WO2012014683A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2012014683A1
WO2012014683A1 PCT/JP2011/066001 JP2011066001W WO2012014683A1 WO 2012014683 A1 WO2012014683 A1 WO 2012014683A1 JP 2011066001 W JP2011066001 W JP 2011066001W WO 2012014683 A1 WO2012014683 A1 WO 2012014683A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
powder
sealing material
sealing
columnar body
Prior art date
Application number
PCT/JP2011/066001
Other languages
English (en)
French (fr)
Inventor
康輔 魚江
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012014683A1 publication Critical patent/WO2012014683A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to a honeycomb structure.
  • a honeycomb made of porous ceramics is used as a ceramic filter (DPF: Diesel Particulate Filter) for collecting fine particles such as carbon particles contained in exhaust gas discharged from an internal combustion engine such as a diesel engine.
  • DPF Diesel Particulate Filter
  • a structure is used (see Patent Document 1 below).
  • the honeycomb structure for DPF is usually a columnar body.
  • the columnar honeycomb structure is formed with a plurality of through holes penetrating between the opposing end faces.
  • On one end surface (first end surface) of the honeycomb structure the end portions of the open through holes and the end portions of the through holes closed by the sealing portions are alternately arranged in a lattice pattern.
  • the through hole whose end is open on the first end surface is closed with a sealing portion on the second end surface opposite to the first end surface. Further, the through hole whose end is closed by the sealing portion on the first end surface is open on the second end surface. Therefore, also on the second end surface, the end portions of the open through holes and the end portions of the through holes closed by the sealing portions are alternately arranged in a lattice pattern.
  • the raw columnar body is fired, and one end of the through hole of the fired columnar body is closed with the raw sealing material.
  • a process hereinafter referred to as “sealing process”.
  • the process of forming a sealing part by sintering a raw sealing material by baking again the columnar body after a sealing process is also needed.
  • the sealing material a material containing the same raw material powder as that of the columnar body at the same blending ratio has been used.
  • the degree of sintering shrinkage of the sealing portion is large, or the shrinkage rate of the sealing portion and the partition wall is greatly different.
  • the portion and the partition wall of the through hole were not sufficiently sintered.
  • a gap is formed between the sealing portion and the partition wall, or the sealing portion is dropped from the through hole.
  • cracks are generated in the honeycomb structure starting from the gap due to vibration (regeneration by thermal shock) caused by vibrations or PM (Particulate Matter) combustion during traveling of the diesel vehicle. Such defects will occur. Defects such as cracks and dropout of the sealing portion reduce the capture rate of fine particles by the honeycomb structure.
  • the present invention has been made in view of such problems of the prior art, and an object thereof is to provide a honeycomb structure capable of suppressing the occurrence of defects.
  • one aspect of the honeycomb structure of the present invention includes a honeycomb columnar body in which a plurality of through holes substantially parallel to each other are formed and having partition walls separating the plurality of through holes, and A sealing portion that closes one end portion, and some of the plurality of through holes are sealed at the first end surface of the first end surface and the second end surface of the columnar body substantially orthogonal to the through hole. Closed at the second end face, and the other through-holes are closed at the second end face by the sealing portion and open at the first end face, and the columnar body and the sealing portion are made of porous ceramics.
  • the ceramic is aluminum titanate-based ceramics and / or cordierite-based ceramics, and the partition wall and the sealing portion are integrated.
  • FIG.1 (a) is a perspective view of the green molded object which concerns on one Embodiment of this invention
  • FIG.1 (b) is a front view of the 1st end surface of the columnar body of Fig.1 (a).
  • Fig.2 (a) is a perspective view of the honeycomb structure formed by baking the green molded body shown to Fig.1 (a) and 1 (b)
  • FIG.2 (b) is FIG.2 (a).
  • It is a front view of the 1st end surface of this honeycomb structure.
  • Fig. 3 (a) is a photograph of the first end face of the honeycomb structure of Example 1 taken with a scanning electron microscope (SEM), and
  • Fig. 3 (b) is an enlarged photograph of Fig. 3 (a).
  • FIG. 3C is an enlarged photograph of FIG.
  • the honeycomb structure 200 of the present embodiment shown in FIGS. 2 (a) and 2 (b) is obtained by firing a green molded body 100 shown in FIGS. 1 (a) and 1 (b).
  • a green molded object means the raw molded object before baking.
  • the green molded body 100 is a cylindrical body (columnar body 70) having a honeycomb structure.
  • the columnar body 70 has a plurality of partition walls 70c that are parallel to a central axis (a straight line that is perpendicular to the circular cross section of the columnar body 70 and passes through the center of the circular cross section) and orthogonal to each other. That is, the columnar body 70 has a lattice structure in a cross section perpendicular to the central axis direction.
  • the columnar body 70 is formed with a large number of through holes 70a (flow passages) extending in the same direction (center axis direction), and the partition walls 70c separate the through holes 70a.
  • Each through hole 70 a is perpendicular to both end faces of the columnar body 70.
  • the angle formed by the plurality of partition walls 70c included in the columnar body 70 is not particularly limited, and may be 90 ° or 120 ° as shown in FIG.
  • Some of the plurality of through holes 70a are closed with a sealing material 70b on the first end surface orthogonal to the through holes.
  • the end portions of the through holes 70a closed by the sealing material 70b and the end portions of the open through holes 70a are alternately arranged in a lattice pattern.
  • the through-hole 70a closed with the sealing material 70b on the first end surface is open on the second end surface opposite to the first end surface.
  • the through-hole 70a opened on the first end surface is closed with a sealing material 70b on the second end surface (not shown). Therefore, also on the second end face, the end portions of the through holes 70a closed by the sealing material 70b and the end portions of the open through holes 70a are alternately arranged in a lattice pattern. In this manner, the plurality of through holes 70a are closed with the sealing material 70b on either the first end surface or the second end surface.
  • the columnar body 70 is obtained by molding a raw material mixture prepared by mixing an inorganic compound source powder, a pore former, an organic binder, a solvent, and the like with a kneader or the like.
  • the inorganic compound source powder includes an aluminum titanate ceramic raw material powder.
  • the raw material powder of ceramics becomes a ceramic by firing.
  • the raw material powder of the aluminum titanate ceramic is, for example, a titanium source powder and an aluminum source powder.
  • the inorganic compound source powder may further include a magnesium source powder and a silicon source powder.
  • the raw material mixture may include the aluminum titanate ceramic itself. Thereby, the shrinkage rate of the columnar body 70 accompanying sintering is reduced.
  • the aluminum titanate ceramic is, for example, aluminum titanate or aluminum magnesium titanate.
  • the aluminum source is a compound that becomes an aluminum component constituting the aluminum titanate sintered body.
  • the aluminum source include alumina (aluminum oxide).
  • the crystal type of alumina include ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ -type, and may be indefinite (amorphous). Of these, ⁇ -type alumina is preferably used.
  • the aluminum source may be a compound that is led to alumina by firing alone in air.
  • Examples of such a compound include an aluminum salt, aluminum alkoxide, aluminum hydroxide, and metal aluminum.
  • the aluminum salt may be an inorganic salt with an inorganic acid or an organic salt with an organic acid.
  • the aluminum inorganic salt include aluminum nitrates such as aluminum nitrate and ammonium aluminum nitrate, and aluminum carbonates such as ammonium aluminum carbonate.
  • the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
  • aluminum alkoxide examples include aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide, and the like.
  • Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous).
  • Examples of the amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
  • an aluminum source only 1 type may be used and 2 or more types may be used together.
  • the aluminum source alumina is preferably used, and ⁇ -type alumina is more preferable.
  • the aluminum source may contain trace components derived from the raw materials or inevitably contained in the production process.
  • the particle size of the aluminum source powder is not particularly limited.
  • the particle diameter of the aluminum source powder corresponding to a volume-based cumulative percentage of 50% measured by laser diffraction method may be in the range of 20 to 60 ⁇ m. This particle diameter is also called D50 or average particle diameter. From the viewpoint of reducing shrinkage during firing, it is preferable to use an aluminum source powder having a D50 in the range of 30 to 60 ⁇ m.
  • An alumina sol or a silica sol described later can be added to the raw material mixture.
  • fine particles in the raw material mixture are adsorbed to each other, and the amount of particles having a particle diameter of 0.1 ⁇ m or less in the green molded body is reduced to the inorganic compound source powder (solid content 1) to 5 parts by weight with respect to 100 parts by weight, whereby the strength of the molded body after degreasing at 500 ° C. can be made 0.2 kgf or more, for example.
  • the alumina sol is a colloid using fine particle alumina as a dispersoid and a liquid as a dispersion medium.
  • Alumina sol can be used alone as an aluminum source, but is preferably used in combination with other aluminum sources.
  • the dispersion medium of alumina sol is removed by evaporation or the like at the time of mixing or calcination, for example.
  • the dispersion medium for the alumina sol examples include aqueous solutions and various organic solvents such as aqueous hydrochloric acid, aqueous acetic acid, aqueous nitric acid, alcohol, xylene, toluene, and methyl isobutyl ketone.
  • a colloidal alumina sol having an average particle diameter of 1 to 100 nm is preferably used.
  • Examples of commercially available alumina sol include “Alumina sol 100”, “Alumina sol 200”, “Alumina sol 520” manufactured by Nissan Chemical Industries, Ltd., “NanoTekAl 2 O 3 ” manufactured by CI Kasei. Among these, it is preferable to use “Alumina sol 200" manufactured by Nissan Chemical Industries.
  • the alumina sol can be used in an amount of 0 to 10 parts by weight, preferably 0 to 5 parts by weight, based on 100 parts by weight of the inorganic compound source powder (solid content). Two or more kinds of alumina sols may be mixed and used.
  • the titanium source is a compound that becomes a titanium component constituting the aluminum titanate sintered body, and examples of such a compound include titanium oxide.
  • examples of titanium oxide include titanium (IV) oxide, titanium (III) oxide, and titanium (II) oxide.
  • titanium (IV) oxide is preferably used.
  • Examples of the crystal form of titanium (IV) oxide include anatase type, rutile type, brookite type and the like, and may be indefinite (amorphous). More preferred is anatase type or rutile type titanium (IV) oxide.
  • the titanium source may be a compound that is led to titania (titanium oxide) by firing alone in air.
  • titania titanium oxide
  • examples of such compounds include titanium salts, titanium alkoxides, titanium hydroxide, titanium nitride, titanium sulfide, titanium metal and the like.
  • titanium salts include titanium trichloride, titanium tetrachloride, titanium sulfide (IV), titanium sulfide (VI), and titanium sulfate (IV).
  • titanium alkoxide include titanium (IV) ethoxide, titanium (IV) methoxide, titanium (IV) t-butoxide, titanium (IV) isobutoxide, titanium (IV) n-propoxide, titanium (IV) tetraiso Examples thereof include propoxide and chelates thereof.
  • titanium source only 1 type may be used and 2 or more types may be used together.
  • titanium oxide is preferably used as the titanium source, and more preferably titanium (IV) oxide.
  • a titanium source can contain the trace component contained unavoidable in the raw material origin or manufacturing process.
  • the particle size of the titanium source powder is not particularly limited.
  • the particle diameter (D50) of the titanium source powder corresponding to a volume-based cumulative percentage of 50% as measured by a laser diffraction method may be in the range of 0.5 to 25 ⁇ m.
  • the D50 of the titanium source powder is preferably in the range of 1 to 20 ⁇ m.
  • the titanium source powder may show a bimodal particle size distribution. When using a titanium source powder showing such a bimodal particle size distribution, the particle size distribution measured by the laser diffraction method is used. It is preferable that the particle diameter of the peak with the larger particle diameter is in the range of 20 to 50 ⁇ m.
  • the mode diameter of the titanium source powder measured by the laser diffraction method is not particularly limited, but may be in the range of 0.3 to 60 ⁇ m.
  • the raw material mixture may contain a magnesium source.
  • the honeycomb structure 200 manufactured from the green molded body 100 containing a magnesium source is a sintered body of aluminum magnesium titanate crystals.
  • magnesium source examples include magnesia (magnesium oxide) and a compound that is led to magnesia by firing alone in air.
  • magnesia magnesium oxide
  • a compound that is led to magnesia by firing alone in air examples include magnesium salt, magnesium alkoxide, magnesium hydroxide, magnesium nitride, metal magnesium and the like.
  • magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, magnesium stearate, Examples include magnesium salicylate, magnesium myristate, magnesium gluconate, magnesium dimethacrylate, and magnesium benzoate.
  • magnesium alkoxide examples include magnesium methoxide and magnesium ethoxide.
  • a magnesium source can contain the trace component contained unavoidable in the raw material origin or manufacturing process.
  • magnesium source a compound serving both as a magnesium source and an aluminum source can also be used.
  • An example of such a compound is magnesia spinel (MgAl 2 O 4 ).
  • magnesium source only 1 type may be used and 2 or more types may be used together.
  • the particle size of the magnesium source powder is not particularly limited.
  • the particle diameter (D50) of the magnesium source powder corresponding to a volume-based cumulative percentage of 50% measured by laser diffraction may be in the range of 0.5 to 30 ⁇ m. From the viewpoint of reducing shrinkage during firing, it is preferable to use a magnesium source powder having a D50 in the range of 3 to 20 ⁇ m.
  • the molar amount of the magnesium source in terms of MgO (magnesia) in the green molded body is based on the total molar amount of the aluminum source in terms of Al 2 O 3 (alumina) and the titanium source in terms of TiO 2 (titania). 0.03-0.15 is preferable, and 0.03-0.12 is more preferable. By adjusting the content of the magnesium source within this range, an aluminum titanate sintered body having a large pore diameter and an open porosity with improved heat resistance can be obtained relatively easily.
  • the raw material mixture may further contain a silicon source.
  • the silicon source is a compound that becomes a silicon component and is contained in the aluminum titanate sintered body. By using the silicon source in combination, it becomes possible to obtain an aluminum titanate sintered body with improved heat resistance.
  • Examples of the silicon source include silicon oxides (silica) such as silicon dioxide and silicon monoxide.
  • the silicon source may be a compound that is led to silica by firing alone in air.
  • examples of such compounds include silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, feldspar, and glass frit.
  • feldspar, glass frit and the like are preferably used, and glass frit and the like are more preferably used in terms of industrial availability and stable composition.
  • Glass frit means flakes or powdery glass obtained by pulverizing glass.
  • As the silicon source a powder made of a mixture of feldspar and glass frit can also be used.
  • the silicon source is glass frit
  • the yield point of the glass frit is defined as a temperature (° C.) at which the expansion of the glass frit is measured from a low temperature by using a thermomechanical analyzer (TMA: Thermo Mechanical Analysis), and then the expansion stops.
  • a general silicate glass containing silicate (SiO 2 ) as a main component (0% by weight or more in all components) can be used.
  • the glass constituting the glass frit includes other components such as alumina (Al 2 O 3 ), sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide ( CaO), magnesia (MgO) and the like may be included.
  • the glass constituting the glass frit may contain ZrO 2 in order to improve the hot water resistance of the glass itself.
  • silicon source only 1 type may be used and 2 or more types may be used together.
  • the particle size of the silicon source powder is not particularly limited.
  • the particle diameter (D50) of the silicon source corresponding to a volume-based cumulative percentage of 50% measured by laser diffraction method may be in the range of 0.5 to 30 ⁇ m.
  • the D50 of the silicon source is in the range of 1 to 20 ⁇ m.
  • the content of the silicon source in the raw material mixture is 100 parts by weight of the total amount of the aluminum source in terms of Al 2 O 3 (alumina) and the titanium source in terms of TiO 2 (titania).
  • the content of the silicon source in the raw material mixture is more preferably 2% by weight or more and 5% by weight or less in the inorganic compound source contained in the raw material mixture.
  • the silicon source may contain trace components that are derived from the raw materials or inevitably contained in the production process.
  • a composite oxide such as magnesia spinel (MgAl 2 O 4 )
  • a compound containing two or more metal elements among titanium, aluminum, silicon, and magnesium can be used as a raw material.
  • alumina sol and / or silica sol is added to the raw material mixture. It is preferable to mix.
  • Silica sol is a colloid using fine particle silica as a dispersoid and liquid as a dispersion medium.
  • the silica sol can be used alone as a silicon source, but is preferably used in combination with other silica sources.
  • the dispersion medium of silica nasol is removed by evaporation or the like at the time of mixing or calcination, for example.
  • silica sol dispersion medium examples include aqueous solutions and various organic solvents such as an aqueous ammonia solution, alcohol, xylene, toluene, and triglyceride.
  • a colloidal silica sol having an average particle diameter of 1 to 100 nm is preferably used.
  • silica sol examples include “Snowtex 20, 30, 40, 50, N, O, S, C, 20L, OL, XS, XL, YL, ZL, QAS-40, LSS manufactured by Nissan Chemical Industries, Ltd. -35, LSS-45 "," Adelite AT-20, AT-30, AT-40, AT-50, AT-20N, AT-20A, AT-30A, AT-20Q, AT-300, manufactured by Asahi Denka Co., Ltd. “AT-300Q”, “Cataloid S-20L, S-20H, S-30L, S-30H, SI-30, SI-40, SI-50, SI-350, SI-500, SI-manufactured by Catalyst Kasei Kogyo Co., Ltd.
  • the content of the silica sol in the raw material mixture may be 0 to 10 parts by weight, preferably 0 to 5 parts by weight, based on 100 parts by weight of the inorganic compound source powder (solid content). Two or more kinds of silica sols may be mixed and used.
  • Organic binder a water-soluble organic binder is preferable.
  • the water-soluble organic binder include celluloses such as methylcellulose, hydroxypropylmethylcellulose, and hydroxyethylmethylcellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate.
  • the amount of the organic binder is usually 20 parts by weight or less, preferably 15 parts by weight or less, more preferably 6 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
  • the lower limit amount of the organic binder is usually 0.1 parts by weight, preferably 3 parts by weight.
  • solvent for example, alcohols such as methanol, ethanol, butanol and propanol, glycols such as propylene glycol, polypropylene glycol and ethylene glycol, and polar solvents such as water can be used. Of these, water is preferable, and ion-exchanged water is more preferably used from the viewpoint of few impurities.
  • the amount of the solvent used is usually 10 to 100 parts by weight, preferably 20 to 80 parts by weight, based on 100 parts by weight of the inorganic compound source powder.
  • a nonpolar solvent may be used as the solvent.
  • the raw material mixture can contain an organic additive other than the organic binder.
  • organic additives are, for example, pore formers, lubricants and plasticizers, and dispersants.
  • the pore-forming agent examples include carbon materials such as graphite, resins such as polyethylene, polypropylene, and polymethyl methacrylate, plant materials such as starch, nut shells, walnut shells, and corn, ice, and dry ice.
  • the amount of pore-forming agent added is usually 0 to 40 parts by weight, preferably 0 to 25 parts by weight, based on 100 parts by weight of the inorganic compound source powder.
  • the pore former disappears when the green molded body is fired. Therefore, in the aluminum titanate sintered body, micropores are formed at locations where the pore-forming agent was present.
  • Lubricants and plasticizers include alcohols such as glycerin, caprylic acid, lauric acid, palmitic acid, higher fatty acids such as alginate, oleic acid and stearic acid, and stearic acid metal salts such as Al stearate.
  • the addition amount of the lubricant and the plasticizer is usually 0 to 10 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
  • the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid, alcohols such as methanol, ethanol and propanol, ammonium polycarboxylate, Surfactants such as oxyalkylene alkyl ethers are listed.
  • the amount of the dispersant added is usually 0 to 20 parts by weight, preferably 2 to 8 parts by weight, based on 100 parts by weight of the inorganic compound source powder.
  • the sealing material 70b shown in FIG. 1b includes an aluminum titanate ceramic.
  • the ceramic is, for example, aluminum titanate ceramic powder or particles.
  • the sealing material 70b contains said pore making material, an organic binder, a solvent, etc. similarly to the columnar body 70. FIG.
  • a pasty sealing material 70b is obtained.
  • ceramic powder obtained by pulverizing ceramic scraps or damaged honeycomb structure obtained in the manufacturing process of the honeycomb structure may be reused as ceramic powder for the sealing material 70b. Thereby, the raw material cost of the honeycomb structure is reduced.
  • the sealing material 70b may or may not include a raw material powder (inorganic compound source powder) of an aluminum titanate ceramic.
  • the sealing material 70b contains ceramic powder and does not contain ceramic raw material powder.
  • the average particle size of the ceramic powder is not particularly limited, but may be about 5 to 50 ⁇ m.
  • the shrinkage rate of the columnar body 70 accompanying the sintering is preferably equal to or higher than the shrinkage rate of the sealing material 70b. That is, as R1 becomes larger than R2, the through hole 70a contracts relative to the sealing material 70b. As a result, the adhesion and sinterability between the partition wall 70c of the through hole 70a and the sealing material 70b in the firing step are easily improved.
  • the shrinkage ratio Rc1 during sintering of the sealing material 70b is preferably 80 to 100% with respect to the shrinkage ratio Rc2 during sintering of the partition wall 70c.
  • Rc1 may be calculated from the following formula (1), for example.
  • Rc2 may be calculated from the following formula (2), for example.
  • the shrinkage rates of the sealing material 70b and the partition wall 70c may be measured at a plurality of locations according to the number of cells of the green molded body 100, and the measured values may be averaged.
  • Rc1 (S1-S2) / S1 (1)
  • Rc2 (T1-T2) / T1 (2)
  • S1 is the size of the sealing material 70b filled in the end portion of the through hole 70a of the columnar body 70.
  • S1 is the dimension of the sealing material 70b in the direction perpendicular to the wall surface of the partition wall 70c. Therefore, S1 is substantially equal to the inner diameter of the through hole 70a before the firing step.
  • S2 is the size of the sealing portion 170b (sealing material 70b after the firing step) that closes the through hole 70a of the honeycomb structure 200 obtained after the firing step. In other words, S2 is the dimension of the sealing portion 170b in the direction perpendicular to the wall surface of the partition wall 70c after firing.
  • T1 is the thickness of the partition 70c of the green molded object 100 before a baking process.
  • T2 is the thickness of the partition wall 170c of the honeycomb structure 200 obtained after the firing step.
  • S1, S2, T1, and T2 may be measured by the following method, for example. First, a sample for measurement is arbitrarily cut out from the end face side of the green molded body 100 before the firing step. This sample includes a cell (through hole 70a), a partition wall 70c surrounding the cell, and a sealing portion 170b for closing the cell. In this sample, two opposing portions of the partition wall 70a surrounding the cell are peeled off. Next, the thickness of the partition wall 70c remaining in the sample is measured as T1.
  • the maximum diameter of the sealing portion 170b in the direction perpendicular to the wall surface of the partition wall 70c is measured as S1.
  • S1 and T1 the sample is baked.
  • the thickness of the partition wall 70c after firing is measured as T2.
  • the maximum diameter of the sealing portion 170b (sealing material 70b after firing) in the direction perpendicular to the wall surface of the partition wall 70c is measured as S2.
  • an optical microscope manufactured by Keyence Corporation, VHX-1000 digital microscope
  • the ceramic content in the sealing material 70b may be higher than the ceramic and raw material powder content in the columnar body 70 (partition wall 70c).
  • the mass of the ceramic in the sealing material 70b is preferably about 60 to 100 parts by mass, more preferably about 75 to 95 parts by mass when the entire sealing material 70b is 100 parts by mass. preferable. What is necessary is just to adjust the content rate of the ceramic in the columnar body 70 (partition 70c) to a value smaller than this numerical range suitably according to desired Rc2.
  • the mass of the ceramic powder in the columnar body 70 is about 1 to 10 parts by mass when the total of the ceramic powder, raw material powder, and pore former contained in the entire columnar body 70 is 100 parts by mass. preferable.
  • the content of ceramics in the sealing material 70b is too small, Rc1 becomes too large, the adhesion / sinterability between the sealing portion 170 and the partition wall 70c is lowered, and the sealing portion 170b and the partition wall 70c of the honeycomb structure 200 are reduced. There tends to be a gap between
  • the content of the ceramic raw material powder in the sealing material 70b may be made lower than that of the columnar body 70 (partition wall 70c).
  • the content of the ceramic raw material powder in the sealing material 70b is preferably 0 to 40 parts by mass with respect to 100 parts by mass in total of the ceramic raw material powder, the ceramic powder, and the pore former. What is necessary is just to adjust the content rate of the raw material powder of the ceramic in the columnar body 70 (partition 70c) to a value larger than this numerical range suitably according to desired Rc2.
  • the mass of the raw material powder in the columnar body 70 is about 70 to 90 parts by mass when the total of the ceramic powder, the raw material powder, and the pore former contained in the entire columnar body 70 is 100 parts by mass.
  • the content of the ceramic raw material powder in the sealing material 70b is too large, Rc1 becomes too large, and the adhesion between the sealing portion 170b and the partition wall 70c tends to decrease.
  • the content of the pore-forming agent in the sealing material 70b may be made smaller than that of the columnar body 70 (partition wall 70c).
  • the content of the pore former in the sealing material 70b is preferably 0 to 6 parts by mass with respect to 100 parts by mass in total of the ceramic raw material powder, the ceramic powder, and the pore former. What is necessary is just to adjust the content rate of the pore making material in the columnar body 70 (partition 70c) to a value larger than this numerical range suitably according to desired Rc2.
  • the pore-forming agent in the sealing material 70b When the content of the pore-forming agent in the sealing material 70b is too small, Rc2 becomes too larger than Rc1, and the partition wall 70c compresses the sealing portion 70b, and the partition wall 70 tends to be deformed.
  • Rc1 When the content of the pore-forming agent in the sealing material 70b is too large, Rc1 becomes too large, and the adhesion / sinterability between the sealing portion 170b and the partition wall 70c tends to decrease.
  • the pore-forming agent functions as a cushioning material for forming pores and matching the shrinkage rates of the sealing material 70b and the partition wall 70c.
  • the mass Mc of the ceramic powder contained in the sealing material 70b is preferably 80 to 100 parts by mass. 90 to 100 parts by mass is more preferable. Thereby, the shrinkage rate at the time of sintering of the sealing material 70b and the columnar body 70 coincides, and the sinterability of the sealing material 70b and the partition wall 70c is easily improved.
  • Mc is too small, the mass of the pore former in the sealing material 70b is large.
  • the shrinkage rate at the time of sintering the sealing material 70b becomes larger than the shrinkage rate of the green molded body 100, and there is a tendency that a gap is generated between the sealed sealing portion 170b and the partition wall 70c.
  • the sealing material 70b is a viscous liquid.
  • the mass of the binder in the sealing material 70b is 0.3-3 parts by mass, and the lubricant.
  • the mass is preferably 3 to 20 parts by mass, and the viscosity of the sealing material 70b is preferably 20 to 200 Pa ⁇ s.
  • ⁇ Honeycomb structure> By firing the green molded body 100, the ceramic powder and the ceramic raw material powder included in the columnar body 70 and the sealing portion 70b are sintered. The sealing material 70b is sintered and integrated with the partition wall 70c to form the sealing portion 170b. As a result, as shown in FIGS. 2 (a) and 2 (b), a honeycomb structure 200 (multi-cell ceramic monolith) made of porous aluminum titanate-based ceramics is obtained. In addition to the crystal pattern of aluminum titanate (Al 2 TiO 5 ) or aluminum magnesium titanate (Al 2 (1-x) Mg x Ti (1 + x) O 5 ) in the X-ray diffraction spectrum, the honeycomb structure 200 is alumina. In addition, a crystal pattern such as titania may be included. The honeycomb structure 200 may contain silicon. The honeycomb structure 200 has the same structure as the green molded body 100 and is suitable for the DPF.
  • DPF made of aluminum magnesium titanate sintered body has an extremely small coefficient of thermal expansion, a high melting point, and excellent thermal shock resistance during reproduction, compared to DPF made of SiC, cordierite or aluminum titanate alone. It is excellent in that the limit accumulation amount of soot is large.
  • a platinum-based metal catalyst supported on a carrier such as alumina or a promoter such as ceria or zirconia may be adhered to the partition wall surface of the honeycomb structure 200 for DPF.
  • the aluminum content in the aluminum titanate-based ceramics is not particularly limited, but is, for example, 40 to 60 mol% in terms of aluminum oxide.
  • the content of titanium in the aluminum titanate ceramic is not particularly limited, but is, for example, 35 to 55 mol% in terms of titanium oxide.
  • the magnesium content in the aluminum titanate-based ceramics is preferably 1 to 5% by mass in terms of magnesium oxide.
  • the silicon content in the aluminum titanate ceramic is preferably 2 to 5% by mass in terms of silicon oxide.
  • the aluminum titanate-based ceramics can contain components derived from raw materials or trace components that are inevitably mixed into work-in-process in the manufacturing process.
  • the inner diameter (the length of one side of the square) of the cross section perpendicular to the longitudinal direction of the through hole 70a is not particularly limited, but is, for example, 0.8 to 2.5 mm.
  • the length of the honeycomb structure 200 in the direction in which the through hole 70a extends is not particularly limited, but is, for example, 40 to 350 mm.
  • the outer diameter of the honeycomb structure 200 is not particularly limited, but is, for example, 10 to 320 mm.
  • the length of the sealing portion 170b in the direction in which the through hole 70a extends is not particularly limited, but is, for example, 1 to 20 mm.
  • the number (cell density) of the through holes 70a opened in the end face of the honeycomb structure 200 is not particularly limited, but is, for example, 150 to 450 cpsi.
  • the unit of cpsi means “/ inch 2 ” and is equal to “/(0.0254m) 2 ”.
  • the thickness of the partition wall of the through hole 70a is not particularly limited, but is, for example, 0.15 to 0.76 mm.
  • the effective porosity of the honeycomb structure 200 is about 30 to 60% by volume.
  • the average diameter of the pores formed in the honeycomb structure 200 is about 1 to 20 ⁇ m.
  • the pore size distribution (D 90 -D 10 ) / D 50 is less than about 0.5.
  • D 10 , D 50 , and D 90 are pore diameters when the cumulative pore volume is 10%, 50%, and 90% of the total pore volume, respectively.
  • the through hole 70a of the raw (unsintered) columnar body 70 is already closed with the raw sealing material 70b (sealing portion 170b before sintering). Therefore, the sintering of the partition wall 70c and the sealing material 70b proceeds substantially simultaneously only by firing the green molded body 100 once.
  • the partition walls 170c and the sealing portions 170b are sintered, and both are integrated. That is, the interface existing between the partition walls 70c and the sealing material 70b of the green molded body 100 before firing is eliminated in the honeycomb structure 200 after firing.
  • the raw material powder in the partition wall 70c before firing and the ceramics in the sealing material 70b are sintered to form ceramic crystal particles.
  • the structure of the partition wall 170c of the honeycomb structure 200, the sealing portion 170b, and the structure structure is almost integrated so that identification is not easy.
  • the texture structure is, for example, the composition and shape of ceramic crystal particles and the shape of pores formed between the crystal particles.
  • a raw material mixture is prepared by mixing an inorganic compound source powder, a pore former, an organic binder, a solvent, and the like with a kneader or the like.
  • the columnar body 70 is formed by molding the raw material mixture using an extruder having a die having a grid-like opening. In addition, you may knead
  • the sealing material 70b is prepared by the same method as that for the raw material mixture for the columnar body 70 except that ceramic powder is contained and the mixing ratio of the components is adjusted.
  • the first mask is attached to the first end surface of the columnar body 70 where the plurality of through holes 70a are open.
  • a mask portion having substantially the same dimensions as the through hole 70a and a plurality of openings are arranged in a staggered manner.
  • a first mask is affixed to the first end surface of the columnar body 70 so that each through-hole 70a overlaps each mask portion and opening.
  • a second mask is attached to the second end surface of the columnar body 70 opposite to the first end surface. The arrangement relationship between the opening and the mask portion of the second mask is opposite to that of the first mask.
  • the through hole 70a closed by the mask portion of the first mask on the first end surface side overlaps the opening portion of the second mask on the second end surface side.
  • the through hole 70a closed by the mask portion of the second mask on the second end surface side overlaps with the opening portion of the first mask on the first end surface side. Therefore, all of the plurality of through holes 70a formed in the columnar body 70 are opened at one of the first end surface and the second end surface, and are closed by the mask portion at the other.
  • the sealing material 70b is introduced into the end of each through hole 70a that overlaps the opening of the first mask.
  • the entire columnar body 70 may be vibrated by a vibrator. As a result, the sealing material 70b is easily filled in the gaps at the ends of the through holes 70a.
  • the sealing step for the first end surface After the sealing step for the first end surface, the sealing step for the second end surface to which the second mask is attached is performed in the same manner as the sealing step for the first end surface. After performing the sealing step on both end faces, each mask is peeled off from each end face. Thereby, the green molded object 100 shown to FIG. 1 (a), 1 (b) is completed.
  • a honeycomb structure 200 shown in FIGS. 2A and 2B can be obtained by calcining (degreasing) and firing the green molded body 100.
  • the honeycomb structure 200 substantially maintains the shape of the green molded body 100 immediately after extrusion molding.
  • the sintering of the partition wall 70c and the sealing material 70b proceeds almost simultaneously by one firing of the green molded body 100, and the honeycomb structure 200 is completed, so that the conventional firing process requires two firing steps.
  • Productivity is improved as compared with the manufacturing method.
  • Calcination is a process for removing the organic binder in the green molded body 100 and organic additives blended as necessary by burning, decomposition, or the like.
  • a typical calcination step corresponds to an initial stage of the firing process, that is, a temperature raising stage (for example, a temperature range of 300 to 900 ° C.) until the green molded body 100 reaches the firing temperature.
  • a temperature raising stage for example, a temperature range of 300 to 900 ° C.
  • the firing temperature of the green molded body 100 is usually 1300 ° C. or higher, preferably 1400 ° C. or higher.
  • the firing temperature is usually 1650 ° C. or lower, preferably 1550 ° C. or lower.
  • the rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 ° C./hour to 500 ° C./hour.
  • Firing is usually performed in the atmosphere, but depending on the type and usage ratio of the raw material powder used, that is, aluminum source powder, titanium source powder, magnesium source powder and silicon source powder, an inert gas such as nitrogen gas or argon gas.
  • the firing may be performed in a reducing gas such as carbon monoxide gas or hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • Calcination is usually performed using a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, a rotary furnace, or a roller hearth furnace. Firing may be performed batchwise or continuously. Moreover, you may carry out by a stationary type and may carry out by a fluid type.
  • a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, a rotary furnace, or a roller hearth furnace.
  • Firing may be performed batchwise or continuously.
  • you may carry out by a stationary type and may carry out by a fluid type.
  • the time required for firing is sufficient as long as the green molded body 100 transitions to the aluminum titanate-based crystal, and varies depending on the amount of the green molded body 100, the type of firing furnace, the firing temperature, the firing atmosphere, and the like. Usually, it is 10 minutes to 24 hours.
  • the green molded body 100 may be calcined and fired individually or continuously.
  • the green molded body 100 may be heated at a temperature equal to or higher than the thermal decomposition temperature of the organic binder and other organic additives and lower than the sintering temperature of the inorganic compound source powder.
  • the green molded body 100 after the calcination step may be heated at a temperature equal to or higher than the sintering temperature of the inorganic compound source powder.
  • the columnar body 70 and the sealing material 70b may include ceramics such as cordierite-based ceramics and silicon carbide instead of aluminum titanate-based ceramics. Further, the columnar body 70 and the sealing material 70b may include these ceramic raw material powders.
  • the raw material powder for cordierite-based ceramics the above-described aluminum source powder, silica source powder and magnesium source powder may be used.
  • the shape of the honeycomb structure 200 is not limited to a cylinder, and can take any shape depending on the application.
  • the shape of the honeycomb structure 200 may be a polygonal column, an elliptical column, or the like.
  • the use of the honeycomb structure is not limited to DPF.
  • the honeycomb structure includes an exhaust gas filter or catalyst carrier used for exhaust gas purification of an internal combustion engine such as a gasoline engine, a filter used for filtering food and drink such as beer, and gas components (for example, carbon monoxide, carbon dioxide, etc.) generated during petroleum refining. , Nitrogen, oxygen, etc.) can be suitably applied to ceramic filters such as a selective permeation filter.
  • ceramic filters such as a selective permeation filter.
  • aluminum titanate-based ceramics have a high pore volume and an open porosity, so that good filter performance can be maintained over a long period of time.
  • Example 1 Preparation of raw material mixture>
  • a raw material mixture containing a dispersant and water (solvent) was prepared. The content of main components in the raw material mixture was adjusted to the following values.
  • a sealing material 70b of Example 1 was prepared by mixing ceramic powder, a pore former, an organic binder, a lubricant, and a solvent.
  • the ceramic powder powder prepared by pulverizing scraps and defective products obtained in the manufacturing process of the honeycomb structure was reused.
  • This ceramic powder is a powder having a composite phase of aluminum magnesium titanate, alumina and aluminosilicate glass (composition formula at the time of preparation: 41.4 Al 2 O 3 -49.9 TiO 2 -5.4 MgO-3.3SiO 2 , The numerical value in the formula represents the molar ratio.).
  • the average particle size of the ceramic powder was adjusted to 22 ⁇ m.
  • pore-forming agent starch having an average particle size of 44 ⁇ m obtained from potato was used.
  • organic binder hydroxypropylmethylcellulose (manufactured by Samsung Precision Chemical Co., Ltd .: PMB-15UFF) was used. Glycerin was used as the lubricant. Water was used as the solvent. The compounding ratio of the ceramic powder, pore former, organic binder, lubricant and solvent in the sealing material was adjusted to the following values. The viscosity of the sealing material 70b immediately after preparation was 85.2 Pa ⁇ s.
  • Ceramic powder 97.0 parts by mass. Pore-forming agent: 3.0 parts by mass. Organic binder: 0.5 part by mass. Lubricant: 5.0 parts by mass. Solvent: 42.0 parts by mass.
  • ⁇ Baking process> The green molded body 100 was dried and fired at 1530 ° C. for 5 hours to obtain a honeycomb structure 200 of Example 1 made of a sintered body of aluminum magnesium titanate (FIGS. 2A and 2B). reference).
  • FIG. 3 (a), 3 (b), and 3 (c) show photographs of the first end face of the honeycomb structure of Example 1 taken with an SEM.
  • FIG. 3B is an enlarged photograph of a portion surrounded by a dotted line in FIG.
  • FIG.3 (c) is an enlarged photograph of the part enclosed with the broken line of FIG.3 (b).
  • a straight line connecting a pair of arrows shown in each of FIGS. 3B and 3C corresponds to a portion that is a boundary between the partition wall 70c and the sealing material 70b of the green molded body 200.
  • 3 (a), 3 (b), and 3 (c) the dark field portion is the through hole 70a, and the surrounding portion is the honeycomb structure 200 (the partition wall 170c and the sealing portion 170b).
  • the holes formed in the honeycomb structure 200 shown in FIGS. 3A, 3B, and 3C are not defects formed in the manufacturing process of the honeycomb structure 200, but the honeycomb structure 200. It is formed in the operation
  • both the partition walls 170c and the sealing portions 170b of the honeycomb structure 200 are porous bodies of aluminum magnesium titanate ceramics. It was confirmed that the partition wall 170c (70c) was hardly deformed before and after firing. It was confirmed that the corner portion of the sealing portion 170b has a rough structure as compared with the central portion. This is probably because the pasty sealing material 70b starts to dry first from the vicinity of the partition wall 70c when it is dried, and finally, only the central part becomes a low-viscosity paste, and the ceramic powder constituting the central part is agglomerated. It is thought to be caused.
  • the rough structure of the sealing portion 170b located in the vicinity of the partition wall 170c is used to match the shrinkage ratio between the columnar body 70 (partition wall 70c) and the sealing material 70b even if the columnar body 70 is sintered and greatly contracted in the firing process. It is thought that it has played a role as a buffer layer.
  • the structure of the sealing portion 170c is similar to the structure of the partition wall 170c so that it is difficult to distinguish at first glance. I could not confirm.
  • the partition wall 170c is obtained by changing the raw material mixture containing the ceramic raw material powder into aluminum magnesium titanate by reactive sintering. Therefore, it was confirmed that the partition wall 170c has a slightly finer skeleton structure than the sealing portion 170b formed from ceramic powder.
  • the sealing part 170 has a skeleton structure that is rounder than the partition wall 170c. Further, in the partition wall 170c, the alumina particles remained due to the stoichiometric surplus of alumina.
  • honeycomb structure according to one embodiment of the present invention is suitable for DPF and the like because it hardly causes defects.
  • 70 ... Columnar body before firing step 70a ... Through hole, 70b ... Sealing material, 70c ... Partition before firing step, 100 ... Green molded body, 170 ... Columnar body, 170b: sealing portion (sealing material after the firing step), 170c: partition walls, 200 ... honeycomb structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 欠陥の発生を抑制することができるハニカム構造体を提供する。本発明の一態様であるハニカム構造体200は、互いに略平行な複数の貫通孔70aが形成され、貫通孔70aを隔てる隔壁170cを有するハニカム状の柱状体170と、貫通孔70aの一方の端部を塞ぐ封口部170bと、を備え、一部の貫通孔70aは、貫通孔70aに略直交する柱状体170の第一端面において封口部170bで塞がれ、第二端面において開き、他の貫通孔70aは、第二端面において封口部170bで塞がれ、第一端面において開いており、柱状体170及び封口部170bがセラミックスを含み、セラミックスがチタン酸アルミニウム系セラミックス及び/又はコージェライト系セラミックスであり、隔壁170cと封口部170bとが一体化している。

Description

ハニカム構造体
 本発明は、ハニカム(honeycomb)構造体に関する。
 従来、ディーゼルエンジン(diesel engine)などの内燃機関から排出される排ガスに含まれるカーボン粒子等の微細粒子を捕集するためのセラミックスフィルター(DPF:Diesel Particulate Filter)として、多孔質のセラミックスからなるハニカム構造体が用いられている(下記特許文献1参照)。
特開2008-119663号公報
 DPF用のハニカム構造体は通常柱状体である。柱状のハニカム構造体には、その対向する端面間を貫通する複数の貫通孔が形成されている。ハニカム構造体の一方の端面(第一端面)では、開いた貫通孔の端部と封口部で塞がれた貫通孔の端部とが、格子状に交互に配置されている。第一端面において端部が開いている貫通孔は、第一端面と反対側の第二端面において封口部で塞がれている。また、第一端面において端部が封口部で塞がれている貫通孔は、第二端面において開いている。よって、第二端面においても、開いた貫通孔の端部と封口部で塞がれた貫通孔の端部とが、格子状に交互に配置されている。
 上記のように貫通孔が封口部で塞がれたハニカム構造体を製造するためには、生の柱状体を焼成する工程と、焼成した柱状体の貫通孔の一端を生の封口材で塞ぐ工程(以下、「封口工程」という。)が必要となる。さらに、封口工程後の柱状体を再び焼成することにより生の封口材を焼結させて封口部を形成する工程も必要となる。そして、従来、封口材としては、柱状体と同様の原料粉末を、同様の配合比で含有するものが用いられてきた。
 しかし、従来の製造方法では、封口工程後に2回目の焼成工程を実施しても、封口部の焼結収縮の程度が大きかったり、封口部と隔壁の収縮率が大きく相違したりする結果、封口部と貫通孔の隔壁とが十分に焼結しない場合があった。この場合、封口部と隔壁との間に隙間が形成されたり、封口部が貫通孔から脱落したりする。封口部と隔壁との間に隙間が形成された場合、ディーゼル車の走行に伴う振動やPM(Particulate Matter)の燃焼による再生(熱衝撃)によって、隙間を起点としてハニカム構造体にクラック(crack)等の欠陥が発生してしまう。クラックや封口部の脱落等の欠陥は、ハニカム構造体による微細粒子の捕捉率を低下させる。
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、欠陥の発生を抑制することができるハニカム構造体を提供することを目的とする。
 上記目的を達成するために、本発明のハニカム構造体の一態様は、互いに略平行な複数の貫通孔が形成され、複数の貫通孔を隔てる隔壁を有するハニカム状の柱状体と、貫通孔の一方の端部を塞ぐ封口部と、を備え、複数の貫通孔のうち一部の貫通孔は、貫通孔に略直交する柱状体の第一端面及び第二端面のうち第一端面において封口部で塞がれ、第二端面において開き、他の貫通孔は、第二端面において封口部で塞がれ、第一端面において開いており、柱状体及び封口部が多孔質のセラミックス(ceramics)を含み、セラミックスがチタン酸アルミニウム(aluminum titanate)系セラミックス及び/又はコージェライト(cordierite)系セラミックスであり、隔壁と封口部とが一体化している。
 上記本発明の一態様では、隔壁と封口部とが焼結し、一体化しているため、封口部と隔壁との間に隙間が形成されない。したがって、本発明では、ハニカム構造体における欠陥の発生を抑制することができる。
 本発明によれば、欠陥の発生を抑制することができるハニカム構造体を提供することが可能となる。
図1(a)は、本発明の一実施形態に係るグリーン成形体の斜視図であり、図1(b)は、図1(a)の柱状体の第一端面の正面図である。 図2(a)は、図1(a)及び1(b)に示すグリーン成形体を焼成することにより形成したハニカム構造体の斜視図であり、図2(b)は、図2(a)のハニカム構造体の第一端面の正面図である。 図3(a)は、走査型電子顕微鏡(SEM)で撮影した実施例1のハニカム構造体の第一端面の写真であり、図3(b)は図3(a)の拡大写真であり、図3(c)は図3(b)の拡大写真である。
 以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、同一又は同等の要素については同一の符号を付す。また、上下左右の位置関係は図面に示す通りであるが、寸法の比率は図面に示すものに限定されない。
 <グリーン成形体>
 図2(a),2(b)に示す本実施形態のハニカム構造体200は、図1(a)及び1(b)に示すグリーン(green)成形体100を焼成することにより得られる。なお、グリーン成形体とは、焼成される前の生の成形体を意味する。
 グリーン成形体100は、ハニカム構造を有する円柱体(柱状体70)である。柱状体70は、その中心軸(柱状体70の円形の断面に垂直であり、円形の断面の中心を通る直線)に平行であり、互いに直交する複数の隔壁70cを有する。つまり、柱状体70は、その中心軸方向に垂直な断面において格子構造を有する。換言すれば、柱状体70には、同一方向(中心軸方向)に延びる多数の貫通孔70a(流路)が形成されており、隔壁70cが各貫通孔70aを隔てる。各貫通孔70aは柱状体70の両端面に垂直である。なお、柱状体70が有する複数の隔壁70cが互いになす角は特に限定されず、図1(b)のように90°であってもよく、120°であってもよい。
 複数の貫通孔70aのうち一部の貫通孔は、貫通孔に直交する第一端面において封口材70bで塞がれている。第一端面では、封口材70bで塞がれた貫通孔70aの端部と開いた貫通孔70aの端部とが、格子状に交互に配置されている。第一端面において封口材70bで塞がれた貫通孔70aは、第一端面と反対側の第二端面において開いている。第一端面において開いている貫通孔70aは、第二端面において封口材70bで塞がれている(図示省略)。よって、第二端面においても、封口材70bで塞がれた貫通孔70aの端部と開いた貫通孔70aの端部とが、格子状に交互に配置されている。このように、複数の貫通孔70aは、第一端面又は第二端面のいずれか一方の面において封口材70bで塞がれている。
 (柱状体)
 柱状体70は、無機化合物源粉末、造孔剤、有機バインダ及び溶媒等を混練機等により混合して調製した原料混合物を成形することにより得られる。無機化合物源粉末は、チタン酸アルミニウム系セラミックスの原料粉末を含む。なお、セラミックスの原料粉末とは、焼成によりセラミックスになるものである。チタン酸アルミニウム系セラミックスの原料粉末とは、例えば、チタン源粉末及びアルミニウム源粉末である。無機化合物源粉末は、更にマグネシウム源粉末及びケイ素源粉末を含んでもよい。原料混合物は、チタン酸アルミニウム系セラミックスそのものを含んでもよい。これにより、焼結に伴う柱状体70の収縮率が低減される。なお、チタン酸アルミニウム系セラミックスとは、例えば、チタン酸アルミニウムやチタン酸アルミニウムマグネシウムである。
 [アルミニウム源]
 アルミニウム源は、チタン酸アルミニウム焼結体を構成するアルミニウム成分となる化合物である。アルミニウム源としては、例えば、アルミナ(酸化アルミニウム)が挙げられる。アルミナの結晶型としては、γ型、δ型、θ型、α型などが挙げられ、不定形(アモルファス)であってもよい。なかでも、α型のアルミナが好ましく用いられる。
 アルミニウム源は、単独で空気中で焼成することによりアルミナに導かれる化合物であってもよい。かかる化合物としては、例えばアルミニウム塩、アルミニウムアルコキシド、水酸化アルミニウム、金属アルミニウムなどが挙げられる。
 アルミニウム塩は、無機酸との無機塩であってもよいし、有機酸との有機塩であってもよい。具体的なアルミニウム無機塩としては、例えば、硝酸アルミニウム、硝酸アンモニウムアルミニウムなどのアルミニウム硝酸塩、炭酸アンモニウムアルミニウムなどのアルミニウム炭酸塩などが挙げられる。アルミニウム有機塩としては、例えば、蓚酸アルミニウム、酢酸アルミニウム、ステアリン酸アルミニウム、乳酸アルミニウム、ラウリン酸アルミニウムなどが挙げられる。
 アルミニウムアルコキシドとして具体的には、例えば、アルミニウムイソプロポキシド、アルミニウムエトキシド、アルミニウムsec-ブトキシド、アルミニウムtert-ブトキシドなどが挙げられる。
 水酸化アルミニウムの結晶型としては、例えば、ギブサイト型、バイヤライト型、ノロソトランダイト型、ベーマイト型、擬ベーマイト型などが挙げられ、不定形(アモルファス)であってもよい。アモルファスの水酸化アルミニウムとしては、例えば、アルミニウム塩、アルミニウムアルコキシドなどのような水溶性アルミニウム化合物の水溶液を加水分解して得られるアルミニウム加水分解物も挙げられる。
 アルミニウム源としては、1種のみを用いてもよいし、2種以上を併用してもよい。
 上記のなかでも、アルミニウム源としては、アルミナが好ましく用いられ、より好ましくは、α型のアルミナである。なお、アルミニウム源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。
 アルミニウム源粉末の粒径は、特に限定されない。例えば、レーザー回折法により測定される体積基準の累積百分率50%に相当するアルミニウム源粉末の粒子径は20~60μmの範囲内であればよい。なお、この粒子径は、D50又は平均粒子径とも呼ばれる。焼成時の収縮率低減の観点からは、D50が30~60μmの範囲内であるアルミニウム源粉末を用いることが好ましい。
 原料混合物にはアルミナゾルや後述のシリカゾルを添加することができる。このように、アルミナゾル、シリカゾル等を添加することにより、原料混合物中の微小な粒子同士を吸着させ、グリーン成形体中の粒子径0.1μm以下の粒子の量を、無機化合物源粉末(固形分)の100重量部に対して1~5重量部とすることができ、これにより500℃における脱脂後の成形体の強度を例えば0.2kgf以上とすることができる。
 アルミナゾルとは、微粒子状のアルミナを分散質とし、液体を分散媒とするコロイドである。アルミナゾルは、単独でアルミニウム源とすることもできるが、他のアルミニウム源と共に併用されることが好ましい。アルミナゾルの分散媒は、例えば、混合時や仮焼時に蒸発等により除去される。
 アルミナゾルの分散媒としては、水溶液や各種有機溶媒、例えば、塩酸水溶液、酢酸水溶液、硝酸水溶液、アルコール、キシレン、トルエン、メチルイソブチルケトンなどが挙げられる。アルミナゾルとしては、平均粒子径が1~100nmのコロイド状アルミナゾルが好適に用いられる。このような平均粒子径を有するアルミナゾルを用いることにより、原料混合物中の粒子同士を吸着させられるといった利点がある。また、アルミナゾルの市販品としては、例えば、日産化学工業社製「アルミナゾル100」、「アルミナゾル200」、「アルミナゾル520」、シーアイ化成製「NanoTekAl」等が挙げられる。このうち、日産化学工業社製「アルミナゾル200」を用いることが好ましい。
 アルミナゾルは、無機化合物源粉末(固形分)の100重量部に対して固形分で0~10重量部、好ましくは0~5重量部用いることができる。アルミナゾルは、2種以上混合して用いてもよい。
 [チタン源]
 チタン源は、チタン酸アルミニウム焼結体を構成するチタン成分となる化合物であり、かかる化合物としては、例えば酸化チタンが挙げられる。酸化チタンとしては、例えば、酸化チタン(IV)、酸化チタン(III)、酸化チタン(II)などが挙げられ、なかでも酸化チタン(IV)が好ましく用いられる。酸化チタン(IV)の結晶型としては、アナターゼ型、ルチル型、ブルッカイト型などが挙げられ、不定形(アモルファス)であってもよい。より好ましくは、アナターゼ型、ルチル型の酸化チタン(IV)である。
 チタン源は、単独で空気中で焼成することによりチタニア(酸化チタン)に導かれる化合物であってもよい。かかる化合物としては、例えば、チタン塩、チタンアルコキシド、水酸化チタン、窒化チタン、硫化チタン、チタン金属などが挙げられる。
 チタン塩として具体的には、三塩化チタン、四塩化チタン、硫化チタン(IV)、硫化チタン(VI)、硫酸チタン(IV)などが挙げられる。チタンアルコキシドとして具体的には、チタン(IV)エトキシド、チタン(IV)メトキシド、チタン(IV)t-ブトキシド、チタン(IV)イソブトキシド、チタン(IV)n-プロポキシド、チタン(IV)テトライソプロポキシド、および、これらのキレート化物などが挙げられる。
 チタン源としては、1種のみを用いてもよいし、2種以上を併用してもよい。
 上記のなかでも、チタン源としては、酸化チタンが好ましく用いられ、より好ましくは、酸化チタン(IV)である。なお、チタン源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。
 チタン源粉末の粒径は、特に限定されない。例えば、レーザー回折法により測定される、体積基準の累積百分率50%に相当するチタン源粉末の粒子径(D50)は0.5~25μmの範囲内であればよい。十分に低い焼成収縮率の達成のためには、チタン源粉末のD50が1~20μmの範囲内であることが好ましい。なお、チタン源粉末は、バイモーダルな粒径分布を示すことがあるが、このようなバイモーダルな粒径分布を示すチタン源粉末を用いる場合においては、レーザー回折法により測定される粒径分布における、粒径が大きい方のピークの粒径が20~50μmの範囲内であることが好ましい。
 レーザー回折法により測定されるチタン源粉末のモード径は、特に限定されないが、0.3~60μmの範囲内であればよい。
 [マグネシウム源]
 原料混合物は、マグネシウム源を含有していてもよい。マグネシウム源を含むグリーン成形体100から製造されたハニカム構造体200は、チタン酸アルミニウムマグネシウム結晶の焼結体である。
 マグネシウム源としては、マグネシア(酸化マグネシウム)のほか、単独で空気中で焼成することによりマグネシアに導かれる化合物が挙げられる。後者の例としては、例えば、マグネシウム塩、マグネシウムアルコキシド、水酸化マグネシウム、窒化マグネシウム、金属マグネシウムなどが挙げられる。
 マグネシウム塩として具体的には、塩化マグネシウム、過塩素酸マグネシウム、リン酸マグネシウム、ピロリン酸マグネシウム、蓚酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、クエン酸マグネシウム、乳酸マグネシウム、ステアリン酸マグネシウム、サリチル酸マグネシウム、ミリスチン酸マグネシウム、グルコン酸マグネシウム、ジメタクリル酸マグネシウム、安息香酸マグネシウムなどが挙げられる。
 マグネシウムアルコキシドとして具体的には、マグネシウムメトキシド、マグネシウムエトキシドなどが挙げられる。なお、マグネシウム源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。
 マグネシウム源として、マグネシウム源とアルミニウム源とを兼ねた化合物を用いることもできる。このような化合物としては、例えば、マグネシアスピネル(MgAl)が挙げられる。
 マグネシウム源として、1種のみを用いてもよいし、2種以上を併用してもよい。
 マグネシウム源粉末の粒径は、特に限定されない。例えば、レーザー回折法により測定される体積基準の累積百分率50%に相当するマグネシウム源粉末の粒子径(D50)は0.5~30μmの範囲内であればよい。焼成時の収縮率低減の観点からは、D50が3~20μmの範囲内であるマグネシウム源粉末を用いることが好ましい。
 グリーン成形体中におけるMgO(マグネシア)換算でのマグネシウム源のモル量は、Al(アルミナ)換算でのアルミニウム源とTiO(チタニア)換算でのチタン源との合計モル量に対して、0.03~0.15であることが好ましく、より好ましくは0.03~0.12である。マグネシウム源の含有量をこの範囲内に調整することにより、耐熱性がより向上された、大きい細孔径および開気孔率を有するチタン酸アルミニウム焼結体を比較的容易に得ることができる。
 [ケイ素源]
 原料混合物は、ケイ素源をさらに含有していてもよい。ケイ素源は、シリコン成分となってチタン酸アルミニウム焼結体に含まれる化合物である。ケイ素源の併用により、耐熱性がより向上されたチタン酸アルミニウム焼結体を得ることが可能となる。ケイ素源としては、例えば、二酸化ケイ素、一酸化ケイ素などの酸化ケイ素(シリカ)が挙げられる。
 ケイ素源は、単独で空気中で焼成することによりシリカに導かれる化合物であってもよい。かかる化合物としては、例えば、ケイ酸、炭化ケイ素、窒化ケイ素、硫化ケイ素、四塩化ケイ素、酢酸ケイ素、ケイ酸ナトリウム、オルトケイ酸ナトリウム、長石、ガラスフリットなどが挙げられる。なかでも、長石、ガラスフリットなどが好ましく用いられ、工業的に入手が容易であり、組成が安定している点で、ガラスフリットなどがより好ましく用いられる。なお、ガラスフリットとは、ガラスを粉砕して得られるフレークまたは粉末状のガラスをいう。ケイ素源として、長石とガラスフリットとの混合物からなる粉末を用いることもできる。
 ケイ素源がガラスフリットである場合、得られるチタン酸アルミニウム焼結体の耐熱分解性をより向上させるという観点から、屈伏点が700℃以上のものを用いることが好ましい。ガラスフリットの屈伏点は、熱機械分析装置(TMA:Thermo Mechanical Analysis)を用いて、低温からガラスフリットの膨張を測定し、膨張が止まり、次に収縮が始まる温度(℃)と定義される。
 ガラスフリットを構成するガラスには、ケイ酸(SiO)を主成分(全成分中50重量%以上)とする一般的なケイ酸ガラスを用いることができる。ガラスフリットを構成するガラスは、その他の含有成分として、一般的なケイ酸ガラスと同様、アルミナ(Al)、酸化ナトリウム(NaO)、酸化カリウム(KO)、酸化カルシウム(CaO)、マグネシア(MgO)等を含んでいてもよい。また、ガラスフリットを構成するガラスは、ガラス自体の耐熱水性を向上させるために、ZrOを含有していてもよい。
 ケイ素源として、1種のみを用いてもよいし、2種以上を併用してもよい。
 ケイ素源粉末の粒径は、特に限定されない。例えば、レーザー回折法により測定される体積基準の累積百分率50%に相当するケイ素源の粒子径(D50)は0.5~30μmの範囲内であればよい。グリーン成形体の比重をより向上させ、機械的強度のより高い焼成体を得るためには、ケイ素源のD50が1~20μmの範囲内であることが好ましい。
 原料混合物がケイ素源を含む場合、原料混合物中におけるケイ素源の含有量は、Al(アルミナ)換算でのアルミニウム源とTiO(チタニア)換算でのチタン源との合計量100重量部に対して、SiO(シリカ)換算で、通常0.1重量部~10重量部であり、好ましくは5重量部以下である。また、原料混合物中におけるケイ素源の含有量は、原料混合物中に含まれる無機化合物源中、2重量%以上5重量%以下とすることがより好ましい。ケイ素源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。
 マグネシアスピネル(MgAl)などの複合酸化物のように、チタン、アルミニウム、ケイ素およびマグネシウムのうち、2つ以上の金属元素を成分とする化合物を原料として用いることができる。
 原料混合物中の無機化合物源粉末100重量部における粒子径0.1μm以下の粒子の含有量を1~5重量部とする場合、上述のように、原料混合物にアルミナゾルおよび/またはシリカゾルを添加して混合することが好ましい。シリカゾルとは、微粒子状のシリカを分散質とし、液体を分散媒とするコロイドである。シリカゾルは、単独でケイ素源とすることもできるが、他のシリカ源と共に併用されることが好ましい。シリカナゾルの分散媒は、例えば、混合時や仮焼時に蒸発等により除去される。
 シリカゾルの分散媒としては、水溶液や各種有機溶媒、例えば、アンモニア水溶液、アルコール、キシレン、トルエン、トリグリセリドなどが挙げられる。シリカゾルとしては、平均粒子径が1~100nmのコロイド状シリカゾルが好適に用いられる。このような平均粒子径を有するシリカゾルを用いることにより、原料混合物中の粒子同士を吸着させ、焼成時に融解し結合させることができるといった利点がある。
 シリカゾルの市販品としては、例えば、日産化学工業社製「スノーテックス20、30、40、50、N、O、S、C、20L、OL、XS、XL、YL、ZL、QAS-40、LSS-35、LSS-45」、旭電化社製「アデライトAT-20、AT-30、AT-40、AT-50、AT-20N、AT-20A、AT-30A、AT-20Q、AT-300、AT-300Q」、触媒化成工業社製「Cataloid S-20L、S-20H、S-30L、S-30H、SI-30、SI-40、SI-50、SI-350、SI-500、SI-45P、SI-80P、SN、SA、SC-30」、デュポン社製「ルドックスHS-40、HS-30、LS、SM-30、TM、AS、AM」等が挙げられる。このうち、中性域でコロイド状態が安定な「スノーテックスC」を用いることが好ましい。
 原料混合物におけるシリカゾルの含有量は、無機化合物源粉末(固形分)の100重量部に対して固形分で0~10重量部、好ましくは0~5重量部であればよい。2種以上のシリカゾルを混合して用いてもよい。
 [有機バインダ]
 有機バインダとしては、水溶性の有機バインダが好ましい。水溶性の有機バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩などの塩などが挙げられる。
 有機バインダの量は、無機化合物源粉末の100重量部に対して、通常20重量部以下であり、好ましくは15重量部以下、さらに好ましくは6重量部である。また、有機バインダの下限量は、通常0.1重量部、好ましくは3重量部である。
 [溶媒]
 溶媒としては、例えば、メタノール、エタノール、ブタノール、プロパノールなどのアルコール類、プロピレングリコール、ポリプロピレングリコール、エチレングリコールなどのグリコール類、および水などの極性溶媒を用いることができる。なかでも、水が好ましく、不純物が少ない点で、より好ましくはイオン交換水が用いられる。溶媒の使用量は、無機化合物源粉末の100重量部に対して、通常、10重量部~100重量部、好ましくは20重量部~80重量部である。なお、溶媒として非極性溶媒を用いてもよい。
 [その他の添加物]
 原料混合物は、有機バインダ以外の有機添加物を含むことができる。その他の有機添加物とは、例えば、造孔剤、潤滑剤および可塑剤、分散剤である。
 造孔剤としては、グラファイト等の炭素材、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類、でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料、氷、及びドライアイス等などが挙げられる。造孔剤の添加量は、無機化合物源粉末の100重量部に対して、通常、0~40重量部であり、好ましくは0~25重量部である。造孔剤はグリーン成形体の焼成時に消失する。したがって、チタン酸アルミニウム焼結体では、造孔剤が存在していた箇所に微細孔が形成される。
 潤滑剤及び可塑剤としては、グリセリンなどのアルコール類、カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸などの高級脂肪酸、ステアリン酸Al等のステアリン酸金属塩などが挙げられる。潤滑剤及び可塑剤の添加量は、無機化合物源粉末の100重量部に対して、通常、0~10重量部であり、好ましくは1~5重量部である。
 分散剤としては、例えば、硝酸、塩酸、硫酸などの無機酸、シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸、メタノール、エタノール、プロパノール等のアルコール類、ポリカルボン酸アンモニウム、ポリオキシアルキレンアルキルエーテル等の界面活性剤などが挙げられる。分散剤の添加量は、無機化合物源粉末の100重量部に対して、通常、0~20重量部であり、好ましくは2~8重量部である。
 (封口材)
 図1bに示される封口材70bは、チタン酸アルミニウム系セラミックスを含む。セラミックスとは、例えば、チタン酸アルミニウム系セラミックスの粉末又は粒子である。また、封口材70bは、柱状体70と同様に、上記の造孔剤、有機バインダ及び溶媒等を含有する。これらの成分を所定の比率で混合することにより、ペースト状の封口材70bが得られる。なお、ハニカム構造体の製造過程で得られるセラミックスの屑やハニカム構造体の破損品等を粉砕して得たセラミックスの粉末を、封口材70b用のセラミックス粉末として再利用しても良い。これにより、ハニカム構造体の原料コストが削減される。封口材70bは、チタン酸アルミニウム系セラミックスの原料粉末(無機化合物源粉末)を含んでもよく、含まなくてもよい。焼結に伴う封口材70bの収縮率を低減するためには、封口材70bがセラミックス粉末を含有し、セラミックスの原料粉末を含有しないことが好ましい。セラミックス粉末の平均粒径は、特に限定されないが、5~50μm程度であればよい。
 焼結に伴う柱状体70の収縮率は、封口材70bの収縮率以上であることが好ましい。つまり、R1がR2よりも大きくなるほど、貫通孔70aが封口材70bに対して相対的に収縮する。その結果、焼成工程における貫通孔70aの隔壁70cと封口材70bとの密着性及び焼結性が向上し易くなる。具体的には、封口材70bの焼結時の収縮率Rc1は、隔壁70cの焼結時の収縮率Rc2に対して、80~100%であることが好ましい。なお、Rc1は、例えば下記式(1)から算出すればよい。Rc2は、例えば下記式(2)から算出すればよい。Rc1,Rc2の算出では、グリーン成形体100のセル数に応じて複数の箇所で封口材70b及び隔壁70cそれぞれの収縮率を測定し、その測定値を平均化してもよい。
Rc1=(S1-S2)/S1   (1)
Rc2=(T1-T2)/T1   (2)
 式(1)中、S1は、柱状体70の貫通孔70aの端部に充填された封口材70bの大きさである。換言すれば、S1は隔壁70cの壁面に垂直な方向における封口材70bの寸法である。よってS1は焼成工程前の貫通孔70aの内径に略等しい。S2は、焼成工程後に得られるハニカム構造体200の貫通孔70aを塞ぐ封口部170b(焼成工程後の封口材70b)の大きさである。換言すれば、S2は焼成後の隔壁70cの壁面に垂直な方向における封口部170bの寸法である。式(2)中、T1は、焼成工程前のグリーン成形体100の隔壁70cの厚さである。式(2)中、T2は、焼成工程後に得られるハニカム構造体200の隔壁170cの厚さである。S1,S2,T1,T2は、例えば以下の方法で測定すればよい。まず、焼成工程前のグリーン成形体100の端面側から任意に測定用のサンプルを切り出す。このサンプルは、セル(貫通孔70a)及びセルを囲う隔壁70c、及びセルを塞ぐ封口部170bを備えるものである。このサンプルにおいてセルを囲う隔壁70aのうち対向する2箇所を剥ぎ落とす。次に、サンプルに残存する隔壁70cの厚みをT1として測定する。また、当該隔壁70cの壁面に対して垂直な方向における封口部170bの最大径をS1として測定する。S1,T1の測定後、サンプルを焼成する。焼成後の隔壁70cの厚みをT2として測定する。当該隔壁70cの壁面に対して垂直な方向における封口部170b(焼成後の封口材70b)の最大径をS2として測定する。S1,S2,T1,T2の測定には、例えば、光学顕微鏡(キーエンス社製、VHX-1000デジタルマイクロスコープ)を使用すればよい。
 封口材70bの焼結時の収縮率Rc1が、隔壁70cの焼結時の収縮率Rc2に対して、80%未満である場合、隔壁70cが封口部170bに押されるように変形することが問題となる。またRc1がRc2に対して80%未満である場合、封口部170bの周囲の隔壁70cの一部に亀裂が生じることが問題となる。Rc1がRc2に対して100%を超える場合、封口材70bの焼結時の収縮率が柱状体70の収縮率よりも大きくなり、焼結後の封口部170と隔壁との間に隙間が生じる。
 Rc1をRc2に対して80~100%とするためには、封口材70b中のセラミックスの含有率を柱状体70(隔壁70c)中のセラミックス及び原料粉末の含有率よりも高くすれば良い。具体的には、封口材70b中のセラミックスの質量は、封口材70b全体を100質量部としたとき、60~100質量部程度であることが好ましく、75~95質量部程度であることがより好ましい。柱状体70(隔壁70c)中のセラミックスの含有率は、所望のRc2に応じて適宜この数値範囲よりも小さい値に調整すればよい。例えば、柱状体70中のセラミックス粉末の質量は、柱状体70全体が含有するセラミックス粉末と原料粉末と造孔剤との合計を100質量部としたとき、1~10質量部程度であることが好ましい。封口材70b中のセラミックスの含有量が小さ過ぎる場合、Rc1が大きくなり過ぎて、封口部170と隔壁70cとの密着性・焼結性が低下し、ハニカム構造体200の封口部170bと隔壁70cとの間に隙間が生じる傾向がある。
 また、Rc1をRc2に対して80~100%とするためには、封口材70b中のセラミックスの原料粉末の含有率を柱状体70(隔壁70c)よりも低くすれば良い。具体的には、封口材70b中のセラミックスの原料粉末の含有率は、セラミックスの原料粉末とセラミックス粉末と造孔剤との合計100質量部に対して0~40質量部であることが好ましい。柱状体70(隔壁70c)中のセラミックスの原料粉末の含有率は、所望のRc2に応じて適宜この数値範囲よりも大きい値に調整すればよい。例えば、柱状体70中の原料粉末の質量は、柱状体70全体が含有するセラミックス粉末と原料粉末と造孔剤との合計を100質量部としたとき、70~90質量部程度である。封口材70b中のセラミックスの原料粉末の含有量が大き過ぎる場合、Rc1が大きくなり過ぎて、封口部170bと隔壁70cとの密着性が低下する傾向がある。
 Rc1をRc2に対して80~100%とするためには、封口材70b中の造孔剤の含有率を柱状体70(隔壁70c)よりも小さくすれば良い。具体的には、封口材70b中の造孔剤の含有率は、セラミックスの原料粉末とセラミックス粉末と造孔剤との合計100質量部に対して0~6質量部であることが好ましい。柱状体70(隔壁70c)中の造孔剤の含有率は、所望のRc2に応じて適宜この数値範囲よりも大きい値に調整すればよい。封口材70b中の造孔剤の含有量が小さ過ぎる場合、Rc2がRc1よりも大きくなり過ぎて隔壁70cが封口部70bを圧縮し、隔壁70が変形する傾向がある。封口材70b中の造孔剤の含有量が大き過ぎる場合、Rc1が大きくなり過ぎて、封口部170bと隔壁70cとの密着性・焼結性が低下する傾向がある。このように、造孔剤は、気孔を形成し、封口材70bと隔壁70cの収縮率を合わせるための緩衝材として機能する。
 封口材70bが含有するセラミックス粉末の質量と造孔剤の質量との合計を100質量部とするとき、封口材70bが含有するセラミックスの粉末の質量Mcは80~100質量部であることが好ましく、90~100質量部であることがより好ましい。これより、封口材70bと柱状体70の焼結時の収縮率が一致し、封口材70bと隔壁70cとの焼結性が向上し易くなる。Mcが小さ過ぎる場合、封口材70b中の造孔剤の質量が大きい。その結果、封口材70bの焼結時の収縮率がグリーン成形体100の収縮率よりも大きくなり、焼結後の封口部170bと隔壁70cとの間に隙間が生じる傾向がある。
 なお、封口材70bの固液分離を防止するためには、封口材70bを粘調な液状とすることが好ましい。そのためには、封口材70bが含有するセラミックス粉末の質量と造孔剤の質量との合計を100質量部とするとき、封口材70b中のバインダの質量を0.3~3質量部、潤滑剤の質量を3~20質量部とし、封口材70bの粘度を20~200Pa・sとすることが好ましい。
 <ハニカム構造体>
 上記のグリーン成形体100を焼成することにより、柱状体70及び封口部70bが含むセラミックス粉末やセラミックスの原料粉末が焼結する。封口材70bは隔壁70cと焼結し、一体化して、封口部170bを形成する。その結果、図2(a)及び2(b)に示すように、多孔質のチタン酸アルミニウム系セラミックスからなるハニカム構造体200(多セル型セラミックモノリス)が得られる。ハニカム構造体200は、X線回折スペクトルにおいて、チタン酸アルミニウム(AlTiO)又はチタン酸アルミニウムマグネシウム(Al2(1-x)MgTi(1+x))の結晶パターンのほか、アルミナ、チタニアなどの結晶パターンを含んでいてもよい。ハニカム構造体200はケイ素を含有してもよい。ハニカム構造体200はグリーン成形体100と同様の構造を有し、DPFに好適である。
 特に、チタン酸アルミニウムマグネシウム焼結体からなるDPFは、SiC、コージェライト又はチタン酸アルミニウム単体からなるDPFに比べて、熱膨張係数が極めて小さく、融点が高く、再生時の耐熱衝撃性に優れ、煤の限界堆積量が大きい点において優れている。DPF用のハニカム構造体200の隔壁表面に、アルミナ等の担体に担持された白金系金属触媒や、セリア又はジルコニア等の助触媒を付着させてもよい。
 チタン酸アルミニウム系セラミックスにおけるアルミニウムの含有率は、特に限定されないが、例えば、酸化アルミニウム換算で40~60モル%である。チタン酸アルミニウム系セラミックスにおけるチタンの含有率は、特に限定されないが、例えば、酸化チタン換算で35~55モル%である。チタン酸アルミニウム系セラミックスにおけるマグネシウムの含有率は酸化マグネシウム換算で1~5質量%であることが好ましい。チタン酸アルミニウム系セラミックスにおけるケイ素の含有率は酸化ケイ素換算で2~5質量%であることが好ましい。なお、チタン酸アルミニウム系セラミックスの組成は、原料混合物の組成により適宜調整すればよい。チタン酸アルミニウム系セラミックスは、上記の成分以外に、原料に由来する成分又は製造工程において不可避的に仕掛品に混入する微量の成分を含有し得る。
 貫通孔70aの長手方向に垂直な断面の内径(正方形の一辺の長さ)は特に限定されないが、例えば0.8~2.5mmである。貫通孔70aが延びる方向におけるハニカム構造体200の長さは特に限定されないが、例えば40~350mmである。また、ハニカム構造体200の外径も特に限定されないが、例えば10~320mmである。貫通孔70aが延びる方向における封口部170bの長さは特に限定されないが、例えば1~20mmである。ハニカム構造体200の端面に開いている貫通孔70aの数(セル密度)は特に限定されないが、例えば150~450cpsiである。cpsiとの単位は「/inch」を意味し、「/(0.0254m)」に等しい。貫通孔70aの隔壁の厚さは特に限定されないが、例えば0.15~0.76mmである。ハニカム構造体200の有効気孔率は30~60体積%程度である。ハニカム構造体200に形成された細孔の平均直径は1~20μm程度である。細孔径分布(D90-D10)/D50は0.5未満程度である。なお、D10、D50、D90は、全細孔容積のうち累積細孔容積が各々10%、50%、90%になるときの細孔直径である。
 本実施形態のグリーン成形体100においては、生(未焼結)の柱状体70の貫通孔70aが既に生の封口材70b(焼結前の封口部170b)で塞がれている。よって、グリーン成形体100を1回焼成するたけで、隔壁70c及び封口材70bの焼結が略同時に進行する。その結果、焼成により得られたハニカム構造体200において、隔壁170c及び封口部170bが焼結し、両者が一体化する。すなわち、焼成前のグリーン成形体100の隔壁70cと封口材70bとの間に存在していた界面が、焼成後のハニカム構造体200において解消する。つまり、焼成前の隔壁70c中の原料粉末と封口材70b中のセラミックスとが焼結してセラミックスの結晶粒子を形成する結果、ハニカム構造体200の隔壁170cの組織構造と封口部170bと組織構造とが、識別が容易ではないほど略一体化する。なお、組織構造とは、例えば、セラミックスの結晶粒子の組成及び形状ならびに結晶粒子間に形成された細孔の形状である。
 <ハニカム構造体の製造方法>
 (原料混合物の調製工程及び成形工程)
 柱状体70を形成するために、無機化合物源粉末、造孔剤、有機バインダ及び溶媒等を混練機等により混合して原料混合物を調製する。格子状の開口を有するダイを備える押出成形機を用いて、原料混合物を成形することにより、柱状体70を形成する。なお、押出成形前の原料混合物を混練してもよい。
 (封口材の調製工程)
 セラミックス粉末を含有させ、成分の配合比を調整すること以外は、柱状体70用の原料混合物と同様の方法で、封口材70bを調製する。
 (封口工程)
 封口工程では、柱状体70において複数の貫通孔70aが開いている第一端面に第一マスクを貼り付ける。第一マスクでは、貫通孔70aと略同様の寸法を有するマスク部と複数の開口部とが千鳥状に配置されている。各貫通孔70aと各マスク部及び開口部とが重なるように、柱状体70の第一端面に第一マスクを貼り付ける。また、柱状体70において第一端面とは反対側の第二端面に、第二マスクを貼り付ける。第二マスクが有する開口部とマスク部の配置関係は第一マスクとは真逆である。したがって、第一端面側で第一マスクのマスク部に塞がれた貫通孔70aは、第二端面側で第二マスクの開口部と重なる。第二端面側で第二マスクのマスク部に塞がれた貫通孔70aは、第一端面側で第一マスクの開口部と重なる。したがって、柱状体70に形成された複数の貫通孔70aのいずれも、第一端面又は第二端面のいずれか一方において開き、他方においてマスク部で塞がれる。
 第一端面に対する封口工程では、第一マスクの開口部と重なる各貫通孔70aの端部内に上記の封口材70bを導入する。なお、貫通孔70aに封口材を導入した後、柱状体70全体を振動器により振動させてもよい。これにより、貫通孔70aの端部の隙間に隈なく封口材70bが充填され易くなる。
 以上の第一端面に対する封口工程後、第一端面に対する封口工程と同様に、第二マスクが貼られた第二端面に対する封口工程を実施する。両端面に封口工程を施した後に、各端面から各マスクを剥がす。これにより、図1(a),1(b)に示すグリーン成形体100が完成する。
 (焼成工程)
 グリーン成形体100を仮焼(脱脂)し、且つ焼成することにより、図2(a),2(b)に示すハニカム構造体200を得ることができる。ハニカム構造体200は、押出成形直後のグリーン成形体100の形状をほぼ維持する。本実施形態では、グリーン成形体100の1回の焼成で、隔壁70c及び封口材70bの焼結が略同時に進行してハニカム構造体200が完成するため、2回の焼成工程を必要とする従来の製造方法に比べて生産性が向上する。
 仮焼(脱脂)は、グリーン成形体100中の有機バインダや、必要に応じて配合される有機添加物を、焼失、分解等により除去するための工程である。典型的な仮焼工程は、焼成工程の初期段階、すなわちグリーン成形体100が焼成温度に至るまでの昇温段階(例えば、300~900℃の温度範囲)に相当する。仮焼(脱脂)工程おいては、昇温速度を極力おさえることが好ましい。
 グリーン成形体100の焼成温度は、通常、1300℃以上、好ましくは1400℃以上である。また、焼成温度は、通常、1650℃以下、好ましくは1550℃以下である。この温度範囲でグリーン成形体100を加熱することにより、グリーン成形体100中の無機化合物源粉末やセラミックス粉末が確実に焼結する。焼成温度までの昇温速度は特に限定されるものではないが、通常、1℃/時間~500℃/時間である。
 焼成は通常、大気中で行なわれるが、用いる原料粉末、すなわちアルミニウム源粉末、チタニウム源粉末、マグネシウム源粉末およびケイ素源粉末の種類や使用量比によっては、窒素ガス、アルゴンガスなどの不活性ガス中で焼成してもよいし、一酸化炭素ガス、水素ガスなどのような還元性ガス中で焼成してもよい。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよい。
 焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉などの通常の焼成炉を用いて行なわれる。焼成は回分式で行なってもよいし、連続式で行なってもよい。また、静置式で行なってもよいし、流動式で行なってもよい。
 焼成に要する時間は、グリーン成形体100がチタン酸アルミニウム系結晶に遷移するのに十分な時間であればよく、グリーン成形体100の量、焼成炉の形式、焼成温度、焼成雰囲気などにより異なるが、通常は10分~24時間である。
 なお、グリーン成形体100の仮焼と焼成を個別に行ってもよく、連続して行ってもよい。仮焼工程では、有機バインダその他の有機添加物の熱分解温度以上であり無機化合物源粉末の焼結温度よりも低い温度でグリーン成形体100を加熱すればよい。焼成工程では、仮焼工程後のグリーン成形体100を無機化合物源粉末の焼結温度以上の温度で加熱すればよい。
 以上、本発明の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、柱状体70や封口材70bは、チタン酸アルミニウム系セラミックスの代わりにコージェライト系セラミックスやシリコンカーバイド等のセラミックスを含んでもよい。また柱状体70や封口材70bは、これらセラミックスの原料粉末を含んでもよい。コージェライト系セラミックスの原料粉末としては、上述したアルミニウム源粉末、シリカ源粉末及びマグネシウム源粉末を用いればよい。ハニカム構造体200の形状は円柱に限定されず、用途に応じて任意の形状をとることができる。例えば、ハニカム構造体200の形状が、多角柱や楕円柱等であってもよい。
 ハニカム構造体の用途はDPFに限定されない。ハニカム構造体は、ガソリンエンジンなどの内燃機関の排気ガス浄化に用いられる排ガスフィルター又は触媒担体、ビールなどの飲食物の濾過に用いる濾過フィルター、石油精製時に生じるガス成分(例えば一酸化炭素、二酸化炭素、窒素、酸素等)を選択的に透過させるための選択透過フィルターなどのセラミックスフィルターなどに好適に適用することができる。なかでも、セラミックスフィルターなどとして用いる場合、チタン酸アルミニウム系セラミックスは、高い細孔容積および開気孔率を有することから、良好なフィルター性能を長期にわたって維持することができる。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1)
 <原料混合物の調製>
 柱状体を形成するために、チタン酸アルミニウムマグネシウムの原料粉末(Al,TiO,MgO)、SiO、チタン酸アルミニウムマグネシウムとアルミナとアルミノシリケートガラスとの複合相をもつセラミックス粉末(仕込み時の組成式:41.4Al-49.9TiO-5.4MgO-3.3SiO、式中の数値はモル比を表す。)、有機バインダ、潤滑剤、造孔剤、可塑剤、分散剤及び水(溶媒)を含む原料混合物を調製した。原料混合物中の主な成分の含有量は下記の値に調整した。
 [原料混合物の成分]
Al:37.3質量部。
TiO:37.0質量部。
MgO:1.9質量部。
SiO:3.0質量部。
セラミックス粉末:8.8質量部。
造孔剤:馬鈴薯から得た平均粒径25μmの澱粉12.0質量部。
有機バインダ1:メチルセルロース(三星精密化学社製:MC-40H)5.5質量部。
有機バインダ2:ヒドロキシプロピルメチルセルロース(三星精密化学社製:PMB-40H)2.4質量部。
 上記の原料混合物を混練して押出成形することにより、互いに略平行な複数の貫通孔70aが形成され、貫通孔70aを隔てる隔壁70cを有する柱状体70を作製した(図1(a),1(b)参照)。柱状体70に形成された貫通孔70aの内径(正方形の一辺の長さ)は1.2mmであった。柱状体70の端面に開いている貫通孔70aの数(セル密度)は、0.43/mmであった。貫通孔70aが延びる方向における柱状体70の長さは171mmであった。また、柱状体70の端面の外径は162mmであった。
 <封口材の調製>
 セラミックス粉末、造孔剤、有機バインダ、潤滑剤及び溶媒を混合して、実施例1の封口材70bを調製した。セラミックス粉末としては、ハニカム構造体の製造過程で得られた屑や不良品を粉砕することにより調整した粉末を再利用した。このセラミックス粉末は、チタン酸アルミニウムマグネシウムとアルミナとアルミノシリケートガラスとの複合相をもつ粉末(仕込み時の組成式:41.4Al-49.9TiO-5.4MgO-3.3SiO、式中の数値はモル比を表す。)であった。セラミックス粉末の平均粒径は22μmに調整した。造孔剤としては、馬鈴薯から得た平均粒径44μmの澱粉を用いた。有機バインダとしては、ヒドロキシプロピルメチルセルロース(三星精密化学社製:PMB-15UFF)を用いた。潤滑剤としてはグリセリンを用いた。溶媒としては水を用いた。封口材中のセラミックス粉末、造孔剤、有機バインダ、潤滑剤及び溶媒の配合比は、下記の値に調整した。調製直後の封口材70bの粘度は85.2Pa・sであった。
 [封口材の成分]
セラミックス粉末:97.0質量部。
造孔剤:3.0質量部。
有機バインダ:0.5質量部。
潤滑剤:5.0質量部。
溶媒:42.0質量部。
 <封口工程>
 封口材70bを用いて柱状体70の第一端面の封口工程を実施した後、第二端面に対する封口工程を実施した。これにより、複数の貫通孔70aのうち一部の貫通孔が柱状体70の第一端面において封口材70bで塞がれ、第二端面において開き、他の貫通孔は、第二端面において封口材70bで塞がれ、第一端面において開いており、封口材70bで塞がれた貫通孔70aの端部と開いた貫通孔70aの端部とが各端面において格子状に交互に配置されている実施例1のグリーン成形体100を得た。
 <焼成工程>
 グリーン成形体100を乾燥させ、1530℃で5時間焼成することにより、チタン酸アルミニウムマグネシウムの焼結体からなる実施例1のハニカム構造体200を得た(図2(a),2(b)参照)。
 SEMで撮影した実施例1のハニカム構造体の第一端面の写真を図3(a),3(b),3(c)に示す。図3(b)は、図3(a)の点線で囲まれた部分の拡大写真である。図3(c)は、図3(b)の破線で囲まれた部分の拡大写真である。図3(b),3(c)それぞれに示す一対の矢印を結ぶ直線は、グリーン成形体200の隔壁70cと封口材70bとの境界であった部分に対応する。なお、図3(a),3(b),3(c)における暗視野部分は貫通孔70aであり、それを囲む部分がハニカム構造体200(隔壁170c及び封口部170b)である。また、図3(a),3(b),3(c)に示すハニカム構造体200に形成された穴は、ハニカム構造体200の製造過程で形成された欠陥ではなく、ハニカム構造体200の写真撮影のためにハニカム構造体200を研磨する作業において形成されたものである。
 図3(a),3(b),3(c)に示すように、封口部170bと貫通孔70aの隔壁70cとが剥離することなく十分に焼結していることが確認された。
 ハニカム構造体200の隔壁170c及び封口部170bのいずれもチタン酸アルミニウムマグネシウム系セラミックスの多孔体であることが確認された。焼成前後で、隔壁170c(70c)がほとんど変形していないことが確認された。封口部170bの角部は中心部に比べて粗な構造を有することが確認された。これは、おそらく、ペースト状の封口材70bが乾燥時に隔壁70c付近から先に乾燥し始めて、最後に、中心部のみが粘性の低いペースト状となり、中心部を構成するセラミックス粉末が凝集したことに起因すると考えられる。隔壁170c近傍に位置する封口部170bの粗な構造は、焼成工程において柱状体70が焼結して大きく収縮しても、柱状体70(隔壁70c)と封口材70bの収縮率を合わせるためのバッファー層としての役割を果たしたことを示している、と考えられる。
 図3(b),3(c)の拡大写真から明らかなように、封口部170cの組織構造は、隔壁170cの組織構造と一見識別が困難なほどよく似ており、両者の明瞭な境界を確認することができなかった。これは、隔壁170cの組成と封口部170bの組成とは略同一であるため、焼成により両者の多孔質のチタン酸アルミニウムマグネシウム相の組織が一体化していることを示している。この組織の一体化は、ハニカム構造体200の化学的安定性及び耐久性に寄与する。隔壁170cは、セラミックスの原料粉末を含む原料混合物が反応焼結によりチタン酸アルミニウムマグネシウムに変化したものである。そのため、隔壁170cは、セラミックス粉末から形成される封口部170bに比べて少し微細な骨格構造を有することが確認された。一方、封口部170は、隔壁170cに比べて丸みをおびた骨格構造を有することが確認された。また、隔壁170cでは、化学量論的にアルミナが余剰であったため、アルミナ粒が残留していた。
 本発明の一態様に係るハニカム構造体は、欠陥を生じ難いため、DPF等に好適である。
 70・・・焼成工程前の柱状体、70a・・・貫通孔、70b・・・封口材、70c・・・焼成工程前の隔壁、100・・・グリーン成形体、170・・・柱状体、170b・・・封口部(焼成工程後の封口材)、170c・・・隔壁、200・・・ハニカム構造体。

Claims (1)

  1.  互いに略平行な複数の貫通孔が形成され、前記複数の貫通孔を隔てる隔壁を有するハニカム状の柱状体と、
     前記貫通孔の一方の端部を塞ぐ封口部と、
     を備え、
     前記複数の貫通孔のうち一部の前記貫通孔は、前記貫通孔に略直交する前記柱状体の第一端面及び第二端面のうち前記第一端面において前記封口部で塞がれ、前記第二端面において開き、
     他の前記貫通孔は、前記第二端面において前記封口部で塞がれ、前記第一端面において開いており、
     前記柱状体及び前記封口部が多孔質のセラミックスを含み、
     前記セラミックスがチタン酸アルミニウム系セラミックス及び/又はコージェライト系セラミックスであり、
     前記隔壁と前記封口部とが一体化している、
     ハニカム構造体。
PCT/JP2011/066001 2010-07-28 2011-07-13 ハニカム構造体 WO2012014683A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-169368 2010-07-28
JP2010169368 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014683A1 true WO2012014683A1 (ja) 2012-02-02

Family

ID=45529899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066001 WO2012014683A1 (ja) 2010-07-28 2011-07-13 ハニカム構造体

Country Status (2)

Country Link
JP (1) JP2012045541A (ja)
WO (1) WO2012014683A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013002145T5 (de) * 2012-06-27 2015-03-05 Dow Global Technologies Llc Verbessertes Verfahren zur Herstellung poröser Stopfen in Keramikwabenfiltern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1057730A (ja) * 1996-08-26 1998-03-03 Matsushita Electric Ind Co Ltd セラミックハニカムフィルタ及びその製造方法
WO2004085029A1 (ja) * 2003-03-25 2004-10-07 Ngk Insulators Ltd. 目封止ハニカム構造体及びその製造方法
JP2009543755A (ja) * 2006-07-14 2009-12-10 コーニング インコーポレイテッド チタン酸アルミニウムセラミック製ウォールフロー型フィルタの製造に用いられる施栓材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1057730A (ja) * 1996-08-26 1998-03-03 Matsushita Electric Ind Co Ltd セラミックハニカムフィルタ及びその製造方法
WO2004085029A1 (ja) * 2003-03-25 2004-10-07 Ngk Insulators Ltd. 目封止ハニカム構造体及びその製造方法
JP2009543755A (ja) * 2006-07-14 2009-12-10 コーニング インコーポレイテッド チタン酸アルミニウムセラミック製ウォールフロー型フィルタの製造に用いられる施栓材料

Also Published As

Publication number Publication date
JP2012045541A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
JP4965734B1 (ja) グリーン成形体及びハニカム構造体の製造方法
JP5502000B2 (ja) ハニカム構造体及びパティキュレートフィルタ
WO2010079806A1 (ja) 多孔質セラミックス成形体及びその製造方法
WO2013024745A1 (ja) ハニカム構造体
WO2011037177A1 (ja) セラミックス焼成体の製造方法
WO2011111666A1 (ja) グリーン成形体、及び、チタン酸アルミニウム焼成体の製造方法
WO2011027783A1 (ja) セラミックス焼成体の製造方法
WO2012014684A1 (ja) グリーン成形体
WO2012141034A1 (ja) ハニカム構造体
WO2011027904A1 (ja) チタン酸アルミニウム系焼成体の製造方法およびチタン酸アルミニウム系焼成体
WO2013024744A1 (ja) ハニカムフィルタ
JP5860633B2 (ja) ハニカム構造体の製造方法
WO2012014683A1 (ja) ハニカム構造体
WO2011148764A1 (ja) ハニカム構造体の製造方法
JP5528717B2 (ja) チタン酸アルミニウム系焼成体の製造方法および多孔質セラミックス成形体
JP4837784B2 (ja) ハニカム構造体の製造方法
JP2011245430A (ja) ハニカム構造体
JP2011241116A (ja) チタン酸アルミニウム焼結体の製造方法及びチタン酸アルミニウム焼結体
WO2012014681A1 (ja) グリーン成形体
WO2011148765A1 (ja) ハニカム構造体の製造装置
JP2007105622A (ja) 排ガス浄化ハニカムフィルタ及びその製造方法
WO2012176888A1 (ja) チタン酸アルミニウム系セラミックス及び成形体
JP2012001413A (ja) グリーン成形体及びハニカム焼成体の製造方法
JP2013129583A (ja) ハニカム構造体及びハニカムフィルタ
WO2012157423A1 (ja) ハニカムフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812275

Country of ref document: EP

Kind code of ref document: A1