WO2012056809A1 - 半導体装置、放熱部材、および、半導体装置の製造方法 - Google Patents

半導体装置、放熱部材、および、半導体装置の製造方法 Download PDF

Info

Publication number
WO2012056809A1
WO2012056809A1 PCT/JP2011/069562 JP2011069562W WO2012056809A1 WO 2012056809 A1 WO2012056809 A1 WO 2012056809A1 JP 2011069562 W JP2011069562 W JP 2011069562W WO 2012056809 A1 WO2012056809 A1 WO 2012056809A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor device
reinforcing member
region
insulating substrate
Prior art date
Application number
PCT/JP2011/069562
Other languages
English (en)
French (fr)
Inventor
伸 征矢野
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2012540729A priority Critical patent/JP5720694B2/ja
Priority to US13/814,852 priority patent/US9299633B2/en
Publication of WO2012056809A1 publication Critical patent/WO2012056809A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to a semiconductor device having a heat radiation fin, a heat radiation member, and a method for manufacturing the semiconductor device.
  • a semiconductor device As a semiconductor device provided with fins for heat dissipation, a substrate, an insulating substrate mounted on the surface of the substrate, a semiconductor chip mounted on the insulating substrate, and a plurality of fins formed on the back surface of the substrate There is a semiconductor device having the same.
  • heat generated from the semiconductor chip is conducted to the plurality of fins through the insulating substrate and the substrate, and is released to the outside from the plurality of fins.
  • a semiconductor device provided with such a fin for heat dissipation for example, a conductive layer for mounting electronic components formed on the upper surface of a ceramic insulating substrate, a fin base formed on the lower surface of the insulating substrate,
  • a semiconductor device having an insulating fin provided with a heat radiating fin see, for example, Patent Document 1).
  • thermal contraction or thermal expansion occurs between a portion near the center of the substrate where the plurality of fins are formed and a peripheral portion of the substrate where the fins are not formed. Since the degree is different, the substrate may be warped.
  • an object of the present invention is to provide a semiconductor device, a heat radiating member, and a method for manufacturing the semiconductor device in which the warpage of the substrate is suppressed while improving the heat dissipation.
  • the semiconductor device includes a substrate having a front surface and a back surface including a fin forming region and a peripheral region surrounding the fin forming region, an insulating substrate mounted on the front surface, and a semiconductor chip mounted on the insulating substrate. And a plurality of fins formed on the fin formation region, and a reinforcing member formed on the substrate via a bonding member so as to overlap the peripheral region.
  • the semiconductor device According to the semiconductor device, the heat radiating member, and the semiconductor device manufacturing method of the present invention, it is possible to suppress the warpage of the substrate while improving the heat dissipation.
  • 1 is a top view illustrating an example of a semiconductor device according to a first embodiment. It is a bottom view showing an example of a semiconductor device concerning a 1st embodiment.
  • 1 is a cross-sectional view showing an example of a semiconductor device according to a first embodiment. It is a figure which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment. It is a figure which shows the semiconductor device of the modification of 1st Embodiment. It is a figure which shows the manufacturing method of the heat radiating member of the modification of 1st Embodiment. It is a figure which shows an example of the semiconductor device which concerns on 2nd Embodiment.
  • FIG. 1 is a top view showing an example of the semiconductor device according to the first embodiment.
  • FIG. 2 is a bottom view showing an example of the semiconductor device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating an example of the semiconductor device according to the first embodiment.
  • FIG. 3 corresponds to a cross-sectional view taken along a dotted line AA in FIG.
  • the semiconductor device 100 includes a substrate 110 having a front surface 111 and a back surface 112.
  • a copper alloy or an aluminum alloy is used as the material of the substrate 110.
  • the copper alloy for example, a copper alloy (copper: 99.5% or more) obtained by adding a trace amount of cobalt, phosphorus, tin, nickel, and zinc to copper is used.
  • C1020 1000 series to 7000 series
  • the aluminum alloy for example, A3000 series, A5000 series, A6000 series, and A7000 series are used.
  • an insulating substrate 130 is mounted on the surface 111 of the substrate 110 via a bonding member 120.
  • solder is used for the joining member 120.
  • the insulating substrate 130 includes a conductive layer 131 bonded to the bonding member 120, an insulating layer 132 formed on the conductive layer 131, and conductive layers 133a and 133b formed on the insulating layer 132 (not shown in FIG. 3). And have.
  • the conductor layers 131, 133a, 133b for example, copper, aluminum, or the like is used.
  • ceramic such as aluminum nitride, silicon nitride, or aluminum oxide is used.
  • semiconductor chips 150a and 150b are mounted via bonding members 140a and 140b, respectively. As shown in FIG. 1, the semiconductor chips 150 a and 150 b are connected to each other or to the conductor layer 133 b by wires 151.
  • solder is used for the joining members 140a and 140b.
  • an insulated gate bipolar transistor Insulated Gate Bipolar Transistor: IGBT
  • a free wheel diode Free Wheeling Diode: FWD
  • the back surface 112 of the substrate 110 includes a fin formation region S1 surrounded by a dotted line B1 and a peripheral region S2 surrounding the fin formation region S1.
  • the fin forming region S ⁇ b> 1 is located directly below the insulating substrate 130.
  • a plurality of fins 170 are formed on the fin forming region S ⁇ b> 1 via the bonding member 160.
  • the plurality of fins 170 are arranged in a matrix.
  • the heat generated from the semiconductor chips 150a and 150b is conducted to the plurality of fins 170 through the insulating substrate 130 and the substrate 110, and is released to the outside from the plurality of fins 170.
  • a brazing material such as a copper alloy or an aluminum alloy is used.
  • a copper alloy for example, a phosphor copper type is used.
  • aluminum alloy for example, A4000 series is used.
  • a copper alloy or an aluminum alloy is used for the fin 170.
  • a copper alloy for example, C1020 (1000 series) oxygen-free copper is used.
  • the aluminum alloy for example, A4000 series is used.
  • a reinforcing member 180 is formed on the peripheral region S2 of the back surface 112 of the substrate 110 with a bonding member 160 interposed therebetween.
  • An opening 181 is provided in the reinforcing member 180. That is, the reinforcing member 180 has a frame shape.
  • the reinforcing member 180 is formed on the peripheral region S2 so as to expose the fin forming region S1 through the opening 181.
  • the material of the reinforcing member 180 is, for example, a copper alloy or an aluminum alloy.
  • a copper alloy for example, a copper alloy (copper: 99.5% or more) obtained by adding a trace amount of cobalt, phosphorus, tin, nickel, and zinc to copper is used.
  • C1000-C7000 series copper alloys are used.
  • the aluminum alloy for example, A3000 series, A5000 series, A6000 series, and A7000 series are used.
  • the reinforcing member 180 a material different from that of the substrate 110 is used for the reinforcing member 180. Specifically, a material harder than the substrate 110 is used for the reinforcing member 180. Further, the substrate 110 is made of a material having higher thermal conductivity than the reinforcing member 180.
  • a copper alloy is used for the reinforcing member 180 and the substrate 110, for example, a hard copper alloy is selected from the C1000 series to C7000 series and used for the reinforcing member 180.
  • a copper alloy having high thermal conductivity is selected and used from among C1000 series to C7000 series.
  • FIG. 4 is a diagram illustrating an example of a method for manufacturing the semiconductor device according to the first embodiment.
  • a heat radiating member 190 is prepared.
  • the heat dissipating member 190 has a plurality of fins 170 and a reinforcing member 180 mounted on the back surface 112 of the substrate 110 via the joining member 160, and heat treatment is performed in this state, and the joining member 160 causes the substrate 110 and the plurality of fins 170 to be heat-treated. And the reinforcing member 180 is joined. That is, the plurality of fins 170 and the reinforcing member 180 are collectively bonded to the substrate 110.
  • the surface of the heat dissipation member 190 may be entirely or partially plated with nickel.
  • the bonding member 120, the insulating substrate 130, the bonding members 140a and 140b, and the semiconductor chips 150a and 150b are sequentially mounted on the heat dissipation member 190.
  • heat treatment is performed on the structure 101 on which the components are mounted. Thereby, the board
  • the reinforcing member 180 is formed on the peripheral region S2 of the back surface 112 of the substrate 110 via the bonding member 160. According to this configuration, since the peripheral portion of the substrate 110 is supported by the reinforcing member 180, the warp generated in the substrate 110 can be suppressed.
  • the thermal resistance of the substrate 110 can be lowered, the heat generated from the semiconductor chips 150a and 150b can be effectively conducted to the plurality of fins 170, and heat dissipation is improved. Is possible.
  • the material of the substrate 110 is reduced, and a relatively easily available roll material can be used, so that the material cost can be reduced. Further, the weight of the semiconductor device 100 can be reduced. In particular, when the semiconductor device 100 is used in a vehicle-mounted product, the effect is great because there is a strong demand for weight reduction.
  • the reinforcing member 180 is formed on the back surface 112 of the substrate 110 via the bonding member 160.
  • the reinforcing member 180 and the substrate 110 are composed of different parts.
  • the substrate 110 is used for the reinforcing member 180. Specifically, a material harder than the substrate 110 is used for the reinforcing member 180. As a result, the peripheral portion of the substrate 110 can be more strongly supported. Further, the substrate 110 is made of a material having higher thermal conductivity than the reinforcing member 180. Thereby, the heat generated from the semiconductor chips 150a and 150b can be more effectively conducted to the plurality of fins 170.
  • the fins 170 and the reinforcing member 180 are joined to the substrate 110 by the joining member 160. Since the fins 170 are joined together with the reinforcing members 180, the substrate 110 can be assembled without warping, and manufacturing is facilitated.
  • FIG. 5 is a diagram illustrating a semiconductor device according to a modification of the first embodiment.
  • 5A is a bottom view of the semiconductor device
  • FIG. 5B is a cross-sectional view of the semiconductor device.
  • the semiconductor device 100a of the modified example uses a reinforcing member 180a having a shape and arrangement different from that of the reinforcing member 180 instead of the reinforcing member 180 with respect to the semiconductor device 100.
  • Other configurations are the same as those of the semiconductor device 100.
  • the reinforcing member 180a is provided with a plurality of through holes 182.
  • the diameter of the through hole 182 is larger than the diameter of the fin 170.
  • the reinforcing member 180a is formed on the peripheral region S2 of the back surface 112 of the substrate 110 and on the fin forming region S1 so that each of the plurality of fins 170 is located in each of the plurality of through holes 182. Is formed through.
  • a portion including the substrate 110, the bonding member 160, the plurality of fins 170, and the reinforcing member 180a is referred to as a heat dissipation member 190a.
  • the reinforcing member 180a is formed on the peripheral region S2 of the back surface 112 of the substrate 110 via the bonding member 160. According to this configuration, since the peripheral portion of the substrate 110 is supported by the reinforcing member 180a, warping that occurs in the substrate 110 can be suppressed. Thereby, the substrate 110 can be thinned, and the heat dissipation can be improved.
  • the manufacturing method of the semiconductor device 100a is the same as the manufacturing method of the semiconductor device 100 shown in FIG. That is, after the semiconductor device 100a sequentially mounts the bonding member 120, the insulating substrate 130, the bonding members 140a and 140b, and the semiconductor chips 150a and 150b on the heat dissipation member 190a, It is generated by heat treatment.
  • FIG. 6 is a diagram illustrating a method for manufacturing a heat radiating member according to a modification of the first embodiment.
  • a plurality of fins 170 are arranged on the back surface 112 of the substrate 110 with the bonding member 160 interposed therebetween.
  • the plurality of fins 170 are not completely joined to the substrate 110.
  • the reinforcing member 180 a is disposed so as to face the back surface 112 of the substrate 110.
  • the reinforcing member 180a is brought into contact with the joining member 160 such that the plurality of fins 170 are positioned in the plurality of through holes 182, respectively. At this time, each of the plurality of fins 170 is aligned by each of the plurality of through holes 182 of the reinforcing member 180a.
  • the reinforcing member 180a provided with the plurality of through holes 182 is arranged such that each of the plurality of fins 170 is located in each of the plurality of through holes 182.
  • heat treatment is performed to bond the substrate 110 to the plurality of fins 170 and the reinforcing member 180 a by the bonding member 160.
  • FIG. 7 is a diagram illustrating an example of a semiconductor device according to the second embodiment.
  • 7A is a top view
  • FIG. 7B corresponds to a cross-sectional view taken along dotted line AA in FIG. 7A.
  • the semiconductor device 200 according to the second embodiment is obtained by forming a reinforcing member on the surface 111 of the substrate 110 as compared with the semiconductor device 100 according to the first embodiment.
  • Other configurations are the same as those of the semiconductor device 100.
  • the surface 111 of the substrate 110 is a region surrounded by a dotted line B2, and includes an insulating substrate mounting region S3 on which the insulating substrate 130 is mounted, and an insulating substrate mounting region S3. And a surrounding area S4.
  • a reinforcing member 220 is formed on the peripheral region S4 with a joining member 210 interposed therebetween.
  • the reinforcing member 220 is provided with an opening 221. That is, the reinforcing member 220 has a frame shape.
  • the reinforcing member 220 is formed on the peripheral region S4 so that the insulating substrate mounting region S3 is exposed through the opening 221.
  • a brazing material such as a copper alloy or an aluminum alloy is used.
  • a copper alloy for example, a phosphor copper type is used.
  • aluminum alloy for example, A4000 series is used.
  • the material of the reinforcing member 220 is, for example, a copper alloy or an aluminum alloy.
  • a copper alloy for example, a copper alloy (copper: 99.5% or more) obtained by adding a trace amount of cobalt, phosphorus, tin, nickel, and zinc to copper is used.
  • C1000-C7000 series copper alloys are used.
  • the aluminum alloy for example, A3000 series, A5000 series, A6000 series, and A7000 series are used.
  • the reinforcing member 220 a material different from that of the substrate 110 is used for the reinforcing member 220. Specifically, a material harder than the substrate 110 is used for the reinforcing member 220. In addition, a material having higher thermal conductivity than the reinforcing member 220 is used for the substrate 110.
  • FIG. 8 is a diagram illustrating an example of a method of manufacturing a semiconductor device according to the second embodiment.
  • a heat radiating member 230 is prepared.
  • the plurality of fins 170 and the reinforcing member 180 are mounted on the back surface 112 of the substrate 110 via the bonding member 160, and further, the bonding member 210 is mounted on the surface 111 of the substrate 110.
  • the reinforcing member 220 is mounted via
  • the substrate 110 is bonded to the plurality of fins 170 and the reinforcing member 180 by the bonding member 160, and the substrate 110 and the reinforcing member 220 are bonded to each other by the bonding member 210. That is, the plurality of fins 170 and the reinforcing members 180 and 220 are collectively bonded to the substrate 110. Thereby, the heat radiating member 230 is produced
  • the surface of the heat radiating member 230 may be entirely or partially nickel-plated.
  • the bonding member 120, the insulating substrate 130, the bonding members 140a and 140b, and the semiconductor chips 150a and 150b are sequentially mounted on the heat dissipation member 230.
  • heat treatment is performed on the structure 201 on which the components are mounted. Thereby, the board
  • the reinforcing member 180 is formed on the peripheral region S2 of the back surface 112 of the substrate 110 via the bonding member 160. According to this configuration, since the peripheral portion of the substrate 110 is supported by the reinforcing member 180, the warp generated in the substrate 110 can be suppressed. Thereby, the substrate 110 can be thinned, and the heat dissipation can be improved.
  • the reinforcing member 220 is formed on the peripheral region S 4 of the surface 111 of the substrate 110 via the bonding member 210. According to this configuration, since the peripheral portion of the substrate 110 is supported by the reinforcing member 220, it is possible to more effectively suppress the warp generated in the substrate 110. In the semiconductor device 200, the reinforcing member 180 can be deleted.
  • FIG. 9 is a diagram illustrating a semiconductor device according to a modification of the second embodiment.
  • 9A shows a top view of the semiconductor device
  • FIG. 9B corresponds to a cross-sectional view taken along a dotted line AA in FIG. 9A.
  • the semiconductor device 200a of the modified example is obtained by mounting a plurality of insulating substrates 240, 250, and 260 on the substrate 110 instead of the insulating substrate 130 with respect to the semiconductor device 200. Further, the semiconductor device 200a uses a reinforcing member 220a having a shape different from that of the reinforcing member 220 instead of the reinforcing member 220 with respect to the semiconductor device 200. Other configurations are the same as those of the semiconductor device 200.
  • insulating substrates 240 to 260 are mounted on the surface 111 of the substrate 110 with a bonding member 210 interposed therebetween.
  • Each of the insulating substrates 240 to 260 has the same configuration as that of the insulating substrate 130 of the semiconductor device 200.
  • semiconductor chips 270a and 270b are mounted on the insulating substrate 240 via the bonding member 271.
  • semiconductor chips 280a and 280b are mounted via a bonding member 272.
  • semiconductor chips 290a and 290b are mounted via a bonding member 273.
  • solder is used as a material.
  • the reinforcing member 220a is provided with an opening 221a and a plurality of protrusions 222, 223, 224, and 225 protruding into the opening 221a.
  • the reinforcing member 220a is formed on the peripheral region S4 so that the insulating substrate mounting region S3 is exposed through the opening 221a.
  • the insulating substrates 240 to 260 are disposed in the opening 221a with the protrusions 222 to 225 as boundaries.
  • the insulating substrates 240 and 250 are respectively disposed in the opening 221a, and the dotted line B4 connecting the protruding portion 223 and the protruding portion 225 is shown.
  • Insulating substrates 250 and 260 are disposed in the openings 221a, respectively, as boundaries.
  • a portion including the substrate 110, the joining members 160 and 210, the plurality of fins 170, and the reinforcing members 180 and 220a is referred to as a heat dissipation member 230a.
  • the reinforcing member 220a is formed on the peripheral region S4 of the surface 111 of the substrate 110 via the bonding member 210. According to this configuration, since the peripheral portion of the substrate 110 is supported by the reinforcing member 220a, it is possible to more effectively suppress the warp generated in the substrate 110.
  • the manufacturing method of the semiconductor device 200a is the same as the manufacturing method of the semiconductor device 200 shown in FIG. That is, the semiconductor device 200a sequentially mounts the bonding member 120, the insulating substrates 240 to 260, the bonding members 271 to 273, and the semiconductor chips 270a, 270b, 280a, 280b, 290a, and 290b on the heat dissipation member 230a, It is generated by performing heat treatment on the structure on which each component is mounted.
  • the alignment is performed using the protrusions 222 to 225 provided on the reinforcing member 220a as marks. .
  • alignment is performed using the protrusions 222 and 224 as marks, and with respect to the insulating substrate 250, the position is determined using the protrusions 222 and 224 or the protrusions 223 and 225 as marks.
  • the insulating substrate 260 is aligned with the protrusions 223 and 225 as marks.
  • the insulating substrates 240 to 260 are mounted on the substrate 110 with the protruding portions 222 to 225 provided on the reinforcing member 220a as marks. According to this configuration, since it is possible to align the insulating substrates 240 to 260 without using a jig or the like, the manufacturing process can be simplified.
  • FIG. 10 is a cross-sectional view showing an example of a semiconductor device according to the third embodiment.
  • the semiconductor device 300 according to the third embodiment is a bonding member that joins the substrate 110, the insulating substrate 130, and the reinforcing member 220 to the semiconductor device 200 according to the second embodiment. Instead, the joining member 210a is used. Other configurations are the same as those of the semiconductor device 200.
  • the insulating substrate 130 and the reinforcing member 220 are mounted or formed on the surface 111 of the substrate 110 via a bonding member 210a.
  • a brazing material such as a copper alloy or an aluminum alloy is used.
  • the copper alloy for example, a phosphor copper type is used.
  • the aluminum alloy for example, A4000 series is used.
  • FIG. 11 is a diagram illustrating an example of a method of manufacturing a semiconductor device according to the third embodiment.
  • a laminate in which an insulating substrate 130 is mounted on a heat dissipation member 310 is prepared.
  • a plurality of fins 170 and reinforcing members 180 are mounted on the back surface 112 of the substrate 110 via the bonding member 160, and further, the bonding member 210 a is mounted on the surface 111 of the substrate 110.
  • the insulating substrate 130 and the reinforcing member 220 are mounted via
  • the substrate 110, the plurality of fins 170, and the reinforcing member 180 are bonded by the bonding member 160, and the substrate 110, the insulating substrate 130, and the reinforcing member 220 are bonded by the bonding member 210a. That is, the plurality of fins 170, the reinforcing members 180 and 220, and the insulating substrate 130 are bonded together to the substrate 110. Thereby, a laminated body in which the insulating substrate 130 is mounted on the heat dissipation member 310 is generated.
  • the joining members 140a and 140b and the semiconductor chips 150a and 150b are sequentially mounted on the stacked body.
  • heat treatment is performed on the structure 301 on which the components are mounted.
  • the insulating substrate 130 and the semiconductor chips 150a and 150b are bonded by the bonding members 140a and 140b. In this way, the semiconductor device 300 is generated.
  • the reinforcing member 180 is formed on the peripheral region S2 of the back surface 112 of the substrate 110 via the bonding member 160. According to this configuration, since the peripheral portion of the substrate 110 is supported by the reinforcing member 180, the warp generated in the substrate 110 can be suppressed. Thereby, the substrate 110 can be thinned, and the heat dissipation can be improved.
  • the reinforcing member 220 is formed on the peripheral region S4 of the surface 111 of the substrate 110 via the bonding member 210a. According to this configuration, since the peripheral portion of the substrate 110 is supported by the reinforcing member 220, it is possible to more effectively suppress the warp generated in the substrate 110.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 放熱性を向上しつつ、基板の反りを抑制する。 半導体装置(100)は、表面(111)と、フィン形成領域(S1)とフィン形成領域(S1)を取り囲む周辺領域(S2)とを含む裏面(112)とを備えた基板(110)と、表面(111)上に搭載された絶縁基板(130)と、絶縁基板(130)上に搭載された半導体チップ(150a,150b)と、フィン形成領域(S1)上に形成された複数のフィン(170)と、周辺領域(S2)と重なるように、基板(110)に接合部材(160)を介して形成された補強部材(180)と、を有する。

Description

半導体装置、放熱部材、および、半導体装置の製造方法
 本発明は、放熱用のフィンを有する半導体装置、放熱部材、および、半導体装置の製造方法に関する。
 放熱用のフィンを備えた半導体装置として、基板と、基板の表面上に搭載された絶縁基板と、絶縁基板上に搭載された半導体チップと、基板の裏面上に形成された複数のフィンとを有する半導体装置が存在する。
 この半導体装置では、半導体チップから発生した熱は、絶縁基板および基板を介して複数のフィンに伝導し、複数のフィンから外部へ放出される。
 このような放熱用のフィンを備えた半導体装置としては、例えば、セラミックス製の絶縁基板の上面に形成された電子部品搭載用の導電層と、絶縁基板の下面に形成されたフィンベースと、複数の放熱フィンとを備えている絶縁フィンを有する半導体装置がある(例えば、特許文献1参照)。
特開2009-26957号公報
 しかしながら、複数のフィンが基板に形成された半導体装置では、複数のフィンが形成されている基板の中央寄りの部分と、フィンが形成されていない基板の周辺部分とで、熱収縮または熱膨張の程度が異なるため、基板が反ってしまう可能性がある。
 これに対して、基板を厚くして、反りに対する基板の強度を向上させることも考えられるが、この場合、基板の熱抵抗が大きくなってしまい、半導体チップから発生した熱を効果的に複数のフィンへ伝導することができず、放熱性が低下してしまう可能性がある。
 このような点に鑑み、本発明は、放熱性を向上しつつ、基板の反りを抑制した半導体装置、放熱部材、および、半導体装置の製造方法を提供することを目的とする。
 上記目的を達成するために以下のような半導体装置が提供される。
 この半導体装置は、表面と、フィン形成領域とフィン形成領域を取り囲む周辺領域とを含む裏面とを備えた基板と、表面上に搭載された絶縁基板と、絶縁基板上に搭載された半導体チップと、フィン形成領域上に形成された複数のフィンと、周辺領域と重なるように、基板に接合部材を介して形成された補強部材と、を有する。
 本発明の半導体装置、放熱部材、および、半導体装置の製造方法によれば、放熱性を向上しつつ、基板の反りを抑制することが可能となる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施の形態に係る半導体装置の一例を示す上面図である。 第1の実施の形態に係る半導体装置の一例を示す下面図である。 第1の実施の形態に係る半導体装置の一例を示す断面図である。 第1の実施の形態に係る半導体装置の製造方法の一例を示す図である。 第1の実施の形態の変形例の半導体装置を示す図である。 第1の実施の形態の変形例の放熱部材の製造方法を示す図である。 第2の実施の形態に係る半導体装置の一例を示す図である。 第2の実施の形態に係る半導体装置の製造方法の一例を示す図である。 第2の実施の形態の変形例の半導体装置を示す図である。 第3の実施の形態に係る半導体装置の一例を示す断面図である。 第3の実施の形態に係る半導体装置の製造方法の一例を示す図である。
 以下、実施の形態を図面を参照して説明する。
 [第1の実施の形態]
 図1は、第1の実施の形態に係る半導体装置の一例を示す上面図である。図2は、第1の実施の形態に係る半導体装置の一例を示す下面図である。図3は、第1の実施の形態に係る半導体装置の一例を示す断面図である。ここで、図3は、図1の点線A-Aにおける断面図に相当する。
 図3に示すように、半導体装置100は、表面111と裏面112とを備えている基板110を有している。基板110の材料には、例えば、銅合金、または、アルミ合金等が用いられている。銅合金としては、例えば、コバルト、りん、錫、ニッケル、亜鉛を銅に微量添加した銅合金(銅:99.5%以上)が用いられている。さらに、JIS規格を用いて説明すると、銅合金には、例えば、C1020(1000系~7000系)が用いられている。アルミ合金には、例えば、A3000系、A5000系、A6000系、A7000系が用いられている。
 さらに、基板110の表面111上には、接合部材120を介して絶縁基板130が搭載されている。接合部材120には、例えば、はんだが用いられている。
 絶縁基板130は、接合部材120と接合された導体層131と、導体層131上に形成された絶縁層132と、絶縁層132上に形成された導体層133a,133b(図3では不図示)とを有している。導体層131,133a,133bには、例えば、銅、または、アルミ等が用いられている。絶縁層132には、例えば、窒化アルミニウム、窒化シリコン、または、酸化アルミニウム等のセラミックスが用いられている。
 さらに、絶縁基板130の導体層133a上には、接合部材140a,140bをそれぞれ介して、半導体チップ150a,150bが搭載されている。図1に示すように、半導体チップ150a,150bは、互いに、または、導体層133bと、ワイヤ151により接続されている。
 接合部材140a,140bには、例えば、はんだが用いられている。半導体チップ150a,150bには、例えば、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)、または、フリーホイールダイオード(Free Wheeling Diode:FWD)等が用いられている。
 基板110の裏面112は、図2および図3に示すように、点線B1で囲まれたフィン形成領域S1と、フィン形成領域S1を包囲する周辺領域S2とを含む。ここで、フィン形成領域S1は、絶縁基板130の直下に位置している。フィン形成領域S1上には、接合部材160を介して、複数のフィン170が形成されている。
 複数のフィン170は、マトリックス状に配置されている。半導体チップ150a,150bから発生した熱は、絶縁基板130および基板110を介して複数のフィン170に伝導し、複数のフィン170から外部へ放出される。
 接合部材160には、例えば、銅合金、または、アルミ合金等のろう材が用いられている。銅合金としては、例えば、りん銅系が用いられている。アルミ合金としては、例えば、A4000系が用いられている。
 フィン170には、例えば、銅合金、または、アルミ合金等が用いられている。銅合金としては、例えば、C1020(1000系)の無酸素銅が用いられている。アルミ合金としては、例えば、A4000系が用いられている。
 さらに、基板110の裏面112の周辺領域S2上には、接合部材160を介して補強部材180が形成されている。補強部材180には開口部181が設けられている。すなわち、補強部材180は枠状を成している。補強部材180は、開口部181によりフィン形成領域S1を露出するように、周辺領域S2上に形成されている。
 補強部材180の材料には、例えば、銅合金、または、アルミ合金等が用いられている。銅合金としては、例えば、コバルト、りん、錫、ニッケル、亜鉛を銅に微量添加した銅合金(銅:99.5%以上)が用いられている。JIS規格を用いて説明すると、銅合金には、例えば、C1000系~C7000系が用いられている。アルミ合金には、例えば、A3000系、A5000系、A6000系、A7000系が用いられている。
 ここで、補強部材180には、基板110とは異なる材料が用いられている。具体的には、補強部材180には、基板110よりも硬い材料が用いられている。また、基板110には、補強部材180よりも熱伝導性が高い材料が用いられている。
 すなわち、補強部材180および基板110に、例えば、銅合金が用いられている場合、補強部材180には、例えば、C1000系~C7000系の中から、硬い銅合金が選択されて用いられ、基板110には、例えば、C1000系~C7000系の中から、熱伝導性が高い銅合金が選択されて用いられている。
 なお、半導体装置100のうち、基板110、接合部材160、複数のフィン170、および、補強部材180から成る部分を、放熱部材190と称す。
 次に、半導体装置100の製造方法について説明する。図4は、第1の実施の形態に係る半導体装置の製造方法の一例を示す図である。
 まず、図4(A)に示すように、放熱部材190を準備する。放熱部材190は、基板110の裏面112上に、接合部材160を介して複数のフィン170および補強部材180を搭載し、この状態で熱処理を施して、接合部材160により基板110と複数のフィン170および補強部材180とを接合させることで生成される。すなわち、複数のフィン170、および、補強部材180を、基板110に対して一括して接合させる。なお、放熱部材190の表面は、全面的、または、部分的にニッケルめっきされていてもよい。
 そして、放熱部材190上に、接合部材120、絶縁基板130、接合部材140a,140b、および、半導体チップ150a,150bを順次搭載する。
 次に、図4(B)に示すように、各部品が搭載された構造体101に、熱処理を施す。これにより、接合部材120により基板110と絶縁基板130とが接合し、接合部材140a,140bにより、絶縁基板130と半導体チップ150a,150bとが接合する。このようにして、半導体装置100が生成される。
 以上のように、半導体装置100では、基板110の裏面112の周辺領域S2上に、接合部材160を介して補強部材180が形成されている。この構成によれば、補強部材180により基板110の周辺部分が支持されるため、基板110に発生する反りを抑制することができる。
 また、これにより、基板110自体の反りに対する強度を低く設定することもできるため、基板110を薄くすることが可能となる。基板110を薄くすることで、基板110の熱抵抗を下げることができ、半導体チップ150a,150bから発生した熱を、効果的に複数のフィン170に伝導することができ、放熱性を向上させることが可能となる。
 さらに、基板110を薄くすることで、基板110の材料が少なくなるため、また、比較的入手の容易なロール材を使うことができるため、材料費を低減することが可能となる。さらに、半導体装置100を軽量化することができる。特に、半導体装置100が車載製品に用いられる場合、軽量化の要求が強いため、効果は大きい。
 さらに、半導体装置100では、補強部材180は基板110の裏面112上に接合部材160を介して形成されている。すなわち、補強部材180と基板110とが別の部品で構成されている。
 このため、基板110に発生する反りの大きさが、例えば、半導体装置100の用途等により異なる場合でも、基板110の厚さを変えずに、補強部材180の厚さ等を調整することによって、対応することが可能となる。すなわち、基板110に発生する反りの大きさに応じて、異なる種類の基板110を準備する必要がないため、製造コストを低減することが可能となる。
 さらに、半導体装置100では、補強部材180には、基板110とは異なる材料が用いられている。具体的には、補強部材180には、基板110よりも硬い材料が用いられている。これにより、基板110の周辺部分をより強力に支持することが可能となる。また、基板110には、補強部材180よりも熱伝導性が高い材料が用いられている。これにより、半導体チップ150a,150bから発生した熱を、より効果的に複数のフィン170に伝導することが可能となる。
 また、半導体装置100は、フィン170と補強部材180とが接合部材160により基板110に接合されている。フィン170を補強部材180と一緒に接合するため、基板110に反りのない状態で組み立てることができ、製造が容易になる。
 (変形例)
 次に、半導体装置100の変形例について説明する。図5は、第1の実施の形態の変形例の半導体装置を示す図である。図5(A)は、半導体装置の下面図を示し、図5(B)は、半導体装置の断面図を示す。
 変形例の半導体装置100aは、半導体装置100に対して、補強部材180に換えて、補強部材180とは形状および配置が異なる補強部材180aを用いたものである。その他の構成は、半導体装置100と同様である。
 図5(A)、(B)に示すように、補強部材180aには、複数の貫通孔182が設けられている。貫通孔182の径は、フィン170の径よりも大きい。そして、補強部材180aは、複数のフィン170のそれぞれが複数の貫通孔182のそれぞれの内に位置するように、基板110の裏面112の周辺領域S2上およびフィン形成領域S1上に、接合部材160を介して形成されている。
 なお、半導体装置100aのうち、基板110、接合部材160、複数のフィン170、および、補強部材180aから成る部分を、放熱部材190aと称す。
 半導体装置100aにおいても、基板110の裏面112の周辺領域S2上に、接合部材160を介して補強部材180aが形成されている。この構成によれば、補強部材180aにより基板110の周辺部分が支持されるため、基板110に発生する反りを抑制することができる。また、これにより、基板110を薄くすることができ、放熱性を向上させることが可能となる。
 半導体装置100aの製造方法は、図4に示された半導体装置100の製造方法と同様である。すなわち、半導体装置100aは、放熱部材190a上に、接合部材120、絶縁基板130、接合部材140a,140b、および、半導体チップ150a,150bを順次搭載した後、各部品が搭載された構造体に、熱処理を施すことで生成される。
 次に、放熱部材190aの製造方法について説明する。図6は、第1の実施の形態の変形例の放熱部材の製造方法を示す図である。
 まず、図6(A)に示すように、基板110の裏面112上に接合部材160を介して複数のフィン170を配置する。ここで、複数のフィン170は、基板110に完全には接合されていない。そして、基板110の裏面112と対向するように、補強部材180aを配置する。
 次に、図6(B)に示すように、補強部材180aを、複数のフィン170のそれぞれが複数の貫通孔182のそれぞれの内に位置するようにして、接合部材160に接触させる。このとき、複数のフィン170のそれぞれは、補強部材180aの複数の貫通孔182のそれぞれによって、位置合わせされる。
 そして、この状態で熱処理を施し、接合部材160により基板110と複数のフィン170および補強部材180aとを接合させる。このようにして、放熱部材190aが生成される。
 このように、放熱部材190aの製造方法によれば、複数の貫通孔182が設けられた補強部材180aを、複数のフィン170のそれぞれが複数の貫通孔182のそれぞれの内に位置するように、基板110の裏面112上に接合部材160を介して配置した後、熱処理を施して、接合部材160により基板110と複数のフィン170および補強部材180aとを接合させる。
 この構成によれば、補強部材180aを配置する工程が、複数のフィン170の位置合わせを行う工程を兼ねるため、製造工程を少なくすることが可能となる。
 [第2の実施の形態]
 次に、第2の実施の形態の半導体装置について説明する。図7は、第2の実施の形態に係る半導体装置の一例を示す図である。図7(A)は、上面図であり、図7(B)は、図7(A)の点線A-Aにおける断面図に相当する。
 第2の実施の形態の半導体装置200は、第1の実施の形態の半導体装置100に対して、基板110の表面111上にも、補強部材を形成したものである。その他の構成は、半導体装置100と同様である。
 基板110の表面111は、図7(A)、(B)に示すように、点線B2で囲まれた領域であり絶縁基板130が搭載された絶縁基板搭載領域S3と、絶縁基板搭載領域S3を取り囲む周辺領域S4とを含む。そして、周辺領域S4上に、接合部材210を介して補強部材220が形成されている。補強部材220には開口部221が設けられている。すなわち、補強部材220は枠状を成している。補強部材220は、開口部221により絶縁基板搭載領域S3を露出するように、周辺領域S4上に形成されている。
 接合部材210の材料には、例えば、銅合金、または、アルミ合金等のろう材が用いられている。銅合金としては、例えば、りん銅系が用いられている。アルミ合金としては、例えば、A4000系が用いられている。
 補強部材220の材料には、例えば、銅合金、または、アルミ合金等が用いられている。銅合金としては、例えば、コバルト、りん、錫、ニッケル、亜鉛を銅に微量添加した銅合金(銅:99.5%以上)が用いられている。JIS規格を用いて説明すると、銅合金には、例えば、C1000系~C7000系が用いられている。アルミ合金には、例えば、A3000系、A5000系、A6000系、A7000系が用いられている。
 ここで、補強部材220には、基板110とは異なる材料が用いられている。具体的には、補強部材220には、基板110よりも硬い材料が用いられている。また、基板110には、補強部材220よりも熱伝導性が高い材料が用いられている。
 なお、半導体装置200のうち、基板110、接合部材160,210、複数のフィン170、および、補強部材180,220から成る部分を、放熱部材230と称す。
 次に、半導体装置200の製造方法について説明する。図8は、第2の実施の形態に係る半導体装置の製造方法の一例を示す図である。
 まず、図8(A)に示すように、放熱部材230を準備する。放熱部材230の製造方法としては、まず、基板110の裏面112上に、接合部材160を介して複数のフィン170および補強部材180を搭載し、さらに、基板110の表面111上に、接合部材210を介して補強部材220を搭載する。
 そして、この状態で熱処理を施して、接合部材160により基板110と複数のフィン170および補強部材180とを接合させ、接合部材210により基板110と補強部材220とを接合させる。すなわち、複数のフィン170、および、補強部材180,220を、基板110に対して一括して接合させる。これにより、放熱部材230が生成される。なお、放熱部材230の表面は、全面的、または、部分的にニッケルめっきされていてもよい。
 次に、放熱部材230上に、接合部材120、絶縁基板130、接合部材140a,140b、および、半導体チップ150a,150bを順次搭載する。
 次に、図8(B)に示すように、各部品が搭載された構造体201に、熱処理を施す。これにより、接合部材120により基板110と絶縁基板130とが接合し、接合部材140a,140bにより、絶縁基板130と半導体チップ150a,150bとが接合する。このようにして、半導体装置200が生成される。
 以上のように、半導体装置200では、基板110の裏面112の周辺領域S2上に、接合部材160を介して補強部材180が形成されている。この構成によれば、補強部材180により基板110の周辺部分が支持されるため、基板110に発生する反りを抑制することができる。また、これにより、基板110を薄くすることができ、放熱性を向上させることが可能となる。
 さらに、半導体装置200では、基板110の表面111の周辺領域S4上に、接合部材210を介して補強部材220が形成されている。この構成によれば、補強部材220により基板110の周辺部分が支持されるため、基板110に発生する反りをより効果的に抑制することができる。なお、半導体装置200では、補強部材180を削除することも可能である。
 (変形例)
 次に、半導体装置200の変形例について説明する。図9は、第2の実施の形態の変形例の半導体装置を示す図である。図9(A)は、半導体装置の上面図を示し、図9(B)は、図9(A)の点線A-Aにおける断面図に相当する。
 変形例の半導体装置200aは、半導体装置200に対して、絶縁基板130に換えて、複数の絶縁基板240,250,260が基板110に搭載されたものである。また、半導体装置200aは、半導体装置200に対して、補強部材220に換えて、補強部材220とは形状が異なる補強部材220aを用いたものである。その他の構成は、半導体装置200と同様である。
 基板110の表面111上には、接合部材210を介して、図9(A)、(B)に示すように、絶縁基板240~260が搭載されている。絶縁基板240~260はそれぞれ、半導体装置200の絶縁基板130と同様の構成を備えている。
 さらに、絶縁基板240上には、接合部材271を介して半導体チップ270a,270bが搭載されている。絶縁基板250上には、接合部材272を介して半導体チップ280a,280bが搭載されている。絶縁基板260上には、接合部材273を介して半導体チップ290a,290bが搭載されている。接合部材271~273には、例えば、はんだが材料に用いられている。
 図9(A)に示すように、補強部材220aには、開口部221aと、開口部221aに突出する複数の突出部222,223,224,225が設けられている。そして、補強部材220aは、開口部221aにより絶縁基板搭載領域S3を露出するように、周辺領域S4上に形成されている。
 絶縁基板240~260はそれぞれ、突出部222~225を境界にして、開口部221a内に配置されている。ここでは、例えば、突出部222と突出部224とを結ぶ点線B3を境界にして、絶縁基板240,250がそれぞれ開口部221a内に配置され、突出部223と突出部225とを結ぶ点線B4を境界にして、絶縁基板250,260がそれぞれ開口部221a内に配置されている。
 なお、半導体装置200aのうち、基板110、接合部材160,210、複数のフィン170、および、補強部材180,220aから成る部分を、放熱部材230aと称す。
 半導体装置200aにおいても、基板110の表面111の周辺領域S4上に、接合部材210を介して補強部材220aが形成されている。この構成によれば、補強部材220aにより基板110の周辺部分が支持されるため、基板110に発生する反りをより効果的に抑制することができる。
 半導体装置200aの製造方法は、図8に示された半導体装置200の製造方法と同様である。すなわち、半導体装置200aは、放熱部材230a上に、接合部材120、絶縁基板240~260、接合部材271~273、および、半導体チップ270a,270b,280a,280b,290a,290bを順次搭載した後、各部品が搭載された構造体に、熱処理を施すことで生成される。
 ここで、半導体装置200aの製造方法では、絶縁基板240~260を放熱部材230aの基板110上に搭載する際に、補強部材220aに設けられた突出部222~225を目印にして位置合わせを行う。
 例えば、絶縁基板240に対しては、突出部222,224を目印にして位置合わせを行い、絶縁基板250に対しては、突出部222,224、または、突出部223,225を目印にして位置合わせを行い、絶縁基板260に対しては、突出部223,225を目印にして位置合わせを行う。
 このように、半導体装置200aの製造方法によれば、絶縁基板240~260を、補強部材220aに設けられた突出部222~225を目印にして、基板110上に搭載する。この構成によれば、冶具等を用いなくとも、絶縁基板240~260の位置合わせを行うことができるため、製造工程を簡略化することが可能となる。
 [第3の実施の形態]
 次に、第3の実施の形態の半導体装置について説明する。図10は、第3の実施の形態に係る半導体装置の一例を示す断面図である。
 第3の実施の形態の半導体装置300は、第2の実施の形態の半導体装置200に対して、基板110と絶縁基板130および補強部材220とを接合する接合部材に、接合部材120,210に換えて、接合部材210aを用いるようにしたものである。その他の構成は、半導体装置200と同様である。
 図10に示すように、絶縁基板130および補強部材220は、基板110の表面111上に接合部材210aを介して搭載または形成されている。接合部材210aの材料には、例えば、銅合金、または、アルミ合金等のろう材が用いられている。銅合金としては、例えば、りん銅系が用いられている。アルミ合金としては、例えば、A4000系が用いられている。
 なお、半導体装置300のうち、基板110、接合部材160,210a、複数のフィン170、および、補強部材180,220から成る部分を、放熱部材310と称す。
 次に、半導体装置300の製造方法について説明する。図11は、第3の実施の形態に係る半導体装置の製造方法の一例を示す図である。
 まず、図11(A)に示すように、放熱部材310に絶縁基板130が搭載された積層体を準備する。この積層体の製造方法としては、まず、基板110の裏面112上に、接合部材160を介して複数のフィン170および補強部材180を搭載し、さらに、基板110の表面111上に、接合部材210aを介して絶縁基板130および補強部材220を搭載する。
 そして、この状態で熱処理を施して、接合部材160により基板110と複数のフィン170および補強部材180とを接合させ、接合部材210aにより基板110と絶縁基板130および補強部材220とを接合させる。すなわち、複数のフィン170、補強部材180,220、および、絶縁基板130を、基板110に対して一括して接合させる。これにより、放熱部材310に絶縁基板130が搭載された積層体が生成される。
 次に、この積層体上に、接合部材140a,140b、および、半導体チップ150a,150bを順次搭載する。
 次に、図11(B)に示すように、各部品が搭載された構造体301に、熱処理を施す。これにより、接合部材140a,140bにより、絶縁基板130と半導体チップ150a,150bとが接合する。このようにして、半導体装置300が生成される。
 以上のように、半導体装置300では、基板110の裏面112の周辺領域S2上に、接合部材160を介して補強部材180が形成されている。この構成によれば、補強部材180により基板110の周辺部分が支持されるため、基板110に発生する反りを抑制することができる。また、これにより、基板110を薄くすることができ、放熱性を向上させることが可能となる。
 さらに、半導体装置300では、基板110の表面111の周辺領域S4上に、接合部材210aを介して補強部材220が形成されている。この構成によれば、補強部材220により基板110の周辺部分が支持されるため、基板110に発生する反りをより効果的に抑制することができる。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 100,100a,200,200a,300 半導体装置
 101,201,301 構造体
 110 基板
 111 表面
 112 裏面
 120,140a,140b,160,210,210a,271,272,273 接合部材
 130,240,250,260 絶縁基板
 131,133a,133b 導体層
 132 絶縁層
 150a,150b,270a,270b,280a,280b,290a,290b 半導体チップ
 151 ワイヤ
 170 フィン
 180,180a,220,220a 補強部材
 181,221,221a 開口部
 182 貫通孔
 190,190a,230,230a,310 放熱部材
 222,223,224,225 突出部
 S1 フィン形成領域
 S2,S4 周辺領域
 S3 絶縁基板搭載領域

Claims (19)

  1.  表面と、フィン形成領域と前記フィン形成領域を取り囲む周辺領域とを含む裏面とを備えた基板と、
     前記表面上に搭載された絶縁基板と、
     前記絶縁基板上に搭載された半導体チップと、
     前記フィン形成領域上に形成された複数のフィンと、
     前記周辺領域と重なるように、前記基板に接合部材を介して形成された補強部材と、
     を有することを特徴とする半導体装置。
  2.  前記補強部材には、前記基板とは異なる材料が用いられていることを特徴とする請求の範囲第1項記載の半導体装置。
  3.  前記補強部材には、前記基板よりも硬い材料が用いられていることを特徴とする請求の範囲第2項記載の半導体装置。
  4.  前記基板には、前記補強部材よりも熱伝導性が高い材料が用いられていることを特徴とする請求の範囲第2項または第3項記載の半導体装置。
  5.  前記補強部材は、前記周辺領域上に前記接合部材を介して形成されていることを特徴とする請求の範囲第1項~第4項のいずれか1項に記載の半導体装置。
  6.  前記補強部材には開口部が設けられ、前記補強部材は、前記開口部により前記フィン形成領域を露出するように、前記周辺領域上に形成されていることを特徴とする請求の範囲第5項記載の半導体装置。
  7.  前記補強部材には複数の貫通孔が設けられ、前記補強部材は、前記複数のフィンのそれぞれが前記複数の貫通孔のそれぞれの内に位置するように、前記周辺領域上および前記フィン形成領域上に形成されていることを特徴とする請求の範囲第5項または第6項記載の半導体装置。
  8.  前記基板の前記表面は、絶縁基板搭載領域と前記絶縁基板搭載領域を取り囲む周辺領域とを備え、
     前記絶縁基板は、前記絶縁基板搭載領域上に搭載され、
     前記表面の周辺領域上に接合部材を介して補強部材が形成されていることを特徴とする請求の範囲第5項~第7項のいずれか1項に記載の半導体装置。
  9.  前記絶縁基板は、前記表面の周辺領域上の前記接合部材と同じ材料を用いた接合部材を介して、前記絶縁基板搭載領域上に搭載されていることを特徴とする請求の範囲第8項記載の半導体装置。
  10.  前記基板の前記表面上には前記絶縁基板が複数個搭載され、
     前記表面上の前記補強部材には、開口部と前記開口部に突出する突出部とが設けられ、
     前記複数の絶縁基板はそれぞれ、前記突出部を境界にして、前記開口部内に配置されていることを特徴とする請求の範囲第8項または第9項記載の半導体装置。
  11.  前記基板の前記表面は、絶縁基板搭載領域と前記絶縁基板搭載領域を取り囲む周辺領域とを備え、
     前記絶縁基板は、前記絶縁基板搭載領域上に搭載され、
     前記表面の周辺領域上に前記接合部材を介して前記補強部材が形成されていることを特徴とする請求の範囲第1項~第4項のいずれか1項に記載の半導体装置。
  12.  絶縁基板搭載領域を含む表面と、フィン形成領域と前記フィン形成領域を取り囲む周辺領域とを含む裏面とを備えた基板と、
     前記フィン形成領域上に形成された複数のフィンと、
     前記周辺領域と重なるように、前記基板に接合部材を介して形成された補強部材と、
     を有することを特徴とする放熱部材。
  13.  前記補強部材には、前記基板とは異なる材料が用いられていることを特徴とする請求の範囲第12項記載の放熱部材。
  14.  前記補強部材には、前記基板よりも硬い材料が用いられていることを特徴とする請求の範囲第13項記載の放熱部材。
  15.  前記基板には、前記補強部材よりも熱伝導性が高い材料が用いられていることを特徴とする請求の範囲第13項または第14項記載の放熱部材。
  16.  前記補強部材は、前記周辺領域上に前記接合部材を介して形成されていることを特徴とする請求の範囲第12項~第15項のいずれか1項に記載の放熱部材。
  17.  前記基板の前記表面は、前記絶縁基板搭載領域を取り囲む周辺領域を備え、
     前記表面の周辺領域上に接合部材を介して補強部材が形成されていることを特徴とする請求の範囲第12項~第16項のいずれか1項に記載の放熱部材。
  18.  表面と、フィン形成領域と前記フィン形成領域を取り囲む周辺領域とを含む裏面とを備えた基板の、前記フィン形成領域上に接合部材を介して複数のフィンを配置する工程と、
     複数の貫通孔が設けられた補強部材を、前記複数のフィンのそれぞれが前記複数の貫通孔のそれぞれの内に位置するように、前記周辺領域上および前記フィン形成領域上に前記接合部材を介して配置する工程と、
     前記補強部材が配置された前記基板に熱処理を施して、前記接合部材により前記基板と前記複数のフィンおよび前記補強部材とを接合させる工程と、
     前記表面上に絶縁基板を搭載する工程と、
     前記絶縁基板上に半導体チップを搭載する工程と、
     を有することを特徴とする半導体装置の製造方法。
  19.  絶縁基板搭載領域と前記絶縁基板搭載領域を取り囲む周辺領域とを含む表面と、フィン形成領域を含む裏面とを備え、前記フィン形成領域上に複数のフィンが形成され、かつ、前記表面の周辺領域上に開口部と前記開口部に突出する突出部とが設けられた補強部材が前記開口部により前記絶縁基板搭載領域を露出するように接合部材を介して形成された基板の、前記絶縁基板搭載領域上に、複数の絶縁基板をそれぞれ、前記突出部を目印にして搭載する工程と、
     前記複数の絶縁基板のそれぞれの上に、半導体チップを搭載する工程と、
     を有することを特徴とする半導体装置の製造方法。
PCT/JP2011/069562 2010-10-26 2011-08-30 半導体装置、放熱部材、および、半導体装置の製造方法 WO2012056809A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012540729A JP5720694B2 (ja) 2010-10-26 2011-08-30 半導体装置、放熱部材、および、半導体装置の製造方法
US13/814,852 US9299633B2 (en) 2010-10-26 2011-08-30 Semiconductor device, heat radiation member, and manufacturing method for semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-239269 2010-10-26
JP2010239269 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012056809A1 true WO2012056809A1 (ja) 2012-05-03

Family

ID=45993539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069562 WO2012056809A1 (ja) 2010-10-26 2011-08-30 半導体装置、放熱部材、および、半導体装置の製造方法

Country Status (3)

Country Link
US (1) US9299633B2 (ja)
JP (1) JP5720694B2 (ja)
WO (1) WO2012056809A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140083671A1 (en) * 2012-09-27 2014-03-27 Dowa Metaltech Co., Ltd. Heat radiating plate and method for producing same
JP7463825B2 (ja) 2020-04-27 2024-04-09 富士電機株式会社 半導体モジュールおよび車両

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086324A1 (ja) * 2015-11-16 2017-05-26 株式会社豊田中央研究所 接合構造体およびその製造方法
US11488903B2 (en) 2020-01-28 2022-11-01 Littelfuse, Inc. Semiconductor chip package and method of assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022914A (ja) * 2002-06-19 2004-01-22 Hitachi Ltd 絶縁回路基板とその冷却構造及ぴパワー半導体装置とその冷却構造
JP2010182831A (ja) * 2009-02-04 2010-08-19 Toyota Industries Corp 半導体装置
JP2010238963A (ja) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp パワーモジュール用基板、パワーモジュール用基板の製造方法及びパワーモジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937514A (en) * 1997-02-25 1999-08-17 Li; Chou H. Method of making a heat-resistant system
US5964285A (en) * 1999-02-12 1999-10-12 Yung-Tsai Chu Heat sink
JP2009026957A (ja) 2007-07-19 2009-02-05 Ngk Insulators Ltd 絶縁フィン及びヒートシンク
JP5700034B2 (ja) * 2009-08-10 2015-04-15 富士電機株式会社 半導体モジュール及び冷却器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022914A (ja) * 2002-06-19 2004-01-22 Hitachi Ltd 絶縁回路基板とその冷却構造及ぴパワー半導体装置とその冷却構造
JP2010182831A (ja) * 2009-02-04 2010-08-19 Toyota Industries Corp 半導体装置
JP2010238963A (ja) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp パワーモジュール用基板、パワーモジュール用基板の製造方法及びパワーモジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140083671A1 (en) * 2012-09-27 2014-03-27 Dowa Metaltech Co., Ltd. Heat radiating plate and method for producing same
CN103700636A (zh) * 2012-09-27 2014-04-02 同和金属技术有限公司 散热板及其生产方法
JP7463825B2 (ja) 2020-04-27 2024-04-09 富士電機株式会社 半導体モジュールおよび車両

Also Published As

Publication number Publication date
US20130200510A1 (en) 2013-08-08
JP5720694B2 (ja) 2015-05-20
US9299633B2 (en) 2016-03-29
JPWO2012056809A1 (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5141076B2 (ja) 半導体装置
US9704788B2 (en) Power overlay structure and method of making same
US8759157B2 (en) Heat dissipation methods and structures for semiconductor device
JP4524716B2 (ja) ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板
JP5009976B2 (ja) 薄いダイ及び金属基板を使用する半導体ダイ・パッケージ
US7875972B2 (en) Semiconductor device assembly having a stress-relieving buffer layer
US7936054B2 (en) Multi-chip package
JP4610414B2 (ja) 電子部品収納用パッケージおよび電子装置ならびに電子装置の実装構造
JP5067187B2 (ja) ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール
JP2014038993A (ja) コア基板及びこれを用いたプリント回路基板
KR20170044105A (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법
JP5720694B2 (ja) 半導体装置、放熱部材、および、半導体装置の製造方法
JP3813540B2 (ja) 半導体装置の製造方法及び半導体装置及び半導体装置ユニット
JP2010528472A (ja) 熱性能の向上のためにフタをはんだ付けされた集積回路パッケージ
US20110195273A1 (en) Bonding structure and method of fabricating the same
JP5919692B2 (ja) 半導体装置および半導体装置の製造方法
JP2005311284A (ja) パワー半導体素子およびこれを用いた半導体装置
JP2017139508A (ja) パワーモジュール用基板製造のための接合体
JP2004296493A (ja) 放熱体及びパワーモジュール並びに放熱体の製造方法及びパワーモジュールの製造方法
JP6237058B2 (ja) 銅板付きパワーモジュール用基板、及び銅板付きパワーモジュール用基板の製造方法
Essig et al. High efficient mid power modules by next generation chip embedding technology
TWI690031B (zh) 整合元件及導線架之線路板及其製法
JP6149655B2 (ja) パワーモジュール用基板およびその製造方法
JP2002043457A (ja) 放熱用絶縁基板及び半導体装置
JP5180802B2 (ja) 積層電極形成方法とその積層電極を備える半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13814852

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012540729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835950

Country of ref document: EP

Kind code of ref document: A1