WO2012056905A1 - 封口材及びセラミックスハニカム焼成体の製造方法 - Google Patents

封口材及びセラミックスハニカム焼成体の製造方法 Download PDF

Info

Publication number
WO2012056905A1
WO2012056905A1 PCT/JP2011/073700 JP2011073700W WO2012056905A1 WO 2012056905 A1 WO2012056905 A1 WO 2012056905A1 JP 2011073700 W JP2011073700 W JP 2011073700W WO 2012056905 A1 WO2012056905 A1 WO 2012056905A1
Authority
WO
WIPO (PCT)
Prior art keywords
fired body
sealing material
honeycomb fired
ceramic
inorganic
Prior art date
Application number
PCT/JP2011/073700
Other languages
English (en)
French (fr)
Inventor
康輔 魚江
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020137012662A priority Critical patent/KR20140000696A/ko
Priority to CN2011800519408A priority patent/CN103153914A/zh
Priority to EP11836044.5A priority patent/EP2634163A4/en
Priority to US13/881,297 priority patent/US20130207323A1/en
Publication of WO2012056905A1 publication Critical patent/WO2012056905A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs

Definitions

  • the present invention relates to a sealing material and a method for manufacturing a ceramic honeycomb fired body.
  • honeycomb filters are widely known for DPF (Diesel particulate filter) and the like.
  • DPF Diesel particulate filter
  • one end side of a part of the honeycomb fired body having a large number of through holes (flow paths) is sealed with a plugging material, and the other end side of the remaining through holes is sealed with a sealant. It has a sealed structure.
  • a sealing material for forming such a honeycomb fired body a paste containing an inorganic compound and an organic compound is known (see Patent Document 1).
  • Patent Document 1 contains an organic compound, when used for sealing a ceramic honeycomb fired body, an operation of decomposing or removing the organic compound at a high temperature after sealing is necessary. Therefore, there are problems that the number of steps for manufacturing the ceramic honeycomb fired body is increased and the operation becomes complicated.
  • the present invention provides a sealing material that is cured at a low temperature (for example, 100 to 300 ° C.), provides excellent adhesion to the partition walls of the ceramic honeycomb fired body, and provides excellent heat resistance, and It aims at providing the manufacturing method of the ceramic honeycomb fired body using this.
  • a low temperature for example, 100 to 300 ° C.
  • the present invention provides a sealing material containing a water-based inorganic adhesive and aluminum titanate ceramic particles.
  • Such a sealing material can be cured at a low temperature (for example, 100 to 300 ° C.) by having the above specific composition, can obtain excellent adhesion with the partition walls of the ceramic honeycomb fired body, and It has heat resistance that maintains its shape at high temperatures (eg, 1200 ° C.). Therefore, this sealing material is very useful for sealing ceramic honeycomb fired bodies.
  • the sealing material may also be used as a repairing agent for repairing defective parts such as chipping and cracking or insufficient sealing parts in the ceramic honeycomb fired body. it can.
  • the aluminum titanate ceramic particles imply aluminum magnesium titanate ceramic particles. Further, the aluminum titanate ceramic particles may be used alone or in combination of two or more.
  • the solid content mass ratio between the inorganic adhesive and the aluminum titanate ceramic particles is preferably 99: 1 to 25:75.
  • the inorganic adhesive preferably contains a colloidal inorganic oxide, an inorganic polymer, refractory particles, and water.
  • sclerosis hardenability at low temperature, adhesiveness, and heat resistance can be made more favorable.
  • the present invention also includes an extrusion step of extruding the raw material mixture to obtain a green honeycomb (unsintered (green) honeycomb) molded body having a plurality of flow paths partitioned by partition walls, and firing the green honeycomb molded body.
  • the sealing material can be cured at a low temperature of 100 to 300 ° C., the adhesion between the cured sealing material and the partition walls of the ceramic honeycomb fired body can be improved, and the cured material can be cured.
  • the sealing material can obtain excellent heat resistance.
  • a sealing material that is cured at a low temperature (for example, 100 to 300 ° C.), has excellent adhesion to the partition walls of the fired ceramic honeycomb body, and has excellent heat resistance, and A method for producing a ceramic honeycomb fired body using the above can be provided.
  • FIG. 1 (a) is a perspective view showing an example of a ceramic honeycomb fired body
  • FIG. 1 (b) is a partially enlarged view of FIG. 1 (a).
  • the sealing material of the present embodiment contains a water-based inorganic adhesive and aluminum titanate-based ceramic particles (powder).
  • a water-based inorganic adhesive and aluminum titanate-based ceramic particles (powder).
  • the inorganic adhesive is a water-based inorganic adhesive.
  • the water-based inorganic adhesive refers to an agent in which an inorganic compound having thermosetting properties is dispersed in a dispersion medium mainly composed of water.
  • the inorganic adhesive preferably contains at least one selected from colloidal inorganic oxides, inorganic polymers, and refractory particles and water, and contains colloidal inorganic oxides, inorganic polymers, refractory particles and water. It is more preferable that it is included.
  • the inorganic adhesive may contain inorganic fibers. Examples of colloidal inorganic oxides include colloidal silica and colloidal alumina.
  • Examples of the inorganic polymer include polyphosphoric acid compounds, polyaluminic acid compounds, and polysiloxane compounds.
  • Examples of the refractory particles include alumina, quartz, feldspar, aluminum silicate, mullite and the like.
  • Examples of the inorganic fibers include alumina fibers, silica fibers, silica alumina fibers, and the like.
  • the content of the colloidal inorganic oxide in the inorganic adhesive is preferably 6 to 20% by mass based on the total solid content of the inorganic adhesive. If it is less than 6% by mass, the adhesive strength may decrease. If it exceeds 20% by mass, the adhesive strength increases, but the ratio of refractory particles and inorganic fibers in the inorganic adhesive decreases, so that cracks may occur after curing.
  • the content of the refractory particles in the inorganic adhesive is preferably 30 to 90% by mass, and more preferably 50 to 90% by mass based on the total solid content of the inorganic adhesive.
  • the content of the inorganic polymer in the inorganic adhesive is preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass based on the total solid content of the inorganic adhesive.
  • the content of the inorganic fiber in the inorganic adhesive is preferably 0 to 10% by mass, more preferably 0 to 5% by mass based on the total solid content of the inorganic adhesive.
  • the content of water in the inorganic adhesive is preferably adjusted so that the viscosity of the inorganic adhesive falls within a preferable range described later. Or it is preferable to adjust so that content of the water in an inorganic adhesive agent may become the quantity of the preferable water as the whole sealing material mentioned later.
  • the viscosity of the inorganic adhesive is preferably 1000 to 80000 mPa ⁇ s, and more preferably 5000 to 50000 mPa ⁇ s. When the viscosity is less than 1000 mPa ⁇ s, there is a tendency to sag due to gravity.
  • the aluminum titanate ceramic particles of this embodiment imply aluminum magnesium titanate ceramic particles.
  • the sealing material contains these ceramic particles, the heat resistance is improved, the volume shrinkage after curing is small, and the adhesion with the partition walls of the ceramic honeycomb fired body is improved.
  • the magnesium content in the aluminum magnesium titanate ceramic particles is a molar ratio (magnesium to the total amount of aluminum and titanium). Of the total number of moles of aluminum and titanium) is preferably 0.03 to 0.15, and more preferably 0.03 to 0.12.
  • aluminum titanate-based crystals are known to decompose into titania, alumina, etc. at a temperature of 1100 to 1200 ° C.
  • the thermal decomposition resistance is improved. Can be improved.
  • the aluminum titanate-based ceramic particles are aluminum titanate (Al 2 TiO 5 ) or aluminum magnesium titanate (Al 2 (1-x) Mg x Ti (1 + x) O 5 ) in the X-ray diffraction spectrum.
  • other crystal patterns such as alumina and titania may be included.
  • the aluminum titanate ceramic particles may contain impurities other than titanium, aluminum, magnesium and oxygen, for example, impurity elements inevitably mixed from raw materials such as alkali metal elements such as sodium and potassium, and silicon. Good.
  • the aluminum titanate-based ceramic particles also mean ceramic particles having a composite phase of aluminum titanate or aluminum magnesium titanate and other inorganic substances. Examples of other inorganic materials include alumina, titania, magnesia, aluminosilicate glass, tridymite, cristobalite, spinel, cordierite, mullite, feldspar and the like.
  • the particle size of the ceramic particles is not particularly limited, but the volume-based cumulative particle size 50% equivalent particle size (D50) measured by a laser diffraction method is preferably 1 to 100 ⁇ m, and more preferably 5 to 50 ⁇ m. . If the particle size is less than 1 ⁇ m, the volume shrinkage after curing of the sealing material tends to increase, and if it exceeds 100 ⁇ m, the aluminum titanate-based ceramic particles may be separated and precipitated in the sealing material. The material tends to be difficult to handle.
  • D50 volume-based cumulative particle size 50% equivalent particle size
  • the solid content mass ratio of the inorganic adhesive and the aluminum titanate ceramic particles is preferably 99: 1 to 25:75, and 90:10 More preferably, it is ⁇ 25: 75, and more preferably 57:43 to 27:73. If the amount of the inorganic adhesive is less than the above ratio (the amount of aluminum titanate ceramic particles is large), the adhesive strength tends to be low and the sealing material tends to be hard to be cured. If the aluminum titanate ceramic particles are less than the above ratio (there are many inorganic adhesives), the thermal expansion coefficient after curing of the sealing material becomes larger than that of the honeycomb fired body, and the thermal shock resistance of the sealing material tends to decrease. is there.
  • the sealing material is aqueous and contains water as a solvent.
  • the sealing material may be alkaline, neutral, or acidic.
  • the water content in the sealing material is preferably 25 to 60% by mass, more preferably 30 to 55% by mass based on the total amount of the sealing material. When the water content is less than 25% by mass, the sealing material tends to be hard and difficult to flow, and when it exceeds 60% by mass, the sealing material tends to dripping during curing.
  • the sealing material may contain materials other than those described above as long as the effects of the present invention are not impaired.
  • a sealing material does not contain an organic compound.
  • any organic compound that can be removed by heating at 100 to 300 ° C. can be added as long as the effects of the present invention are not impaired.
  • the organic compound that can be added include water-soluble organic solvents such as alcohols such as methanol, ethanol, and butanol, and glycols such as propylene glycol and ethylene glycol.
  • the sealing material is usually in the form of a paste or slurry, and can be prepared by uniformly mixing the above-described constituent materials.
  • the method for manufacturing a ceramic honeycomb fired body of the present embodiment includes an extrusion forming step of extruding a raw material mixture to obtain a green honeycomb molded body having a plurality of flow paths partitioned by partition walls, and firing the green honeycomb molded body. Firing step for obtaining an unsealed honeycomb fired body, and sealing one end of the flow path in the unsealed honeycomb fired body using the sealing material of the present embodiment to obtain a sealed honeycomb fired body And a heating step of heating the sealed honeycomb fired body at 100 to 300 ° C. to obtain a ceramic honeycomb fired body.
  • the present invention includes a method of repairing a defective portion such as a chip or a crack or an insufficiently sealed portion in the ceramic honeycomb fired body with the sealing material of the present embodiment.
  • FIG. 1 is a view showing an example of a ceramic honeycomb fired body manufactured by the manufacturing method of the present embodiment.
  • FIG. 1 (a) is a perspective view showing an example of a ceramic honeycomb fired body
  • FIG. 1 (b) is a partially enlarged view of FIG. 1 (a).
  • a ceramic honeycomb fired body 70 shown in FIG. 1 is a cylindrical body in which a large number of flow paths 70a and 70b partitioned by partition walls 70c are arranged substantially in parallel, as shown in FIG.
  • the cross-sectional shapes of the flow paths 70a and 70b are square as shown in FIG.
  • the plurality of flow paths 70a and 70b are arranged in a square configuration when viewed from the end face, that is, the central axes of the flow paths 70a and 70b are respectively positioned at the apexes of the square.
  • the flow paths 70a and 70b have one of the openings at both ends sealed.
  • the flow channel 70a is opened, and the flow channel 70b is sealed.
  • the flow path 70a is sealed and the flow path 70b is opened.
  • the flow paths 70a and the flow paths 70b are alternately arranged.
  • the square size of the cross sections of the flow paths 70a and 70b can be set to 0.5 to 2.5 mm on one side, for example.
  • the diameter is preferably about 100 mm or more
  • the length is about 100 mm or more
  • the wall thickness of the partition wall 70c is preferably about 0.5 mm or less.
  • the wall thickness of the partition wall 70c is preferably about 0.2 mm or more.
  • the cell structure in the honeycomb fired body 70 is preferably 100 CPSI (Cells Per Square Inch) or more as the total number of the flow paths 70a and 70b.
  • the honeycomb fired body 70 preferably has an effective porosity of 30 to 60% by volume, an average pore diameter of 1 to 20 ⁇ m, and a pore size distribution (D 90 -D 10 ) / D 50 of less than 0.5.
  • D 10 , D 50 , and D 90 are pore diameters when the cumulative pore volume is 10%, 50%, and 90%, respectively, of the total pore volume.
  • the extrusion molding step is a step of obtaining a green honeycomb molded body by extruding the raw material mixture.
  • the raw material mixture for forming the green honeycomb molded body is a material that becomes porous ceramics by firing later, and includes a ceramic raw material.
  • the ceramic raw material is not particularly limited, and examples thereof include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal.
  • the aluminum titanate can further contain magnesium and / or silicon.
  • the raw material mixture preferably contains an inorganic compound source powder that is a ceramic raw material, an organic binder such as methylcellulose, and an additive that is added as necessary.
  • the inorganic compound source powder is aluminum source powder such as ⁇ alumina powder, titanium source powder such as anatase type or rutile type titania powder, and / or aluminum titanate powder.
  • a magnesium source powder such as magnesia powder and magnesia spinel powder and / or a silicon source powder such as silicon oxide powder and glass frit can be further contained.
  • the coefficient of thermal expansion between the partition walls of the ceramic honeycomb fired body and the sealing material of the present embodiment is preferably close.
  • organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • the additive examples include a pore-forming agent, a lubricant and a plasticizer, a dispersant, and a solvent.
  • pore-forming agents include carbon materials such as graphite; resins such as polyethylene, polypropylene and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells and corn; ice; and dry ice.
  • Lubricants and plasticizers include alcohols such as glycerol; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid; stearic acid metal salts such as Al stearate; polyoxyalkylene alkyl Examples include ether.
  • dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid; alcohols such as methanol, ethanol and propanol; ammonium polycarboxylate Surfactant etc. are mentioned.
  • solvent for example, alcohols such as methanol, ethanol, butanol and propanol; glycols such as propylene glycol, polypropylene glycol and ethylene glycol; and water can be used.
  • the raw material mixture can be prepared by mixing an inorganic compound source powder, an organic binder, a solvent, and additives that are added as necessary using a kneader or the like.
  • the green honeycomb molded body has a plurality of flow paths partitioned by partition walls.
  • This green honeycomb molded body is obtained by extruding the raw material mixture from an extruder having an outlet opening corresponding to the cross-sectional shape of the partition wall of the green honeycomb molded body, drying it if necessary, and cutting it into a desired length. Can do.
  • the firing step is a step of firing the green honeycomb molded body to obtain an unsealed honeycomb fired body.
  • a honeycomb fired body having a plurality of flow paths partitioned by partition walls made of porous ceramics can be obtained.
  • the honeycomb fired body obtained in the firing step is an unsealed honeycomb fired body in which the flow path is not sealed at both ends and is a through hole.
  • Calcination is a process for removing the organic binder in the green honeycomb molded body and the organic additive blended as necessary by burning, decomposition, etc. Up to a temperature rising stage (for example, a temperature range of 150 to 900 ° C.). In the calcination (degreasing) step, it is preferable to suppress the temperature increase rate as much as possible.
  • the firing temperature in firing the green honeycomb formed body is usually 1300 ° C. or higher, preferably 1400 ° C. or higher.
  • the firing temperature is usually 1650 ° C. or lower, preferably 1550 ° C. or lower.
  • the rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 ° C./hour to 500 ° C./hour.
  • Firing is usually carried out in the atmosphere, but depending on the type of raw material powder used and the amount used, it may be fired in an inert gas such as nitrogen gas or argon gas, carbon monoxide gas, hydrogen gas, etc. You may bake in reducing gas like this. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • an inert gas such as nitrogen gas or argon gas, carbon monoxide gas, hydrogen gas, etc. You may bake in reducing gas like this. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • Firing is usually performed using a conventional firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, or a roller hearth furnace. It is. Firing may be performed by a batch type or a continuous type. Moreover, baking may be performed by a stationary type or may be performed by a fluid type.
  • a conventional firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, or a roller hearth furnace. It is. Firing may be performed by a batch type or a continuous type. Moreover, baking may be performed by a stationary type or may be performed by a fluid type.
  • the time required for firing is sufficient as long as it is sufficient to produce ceramics, and varies depending on the amount of the green honeycomb formed body, the type of firing furnace, firing temperature, firing atmosphere, etc., but is usually 10 minutes to 24 hours. is there.
  • the sealing step is a step in which one end portion of the flow path in the unsealed honeycomb fired body is sealed using the sealing material of the present embodiment described above to obtain a sealed honeycomb fired body.
  • the sealing is performed by filling the opening at one end of the flow paths 70 a and 70 b with a sealing material.
  • the sealing is performed, for example, by bringing a mask having a plurality of through holes at desired positions into close contact with one end surface of the honeycomb fired body and supplying a sealing material thereto to only the end of the flow path 70a.
  • the sealing material can be filled, and the other end face of the honeycomb fired body can be similarly filled by filling only the end portion of the flow path 70b.
  • the method for supplying the sealing material to the flow paths 70a and 70b is not particularly limited.
  • the sealing material supplied on the mask may be pushed into the flow path through the through hole of the mask using a squeegee, or may be pushed in by a piston.
  • the heating step is a step of heating the sealed honeycomb fired body at 100 to 300 ° C. to obtain a ceramic honeycomb fired body.
  • the sealing material filled in the flow path in the sealing process is cured.
  • the sealing material of the present embodiment is not used.
  • the sealing material can be sufficiently cured by heating at 100 to 300 ° C.
  • the adhesiveness of the sealing material after hardening and the partition of a ceramic honeycomb fired body also becomes favorable.
  • the heating atmosphere is not particularly limited, but it may be heated in an inert gas such as nitrogen gas or argon gas, or may be heated in a reducing gas such as carbon monoxide gas or hydrogen gas. . In addition, heating may be performed in an air atmosphere or an atmosphere with a reduced water vapor partial pressure.
  • the defect material is filled with a sealing material and heated by the same method as in the heating step to cure the sealing material.
  • the desired ceramic honeycomb fired body 70 as shown in FIG. 1 can be obtained.
  • the obtained ceramic honeycomb fired body can be processed into a desired shape by grinding or the like.
  • the partition wall 70c is made of porous ceramics, and this partition wall serves as a filter.
  • a fluid is supplied to the ceramic honeycomb fired body 70 from the end portion on the side shown in FIG. 1B (the upper end portion in FIG. 1A), the fluid enters through the open channel 70a. , Moves to the flow path 70b through the porous partition wall 70c, and the opening of the flow path 70b at the end opposite to the side shown in FIG. 1B (the lower end in FIG. 1A) Discharged from.
  • the shape of the ceramic honeycomb fired body manufactured by the manufacturing method of the present invention is not particularly limited, and can be any shape depending on the application.
  • the outer shape is not limited to a cylinder, but a regular polygonal column such as a regular triangular prism, a square column, a regular hexagonal column, or a regular octagonal column, or a column other than a regular polygonal column, such as a triangular column, quadrangular column, hexagonal column, octagonal column It can be a body.
  • the circular shape of the cylinder includes an elliptical shape.
  • each flow path is not limited to a square, and can be rectangular, circular, elliptical, triangular, hexagonal, octagonal, etc. Different shapes may be mixed.
  • the arrangement of the flow paths is not limited to a square arrangement, and an equilateral triangle arrangement (equilateral-triangular configuration), zigzag configuration (zigzag configuration), etc. in which the center of the flow path is arranged at the apex of the equilateral triangle in the cross section. Can do.
  • the ceramic honeycomb fired body manufactured by the manufacturing method of the present invention includes, for example, an exhaust gas filter used for exhaust gas purification of an internal combustion engine such as a diesel engine and a gasoline engine, a catalyst carrier, and a filter used for filtering food and drink such as beer. It can be suitably applied to a selective permeation filter for selectively permeating gas components (for example, carbon monoxide, carbon dioxide, nitrogen, oxygen, etc.) generated during petroleum refining.
  • gas components for example, carbon monoxide, carbon dioxide, nitrogen, oxygen, etc.
  • Example 1 Preparation of sealing material
  • Sumicelam S-10A (trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics are shown in Table 1 below) and aluminum magnesium titanate (Al 1.76 Mg 0.12 Ti 1.12) O 5 ) and a powder having a composite phase of aluminosilicate glass (Al 1.82 Mg 0.12 Ti 1.12 O 6.09 -0.1SiO 2 , average particle diameter D50: 23 ⁇ m) and 25% by mass are mixed.
  • a sealing material was prepared.
  • the powder having a composite phase of aluminum magnesium titanate and aluminosilicate glass corresponds to the aluminum titanate ceramic particles of the present invention.
  • raw material powder of aluminum magnesium titanate Al 2 O 3 , TiO 2 , MgO
  • ceramic powder having a composite phase of SiO 2 , aluminum magnesium titanate, alumina, and aluminosilicate glass Composition formula at the time of preparation: 41.4 Al 2 O 3 -49.9 TiO 2 -5.4 MgO-3.3SiO 2 , the numerical values in the formula represent a molar ratio
  • an organic binder a lubricant, a pore former
  • a raw material mixture containing a plasticizer, a dispersant and water (solvent) was prepared. The content of each component in the raw material mixture was adjusted to the following values.
  • Al 2 O 3 37.3 parts by weight.
  • TiO 2 37.0 parts by mass.
  • MgO 1.9 parts by mass.
  • SiO 2 3.0 parts by mass.
  • Ceramic powder 8.8 parts by mass.
  • Pore-forming agent 12.0 parts by weight of starch having an average particle size of 25 ⁇ m obtained from potato.
  • Organic binder 5.5 parts by mass of methylcellulose (SM-4000, manufactured by Shin-Etsu Chemical Co., Ltd.), 2.3 parts by mass of hydroxypropyl methylcellulose (60SH-4000, manufactured by Shin-Etsu Chemical Co., Ltd.), totaling 7.8 parts by mass.
  • Plasticizer 0.4 part by mass of glycerin DG (manufactured by NOF Corporation).
  • Dispersing agent 4.6 parts by mass of Unilube (50MB-72, manufactured by NOF Corporation). Water: 28.3 parts by mass.
  • the above-mentioned raw material mixture was kneaded and extruded to produce a honeycomb-shaped green (unfired) molded body (cylindrical body having a diameter of 160 mm ⁇ ) having a plurality of flow paths partitioned by partition walls.
  • the green honeycomb molded body was cut to a length of 250 mm, dried by microwaves under normal pressure, and then heated to 600 ° C. at a rate of temperature increase of 10 ° C./hour with an oxygen concentration of the atmosphere of 3% by volume or less
  • An aluminum titanate fired body unsealed honeycomb fired body was obtained by firing at 1450 ° C. for 5 hours.
  • the cross-sectional shape of the flow path (through hole) of the obtained unsealed honeycomb fired body was a square having a side of 1.2 mm.
  • the partition wall thickness was 0.28 mm.
  • One end of the flow path of the obtained unsealed honeycomb fired body was sealed with the sealing material.
  • a mask in which a plurality of through holes are provided at desired positions is brought into close contact with one end surface of the unsealed honeycomb fired body, a sealing material is supplied thereto, and the sealing material is pushed into the flow path using a squeegee. It went by.
  • the sealing is such that the flow path 70 a whose opening at one end is sealed and the flow path 70 b whose opening opposite to the flow path 70 a is sealed are alternately arranged. Went so. Thereby, a sealed honeycomb fired body was obtained.
  • the obtained sealed honeycomb fired body was heated in an air atmosphere at 300 ° C. for 1 hour to cure the sealing material, thereby obtaining a target ceramic (aluminum magnesium titanate ceramic) honeycomb fired body.
  • Sumicelam S-30A trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics are shown in Table 1 below
  • aluminum magnesium titanate Al 1.76 Mg 0.12 Ti 1.12) O 5
  • Sumicelam S-30A trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics shown in Table 1 below
  • aluminum magnesium titanate Al 1.76 Mg 0.12 Ti 1.12) O 5
  • powder having a composite phase of aluminosilicate glass Al 1.82
  • Sumicelam S-208A trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics shown in Table 1 below
  • aluminum magnesium titanate Al 1.76 Mg 0.12 Ti 1.12) O 5
  • Example 1 Ceramic honeycomb fired body in the same manner as in Example 1 except that Sumiceram S-18D (trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics are shown in Table 1 below) was used alone as a sealing material. Got.
  • Sumiceram S-18D trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics are shown in Table 1 below
  • Sumiceram S-30A trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics are shown in Table 1 below
  • Table 1 which is a water-based inorganic adhesive
  • Example 3 Ceramic honeycomb fired body in the same manner as in Example 1, except that Sumicelam S-208A (trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics are shown in Table 1 below), which is an aqueous inorganic adhesive, was used alone as a sealing material. Got.
  • Sumicelam S-208A trade name, manufactured by Asahi Chemical Industry Co., Ltd., characteristics are shown in Table 1 below
  • Table 1 which is an aqueous inorganic adhesive
  • the sealing that cures at a low temperature provides excellent adhesion to the partition walls of the ceramic honeycomb fired body, and provides excellent heat resistance.
  • a material and a method for manufacturing a ceramic honeycomb fired body using the material can be provided.
  • 70 Ceramic honeycomb fired body, 70a, 70b: flow path, 70c: partition walls.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 低温(例えば、100~300℃)で硬化し、セラミックスハニカム焼成体の隔壁との優れた密着性が得られ、且つ、優れた耐熱性が得られる封口材を提供する。水系の無機接着剤と、チタン酸アルミニウム系セラミックス粒子と、を含有する封口材。

Description

封口材及びセラミックスハニカム焼成体の製造方法
 本発明は封口材及びセラミックスハニカム焼成体の製造方法に関する。
 従来より、ハニカムフィルタが、DPF(Diesel particulate filter)用等として広く知られている。このハニカムフィルタは、多数の貫通孔(流路)を有するハニカム焼成体の一部の貫通孔の一端側を封口材(plugging material)で封じると共に、残りの貫通孔の他端側を封口材で封じた構造を有する。こうしたハニカム焼成体を形成するための封口材として、無機化合物と有機化合物とを含むペーストが知られている(特許文献1参照)。
国際公開第2007/097000号パンフレット
 しかしながら、上記特許文献1に記載の封口材は、有機化合物を含むことから、セラミックスハニカム焼成体の封口に使用する場合、封口後に有機化合物を高温で分解又は除去する操作が必要である。そのため、セラミックスハニカム焼成体を製造するための工程が多くなり、操作が煩雑になるという問題がある。
 そこで、本発明は、低温(例えば、100~300℃)で硬化し、セラミックスハニカム焼成体の隔壁との優れた密着性が得られ、且つ、優れた耐熱性が得られる封口材、及び、それを用いたセラミックスハニカム焼成体の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は、水系の無機接着剤と、チタン酸アルミニウム系セラミックス粒子と、を含有する封口材を提供する。
 かかる封口材は、上記特定の組成を有することにより、低温(例えば、100~300℃)で硬化させることができ、セラミックスハニカム焼成体の隔壁との優れた密着性を得ることができ、且つ、高温(例えば、1200℃)において、その形状を維持する耐熱性を有する。したがって、かかる封口材は、セラミックスハニカム焼成体の封口用に非常に有用である。また、上記封口材は、セラミックスハニカム焼成体にカケ(chipping)や亀裂(cracking)等の欠陥や封口不足箇所等があった場合に、それらの欠陥部位を補修する補修剤としても使用することができる。なお、本発明において、チタン酸アルミニウム系セラミックス粒子は、チタン酸アルミニウムマグネシウム系セラミックス粒子を含意する。また、チタン酸アルミニウム系セラミックス粒子は、一種を単独で用いても良いし、二種以上を混合して用いても良い。
 また、本発明の封口材において、上記無機接着剤と上記チタン酸アルミニウム系セラミックス粒子との固形分質量比は、99:1~25:75であることが好ましい。これにより、低温での硬化性、密着性及び耐熱性をより良好なものとすることができる。
 さらに、本発明の封口材において、上記無機接着剤は、コロイド状無機酸化物、無機高分子、耐火物粒子及び水を含むことが好ましい。これにより、低温での硬化性、密着性及び耐熱性をより良好なものとすることができる。
 本発明はまた、原料混合物を押出成形して、隔壁により区画された複数の流路を有するグリーンハニカム(unsintered(green) honeycomb)成形体を得る押出成形工程と、上記グリーンハニカム成形体を焼成して未封口ハニカム焼成体を得る焼成工程と、上記未封口ハニカム焼成体における上記流路の一方の端部を、上記本発明の封口材を用いて封口し、封口ハニカム焼成体を得る封口工程と、上記封口ハニカム焼成体を100~300℃で加熱してセラミックスハニカム焼成体を得る加熱工程と、を有するセラミックスハニカム焼成体の製造方法を提供する。
 かかる製造方法により、100~300℃の低温で封口材を硬化させることができ、硬化後の封口材とセラミックスハニカム焼成体の隔壁との密着性を良好にすることができ、且つ、硬化後の封口材は優れた耐熱性を得ることができる。
 本発明によれば、低温(例えば、100~300℃)で硬化し、セラミックスハニカム焼成体の隔壁との優れた密着性が得られ、且つ、優れた耐熱性が得られる封口材、及び、それを用いたセラミックスハニカム焼成体の製造方法を提供することができる。
図1の(a)は、セラミックスハニカム焼成体の一例を示す斜視図であり、図1の(b)は、図1の(a)の部分拡大図である。
 以下、場合により図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、以下の説明において、同一又は相当部分には同一符号を用いることとし、重複する説明は省略する。
<封口材>
 本実施形態の封口材は、水系の無機接着剤と、チタン酸アルミニウム系セラミックス粒子(粉末)と、を含有するものである。以下、封口材の各構成材料について説明する。
 無機接着剤は水系の無機接着剤である。ここで水系の無機接着剤とは、熱硬化性を有する無機化合物が、水を主体とする分散媒中に分散された剤を指す。無機接着剤は、コロイド状無機酸化物、無機高分子、耐火物粒子から選ばれる少なくとも一種と、水とを含むものであることが好ましく、コロイド状無機酸化物、無機高分子、耐火物粒子及び水を含むものであることがより好ましい。また、無機接着剤は、無機繊維を含んでいてもよい。コロイド状無機酸化物としては、コロイダルシリカ、コロイダルアルミナ等が挙げられる。無機高分子としては、ポリリン酸化合物、ポリアルミン酸化合物、ポリシロキサン化合物等が挙げられる。耐火物粒子としては、アルミナ、石英、長石、ケイ酸アルミニウム、ムライト等が挙げられる。無機繊維としては、アルミナ繊維、シリカ繊維、シリカアルミナ繊維等が挙げられる。封口材が上記した成分を含む無機接着剤を含有することにより、低温(例えば、100~300℃)での硬化がより促進される。
 無機接着剤におけるコロイド状無機酸化物の含有量は、無機接着剤の固形分全量を基準として6~20質量%であることが好ましい。6質量%未満であると、接着強度が低下することがある。20質量%を超えると、接着強度は増加するが、無機接着剤における耐火物粒子及び無機繊維の割合が減少するため、硬化後にクラックが生じることがある。無機接着剤における耐火物粒子の含有量は、無機接着剤の固形分全量を基準として30~90質量%であることが好ましく、50~90質量%であることがより好ましい。コロイド状無機酸化物及び耐火物粒子の含有量が上記範囲内であることにより、低温での硬化性、密着性、硬化時の体積収縮の低減の全てをよりバランス良く向上させることができる。
 無機接着剤における無機高分子の含有量は、無機接着剤の固形分全量を基準として0.1~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。無機接着剤における無機繊維の含有量は、無機接着剤の固形分全量を基準として0~10質量%であることが好ましく、0~5質量%であることがより好ましい。無機高分子及び無機繊維の含有量が上記範囲内であることにより、低温での硬化性、密着性、硬化時の体積収縮の低減の全てをよりバランス良く向上させることができる。
 無機接着剤における水の含有量は、無機接着剤の粘度が、後述する好ましい範囲となるように調整することが好ましい。または、無機接着剤における水の含有量は、後述する封口材全体としての好ましい水の量となるように調整することが好ましい。
 無機接着剤の粘度は、1000~80000mPa・sであることが好ましく、5000~50000mPa・sであることがより好ましい。粘度が1000mPa・s未満であると重力により液ダレする傾向があり、80000mPa・sを超えると狭部に導入されず、欠陥が生じる傾向がある。
 コロイド状無機酸化物、無機高分子、耐火物粒子及び水を含む水系無機接着剤としては、スミセラム(SUMICERUM)(登録商標)S-10A、S-18D、S-30A(以上、朝日化学工業社製)や、アロンセラミック(Aron Ceramics)D(東亞合成社製)などの市販品を使用することができる。
 本実施形態のチタン酸アルミニウム系セラミックス粒子はチタン酸アルミニウムマグネシウム系セラミックス粒子を含意する。封口材がこれらのセラミックス粒子を含有することにより、耐熱性が向上するとともに、硬化後の体積収縮が小さく、セラミックスハニカム焼成体の隔壁との密着性が向上する。
 ここで、チタン酸アルミニウム系セラミックス粒子としてチタン酸アルミニウムマグネシウム系セラミックス粒子を用いた場合、チタン酸アルミニウムマグネシウム系セラミックス粒子におけるマグネシウムの含有量は、アルミニウム及びチタンの合計量に対して、モル比(マグネシウムのモル数/アルミニウム及びチタンの合計モル数)で0.03~0.15であることが好ましく、0.03~0.12であることがより好ましい。通常、チタン酸アルミニウム系結晶は、1100~1200℃の温度で、チタニア、アルミナ等に分解することが知られているが、上記範囲内の含有量のマグネシウムを含有させることにより、耐熱分解性を向上させることができる。
 本実施形態において、チタン酸アルミニウム系セラミックス粒子は、X線回折スペクトルにおいて、チタン酸アルミニウム(AlTiO)またはチタン酸アルミニウムマグネシウム(Al2(1-x)MgTi(1+x))の結晶パターンのほか、アルミナ、チタニアなどの他の結晶パターンを含んでいてもよい。また、チタン酸アルミニウム系セラミックス粒子は、チタン、アルミニウム、マグネシウム及び酸素以外の元素、例えば、ナトリウム、カリウム等のアルカリ金属元素やケイ素といった、原料から不可避的に混入する不純物元素等を含んでいてもよい。また、チタン酸アルミニウム系セラミックス粒子は、チタン酸アルミニウムまたはチタン酸アルミニウムマグネシウムと、他の無機物との複合相を持つセラミックス粒子も含意する。他の無機物としては、アルミナ、チタニア、マグネシア、アルミノシリケートガラス、トリジマイト、クリストバライト、スピネル、コージェライト、ムライト、長石等が挙げられる。
 セラミックス粒子の粒径は特に限定されないが、レーザー回折法により測定される体積基準の累積百分率50%相当粒子径(D50)が1~100μmであることが好ましく、5~50μmであることがより好ましい。この粒径が1μm未満であると、封口材の硬化後の体積収縮が大きくなる傾向があり、100μmを超えると、封口材においてチタン酸アルミニウム系セラミックス粒子が分離・沈殿する可能性があり、封口材が扱いにくくなる傾向がある。
 封口材において、無機接着剤とチタン酸アルミニウム系セラミックス粒子との固形分質量比(無機接着剤:チタン酸アルミニウム系セラミックス粒子)は、99:1~25:75であることが好ましく、90:10~25:75であることがより好ましく、57:43~27:73であることがさらに好ましい。上記比率よりも無機接着剤が少ない(チタン酸アルミニウム系セラミックス粒子が多い)と、接着強度が低くなり、封口材が硬化しにくくなる傾向がある。上記比率よりもチタン酸アルミニウム系セラミックス粒子が少ない(無機接着剤が多い)と、封口材の硬化後の熱膨張係数がハニカム焼成体よりも大きくなり、封口材の耐熱衝撃性が低下する傾向がある。
 封口材は水系であり、溶媒として水を含む。また、封口材は、アルカリ性、中性、酸性のいずれであってもよい。封口材における水の含有量は、封口材全量を基準として25~60質量%であることが好ましく、30~55質量%であることがより好ましい。水の含有量が25質量%未満であると、封口材が硬くなり流動しにくい傾向があり、60質量%を超えると、硬化時に封口材が液ダレ(dripping)しやすい傾向がある。
 封口材は、本発明の効果を損なわなければ、上述したもの以外の材料を含有していてもよい。なお、封口材は、有機化合物を含まないことが好ましい。但し、100~300℃の加熱により除去される有機化合物であれば、本発明の効果を損なわない範囲で添加することは可能である。添加できる有機化合物としては、メタノール、エタノール、ブタノール等のアルコール類やプロピレングリコール、エチレングリコール等のグリコール類等の水溶性有機溶媒が挙げられる。
 封口材は、通常、ペースト状又はスラリー状のものであり、上述した各構成材料を均一に混合することで調製することができる。
<セラミックスハニカム焼成体の製造方法>
 本実施形態のセラミックスハニカム焼成体の製造方法は、原料混合物を押出成形して、隔壁により区画された複数の流路を有するグリーンハニカム成形体を得る押出成形工程と、上記グリーンハニカム成形体を焼成して未封口ハニカム焼成体を得る焼成工程と、上記未封口ハニカム焼成体における上記流路の一方の端部を、上記本実施形態の封口材を用いて封口し、封口ハニカム焼成体を得る封口工程と、上記封口ハニカム焼成体を100~300℃で加熱してセラミックスハニカム焼成体を得る加熱工程と、を有する方法である。また、本発明は、セラミックスハニカム焼成体にカケや亀裂等の欠陥や封口不足箇所が存在する場合、それらの欠陥部位を上記本実施形態の封口材により補修する方法を含む。
 ここで、図1は、上記本実施形態の製造方法により製造するセラミックスハニカム焼成体の一例を示す図である。図1の(a)は、セラミックスハニカム焼成体の一例を示す斜視図であり、図1の(b)は、図1の(a)の部分拡大図である。図1に示したセラミックスハニカム焼成体70は、図1の(a)に示すように、隔壁70cにより区画された多数の流路70a,70bが略平行に配置された円柱体である。流路70a,70bの断面形状は、図1の(b)に示すように正方形である。これらの複数の流路70a,70bは、ハニカム焼成体70において、端面から見て、正方形配置(square configuration)、すなわち、流路70a,70bの中心軸が、正方形の頂点にそれぞれ位置するように配置されている。また、ハニカム焼成体70において、流路70a,70bは、その両端の開口部のうちの一方が封口されている。図1の(b)に示した側の端部(図1(a)における上端部)では、流路70aが開口し、流路70bが封口されている。また、これとは反対側の端部(図1(a)における下端部)では、流路70aが封口され、流路70bが開口している。ハニカム焼成体70においては、図1の(b)に示すように、このような流路70aと流路70bとが交互に配置されている。流路70a,70bの断面の正方形のサイズは、例えば、一辺0.5~2.5mmとすることができる。
 ハニカム焼成体70の寸法は、図1に示したような円柱体である場合、例えば、直径約100mm以上、長さ約100mm以上、隔壁70cの壁厚は約0.5mm以下であることが好ましい。なお、隔壁70cの壁厚は約0.2mm以上であることが好ましい。また、ハニカム焼成体70におけるセル構造は流路70a,70bの合計数として100CPSI(Cells Per Square Inch)以上であることが好ましい。ハニカム焼成体70の、有効気孔率は30~60体積%、平均細孔直径は1~20μm、細孔径分布(D90-D10)/D50は0.5未満であることが好ましい。ここで、D10、D50、D90は全細孔容積のうち累積細孔容積が各々10%、50%、90%になるときの細孔直径である。
 以下、本実施形態のセラミックスハニカム焼成体の製造方法における各工程について詳しく説明する。
 押出成形工程は、原料混合物を押出成形してグリーンハニカム成形体を得る工程である。グリーンハニカム成形体を形成するための原料混合物は、後で焼成することにより多孔性セラミックスとなる材料であり、セラミックス原料を含む。セラミックス原料は特に限定されないが、例えば、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素、金属等が挙げられる。なお、チタン酸アルミニウムは、さらに、マグネシウム及び/又はケイ素を含むことができる。
 原料混合物は、好ましくは、セラミックス原料である無機化合物源粉末、及び、メチルセルロース等の有機バインダ、及び、必要に応じて添加される添加剤を含む。
 例えば、セラミックスがチタン酸アルミニウムの場合、無機化合物源粉末は、αアルミナ粉等のアルミニウム源粉末、及び、アナターゼ型やルチル型のチタニア粉末等のチタニウム源粉末、及び/又は、チタン酸アルミニウム粉末を含み、必要に応じて、さらに、マグネシア粉末やマグネシアスピネル粉末等のマグネシウム源粉末、及び/又は、酸化ケイ素粉末やガラスフリット等のケイ素源粉末を含むことができる。セラミックスをチタン酸アルミニウムとした場合、セラミックスハニカム焼成体の隔壁と本実施形態の封口材との熱膨張率が近い値になるため好ましい。
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩を例示できる。
 添加物としては、例えば、造孔剤(pore-forming agent)、潤滑剤および可塑剤、分散剤、溶媒が挙げられる。
 造孔剤としては、グラファイト等の炭素材;ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類;でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料;氷;およびドライアイス等などが挙げられる。
 潤滑剤および可塑剤としては、グリセリンなどのアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラキジン酸、オレイン酸、ステアリン酸などの高級脂肪酸;ステアリン酸Alなどのステアリン酸金属塩;ポリオキシアルキレンアルキルエーテルなどが挙げられる。
 分散剤としては、たとえば、硝酸、塩酸、硫酸などの無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸などの有機酸;メタノール、エタノール、プロパノールなどのアルコール類;ポリカルボン酸アンモニウムなどの界面活性剤などが挙げられる。
 溶媒としては、たとえば、メタノール、エタノール、ブタノール、プロパノールなどのアルコール類;プロピレングリコール、ポリプロピレングリコール、エチレングリコールなどのグリコール類;および水などを用いることができる。
 原料混合物は、無機化合物源粉末と、有機バインダと、溶媒と、必要に応じて添加される添加物を混練機等により混合することで調製することができる。
 グリーンハニカム成形体は、隔壁により区画された複数の流路を有するものである。このグリーンハニカム成形体は、グリーンハニカム成形体の隔壁の断面形状に対応する出口開口を有する押出機から上記原料混合物を押し出し、必要に応じて乾燥をし、所望の長さに切ることにより得ることができる。
 焼成工程は、グリーンハニカム成形体を焼成して未封口ハニカム焼成体を得る工程である。焼成工程において、グリーンハニカム成形体を仮焼(脱脂)および焼成することにより、多孔質のセラミックスからなる隔壁により区画された複数の流路を有するハニカム焼成体を得ることができる。焼成工程で得られるハニカム焼成体は、流路が両端部とも封口されておらず、貫通孔となっている未封口ハニカム焼成体である。
 仮焼(脱脂)は、グリーンハニカム成形体中の有機バインダや、必要に応じて配合される有機添加物を、焼失、分解等により除去するための工程であり、典型的には、焼成温度に至るまでの昇温段階(たとえば、150~900℃の温度範囲)になされる。仮焼(脱脂)工程おいては、昇温速度を極力おさえることが好ましい。
 グリーンハニカム成形体の焼成における焼成温度は、通常、1300℃以上、好ましくは1400℃以上である。また、焼成温度は、通常、1650℃以下、好ましくは1550℃以下である。焼成温度までの昇温速度は特に限定されるものではないが、通常、1℃/時間~500℃/時間である。
 焼成は通常、大気中で行なわれるが、用いる原料粉末の種類や使用量比によっては、窒素ガス、アルゴンガスなどの不活性ガス中で焼成してもよいし、一酸化炭素ガス、水素ガスなどのような還元性ガス中で焼成してもよい。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよい。
 焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ローラーハース炉(roller hearth furnaces)などの通常の焼成炉を用いて行なわれる。焼成は回分式(batch type)で行なってもよいし、連続式で行なってもよい。また、焼成は、静置式で行なってもよいし、流動式で行なってもよい。
 焼成に要する時間は、セラミックスが生成するのに十分な時間であればよく、グリーンハニカム成形体の量、焼成炉の形式、焼成温度、焼成雰囲気などにより異なるが、通常は10分~24時間である。
 封口工程は、上記未封口ハニカム焼成体における流路の一方の端部を、上述した本実施形態の封口材を用いて封口し、封口ハニカム焼成体を得る工程である。
 封口は、例えば、図1に示されるように、流路70a,70bの一端の開口部に封口材を充填することにより行われる。この場合、封口は、例えば、複数の貫通孔が所望の位置に設けられたマスクをハニカム焼成体の一端面に密着させ、そこへ封口材を供給することにより、流路70aの端部にのみ封口材を充填し、ハニカム焼成体の他端面に対しても同様にして流路70bの端部にのみ封口材を充填することにより行うことができる。これにより、図1に示したように、一端の開口部が封口された流路70aと、流路70aとは反対側の開口部が封口された流路70bとが交互に配置された封口ハニカム焼成体を得ることができる。
 封口材を流路70a,70bに供給する方法は特に限定されない。例えば、マスク上に供給した封口材を、スキージ(squeegee)を用いてマスクの貫通孔を介して流路内に押し込んでもよいし、ピストンにより押し込んでもよい。
 加熱工程は、上記封口ハニカム焼成体を100~300℃で加熱してセラミックスハニカム焼成体を得る工程である。加熱工程では、封口工程で流路内に充填した封口材を硬化させる。従来の封口材では、封口後に上述した焼成工程と同程度の温度(例えば、1250~1550℃)で加熱する必要があったが、本実施形態の製造方法では、上記本実施形態の封口材を用いることで、100~300℃の加熱により封口材を十分に硬化させることができる。また、本実施形態の製造方法では、硬化後の封口材とセラミックスハニカム焼成体の隔壁との密着性も良好となる。
 加熱工程において、加熱雰囲気は特に限定されないが、窒素ガス、アルゴンガスなどの不活性ガス中で加熱してもよいし、一酸化炭素ガス、水素ガスなどの還元性ガス中で加熱してもよい。また、空気雰囲気や、水蒸気分圧を低くした雰囲気で加熱を行ってもよい。
 また、封口又は未封口ハニカム焼成体にカケや亀裂等の欠陥や封口不足箇所が存在する場合、それらの欠陥部位を、上記封口材を用いて補修することができる。この場合、上記欠陥部位に封口材を充填し、上記加熱工程と同様の方法で加熱して、封口材を硬化させる。これにより、カケや亀裂等の欠陥や封口不足箇所等が補修されたハニカム焼成体を得ることができる。
 以上の工程を経て、図1に示したような目的のセラミックスハニカム焼成体70を得ることができる。得られたセラミックスハニカム焼成体は、研削加工等により、所望の形状に加工することもできる。
 図1に示した構造のセラミックスハニカム焼成体70においては、隔壁70cは多孔質のセラミックスで構成され、この隔壁がフィルターの役割を果たす。このセラミックスハニカム焼成体70に対し、図1の(b)に示した側の端部(図1(a)における上端部)から流体を供給した場合、流体は開口している流路70aから入り、多孔質の隔壁70cを通って流路70bに移動し、図1の(b)に示した側と反対側の端部(図1(a)における下端部)において、流路70bの開口部から排出される。
 なお、本発明は上記実施形態に限定されず、様々な変形態様が可能である。例えば、本発明の製造方法により製造するセラミックスハニカム焼成体の形状は特に限定されず、用途に応じて任意の形状を取ることができる。例えば、外形は、円柱には限定されず、正三角柱、正方形柱、正六角柱、正八角柱等の正多角柱や、正多角柱以外の、3角柱、4角柱、6角柱、8角柱等の柱体とすることができる。円柱の円形状は楕円形状を含む。また、各流路の断面形状も、正方形には限定されず、矩形、円形、楕円形、3角形、6角形、8角形等にすることができ、流路には、径の異なるもの、断面形状の異なるものが混在してもよい。さらに、流路の配置も、正方形配置に限定されず、断面において流路の中心が正三角形の頂点に配置される正三角形配置(equilateral-triangular configuration)、千鳥配置(zigzag configuration)等にすることができる。
 本発明の製造方法により製造されるセラミックスハニカム焼成体は、たとえば、ディーゼルエンジン及びガソリンエンジンなどの内燃機関の排気ガス浄化に用いられる排ガスフィルター、触媒担体、ビールなどの飲食物の濾過に用いる濾過フィルター、石油精製時に生じるガス成分(たとえば一酸化炭素、二酸化炭素、窒素、酸素など)を選択的に透過させるための選択透過フィルターなどに好適に適用することができる。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 [実施例1]
 (封口材の調製)
 水系無機接着剤としてスミセラムS-10A(商品名、朝日化学工業社製、特性は下記表1に示す)を75質量%と、チタン酸アルミニウムマグネシウム(Al1.76Mg0.12Ti1.12)とアルミノシリケートガラスの複合相を持つ粉末(Al1.82Mg0.12Ti1.126.09-0.1SiO、平均粒径D50:23μm)25質量%とを混合し、封口材を調製した。なお、チタン酸アルミニウムマグネシウムとアルミノシリケートガラスの複合相をもつ粉末は、本発明のチタン酸アルミニウム系セラミックス粒子に相当する。このときの固形分質量比は、S-10A:チタン酸アルミニウムマグネシウム系セラミックス粉末=55:45であった。
 (セラミックスハニカム焼成体の作製)
 グリーンハニカム成形体を形成するために、チタン酸アルミニウムマグネシウムの原料粉末(Al,TiO,MgO)、SiO、チタン酸アルミニウムマグネシウムとアルミナとアルミノシリケートガラスとの複合相をもつセラミックス粉末(仕込み時の組成式:41.4Al-49.9TiO-5.4MgO-3.3SiO、式中の数値はモル比を表す。)、有機バインダ、潤滑剤、造孔剤、可塑剤、分散剤及び水(溶媒)を含む原料混合物を調製した。原料混合物中の各成分の含有量は下記の値に調整した。
Al:37.3質量部。
TiO:37.0質量部。
MgO:1.9質量部。
SiO:3.0質量部。
セラミックス粉末:8.8質量部。
造孔剤:馬鈴薯(potato)から得た平均粒径25μmの澱粉12.0質量部。
有機バインダ:メチルセルロース(SM-4000、信越化学工業社製)5.5質量部、ヒドロキシプロピルメチルセルロース(60SH-4000、信越化学工業社製)2.3質量部、合計7.8質量部。
可塑剤:グリセリンDG(日本油脂社製)0.4質量部。
分散剤:ユニルーブ(50MB-72、日本油脂社製)4.6質量部。
水:28.3質量部。
 上記の原料混合物を混練して、押出成形することにより、隔壁により区画された複数の流路を有するハニカム形状のグリーン(未焼成)成形体(直径160mmφの円柱体)を作製した。グリーンハニカム成形体を250mmの長さで切断し、常圧下、マイクロ波で乾燥した後、雰囲気の酸素濃度を3体積%以下として昇温速度10℃/時間にて600℃まで昇温し、その後1450℃で5時間焼成することで、チタン酸アルミニウム焼成体(未封口ハニカム焼成体)を得た。得られた未封口ハニカム焼成体の流路(貫通孔)の断面形状は、一辺が1.2mmの正方形であった。また、隔壁の厚みは0.28mmであった。
 得られた未封口ハニカム焼成体の流路の一方の端部を、上記封口材により封口した。封口は、複数の貫通孔が所望の位置に設けられたマスクを未封口ハニカム焼成体の一端面に密着させ、そこへ封口材を供給し、スキージを用いて流路内へ封口材を押し込むことにより行った。また、封口は、図1に示したように、一端の開口部が封口された流路70aと、流路70aとは反対側の開口部が封口された流路70bとが交互に配置されるように行った。これにより、封口ハニカム焼成体を得た。
 次に、得られた封口ハニカム焼成体を、空気雰囲気中、300℃で1時間加熱することにより封口材を硬化させ、目的のセラミックス(チタン酸アルミニウムマグネシウム系セラミックス)ハニカム焼成体を得た。
 [実施例2]
 水系無機接着剤としてスミセラムS-18D(商品名、朝日化学工業社製、特性は下記表1に示す)を75質量%と、チタン酸アルミニウムマグネシウム(Al1.76Mg0.12Ti1.12)とアルミノシリケートガラスの複合相を持つ粉末(Al1.82Mg0.12Ti1.126.09-0.1SiO、平均粒径D50:23μm)25質量%とを混合し、封口材を調製した。このときの固形分質量比は、S-18D:チタン酸アルミニウムマグネシウム系セラミックス粉末=57:43であった。この封口材を用いた以外は実施例1と同様にして、セラミックスハニカム焼成体を得た。
 [実施例3]
 水系無機接着剤としてスミセラムS-30A(商品名、朝日化学工業社製、特性は下記表1に示す)を75質量%と、チタン酸アルミニウムマグネシウム(Al1.76Mg0.12Ti1.12)とアルミノシリケートガラスの複合相を持つ粉末(Al1.82Mg0.12Ti1.126.09-0.1SiO、平均粒径D50:23μm)25質量%とを混合し、封口材を調製した。このときの固形分質量比は、S-30A:チタン酸アルミニウムマグネシウム系セラミックス粉末=53:47であった。この封口材を用いた以外は実施例1と同様にして、セラミックスハニカム焼成体を得た。
 [実施例4]
 水系無機接着剤としてスミセラムS-208A(商品名、朝日化学工業社製、特性は下記表1に示す)を75質量%と、チタン酸アルミニウムマグネシウム(Al1.76Mg0.12Ti1.12)とアルミノシリケートガラスの複合相を持つ粉末(Al1.82Mg0.12Ti1.126.09-0.1SiO、平均粒径D50:23μm)25質量%とを混合し、封口材を調製した。このときの固形分質量比は、S-208A:チタン酸アルミニウムマグネシウム系セラミックス粉末=57:43であった。この封口材を用いた以外は実施例1と同様にして、セラミックスハニカム焼成体を得た。
 [実施例5]
 水系無機接着剤としてスミセラムS-30A(商品名、朝日化学工業社製、特性は下記表1に示す)を50質量%と、チタン酸アルミニウムマグネシウム(Al1.76Mg0.12Ti1.12)とアルミノシリケートガラスの複合相を持つ粉末(Al1.82Mg0.12Ti1.126.09-0.1SiO、平均粒径D50:23μm)50質量%とを混合し、封口材を調製した。このときの固形分質量比は、S-30A:チタン酸アルミニウムマグネシウム系セラミックス粉末=27:73であった。この封口材を用いた以外は実施例1と同様にして、セラミックスハニカム焼成体を得た。
 [実施例6]
 水系無機接着剤としてスミセラムS-208A(商品名、朝日化学工業社製、特性は下記表1に示す)を50質量%と、チタン酸アルミニウムマグネシウム(Al1.76Mg0.12Ti1.12)とアルミノシリケートガラスの複合相を持つ粉末(Al1.82Mg0.12Ti1.126.09-0.1SiO、平均粒径D50:23μm)50質量%とを混合し、封口材を調製した。このときの固形分質量比は、S-208A:チタン酸アルミニウムマグネシウム系セラミックス粉末=31:69であった。この封口材を用いた以外は実施例1と同様にして、セラミックスハニカム焼成体を得た。
 [比較例1]
 水系無機接着剤であるスミセラムS-18D(商品名、朝日化学工業社製、特性は下記表1に示す)を単独で封口材として用いた以外は実施例1と同様にして、セラミックスハニカム焼成体を得た。
 [比較例2]
 水系無機接着剤であるスミセラムS-30A(商品名、朝日化学工業社製、特性は下記表1に示す)を単独で封口材として用いた以外は実施例1と同様にして、セラミックスハニカム焼成体を得た。
 [比較例3]
 水系無機接着剤であるスミセラムS-208A(商品名、朝日化学工業社製、特性は下記表1に示す)を単独で封口材として用いた以外は実施例1と同様にして、セラミックスハニカム焼成体を得た。
 <密着性の評価>
 上記の実施例及び比較例で得られたセラミックスハニカム焼成体について、封口の状態を観察し、密着性を評価した。密着性は、硬化後の封口材とハニカム焼成体の隔壁との間に隙間がなく、両者の密着性が良好である場合を「良好」とし、硬化後の封口材とハニカム焼成体の隔壁との間に隙間がある場合を「不可」として評価した。結果を表2に示す。
 <耐熱性の評価>
 上記の実施例及び比較例で得られたセラミックスハニカム焼成体を、空気雰囲気中、1200℃で1時間加熱することにより、硬化した封口材の耐熱性を評価した。耐熱性は、上記加熱条件での耐熱試験後、封口材の融解の有無、封口材と隔壁との密着性、及び、封口材の膨張による隔壁破壊の有無を確認することにより評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上説明した通り、本発明によれば、低温(例えば、100~300℃)で硬化し、セラミックスハニカム焼成体の隔壁との優れた密着性が得られ、且つ、優れた耐熱性が得られる封口材、及び、それを用いたセラミックスハニカム焼成体の製造方法を提供することができる。
 70…セラミックスハニカム焼成体、70a,70b…流路、70c…隔壁。

Claims (4)

  1.  水系の無機接着剤と、チタン酸アルミニウム系セラミックス粒子と、を含有する封口材。
  2.  前記無機接着剤と前記チタン酸アルミニウム系セラミックス粒子との固形分質量比が、99:1~25:75である、請求項1記載の封口材。
  3.  前記無機接着剤が、コロイド状無機酸化物、無機高分子、耐火物粒子及び水を含む、請求項1又は2記載の封口材。
  4.  原料混合物を押出成形して、隔壁により区画された複数の流路を有するグリーンハニカム成形体を得る押出成形工程と、
     前記グリーンハニカム成形体を焼成して未封口ハニカム焼成体を得る焼成工程と、
     前記未封口ハニカム焼成体における前記流路の一方の端部を、請求項1~3のいずれか一項に記載の封口材を用いて封口し、封口ハニカム焼成体を得る封口工程と、
     前記封口ハニカム焼成体を100~300℃で加熱してセラミックスハニカム焼成体を得る加熱工程と、
    を有するセラミックスハニカム焼成体の製造方法。
PCT/JP2011/073700 2010-10-26 2011-10-14 封口材及びセラミックスハニカム焼成体の製造方法 WO2012056905A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137012662A KR20140000696A (ko) 2010-10-26 2011-10-14 봉구재 및 세라믹스 허니컴 소성체의 제조 방법
CN2011800519408A CN103153914A (zh) 2010-10-26 2011-10-14 封口材料和陶瓷蜂窝烧成体的制造方法
EP11836044.5A EP2634163A4 (en) 2010-10-26 2011-10-14 SEALING MATERIAL AND METHOD FOR MANUFACTURING A CERAMIC BONE BODY OF BEES
US13/881,297 US20130207323A1 (en) 2010-10-26 2011-10-14 Sealing material and method for manufacturing ceramic honeycomb fired body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-239604 2010-10-26
JP2010239604 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012056905A1 true WO2012056905A1 (ja) 2012-05-03

Family

ID=45993630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073700 WO2012056905A1 (ja) 2010-10-26 2011-10-14 封口材及びセラミックスハニカム焼成体の製造方法

Country Status (6)

Country Link
US (1) US20130207323A1 (ja)
EP (1) EP2634163A4 (ja)
JP (1) JP5785471B2 (ja)
KR (1) KR20140000696A (ja)
CN (1) CN103153914A (ja)
WO (1) WO2012056905A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499442B1 (en) * 2013-03-15 2016-11-22 Ibiden Co., Ltd. Method for manufacturing aluminum-titanate-based ceramic honeycomb structure
CN113382975B (zh) * 2018-11-30 2023-05-02 康宁股份有限公司 蜂窝体制造方法
CN115697943A (zh) * 2020-08-25 2023-02-03 康宁股份有限公司 用于堵塞蜂窝体的胶结剂混合物及其制造方法
JP2023544991A (ja) * 2020-09-30 2023-10-26 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド 耐高温バインダ
CN116082020B (zh) * 2022-11-21 2023-10-13 景德镇陶瓷大学 一种Si3N4纤维涂层表面改性氧化铝基蜂窝陶瓷的低温原位制备方法及其制得的产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299454A (ja) * 1997-04-30 1998-11-10 Matsushita Electric Ind Co Ltd 排ガスフィルタ及びその製造方法、それに用いる排ガスフィルタ用封止材
WO2005030364A1 (ja) * 2003-09-29 2005-04-07 Hitachi Metals, Ltd. セラミックハニカムフィルタ及びその製造方法、並びにセラミックハニカムフィルタ用目封止材
WO2007097000A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2011090015A1 (ja) * 2010-01-19 2011-07-28 住友化学株式会社 ハニカム構造体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9207380D0 (en) * 1992-04-03 1992-05-13 Ici Plc Compounds
JP4771195B2 (ja) * 2003-09-29 2011-09-14 日立金属株式会社 セラミックハニカムフィルタ及びその製造方法、セラミックハニカムフィルタ用目封止材
US20060272306A1 (en) * 2005-06-01 2006-12-07 Kirk Brian S Ceramic wall flow filter manufacture
US20060280905A1 (en) * 2005-06-14 2006-12-14 Ngk Insulators, Ltd. Honeycomb structure
DE102005045666A1 (de) * 2005-09-14 2007-03-15 Itn Nanovation Gmbh Schicht oder Beschichtung sowie Zusammensetzung zu ihrer Herstellung
JP2007105622A (ja) * 2005-10-13 2007-04-26 Ohcera Co Ltd 排ガス浄化ハニカムフィルタ及びその製造方法
CN101330961A (zh) * 2005-12-16 2008-12-24 康宁股份有限公司 低压降的涂覆的柴油机废气过滤器
JP5313694B2 (ja) * 2007-01-18 2013-10-09 日本碍子株式会社 目封止ハニカム構造体の製造方法
EP2176188B1 (en) * 2007-07-31 2020-09-02 Corning Incorporated Methods for manufacturing porous ceramic filters and compositions for applying to ceramic honeycomb bodies
WO2010072971A1 (fr) * 2008-12-23 2010-07-01 Saint-Gobain Centre De Recherches Et D'etudes Europeen Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different
CN102740947A (zh) * 2009-12-21 2012-10-17 美商绩优图科技股份有限公司 经纤维强化的多孔性基材
FR2957529B1 (fr) * 2010-03-19 2012-04-06 Saint Gobain Ct Recherches Structure filtrante comprenant un materiau de bouchage ameliore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299454A (ja) * 1997-04-30 1998-11-10 Matsushita Electric Ind Co Ltd 排ガスフィルタ及びその製造方法、それに用いる排ガスフィルタ用封止材
WO2005030364A1 (ja) * 2003-09-29 2005-04-07 Hitachi Metals, Ltd. セラミックハニカムフィルタ及びその製造方法、並びにセラミックハニカムフィルタ用目封止材
WO2007097000A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2011090015A1 (ja) * 2010-01-19 2011-07-28 住友化学株式会社 ハニカム構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634163A4

Also Published As

Publication number Publication date
JP2012106913A (ja) 2012-06-07
EP2634163A1 (en) 2013-09-04
US20130207323A1 (en) 2013-08-15
EP2634163A4 (en) 2014-04-16
JP5785471B2 (ja) 2015-09-30
KR20140000696A (ko) 2014-01-03
CN103153914A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5552061B2 (ja) 安定化された低微小亀裂セラミックハニカムおよびその方法
EP1483221B1 (en) Strontium feldspar aluminum titanate for high temperature applications
EP2254678B1 (en) Honeycomb manufacturing method using ground nut shells
JP5890548B2 (ja) コージエライト形成バッチ組成物およびそれから製造されたコージエライト体
WO2011115181A1 (ja) ハニカム構造体の製造方法及びハニカム構造体、並びにパティキュレートフィルタ
US10493394B2 (en) Porous material, method for manufacturing porous material, and honeycomb structure
JP4965734B1 (ja) グリーン成形体及びハニカム構造体の製造方法
KR101971331B1 (ko) 알루미늄 티타네이트 조성물, 이를 포함하는 세라믹 제품, 및 이의 제조방법
JP2010522106A (ja) セラミック・フィルタのための低収縮率施栓用混合物、栓を施されたハニカム・フィルタおよびその製造方法
JP2013100221A (ja) 4ウエイ排気ガス処理のための高多孔度フィルタ
JP5785471B2 (ja) 封口材及びセラミックスハニカム焼成体の製造方法
JP5293608B2 (ja) セラミックハニカム構造体及びその製造方法
JP2013522020A (ja) 閉塞材料を有するフィルター材料
WO2013125713A1 (ja) ハニカム構造体
MX2011010000A (es) Metodo y substrato para curar una estructura de panal.
JP2011068517A (ja) セラミックス焼成体の製造方法
WO2012014684A1 (ja) グリーン成形体
JP2018034112A (ja) ハニカムフィルタ
WO2009122536A1 (ja) ハニカム構造体の製造方法
WO2017033774A1 (ja) ハニカムフィルタの製造方法
WO2009122537A1 (ja) ハニカム構造体の製造方法
US20230159398A1 (en) Cement mixtures for plugging multicellular filter bodies and methods of making the same
WO2012014683A1 (ja) ハニカム構造体
JP2011241116A (ja) チタン酸アルミニウム焼結体の製造方法及びチタン酸アルミニウム焼結体
JP2013146687A (ja) ハニカム構造体の封口方法及びハニカムフィルタの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180051940.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836044

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011836044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011836044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13881297

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012662

Country of ref document: KR

Kind code of ref document: A