C(CHおよび下記式(i)で表される基からなる群から化合物分子ごとに独立に選択され、 式(i)において、Yは、-O-、-CH-および-C(CH-からなる群から選択される。このベンゾオキサジン化合物を含有する熱硬化性組成物は、溶剤可溶性、耐熱性および難燃性に優れるので、その熱硬化物やワニスとしても提供できる。

Description

ベンゾオキサジン系組成物、およびその熱硬化物とワニス
 本発明は、ベンゾオキサジン化合物を含有する熱硬化性組成物、およびその熱硬化物とワニスに関する。
 ベンゾオキサジン化合物は、加熱すると揮発性の副産物を生成することなく硬化する。その上、耐熱性、難燃性、電気特性等に優れるため、積層板や接着剤、封止剤などの電子材料、炭素繊維と複合化させたプリプレグなど、多種多様に用いられている。さらに、フェノール樹脂、エポキシ樹脂に代わる成形材としても注目されている。
 また、ベンゾオキサジン化合物は、これまでに数多く報告されているように、フェノール類と、アミン類と、パラホルムアルデヒドまたはホルムアルデヒド水溶液とを原料として、容易に合成することができる(例えば、特許文献1~3)。
 しかしながら、耐熱性に優れるベンゾオキサジン化合物は、その結晶性の高さから、低沸点溶媒に対する溶解性が悪かったり、長期冷温保管した際に析出したりする問題があった。また、多くのベンゾオキサジン化合物は、アニリンを主原料としているため、硬化時の脱アニリンに起因する耐熱性不足が問題であった。
特開昭60−155234号公報 特開昭60−177074号公報 特開昭49−47378号公報
 そのため、溶剤可溶性、耐熱性、難燃性等に優れる、ベンゾオキサジン化合物を含有する熱硬化性組成物、およびその熱硬化物とワニスが望まれている。
 そこで、本発明は、溶剤可溶性、耐熱性および難燃性に優れる、ベンゾオキサジン化合物を含有する熱硬化性組成物、およびその熱硬化物とワニスを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意研究を積み重ねた結果、下記式(1)で表される化合物と下記式(2)で表される化合物とを特定の割合で含有させると、溶剤可溶性、耐熱性および難燃性に優れる、ベンゾオキサジン構造を含有する熱硬化性組成物が得られ、その熱硬化物やワニスを提供することができることを知得した。
 すなわち、本発明は以下に掲げる[1]~[8]である。
 [1];下記式(1)で表される化合物30~70質量%と下記式(2)で表される化合物70~30質量%とを含有する熱硬化性組成物:
Figure JPOXMLDOC01-appb-C000004
 ただし、上記式(1)および上記式(2)において、R、R、RおよびRは、相互に同一であっても異なってもよく、それぞれ、−H、−CH、−C(CHおよび下記式(i)で表される基からなる群から化合物分子ごとに独立に選択され、
Figure JPOXMLDOC01-appb-C000005
 上記式(i)において、Yは、−O−、−CH−および−C(CH−からなる群から選択される。
 [2];上記熱硬化性組成物中、上記式(1)で表される化合物のRおよびRと上記式(2)で表される化合物のRおよびRとの合計モル数に対する、上記式(1)で表される化合物での上記式(i)で表される基と上記式(2)で表される化合物での上記式(i)で表される基との合計モル数が、1~50モル%である、上記[1]に記載の熱硬化性組成物。
 [3];下記式(3)で表される化合物を、上記式(1)で表される化合物と上記式(2)で表される化合物との合計100質量部に対して、0.1~30質量部さらに含有する、上記[1]または[2]に記載の熱硬化性組成物:
Figure JPOXMLDOC01-appb-C000006
 ただし、上記式(3)において、Xは、−O−、−CH−および−C(CH−からなる群から選択される。
 [4];上記[1]もしくは[2]に記載の式(1)で表される化合物および式(2)で表される化合物と、式(1)で表される化合物および式(2)で表される化合物を溶解する有機溶媒とを含有するワニス。
 [5];上記[3]に記載の式(1)で表される化合物、式(2)で表される化合物および式(3)で表される化合物と、式(1)で表される化合物、式(2)で表される化合物および式(3)で表される化合物を溶解する有機溶媒とを含有するワニス。
 [6];上記[1]~[3]のいずれかに記載の熱硬化性組成物を熱で硬化した熱硬化物。
 [7];アセトンまたはメチルエチルケトンに対する溶解度が60%以上であり、溶解後は5℃以下で2週間以上保存しても析出物がない、上記[1]~[3]のいずれかに記載の熱硬化性組成物。
 [8];ガラス転移点(Tg)175℃以上250℃未満、5%重量減少温度(Td5%)350℃以上450℃以下、吸水率1.0%以下、かつ難燃性がUL94 V−0~V−1である、上記[6]に記載の熱硬化物。
 本発明によれば、溶剤可溶性、耐熱性および難燃性に優れる、ベンゾオキサジン系組成物、そのワニスおよびその熱硬化物を提供することができる。本発明のベンゾオキサジン系組成物、そのワニスまたはその熱硬化物は、積層板、接着剤、封止剤など電子材料に用いることができる。
図1は、実施例10について測定した、動的粘弾性(G’)と加熱時間との関係を表すグラフである。
 以下、本発明の実施の形態について詳細に説明する。
[熱硬化性組成物]
 本発明は、下記式(1)で表される化合物30~70質量%と下記式(2)で表される化合物70~30質量%とを含有する熱硬化性組成物:
Figure JPOXMLDOC01-appb-C000007
 上記式(1)および上記式(2)において、R、R、RおよびRは、それぞれ、−H、−CH、−C(CHおよび下記式(i)で表される基からなる群から化合物分子ごとに独立に選択され、
Figure JPOXMLDOC01-appb-C000008
 上記式(i)において、Yは、−O−、−CH−および−C(CH−からなる群から選択される。」と、そのワニスおよびその熱硬化物である。
 式(1)で表される化合物について説明する。
 本発明の「ベンゾオキサジン化合物」とは、ベンゾオキサジン環を有する化合物のことである。
 上記式(1)で表される化合物は、ベンゾオキサジン化合物の一種であり、ジアミン類として、4,4´−ジアミノジフェニルエーテルと、フェノール類として、フェノール、p−クレゾール、t−ブチルフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールSおよび/または4,4´−ジヒドロキシジフェニルエーテルを原料として、トルエン等の非極性溶媒中で、パラホルムアルデヒドまたはホルムアルデヒド溶液と混合し、ジアミン類:フェノール類:パラホルムアルデヒドまたはホルムアルデヒド=1:2:4.1~4.5のモル比で反応(例えば、トルエン還流下で)させることによって合成することができる。
 フェノール類としては、フェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4´−ジヒドロキシジフェニルエーテルおよび4,4´−ビフェノールからなる群から選択される1種類または2種類以上が好ましく、フェノール、ビスフェノールAおよびビスフェノールFからなる群から選択される1種類または2種類がより好ましく、フェノールがさらに好ましい。
 上記式(1)で表される化合物は、合成に使用するフェノール類が2種類以上のフェノール類からなる混合物である場合には、混合物(組成物)として合成される。
 上記式(1)で表される化合物のRおよびRは、合成に使用するフェノール類に依存し、合成される化合物のモル比はフェノール類のモル比に依存する。
 例えば、フェノール類として、フェノール(pモル)およびビスフェノールFをp:(1−p)(ただし、0<p<1)のモル比で使用した場合、理想的反応条件の下では;
(R=R=Hである化合物):(R=HでR=4−ヒドロキシベンジル基である化合物、またはR=4−ヒドロキシベンジル基でR=Hである化合物):(R=R=4−ヒドロキシベンジル基である化合物)=p:2p(1−p):(1−p)
のモル比で合成されうる。
 上記式(2)で表される化合物もまた、ベンゾオキサジン化合物の一種であり、ジアミン類として、4,4´−ジアミノジフェニルメタンと、フェノール類として、フェノール、p−クレゾール、t−ブチルフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールSおよび/または4,4´−ジヒドロキシジフェニルエーテルを原料として、トルエン等の非極性溶媒中で、パラホルムアルデヒドまたはホルムアルデヒド溶液と混合し、ジアミン類:フェノール類:パラホルムアルデヒドまたはホルムアルデヒド=1:2:4.1~4.5のモル比で反応(例えば、トルエン還流下で)させることによって合成することができる。
 フェノール類としては、フェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4´−ジヒドロキシジフェニルエーテルおよび4,4´−ビフェノールからなる群から選択される1種類または2種類以上が好ましく、フェノール、ビスフェノールAおよびビスフェノールFからなる群から選択される1種類または2種類がより好ましく、フェノールがさらに好ましい。
 上記式(2)で表される化合物は、合成に使用するフェノール類が2種類以上のフェノール類からなる混合物である場合には、混合物(組成物)として合成される。
 上記式(2)で表される化合物のRおよびRは、合成に使用するフェノール類に依存し、合成される化合物のモル比はフェノール類のモル比に依存する。
 例えば、フェノール類として、フェノール(qモル)およびビスフェノールFをq:1−q(ただし、0<q<1)のモル比で使用した場合、理想的反応条件の下では;
(R=R=Hである化合物):(R=H、R=4−ヒドロキシベンジル基である化合物、またはR=4−ヒドロキシベンジル基、R=Hである化合物):(R=R=4−ヒドロキシベンジル基である化合物)=q:2q(1−q):(1−q)
のモル比で合成されうる。
 R、R、RおよびRは、それぞれ互いに独立であり、式(1)で表される化合物と式(2)で表される化合物との間で独立であるだけでなく、式(1)で表される化合物の分子間でも独立、かつ式(2)で表される化合物の分子間でも独立である。
 すなわち、式(1)で表される化合物において、ある分子のRとそれと相違する分子のRは独立であり(i=1,2)、式(2)で表される化合物において、ある分子のRとそれと相違する分子のRは独立である(j=3,4)。
 このため、本発明の熱硬化性組成物において、式(1)で表される化合物は、式(1)で表現することができる限り、1種類の化合物からなるものであってもよいし、2種類以上の化合物からなる混合物であってもよい。式(2)で表される化合物についても同様である。
 本発明の熱硬化性組成物は、上記式(1)で表される化合物と、上記式(2)で表される化合物とを、別々に製造し、物理的に混合することによって、および/または最初の段階で所定比率で反応させて化学的に混合しておくことによって、式(1)で表される化合物30~70質量%と、式(2)で表される化合物70~30質量%とを含有する組成とすることができる。この組成比の範囲内であると、ワニスの冷温保管性を確保し、熱硬化物のガラス転移温度を高くすることができる。
 本発明の熱硬化性組成物は、上記のとおり式(1)で表される化合物と式(2)で表される化合物とを含有するものであるが、式(1)で表される化合物と式(2)で表される化合物とからなるものであってもよい。また、式(1)で表される化合物と式(2)で表される化合物と後記する式(3)で表される化合物とからなる化合物であってもよい。
 なお、本明細書においては、ベンゾオキサジン化合物を含有する熱硬化性組成物を、「ベンゾオキサジン系組成物」と記載する場合がある。
 上記式(1)で表される化合物および/または上記式(2)で表される化合物の合成においては、フェノール類として、フェノール、p−クレゾールおよびt−ブチルフェノールからなる群から選択される1以上の一官能フェノールとビスフェノールA、ビスフェノールF、ビスフェノールSおよび4,4´−ジヒドロキシジフェニルエーテルからなる群から選択される二官能フェノールとを併用する場合、当該二官能フェノールは全フェノール類の1~50モル%とすることが好ましく、5~20モル%とすることがより好ましい。
 すなわち、熱硬化性組成物中、上記式(1)で表される化合物のRおよびRと上記式(2)で表される化合物のRおよびRとの合計モル数に対する、上記式(1)で表される化合物での上記式(i)で表される基と上記式(2)で表される化合物での上記式(i)で表される基との合計モル数は、1~50モル%であることが好ましく、5~20モル%であることがより好ましい。
 この範囲内であると、溶剤可溶性がより良好なものとなる。
 なお、低沸点溶媒への溶解性の観点から、これらの組成の主成分濃度が50%以上であることが望ましい。
 本発明の熱硬化性組成物は、下記式(3)で表される化合物を、上記式(1)で表される化合物と上記式(2)で表される化合物との合計100質量部に対して、0.1~30質量部さらに含有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
 ただし、式(3)において、Xは、−O−、−CH−および−C(CH−からなる群から選択される。
 上記式(3)で表される化合物は、ベンゾオキサジン化合物の一種であり、アミン類としてアニリンと、フェノール類としてビスフェノールA、ビスフェノールFおよび/または4,4´−ジヒドロキシジフェニルエーテルを原料として、トルエン等の非極性溶媒中で、パラホルムアルデヒドまたはホルムアルデヒド溶液と混合し、アミン類:フェノール類:パラホルムアルデヒドまたはホルムアルデヒド=2:1:4.1~4.5のモル比で反応(例えば、トルエン還流下で)させることによって合成することができる。
 フェノール類としては、フェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4´−ジヒドロキシジフェニルエーテルおよび4,4´−ビフェノールからなる群から選択される1種類または2種類以上が好ましく、フェノール、ビスフェノールAおよびビスフェノールFからなる群から選択される1種類または2種類がより好ましく、フェノールがさらに好ましい。
 上記式(3)で表される化合物は、上記式(1)で表される化合物と上記式(2)で表される化合物との合計100質量部に対して、0.1~30質量部含有されることが好ましく、5~10質量部含有されることがより好ましい。この範囲内であると、溶剤への溶解性がより良好となるからである。
 本発明の熱硬化性組成物は、さらに、硬化促進剤を含有してもよい。
 上記硬化促進剤としては、特に限定されないが、具体的には、例えば、1−メチルイミダゾール、2−メチルイミダゾール、1,2−ジメチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類が挙げられる。
 本発明の熱硬化性組成物の低沸点溶媒に対する溶剤可溶性は、後記する物性の測定方法に記載する方法によって測定することが好ましく、アセトン(沸点:56.5℃)またはメチルエチルケトン(沸点:79.5℃)に対する溶解度が60%以上であることが望ましく、65%以上であることがより望ましい。
 なお、本発明においては、常圧下において沸点が150℃以下である有機溶媒を低沸点溶媒という。
[ワニス]
 本発明のワニスは、上記した式(1)で表される化合物および式(2)で表される化合物と、当該化合物を溶解する有機溶媒とを含有するワニス、または式(1)で表される化合物、式(2)で表される化合物および式(3)で表される化合物と、当該化合物を溶解する有機溶媒とを含有するワニスである。
 上記有機溶媒としては、上記化合物を溶解するものであれば特に限定されないが、具体的には、例えば、トルエン、キシレン等の無極性溶媒、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)等の非プロトン性極性溶媒、アルコール類、アルキルアセテート類等が挙げられる。
 また、本発明のワニスは、さらに、硬化促進剤を含有してもよい。
 上記硬化促進剤としては、特に限定されないが、具体的には、例えば、1−メチルイミダゾール、2−メチルイミダゾール、1,2−ジメチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類が挙げられる。
 本発明のワニスの冷温保管性は、後記する物性の測定方法に記載する方法によって評価することが好ましく、5℃以下で2週間以上保管しても目視で認められる析出物が無い(評価:無)であることが望ましい。
 なお、本発明の熱硬化性組成物が式(1)で表される化合物と式(2)で表される化合物とからなるものである場合、または式(1)で表される化合物と式(2)で表される化合物と式(3)で表される化合物とからなる化合物である場合には、本発明のワニスは、当該熱硬化性組成物と当該熱組成物を溶解する有機溶媒とを含有するワニスであってもよい。
[熱硬化物]
 本発明の熱硬化物は、上記した本発明の熱硬化性組成物を熱で硬化させることによって製造されるものである。
 熱硬化条件としては、例えば、250℃×3時間、220℃×5時間など、熱硬化性組成物に合わせて適宜設定することができる。
 本発明の熱硬化物のガラス転移温度(Tg)は、後記する物性の測定方法に記載する方法によって測定することが好ましく、175℃以上250℃未満であることが望ましい。
 本発明の熱硬化物の吸水率は、後記する物性の測定方法に記載する方法によって測定することが好ましく、1.0%以下であることが望ましく、0.5%以下であることがより望ましい。
 本発明の熱硬化物の難燃性(UL94)は、後記する物性の測定方法に記載する方法によって測定することが好ましく、UL94で、V−0またはV−1であることが望ましく、V−0であることがより望ましい。
 本発明の熱硬化物の5%重量減少温度(Td5%)は、後記する物性の測定方法に記載する方法によって測定することが好ましく、350℃以上450℃以下であることが望ましい。
[物性の測定方法]
 本発明において、ベンゾオキサジン化合物またはベンゾオキサジン系組成物の純度(主成分濃度)、熱硬化性組成物の溶剤可溶性、ワニスの冷温保管性、ならびに熱硬化物のガラス転移温度、吸水率、5%重量減少温度、難燃性および硬化速度は、以下の方法によって測定または評価することが好ましい。
《純度(主成分濃度)》
 ゲル浸透クロマトグラフィー(GPC)により、キャリアーをテトラヒドロフラン(THF)とし、測定温度40℃、カラムをShodex801、802、802.5、803直列にて測定し、一量体のピークの合算を純度とする(単位:質量%)。
《溶剤可溶性》
 ベンゾオキサジン化合物を混合して調製した熱硬化性組成物をアセトンに徐々に溶解させていき、溶解しなくなった点を溶解度とする(単位:%)。溶解度60%以上のものが合格である。
《冷温保管性》
 ベンゾオキサジン環を含む熱硬化性組成物を固形分で60質量%のアセトン溶液を調製し、5℃以下の冷蔵庫に1ヶ月程度の間保管し、目視で認められる析出物の有無を評価する(評価:有/無)。析出物が「無」のものが合格である。
《ガラス転移温度(Tg)〉
 熱硬化性組成物を250℃×3時間加熱して熱硬化し、熱硬化物を調製する。
 この熱硬化物を、示差走査熱量計(DSC)を用いて、窒素雰囲気中、昇温速度20℃/分の条件で加熱し、比熱の変化点によりガラス転移温度を求める(単位:℃)。ガラス転移温度175℃以上のものが合格である。
《吸水率》
 熱硬化物を24時間水中に浸漬し、浸漬前後の質量増加率を吸水率とする(単位:%)。吸水率0.6%以下のものが合格である。
《5%重量減少温度(Td5%)》
 熱硬化物を、島津製作所製DTG−60を用いて、空気雰囲気中、昇温速度10℃/分の条件で加熱し、5%重量減少時の温度を5%重量減少温度とする(単位:℃)。Td5%は耐熱性の指標であり、この温度が高いほど耐熱性が高い。本温度が375℃以上のものが合格である。
《難燃性(UL94)》
 難燃性(UL94)は、熱硬化物を短冊状の試験片に成形し、垂直に支持し、下端にバーナー炎をあてて10秒間保ち、その後バーナー炎を試験片から離し、炎が消えれば直ちにバーナー炎をさらに10秒間あてたのちバーナー炎を離し、1回目と2回目の接炎終了後の有炎燃焼持続時間、2回目の接炎終了後の有炎燃焼持続時間および無炎燃焼持続時間の合計、5本の試験片の有炎燃焼時間の合計、ならびに燃焼滴下物(ドリップ)の有無で以下のように判定をする。
 1回目、2回目ともにV−0は10秒以内、V−1とV−2は30秒以内に有炎燃焼を終えること。さらに、2回目の有炎燃焼持続時間と無炎燃焼時間の合計が、V−0は30秒以内、V−1とV−2は60秒以内で消えること。さらに、5本の試験片の有炎燃焼時間の合計が、V−0は50秒以内、V−1とV−2は250秒以内であること。また、燃焼落下物はV−2のみに許容されること。なお、すべての試験片は燃え尽きてはならない。
《硬化速度》
 熱硬化物を、日本シイベルヘグナー(株)製粘弾性測定装置PHYSICA MCR300を用いて、測定温度180℃および200℃、周波数1Hz、ひずみ1%で、動的粘弾性(G’)の測定を行なった。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[合成例]
〈合成例A〉O−P型ベンゾオキサジン化合物の合成
 4,4´−ジアミノジフェニルエーテル(以下「4,4´−ODA」という。)、フェノールおよび92%パラホルムアルデヒドを、それぞれ、1:2:4.1のモル比で、トルエン中で反応させた。トルエンを留去した後、化合物A(以下「O−P型」という。)を得た。GPCによる純度測定では純度65%であった。
Figure JPOXMLDOC01-appb-C000010
〈合成例B〉D−P型ベンゾオキサジン化合物の合成
 4,4´−ジアミノジフェニルメタン(以下「4,4´−MDA」という。)、フェノールおよび92%パラホルムアルデヒドを、ぞれぞれ、1:2:4.1のモル比で、トルエン中で反応させた。トルエンを留去した後、化合物B(以下「D−P型」という。)を得た。GPCによる純度測定では純度60%であった。
Figure JPOXMLDOC01-appb-C000011
〈合成例C1〉ビスフェノールA変性ベンゾオキサジンン系組成物の合成
 4,4´−ODA、フェノール、ビスフェノールA(以下「BisA」という。)および92%パラホルムアルデヒドを、それぞれ、1:1.8:0.1:4.1のモル比で、トルエン中で反応させた。トルエンを留去した後、組成物C1(以下「O−PB型」という。)を得た。GPCによる純度測定では純度60%であった。
Figure JPOXMLDOC01-appb-C000012
〈合成例C2〉
 4,4´−ODAを4,4´−MDAに変えた以外は、合成例C1と同様に反応させて、組成物C2(以下「D−PB型」という。)を得た。GPCによる純度測定では純度50%であった。
Figure JPOXMLDOC01-appb-C000013
〈合成例D〉B−A型ベンゾオキサジン化合物の合成
 アニリン、BisAおよび92%パラホルムアルデヒドを、それぞれ、1:2:4.1のモル比で、トルエン中で反応させた。トルエンを留去した後、化合物D(以下「B−A型」という。)を得た。GPCによる純度測定では純度85%であった。
Figure JPOXMLDOC01-appb-C000014
〈合成例E〉混合型ベンゾオキサジン系組成物の合成
 4,4´−ODAと4,4´−MDAとを同モル混合し、ジアミン混合体を調製する。このジアミン混合体、フェノールおよびパラホルムアルデヒドを、それぞれ、1:2:4.1のモル比で、トルエン中で反応させた。トルエンを留去した後、組成物Eを得た。GPCによる純度測定では純度55%であった。
Figure JPOXMLDOC01-appb-C000015
〈合成例F〉変性フェノールを用いたO−C型ベンゾオキサジン化合物の合成
 4,4´−ODA、p−クレゾールおよび92%パラホルムアルデヒドを、それぞれ、1:2:4.1のモル比で、トルエン中で反応させた。トルエンを留去した後、化合物F(以下「O−C型」という。)を得た。GPCによる純度測定では純度75%であった。
Figure JPOXMLDOC01-appb-C000016
〈合成例G〉O−TB型ベンゾオキサジン化合物の合成
 p−クレゾールをt−ブチルフェノールに変えた以外は、合成例Fと同様に反応させて、化合物G(以下「O−TB型」という。)を得た。GPCによる純度測定では純度45%であった。
Figure JPOXMLDOC01-appb-C000017
〈合成例C3〉ビスフェノールA変性ベンゾオキサジンン系組成物の合成
 4,4´−ODA、フェノール、BisAおよび92%パラホルムアルデヒドを、それぞれ、1:1.0:0.5:4.1のモル比で、トルエン中で反応させた。トルエンを留去した後、組成物C3(以下「O−PBH型」という。)を得た。GPCによる純度測定では純度30%であった。
Figure JPOXMLDOC01-appb-C000018
〈合成例H〉オキシジフェノール変性ベンゾオキサジンン系組成物の合成
 4,4´−ODA、フェノール、4,4’−オキシジフェノール、および92%パラホルムアルデヒドを、それぞれ、1:1.8:0.1:4.1のモル比で、トルエン中で反応させた。トルエンを留去した後、組成物H(以下「O−PO型」という。)を得た。GPCによる純度測定では純度50%であった。
Figure JPOXMLDOC01-appb-C000019
〈合成例I〉ビスフェノールF変性ベンゾオキサジンン系組成物の合成
 4,4´−ODA、フェノール、ビスフェノールF、および92%パラホルムアルデヒドを、それぞれ、1:1.8:0.1:4.1のモル比で、
トルエン中で反応させた。トルエンを留去した後、組成物I(以下「O−PBF型」という。)を得た。GPCによる純度測定では純度45%であった。
Figure JPOXMLDOC01-appb-C000020
[実施例と比較例]
〈実施例1〉
 O−P型とD−P型とを50:50の質量比で混合し、軟化温度付近の加熱によって溶融混合して、熱硬化性組成物を調製した。
 この熱硬化性組成物の溶剤可溶性は、調製した熱硬化性組成物をアセトンに徐々に溶解させていき、溶解しなくなった点を溶解度[%]として溶剤可溶性を求めた。
 次に、この熱硬化性組成物をアセトンに溶解し、固形分で60質量%のワニスを調製した。
 このワニスの冷温保管性は、調製したワニスを5℃以下の冷蔵庫に2週間保管し、析出物の有無を評価[有/無]した。
 また、この熱硬化性組成物を250℃×3時間の加熱によって熱硬化させ、熱硬化物のガラス転移温度(Tg)[℃]、吸水率[%]、難燃性(UL94)、および5%重量減少温度(Td5%)[℃]を、前述の方法に従って測定または評価した。
 以上の結果は、表1に示す。
〈実施例2〉
 O−P型とD−P型との混合比率を60:40の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例3〉
 O−P型とD−P型との混合比率を40:60の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例4〉
 O−P型とD−PB型とを混合し、その混合比率を50:50の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例5〉
 O−P型とD−P型とB−A型とを混合し、その混合比率を45:45:10の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例6〉
 O−P型とD−P型との混合比率を50:50の質量比で混合し、さらにこの混合物に1−メチルイミダゾールを0.1%/固形分添加し、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例7〉
 D−P型とO−PB型とを混合し、その混合比率を50:50の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。
 以上の結果は、表1に示す。
〈実施例8〉
 組成物Eについて、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例9〉
 O−P型とD−PB型とB−A型とを混合し、その混合比率を40:50:10の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例10〉
 O−P型とD−P型とを混合し、その混合比率を50:50の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物(本実施例において「無添加組成物」という)、ワニスおよび熱硬化物を調製した。
 熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
 さらに、この組成物に、2−メチルイミダゾールを0.5%/固形分添加した熱硬化性組成物(本実施例において「添加組成物」という)を調製した。
 上記のとおり調製した無添加組成物および添加組成物について、レオメータ(日本シイベルヘグナー(株)製粘弾性測定装置PHYSICAMCR300)を用いて、180℃および200℃での動的粘弾性(G’)の測定を行なった。硬化終点は、無添加組成物が45分であったのに対し、硬化組成物では15分であった。図1に、2−メチルイミダゾール添加時および無添加時の硬化挙動を示す。
〈実施例11〉
 D−P型とO−C型とを混合し、その混合比率を60:40の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例12〉
 D−P型とO−TB型とを混合し、その混合比率を60:40の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例13〉
 D−P型とO−PBH型とを混合し、その混合比率を40:60の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例14〉
 D−P型とO−PO型とを混合し、その混合比率を40:60の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈実施例15〉
 D−P型とO−PBF型とを混合し、その混合比率を40:60の質量比とした他は、実施例1と同様の工程によって、熱硬化性組成物、ワニスおよび熱硬化物を調製し、熱硬化性組成物の溶剤可溶性と、ワニスの冷温保管性と、熱硬化物のガラス転移温度、吸水率、難燃性および5%重量減少温度とを測定または評価した。これらの結果は、表1に示す。
〈比較例1〉
 O−P型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例2〉
 D−P型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例3〉
 D−PB型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例4〉
 O−PB型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例5〉
 O−P型とD−P型との混合比率を80:20の質量比とした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例6〉
 O−P型とD−P型の混合比率を20:80の質量比とした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例7〉
 O−C型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例8〉
 O−TB型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例9〉
 O−PBH型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例10〉
 O−PO型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例11〉
 O−PBF型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例12〉
 O−P型とD−PB型とB−A型とを混合し、その混合比率を20:20:60の質量比とした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
〈比較例13〉
 B−A型単独にした以外は、実施例1と同様の工程で組成物を調製し、物性の確認をした。これらの結果は、表2に示す。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
[結果の説明]
〈実施例1~15〉
 熱硬化性組成物の低沸点溶媒(アセトン)に対する溶剤可溶性、ワニスの冷温保管性、ならびに熱硬化物のガラス転移温度、吸水率(吸水による強度低下の指標)、難燃性および5%重量減少温度(耐熱性の指標)のいずれもが要求性能を満たした。
《実施例10》
 また、図1に示すグラフは、実施例10での、動的粘弾性(G’)と加熱時間との関係を表すグラフである。
 エポキシ樹脂を代替するためには、硬化条件が180℃で30分以内であることが好ましいが、硬化促進剤(2−メチルイミダゾール)を0.5%/固形分添加したものは、180℃および200℃のいずれについても、30分以内に硬化し、添加しないものに比べて半分以上の短縮となっている。
〈比較例1~13〉
 比較例2~4、6~9および11の熱硬化性組成物は、低沸点溶媒(アセトン)に対する溶剤可溶性が要求性能を満たさなかった。
 比較例1~12のワニスは、冷温保管性が要求性能を満たさなかった。
 比較例13の熱硬化物は、ガラス転移温度、吸水率および5%重量減少温度が要求性能を満たさなかった。
 本発明のベンゾオキサジン系組成物は、溶剤可溶性、耐熱性および難燃性に優れるので、その熱硬化物やワニスは、積層板、接着剤、封止剤など電子材料に用いることができ、産業の発展に大きく貢献できる。

Claims (8)

  1.  下記式(1)で表される化合物30~70質量%と、下記式(2)で表される化合物70~30質量%とを含有する熱硬化性組成物:
    Figure JPOXMLDOC01-appb-C000001
     式(1)および式(2)において、R、R、RおよびRは、相互に同一であっても異なってもよく、それぞれ、−H、−CH、−C(CHおよび下記式(i)で表される基からなる群から化合物分子ごとに独立に選択され、
    Figure JPOXMLDOC01-appb-C000002
     式(i)において、Yは、−O−、−CH−および−C(CH−からなる群から選択される。
  2.  前記熱硬化性組成物中、前記式(1)で表される化合物のRおよびRと前記式(2)で表される化合物のRおよびRとの合計モル数に対する、前記式(1)で表される化合物での前記式(i)で表される基と前記式(2)で表される化合物での前記式(i)で表される基との合計モル数が、1~50モル%である、請求項1に記載の熱硬化性組成物。
  3.  下記式(3)で表される化合物を、前記式(1)で表される化合物と前記式(2)で表される化合物との合計100質量部に対して、0.1~30質量部さらに含有する、請求項1または2に記載の熱硬化性組成物:
    Figure JPOXMLDOC01-appb-C000003
     式(3)において、Xは、−O−、−CH−および−C(CH−からなる群から選択される。
  4.  請求項1もしくは2に記載の式(1)で表される化合物および式(2)で表される化合物と、式(1)で表される化合物および式(2)で表される化合物を溶解する有機溶媒とを含有するワニス。
  5.  請求項3に記載の式(1)で表される化合物、式(2)で表される化合物および式(3)で表される化合物と、式(1)で表される化合物、式(2)で表される化合物および式(3)で表される化合物を溶解する有機溶媒とを含有するワニス。
  6.  請求項1~3のいずれかに記載の熱硬化性組成物を熱で硬化した熱硬化物。
  7.  アセトンまたはメチルエチルケトンに対する溶解度が60%以上であり、溶解後は5℃以下で2週間以上保存しても析出物がない、請求項1~3のいずれかに記載の熱硬化性組成物。
  8.  ガラス転移点(Tg)175℃以上250℃未満、5%重量減少温度(Td5%)350℃以上450℃以下、吸水率1.0%以下、かつ難燃性がUL94 V−0~V−1である、請求項6に記載の熱硬化物。
PCT/JP2011/074886 2010-10-26 2011-10-21 ベンゾオキサジン系組成物、およびその熱硬化物とワニス WO2012057298A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137010444A KR101476071B1 (ko) 2010-10-26 2011-10-21 벤조옥사진계 조성물, 및 그 열경화물과 바니시
CN201180051427.9A CN103210009B (zh) 2010-10-26 2011-10-21 苯并*嗪系组合物、及其热固化物和清漆
US13/879,499 US9315629B2 (en) 2010-10-26 2011-10-21 Benzoxazine-system composition, and thermosetting material and varnish thereof
EP11836431.4A EP2634200B1 (en) 2010-10-26 2011-10-21 Benzoxazine-containing composition and cured product thereof, and varnish

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-239904 2010-10-26
JP2010239904 2010-10-26
JP2011-170088 2011-08-03
JP2011170088A JP5750004B2 (ja) 2010-10-26 2011-08-03 熱硬化性組成物、そのワニスおよびその熱硬化物

Publications (1)

Publication Number Publication Date
WO2012057298A1 true WO2012057298A1 (ja) 2012-05-03

Family

ID=45994001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074886 WO2012057298A1 (ja) 2010-10-26 2011-10-21 ベンゾオキサジン系組成物、およびその熱硬化物とワニス

Country Status (6)

Country Link
US (1) US9315629B2 (ja)
EP (1) EP2634200B1 (ja)
JP (1) JP5750004B2 (ja)
CN (1) CN103210009B (ja)
TW (1) TWI437013B (ja)
WO (1) WO2012057298A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020909A1 (ja) * 2016-07-26 2018-02-01 Jfeケミカル株式会社 熱硬化性組成物、そのワニスおよび熱硬化物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201322758D0 (en) * 2013-12-20 2014-02-05 Cytec Ind Inc Multifunctional benzoxazines and composite materials incorporating then same
US10494520B2 (en) * 2015-03-04 2019-12-03 Huntsman Advanced Materials Americas Llc Benzoxazine low temperature curable composition
CN105255109B (zh) * 2015-10-16 2017-12-26 中科院广州化学有限公司南雄材料生产基地 邻苯二甲腈改性苯并恶嗪与环氧树脂复合材料及制备与应用
JP6824699B2 (ja) * 2015-12-11 2021-02-03 本州化学工業株式会社 新規ベンゾオキサジン化合物
FR3045619B1 (fr) * 2015-12-16 2017-12-15 Michelin & Cie Polybenzoxazine utilisable pour le revetement de metal et son collage a du caoutchouc
JP6870544B2 (ja) * 2017-09-04 2021-05-12 味の素株式会社 樹脂組成物
TWI700320B (zh) 2018-06-13 2020-08-01 台燿科技股份有限公司 樹脂組合物,以及使用該組合物所製得之預浸漬片、金屬箔積層板與印刷電路板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947378A (ja) 1972-05-09 1974-05-08
JPS60155234A (ja) 1983-12-22 1985-08-15 モンサント コンパニー 重合性組成物
JPS60177074A (ja) 1984-02-17 1985-09-11 モンサント コンパニ− ポリアミンとポリ(ジヒドロベンゾオキサジン)との水性分散液
JPH11217416A (ja) * 1998-02-02 1999-08-10 Showa Highpolymer Co Ltd 熱硬化性組成物
JPH11228786A (ja) * 1998-02-17 1999-08-24 Hitachi Chem Co Ltd 銅張積層板用難燃性樹脂組成物及びそれを用いた銅張積層板の製造方法
JP2003064180A (ja) * 2001-06-11 2003-03-05 Nippon Steel Chem Co Ltd ジヒドロベンゾキサジン環構造を有する硬化性樹脂及び耐熱性硬化樹脂
JP2010077380A (ja) * 2008-08-25 2010-04-08 Sekisui Chem Co Ltd アルカリ可溶性樹脂、ポジ型レジスト組成物及びネガ型レジスト組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488996B2 (ja) * 1997-07-22 2004-01-19 日立化成工業株式会社 熱硬化性樹脂組成物及びその硬化物
TWI313684B (en) * 2002-10-03 2009-08-21 Chang Chun Plastics Co Ltd Nitrogen-oxygen heterocyclic compound
TW200413467A (en) * 2003-01-16 2004-08-01 Chang Chun Plastics Co Ltd Resin composition without containing halogen
JP2004352670A (ja) * 2003-05-29 2004-12-16 Shikoku Chem Corp ベンゾオキサジン化合物、プリプレグ、積層板及びプリント配線板
JP4455114B2 (ja) * 2004-03-25 2010-04-21 タムラ化研株式会社 ビルドアップ基板層間絶縁材料用の熱硬化性樹脂組成物、樹脂フィルム、製品およびビルドアップ基板の層間絶縁材料
JP4248592B2 (ja) * 2006-02-20 2009-04-02 積水化学工業株式会社 熱硬化性樹脂の製造方法、熱硬化性樹脂、それを含む熱硬化性組成物、成形体、硬化体、並びにそれらを含む電子機器
JP2008037957A (ja) * 2006-08-03 2008-02-21 Tamura Kaken Co Ltd 熱硬化性樹脂組成物、bステージ化した樹脂フィルムおよび多層ビルドアップ基板
WO2009008468A1 (ja) * 2007-07-10 2009-01-15 Sekisui Chemical Co., Ltd. ベンゾキサジン構造を有する熱硬化性樹脂及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947378A (ja) 1972-05-09 1974-05-08
JPS60155234A (ja) 1983-12-22 1985-08-15 モンサント コンパニー 重合性組成物
JPS60177074A (ja) 1984-02-17 1985-09-11 モンサント コンパニ− ポリアミンとポリ(ジヒドロベンゾオキサジン)との水性分散液
JPH11217416A (ja) * 1998-02-02 1999-08-10 Showa Highpolymer Co Ltd 熱硬化性組成物
JPH11228786A (ja) * 1998-02-17 1999-08-24 Hitachi Chem Co Ltd 銅張積層板用難燃性樹脂組成物及びそれを用いた銅張積層板の製造方法
JP2003064180A (ja) * 2001-06-11 2003-03-05 Nippon Steel Chem Co Ltd ジヒドロベンゾキサジン環構造を有する硬化性樹脂及び耐熱性硬化樹脂
JP2010077380A (ja) * 2008-08-25 2010-04-08 Sekisui Chem Co Ltd アルカリ可溶性樹脂、ポジ型レジスト組成物及びネガ型レジスト組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020909A1 (ja) * 2016-07-26 2018-02-01 Jfeケミカル株式会社 熱硬化性組成物、そのワニスおよび熱硬化物
JP2018016684A (ja) * 2016-07-26 2018-02-01 Jfeケミカル株式会社 熱硬化性組成物、そのワニスおよび熱硬化物
US10865325B2 (en) 2016-07-26 2020-12-15 Jfe Chemical Corporation Thermally curable composition, varnish thereof, and thermally cured object

Also Published As

Publication number Publication date
JP2012107196A (ja) 2012-06-07
US9315629B2 (en) 2016-04-19
EP2634200B1 (en) 2018-12-05
CN103210009B (zh) 2014-09-24
US20130217820A1 (en) 2013-08-22
JP5750004B2 (ja) 2015-07-15
CN103210009A (zh) 2013-07-17
EP2634200A4 (en) 2016-09-07
KR20130059449A (ko) 2013-06-05
TWI437013B (zh) 2014-05-11
TW201237055A (en) 2012-09-16
EP2634200A1 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5750004B2 (ja) 熱硬化性組成物、そのワニスおよびその熱硬化物
JP6570038B2 (ja) 熱硬化性組成物、そのワニスおよび熱硬化物
TWI424006B (zh) 熱硬化性聚醯亞胺矽樹脂組成物及其硬化皮膜
Liu et al. Bio‐based benzoxazines based on sesamol: Synthesis and properties
TW201726804A (zh) 可固化組成物
Zhao et al. A high temperature polymer of phthalonitrile‐substituted phosphazene with low melting point and good thermal stability
JP4805413B2 (ja) ベンゾオキサジン環を有する熱硬化性樹脂及びその製造方法
JP5498200B2 (ja) ベンゾオキサジン環を有する熱硬化性樹脂の製造方法、及びベンゾオキサジン環を有する熱硬化性樹脂
TW200842138A (en) Flame retardant crosslink agent and epoxy resin compositions free of halogen and phosphor
KR102253388B1 (ko) 벤족사진 및 그 제조방법
EP2352742B1 (en) Phosphorus-containing silsesquioxane derivatives as flame retardants
KR101476071B1 (ko) 벤조옥사진계 조성물, 및 그 열경화물과 바니시
JP2012072319A (ja) ベンゾオキサジン環を有する熱硬化性樹脂の製造方法、及びベンゾオキサジン環を有する熱硬化性樹脂
JP2016027101A (ja) 新規アルデヒド含有樹脂
Mustata et al. Multifunctional formaldehyde resins as curing agent for epoxy resins
TWI756020B (zh) 苯並噁嗪樹脂及其製法以及樹脂組合物
TWI522362B (zh) Polyoxazobenzene and its application and preparation method
JP2011207995A (ja) 熱硬化性樹脂及びその製造方法、熱硬化性樹脂組成物、成形体、硬化体、並びに電子機器
Lin et al. High‐performance thermosetting films based on an amino‐functionalized poly (ether sulfone)
Hardrict Novel novolac-phthalonitrile and siloxane-phthalonitrile resins cured with low melting novolac oligomers for flame retardant structural thermosets
Zhan et al. Cationic UV curing behavior and thermal properties of oxetane‐modified polysiloxane prepared from tetraethyl orthosilicate
WO2022059648A1 (ja) 熱硬化性組成物及びその硬化物並びにフィルム
KR20150037218A (ko) 폴리벤족사진 및 그 제조방법
JP2012180411A (ja) 熱硬化性樹脂組成物及びその製造方法
JP2014028929A (ja) 電子部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011836431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13879499

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137010444

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE