WO2012055107A1 - 一种w/o乳液油墨组合物及其应用 - Google Patents

一种w/o乳液油墨组合物及其应用 Download PDF

Info

Publication number
WO2012055107A1
WO2012055107A1 PCT/CN2010/078198 CN2010078198W WO2012055107A1 WO 2012055107 A1 WO2012055107 A1 WO 2012055107A1 CN 2010078198 W CN2010078198 W CN 2010078198W WO 2012055107 A1 WO2012055107 A1 WO 2012055107A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
oil phase
resin
ink composition
emulsion ink
Prior art date
Application number
PCT/CN2010/078198
Other languages
English (en)
French (fr)
Inventor
刘牧龙
张先恩
张治平
王艳平
Original Assignee
深圳智慧天使投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳智慧天使投资有限公司 filed Critical 深圳智慧天使投资有限公司
Priority to PCT/CN2010/078198 priority Critical patent/WO2012055107A1/zh
Priority to CN201080069746.8A priority patent/CN103328588B/zh
Publication of WO2012055107A1 publication Critical patent/WO2012055107A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/023Emulsion inks

Definitions

  • This invention relates to the field of biotechnology and, more particularly, to a W/O emulsion ink composition and uses thereof.
  • the yacht is slowly entering the life of the Chinese.
  • the marina in the coastal area is being built one after another.
  • the yacht will no longer be a luxury in China, and more and more ordinary families can enjoy the yacht.
  • the ink containing the biologically active substance is formed into a film by a printing technique, and the biologically active substance can be immobilized on a specific carrier. Since most biologically active substances are hydrophilic and organic solvents have an effect on biological activity, most of the inks currently immobilized by printing techniques for biologically active substances are aqueous inks or aqueous emulsion inks.
  • patent US20060226008A1 US Pat. No. 6,258,229, 229, and US Pat.
  • water-based inks currently used have the disadvantages of poor adhesion, poor printing accuracy, etc., and their application in the field of precision biological products has limitations.
  • stability of water-soluble binders in aqueous bioreactor systems for biological substances and other fixed media is still debatable.
  • Patent US Pat. No. 6,719, 293 discloses an aqueous ink formulation in which the aqueous binder becomes hydrophobic after film formation, but the range of attachment agents is relatively small.
  • Patent No. 5,183,742 discloses an oily ink formulation for immobilizing a biological enzyme, in which a reagent such as a biological enzyme powder or a linker is dispersed or dissolved in a non-aqueous solvent, and thus there is a problem of biocompatibility.
  • Patent US2839412 discloses emulsion ink for printing
  • patent CN 100338158C discloses a W/O type emulsion ink for orifice printing
  • a patent CN1243804C and a patent CN1198891C respectively disclose a W/O type emulsion ink for stencil printing.
  • the addition of the aqueous phase gives the emulsion ink better performance in stencil printing than other inks, that is, keeps the viscosity change due to changes in the ink temperature, increases the penetration rate of the ink, and increases the ink.
  • the structural viscosity prevents ink from flowing out of the printer and reduces the rotatability of the ink in separating the printing cylinder from the printing medium.
  • the technical problem to be solved by the present invention is to provide a connection structure of a marina which is easy to install, simple in structure andaki in design, in view of the above-mentioned drawbacks of the prior art.
  • the technical problem to be solved by the present invention is to provide a W/O emulsion ink composition and its use in view of the above-mentioned drawbacks of the prior art.
  • a W/O emulsion ink composition comprising, by weight percent, 90 to 10% of the oil phase and 10 to 90 % of an aqueous phase in which a biologically active substance having a polarity similar to that of the oil phase and/or the aqueous phase is dissolved in the oil phase and/or the aqueous phase.
  • composition of the present invention wherein the W/O emulsion ink composition comprises, by weight percentage, 10 to 50% of an aqueous phase and 90 to 50% by weight. % oil phase.
  • composition of the present invention wherein the W/O emulsion ink composition comprises, by weight percentage, 10 to 30% of an aqueous phase and 90 to 70% by weight. % oil phase.
  • composition of the present invention wherein the biologically active substance comprises a protein, a polypeptide, an oligopeptide, a cell, a biological tissue, an enzyme, a DNA, a DNA fragment, an RNA, an antibody, an antigen, a polysaccharide, an oligonucleotide, a lectin. , one or more of biotin and lipids.
  • composition according to the present invention wherein the aqueous phase comprises one or more of water, an electrolyte, a highly polar alcohol, a preservative, a water evaporation preventing agent, and a water-soluble polymer which do not hinder the formation of the emulsion.
  • composition of the present invention wherein the oil phase comprises a water-insoluble binder and a solvent, wherein the binder comprises 0.1% to 70% by weight;
  • the solvent is a volatile solvent or a mixture of a volatile solvent and a non-volatile solvent, wherein the volatile solvent is contained in an amount of 10% to 95% of the liquid component in the oil phase.
  • composition of the present invention wherein the content of the linking agent is 0.5% to 20% by weight, and the content of the volatile solvent is 60% to 90% of the liquid component in the oil phase.
  • composition according to the present invention wherein the bonding agent comprises: a polyester resin, an alkyl resin, a polystyrene resin, an epoxy resin, a polyvinyl chloride resin, a polyvinyl alcohol resin, an acrylic resin, a maleic acid a mixture of one or more of a resin, an alkyd resin, a terpene resin, a rosin resin, a cellulose derivative, and a natural polymer;
  • the solvent is an organic solvent, and includes one or more of a ketone solvent, an ester solvent, an alcohol solvent, an ether ester solvent, a hydrazine hydrocarbon solvent, and a benzene solvent.
  • composition of the present invention wherein the oil phase further comprises one or more of an emulsifier, a filler and a plasticizer.
  • the present invention also provides a method of immobilizing a biologically active substance using the W/O emulsion ink composition described above, which comprises the steps of:
  • the bonding agent in the W/O emulsion ink composition is formed into a film, the bioactive material is embedded and fixed on the target substrate.
  • the printing technique is screen printing, pad printing, overprinting or inkjet printing technology
  • the target substrate comprises one or more of quartz, glass, metal, ceramic, plastic, silica gel, chemically functionalized glass, polymer covered glass.
  • the emulsion is used to separate the oil phase component which is poor in biocompatibility, so that the two are located in different phases, thereby reducing the interaction, thereby reducing the oil phase organic matter pair.
  • the effect of such a biologically active substance for a biologically active substance having a polarity similar to that of an oil phase, if the oil phase component has little effect on it, it is dissolved in the oil phase or dispersed in the water phase in the form of O/W.
  • the good printing performance of the emulsion ink can be utilized, and the bioactive substance can be accurately positioned or fixed on the carrier by using the ink as a carrier, which solves the problem that the bioactive substance has poor compatibility with the non-aqueous ink, and the printing performance of the aqueous bio ink is poor.
  • the problem is the effective realization of the immobilization of biologically active substances. This will enable the rapid mass production of clinical diagnostic products, analytical reagents, biosensors and other biological products using modern, efficient, high-volume, low-cost printing technologies.
  • 1 is an instantaneous current scan curve of an enzyme electrode for different concentrations of glucose according to a preferred embodiment of the present invention
  • Figure 2 is a plot of Anti-EGF concentration versus OD405 values for a preferred embodiment of the invention.
  • the continuous phase is an oil phase or a non-polar phase
  • the dispersed phase is an aqueous phase or a relatively polar phase.
  • the W/O emulsion ink composition comprises: 90 to 10% of the oil phase and 10 parts by weight. ⁇ 90 % of the aqueous phase.
  • the biologically active substance in the oil phase and/or the aqueous phase is similar in polarity to the oil phase and/or the aqueous phase, respectively.
  • a biologically active substance refers to a substance capable of realizing its natural or expected biological function, and the biologically active substance can be in an active state, including: proteins, polypeptides, oligopeptides, cells, biological tissues, enzymes, DNA, DNA fragments, RNA One or more of antibodies, antigens, polysaccharides, oligonucleotides, lectins, biotin and lipids.
  • Non-polar biologically active substances such as lipids, non-polar substrates of enzymes, non-polar vitamins, etc.
  • Polar bioactive substances can be dissolved directly in the aqueous phase.
  • the biologically active substance may be present in the oil phase or the aqueous phase alone, and the oil phase and the aqueous phase of the emulsion ink may also contain different biologically active substances.
  • the bioactive substance with similar polarity to the aqueous phase is separated from the oil phase component with poor biocompatibility by the emulsion, so that the two are located in different phases, and the interaction is reduced, thereby reducing the influence of the organic phase of the oil phase on the biologically active substance.
  • bioactive substances with similar polarity to the oil phase if the oil phase component has little effect on it, dissolve it in the oil phase, or disperse it in the water phase in the form of O/W, so that the emulsion ink can be used well.
  • the printing performance using the ink as a carrier to accurately position or fix the biological active substance on the carrier, solves the problem of poor compatibility between the biologically active substance and the non-aqueous ink, and the poor printing performance of the aqueous biological ink.
  • the aqueous phase not only increases the compatibility of the ink with the bioactive substance in the emulsion ink, but also imparts more stable performance to the ink (small viscosity change).
  • the high content of the oil phase component can increase the drying speed and reduce the damage of the organic substance to the biologically active substance during printing.
  • the W/O emulsion ink composition comprises 10 to 50% of an aqueous phase and 90 to 50 % oil phase.
  • the emulsion ink composition contains 10 to 30% of an aqueous phase and 90 to 70% of an oil phase.
  • the oil phase contains at least a water-insoluble binder and a solvent, which comprises 0.1% to 70% by weight of the linking agent;
  • the solvent is a volatile solvent or a mixture of a volatile solvent and a non-volatile solvent, wherein The volatilization rate of the volatile solvent is proportional to the drying speed of the emulsion ink, and the content thereof is 10% to 95% of the liquid component in the oil phase.
  • the content of the linking agent is from 0.5% to 20% by weight, and the content of the volatile solvent is from 60% to 90% of the liquid component in the oil phase.
  • the W/O emulsion ink expands the selection range of the bonding agent over the aqueous ink having better biocompatibility, and can better improve the printing performance of the ink.
  • the linker component is a resin or other film-forming polymer whose function is to form a film on the surface to which the bioactive substance needs to adhere after the ink is dried, and to fix the bioactive substance in the film or between the gaps of the film.
  • the connecting agent includes: a polyester resin, an alkyl resin, a polystyrene resin, an epoxy resin, a polyvinyl chloride resin, a polyvinyl alcohol resin, an acrylic resin, a maleic acid resin, an alkyd resin, a terpene resin, A rosin-based resin, a cellulose derivative such as ethyl cellulose, nitrocellulose, cellulose acetate; a natural polymer such as a mixture of one or more of insoluble starch and insoluble polysaccharide.
  • the solvent is an organic solvent, including a ketone solvent such as cyclohexanone, acetone, methyl ethyl ketone; an ester solvent such as ethyl acetate, butyl acetate; an alcohol solvent such as n-butanol; an ether ester solvent; One or more of a hydrocarbon solvent or a benzene solvent.
  • a solvent dissolves the binder, adjusts the drying speed of the emulsion ink, adjusts the fluidity of the ink, and increases the stability of the emulsion.
  • the solvent may be only a volatile solvent or a mixture of a volatile solvent and a non-volatile solvent. The amount of solvent added depends on the oil phase/water ratio in the emulsion ink, as well as the type and amount of the binder.
  • the oil phase further comprises one or more of an emulsifier, a filler and a plasticizer.
  • emulsifiers, fillers, and plasticizers are not essential ingredients.
  • the emulsifier may be any surfactant, and the kind thereof may be one of an anionic surfactant, a cationic surfactant, a zwitterionic surfactant, a nonionic surfactant, or any two or more of them. combination.
  • the function of the surfactant is to stabilize the emulsion and to increase the hydrophilicity of the hydrophobic linker as a wetting agent.
  • the surfactant is added in an amount of 0.5% to 10% by weight, preferably 2% to 5% by weight. Fillers and plasticizers are added to the oil phase to change the rheology of the ink and improve printing performance.
  • the constituent components of the aqueous phase can be used as long as they are known materials which do not inhibit the formation of the emulsion, and the components which seriously degrade the activity of the biological substance are excluded from the aqueous phase.
  • the aqueous phase may include one or more of water, an electrolyte, a highly polar alcohol, a preservative, a water evaporation preventing agent, and a water-soluble polymer that do not hinder the formation of the emulsion.
  • a W/O as described above.
  • a method for immobilizing a biologically active substance in an emulsion ink composition comprising the steps of: dispersing a W/O emulsion ink composition uniformly on a substrate by a printing technique using a W/O emulsion ink composition containing a biologically active substance to be immobilized; After the bonding agent in the W/O emulsion ink composition is formed into a film, the bioactive material is embedded and fixed on the target substrate.
  • the printing technology is screen printing, pad printing or stencil printing or inkjet printing technology
  • the target substrate may be a solid material that needs to fix a biologically active substance, which is planar or non-planar.
  • the target substrate material may be, but not limited to, the following types: quartz, glass, metal, ceramic, plastic, silica gel, chemically functionalized glass, polymer coated glass, and the like.
  • the preparation process of the W/O emulsion ink composition of the present invention will be described below by using specific examples, and the prepared W/O is used.
  • the process of detecting the activity of the biologically active substance after the printing of the emulsion ink composition is described.
  • the following examples are only a few preferred embodiments of the present invention and are not intended to limit the present invention.
  • a W/O emulsion ink composition containing glucose oxidase was prepared.
  • the preparation process is as follows: 1 g of cellulose acetate is dissolved in 9 g of cyclohexanone, and 1 g of cellulose acetate/cyclohexanone mixture is added.
  • TritonX-100 polyethylene glycol octyl phenyl ether, stirred evenly with a stirrer, dissolved 600 mg glucose oxidase in 1 ml pH In a phosphate buffer solution of 7.0, the oil phase mixture was slowly added dropwise while stirring, and the mixture was emulsified for 30 minutes.
  • the dispersion of the emulsified droplets in the oil phase was observed by an optical microscope.
  • the prepared W/O emulsion ink composition containing glucose oxidase was well dispersed and stable, and was kept under room temperature sealing conditions for about 15 days.
  • the prepared glucose/oxidase-containing W/O emulsion ink composition was used in an enzyme electrode of a glucose oxidase biosensor to detect the activity of immobilized glucose oxidase.
  • the carrier is a PVC substrate
  • Ag/AgCl is used as a reference electrode
  • the carbon electrode is a working electrode.
  • the carbon conductive layer, the carbon conductive layer and the 1,1 dimethylferrocene-modified carbon are sequentially printed on the carbon electrode. Conductive layer.
  • the glucose oxidase emulsion ink is screen printed onto the carbon electrode working area to form an enzyme electrode.
  • the working potential of the enzyme electrode is set at 0.40 according to the position of the oxidation peak of the glucose redox reaction. V vs. Ag/AgCl, using the electrochemical system immediate current scanning method to detect the current response of the enzyme electrode to the glucose sample tested in a certain period of time.
  • Figure 1 shows the instantaneous current sweep curve of the enzyme electrode at different glucose concentrations. The results show that the current value is proportional to the measured glucose concentration in a certain time interval, indicating the catalytic activity of glucose oxidase in the redox reaction of glucose.
  • EGF epidermal growth factor
  • the preparation process is as follows: 1 g of cellulose acetate is dissolved in 9 g of cyclohexanone, and 0.5 g of cellulose acetate/cyclohexanone mixture is added. Triton X-100 and 0.5 g Tween 20, stir well with a stirrer, add 300 mg/ml EGF solution 1 Ml, slowly added dropwise to the oil phase mixture while stirring, and emulsified for 30 min.
  • the dispersion of the emulsified droplets in the oil phase was observed by an optical microscope, and the prepared E/containing W/O emulsion ink composition was well dispersed and stable, and was kept under a sealed condition of 4 ° C for about 15 days.
  • the prepared W/O emulsion ink composition was spread on a polystyrene (PS) substrate and dried at room temperature. Min. After the cellulose acetate in the composition is dried, a film is formed on the substrate, and EGF is fixed on the surface of the substrate. The interaction of macromolecular biomass with immobilized antigen was detected by immunoreactivity of horseradish peroxidase-labeled EGF antibody with EGF.
  • PS polystyrene
  • Figure 2 shows the horseradish peroxidase labeled with different concentrations of EGF antibody and EGF after enzyme-linked immunosorbent assay and substrate ABTS (2, Data for the color reaction of 2-binitro-bis(3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt).
  • the abscissa is the logarithmic value of the epidermal growth factor antibody concentration
  • the ordinate OD405-630nm is the absorbance value of the solution at 630 nm as the secondary wavelength and 405 nm as the main wavelength
  • the result shows that the OD405 of the color reaction is increased with the concentration of the EGF antibody.
  • the corresponding increase in value indicates that the EGF antibody can effectively immunoreact with the immobilized EGF.
  • a W/O emulsion ink containing DNA was prepared.
  • the preparation process is as follows: 1 g of cellulose acetate is dissolved in 9 g of cyclohexanone, and 0.5 g of cellulose acetate/cyclohexanone mixture is added. SPAN83, stirrer evenly, 200 mg pET-15b plasmid DNA (5.7 kb) was dissolved in 1 ml ddH2O, slowly added dropwise to the oil phase mixture with stirring, stirring and emulsification 30 Min.
  • the dispersion of the emulsified droplets in the oil phase was observed by an optical microscope.
  • the prepared W/O emulsion ink composition containing glucose oxidase was well dispersed and stable, and was kept under a sealed condition of 4 ° C for about 5 days.
  • the prepared W/O emulsion ink composition is printed on the target glass substrate according to the screen design pattern by screen printing technology, and dried at room temperature. Min. After the cellulose acetate is dried, a film is formed on the substrate, and the DNA is fixed on the glass substrate. The integrity of the DNA secondary structure was examined using EB (ethidium bromide) staining.
  • EB ethidium bromide staining.
  • the principle of EB staining is that it can be embedded in the large groove of dsDNA to form a complex that emits fluorescence under ultraviolet light. If the double-helix secondary structure of DNA is destroyed or degraded, EB cannot be effectively stained.
  • test results In the experimental results, the ink without the added DNA was printed with EB stained and then white under ultraviolet light, while the strip after printing with pET-15b was dyed with EB and then emitted a reddish fluorescence under ultraviolet light. . This indicates that the emulsion ink can fix the DNA on the glass substrate by printing, and the immobilized DNA molecule can still interact with other molecules on the outside.
  • a cholesterol-containing W/O emulsion ink composition is formulated.
  • Cholesterol is insoluble in water.
  • the dispersion of the emulsified droplets in the oil phase was observed by an optical microscope.
  • the prepared W/O emulsion ink composition containing cholesterol was well dispersed and stable, and was kept under a sealed condition of 4 ° C for about 15 days.
  • the substrate is made of PVC
  • Ag/AgCl is a reference electrode
  • the carbon electrode is a working electrode.
  • a silver conductive layer, a carbon conductive layer, and a potassium ferrocyanide modified carbon conductive layer are sequentially printed on the carbon electrode.
  • the cholesterol-containing W/O emulsion ink composition is printed on the surface of the carbon electrode to form a cholesterol film.
  • the reaction solution that is, the test sample, is a cholesterol oxidase solution.
  • the current response value of the blank group (the cellulose acetate membrane on the surface of the carbon electrode does not contain cholesterol) was measured at room temperature and a constant voltage, and the current response value of the cholesterol group (the cellulose acetate membrane on the surface of the carbon electrode contained cholesterol) was measured.
  • the test results showed that the current response value of the cholesterol group (0.30 ⁇ A) was higher than that of the blank group (0.05 ⁇ A). ), indicating that the cholesterol oxidase in the reaction solution and the fixed cholesterol can effectively carry out the redox reaction.
  • a W/O emulsion ink composition containing an oil phase and an aqueous phase containing cholesterol and horseradish peroxidase, respectively, is prepared.
  • the preparation method was similar to that of Example 4, in which 200 mg of cholesterol and oil phase components were previously prepared with cellulose acetate/cyclohexanone/Triton X-100.
  • W: W: W 1:9:1) 10 ml mixed and dissolved; 200 mg of horseradish peroxidase was dissolved in 1 ml of PH in advance 6.8 Phosphate buffer solution; stir the oil phase evenly with a stirrer, slowly add 1 ml of the enzyme solution, and emulsifie for 30 min.
  • the dispersion of the emulsified droplets in the oil phase was observed by an optical microscope.
  • the prepared W/O emulsion ink composition containing cholesterol was well dispersed and stable, and was kept under a sealed condition of 4 ° C for about 15 days.
  • the substrate is made of PVC
  • Ag/AgCl is a reference electrode
  • the carbon electrode is a working electrode.
  • a silver conductive layer, a carbon conductive layer, and a potassium ferrocyanide modified carbon conductive layer are sequentially printed on the carbon electrode.
  • the W/O emulsion ink composition is printed on the surface of the carbon electrode to form a bio-sensitive film.
  • the reaction solution that is, the test sample, is a cholesterol oxidase solution.
  • the blank group (the cellulose acetate membrane on the surface of the carbon electrode does not contain cholesterol/horseradish peroxidase) and the cholesterol group (the cellulose acetate membrane on the surface of the carbon electrode contains cholesterol)
  • the preparation method is as follows.
  • Example 4 and current response values of the cholesterol/horseradish peroxidase group (cellulose acetate membrane containing cholesterol/horseradish peroxidase on the surface of the carbon electrode).
  • test results showed that the corresponding values of the currents in each group were cholesterol/horseradish peroxidase group (0.62 ⁇ A) and cholesterol group (0.31). ⁇ A), blank group (0.05 ⁇ A ), indicating that the cholesterol oxidase and the fixed cholesterol in the reaction solution can effectively carry out the redox reaction, and the horseradish peroxidase immobilized on the electrode can effectively increase the efficiency of the redox reaction and increase the current response signal.
  • the emulsion is used to separate the oil phase component which is poor in biocompatibility, so that the two are located in different phases, thereby reducing the interaction, thereby reducing the oil phase organic matter pair.
  • the effect of such a biologically active substance for a biologically active substance having a polarity similar to that of an oil phase, if the oil phase component has little effect on it, it is dissolved in the oil phase or dispersed in the water phase in the form of O/W.
  • the good printing performance of the emulsion ink can be utilized, and the bioactive substance can be accurately positioned or fixed on the carrier by using the ink as a carrier, which solves the problem that the bioactive substance has poor compatibility with the non-aqueous ink, and the printing performance of the aqueous bio ink is poor.
  • the problem is the effective realization of the immobilization of biologically active substances. This will enable the rapid mass production of clinical diagnostic products, analytical reagents, biosensors and other biological products using modern, efficient, high-volume, low-cost printing technologies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明涉及一种W/O乳液油墨组合物及其应用,其中W/O乳液油墨组合物按重量百分比计包括:90~10%的油相和10~90%的水相,油相和/或水相中溶解有与油相和/或水相极性相似的生物活性物质。本发明中,利用乳液油墨良好的印刷性能,以油墨作为载体将生物活性物质精确定位或者固定于承载物上,解决了生物活性物质与非水性油墨相容性差的问题,以及水性生物油墨印刷性能差的问题,有效实现了生物活性物质的固定。从而达到利用现代高效、高产量、低成本的印刷技术来快速大量生产临床诊断产品、分析试剂、生物传感器以及其他生物产品的目的。

Description

一种W/O 乳液油墨组合物及其应用 技术领域
本发明涉及生物技术领域,更具体地说,涉及一种W/O 乳液油墨组合物及其应用。
背景技术
游艇正慢慢走进了中国人的生活,沿海地区的游艇码头正在接二连三的兴建,在不久的将来,游艇在中国将不再是奢侈品,而越来越多的普通家庭也能享受到游艇生活带来的乐趣。
含有生物活性物质的油墨通过印刷技术成膜,可以将生物活性物质固定在特定的载体上。由于生物活性物质多数属于亲水性,且有机溶剂会对生物活性产生影响,因此目前通过印刷技术固定生物活性物质的油墨多数是水性油墨或者水性乳液油墨。比如,专利 US20060226008A1、专利US6258229,及专利US11/494805,都公开了一种水性配方用于丝网印刷将生物酶固定在基片上,制成生物传感器,其中油墨的连接剂都是水溶性的。
但是,目前所采用的水性油墨具有粘附效果差、印刷精确度差等尚未攻克的缺点,将其应用于精密生物产品领域还具有局限性。而且水溶性的连接剂在水相生物反应体系中,对生物物质和其他被固定的介质的稳定性尚值得商榷。
专利US6719923公开了一种水性油墨配方,水性连接剂成膜后变成了疏水性的,但连接剂可选择范围比较小。专利US5183742公开了一种固定生物酶的油性油墨配方,生物酶粉末、连接剂等试剂都分散或溶解在非水性溶剂里,因此存在生物相容性的问题。
专利US2839412公开了用于印刷的乳液油墨,专利CN 100338158C公开了一种用于孔板印刷的W/O型乳液油墨,专利CN1243804C、专利CN1198891C分别公开了用于模板印刷的W/O型乳液油墨。随着研究深入,人们发现水相的加入赋予乳液油墨在模板印刷时相对于其他油墨更优的性能,即,保持小的因油墨温度变化的粘度变化,升高油墨的渗透速率,增加油墨的结构粘度,防止油墨流出印刷机,以及降低油墨在将印刷圆筒与印刷介质分离式的旋转性。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种易于安装、结构简单、设计精巧的游艇码头的连接结构。
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种W/O 乳液油墨组合物及其应用。
本发明解决其技术问题所采用的技术方案是:
构造一种W/O 乳液油墨组合物,按重量百分比计包括:90~10 %的油相和10~90 %的水相,其中,所述油相和/或所述水相中溶解有与所述油相和/或所述水相极性相似的生物活性物质。
本发明所述的组合物,其中,所述W/O 乳液油墨组合物中按重量百分比计包括:10~50 %的水相和90~50 %的油相。
本发明所述的组合物,其中,所述W/O 乳液油墨组合物中按重量百分比计包括:10~30 %的水相和90~70 %的油相。
本发明所述的组合物,其中,所述生物活性物质包括蛋白、多肽、寡肽、细胞、生物组织、酶、DNA、DNA片段、RNA、抗体、抗原、多糖、寡核苷酸、凝集素、生物素和脂类中的一种或几种。
本发明所述的组合物,其中,所述水相包括不阻碍乳液形成的水、电解质、高极性醇类、防腐剂、水蒸发防止剂、水溶性高分子中的一种或几种。
本发明所述的组合物,其中,所述油相包括非水溶性连接剂和溶剂,按重量百分比计,其中包含所述连接剂0.1%~70%;
所述溶剂为挥发性溶剂或者是挥发性溶剂与非挥发性溶剂的混合物,其中所述挥发性溶剂的含量为油相中液体成分的10%~95%。
本发明所述的组合物,其中,按重量百分比计,所述连接剂含量为0.5%~20%,所述挥发性溶剂的含量为油相中液体成分的60%~90%。
本发明所述的组合物,其中,所述连接剂包括:聚酯树脂、烷基树脂、聚苯乙烯树脂、环氧树脂、聚氯乙烯树脂、聚乙烯醇树脂、丙烯酸系树脂、马来酸树脂、醇酸树脂、萜烯树脂、松香系树脂、纤维素衍生物和天然多聚物中的一种或多种的混合物;
所述溶剂为有机溶剂,包括酮类溶剂、酯类溶剂、醇类溶剂、醚酯类溶剂、萜烃类溶剂、苯类溶剂中的一种或几种。
本发明所述的组合物,其中,所述油相内还包括乳化剂、填充剂和增塑剂中的一种或多种。
本发明还提供了一种采用前面所述W/O 乳液油墨组合物固定生物活性物质的方法,其中,包括以下步骤:
以含有需要固定的生物活性物质的W/O乳液油墨组合物为载体;
通过印刷技术将所述W/O乳液油墨组合物均匀分散在基片上;
所述W/O乳液油墨组合物中的连接剂成膜后,将生物活性物质包埋固定在目标基片上。
本发明所述的方法,其中,所述印刷技术为丝网印刷、移印、漏印或喷墨印刷技术;
所述目标基片包括石英、玻璃、金属、陶瓷、塑料、硅胶、化学功能化的玻璃、聚合物覆盖的玻璃中的一种或几种。
本发明中,对于与水相极性相似的生物活性物质,利用乳液将其与生物相容性差的油相成分隔开,使两者位于不同相内,减少相互作用,从而降低油相有机物对这种生物活性物质的影响;对于与油相极性相似的生物活性物质,油相成分对其影响不大则将其溶解在油相中,或者以O/W的形式分散在水相中,这样可以利用乳液油墨良好的印刷性能,以油墨作为载体将生物活性物质精确定位或者固定于承载物上,解决了生物活性物质与非水性油墨相容性差的问题,以及水性生物油墨印刷性能差的问题,有效实现了生物活性物质的固定。从而达到利用现代高效、高产量、低成本的印刷技术来快速大量生产临床诊断产品、分析试剂、生物传感器以及其他生物产品的目的。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明较佳实施例的酶电极对不同浓度葡萄糖的即时电流扫描曲线;
图2是本发明较佳实施例的Anti-EGF浓度对数值对OD405值的曲线。
具体实施方式
本发明较佳实施例的W/O 乳液油墨组合物,连续相为油相或者非极性相,分散相为水相或者相对极性相,按重量百分比计,W/O 乳液油墨组合物包括:90~10 %的油相和10~90 %的水相。其中,油相和/或水相中分别与溶解有油相和/或水相极性相似的生物活性物质。
其中,生物活性物质是指能够实现其自然或者预期的生物学功能的物质,生物活性物质可以处于活性状态,包括:蛋白、多肽、寡肽、细胞、生物组织、酶、DNA、DNA片段、RNA、抗体、抗原、多糖、寡核苷酸、凝集素、生物素和脂类中的一种或几种。
非极性生物活性物质,如脂类、酶的非极性底物、非极性维生素等,可以直接溶解在油相中;而与油相相容性不好的非极性生物活性物质,或者说油相成分会明显降低其生物活性的非极性生物活性物质,可以O/W的形式分散在水相中,最终形成O/W/O乳液油墨。极性生物活性物质,则可以直接溶解在水相中。生物活性物质可以单独存在油相或者水相中,乳液油墨的油相和水相中也可以同时含有不同的生物活性物质。
这样,利用乳液将与水相极性相似的生物活性物质与生物相容性差的油相成分隔开,使两者位于不同相内,减少相互作用,从而降低油相有机物对生物活性物质的影响;而对于与油相极性相似的生物活性物质,油相成分对其影响不大则将其溶解在油相中,或者以O/W的形式分散在水相中,这样可以利用乳液油墨良好的印刷性能,以油墨作为载体将生物活性物质精确定位或者固定于承载物上,解决了生物活性物质与非水性油墨相容性差的问题,以及水性生物油墨印刷性能差的问题
水相在乳液油墨中不仅增加了油墨与生物活性物质的相容性,还赋予油墨更稳定的性能(粘度变化小), 但油相组分含量偏高能增加干燥速度,降低印刷时有机物质对生物活性物质的伤害。优选地,W/O 乳液油墨组合物中包含10~50 %的水相和90~50 %的油相。
同时疏水环境更有利于干燥后生物物质的稳定保存,从而提高产品的有效期。更优选地,W/O 乳液油墨组合物中包含10~30 %的水相和90~70 %的油相。
优选地,油相中至少含有非水溶性连接剂和溶剂,按重量百分比计,其中包含连接剂0.1%~70%;溶剂为挥发性溶剂或者是挥发性溶剂与非挥发性溶剂的混合物,其中挥发性溶剂的挥发速度与乳液油墨的干燥速度成正比,其含量为油相中液体成分的10%~95%。
优选地,按重量百分比计,连接剂含量为0.5%~20%,挥发性溶剂的含量为油相中液体成分的60%~90%。
本实施例中,W/O乳液油墨使得连接剂的选择范围比生物相容性较好的水性油墨扩大了,能更好的改善油墨的印刷性能。连接剂成分是树脂或者其他可成膜的聚合物,其功能是在油墨干燥后在生物活性物质需要附着的表面成膜,将生物活性物质固定在膜内或者膜的空隙间。其中,连接剂包括:聚酯树脂、烷基树脂、聚苯乙烯树脂、环氧树脂、聚氯乙烯树脂、聚乙烯醇树脂、丙烯酸系树脂、马来酸树脂、醇酸树脂、萜烯树脂、松香系树脂,纤维素衍生物,如乙基纤维素、硝酸纤维素、醋酸纤维素;天然多聚物,如不溶性淀粉、不溶性多糖中的一种或多种的混合物。
优选地,溶剂是有机溶剂,包括酮类溶剂,如环己酮、丙酮、丁酮;酯类溶剂,如醋酸乙酯、醋酸丁酯;醇类溶剂,如正丁醇;醚酯类溶剂、萜烃类溶剂、苯类溶剂中的一种或几种。溶剂的加入可以溶解连接剂、调节乳液油墨的干燥速度、调节油墨流动性、增加乳液稳定性。溶剂可以仅是挥发性溶剂,也可以是挥发性溶剂和非挥发性溶剂的混合物。且溶剂的添加量取决于乳液油墨中的油相/水相比率,以及连接剂的种类及添加量。
优选地,油相内还包括乳化剂、填充剂和增塑剂中的一种或多种。但乳化剂、填充剂、增塑剂并非必须成分。其中,乳化剂可以是任意的表面活性剂,其种类可以是阴离子表面活性剂、阳离子表面活性剂、两性离子表面活性剂、非离子表面活性剂中的一种或他们的任意两种或多种组合。表面活性剂的功能一是稳定乳液,二是作为润湿剂增加疏水连接剂的亲水性。按重量百分比计,表面活性剂的添加量为0.5%~10%,优选为2%~5%。填充剂、增塑剂添加在油相内,用于改变油墨的流变性、改善印刷性能。
优选地,水相的构成成分只要是不阻碍乳液形成的公知的物质均可以使用,且水相内排除会严重降低生物物质活性的成分。例如,水相可包括不阻碍乳液形成的水、电解质、高极性醇类、防腐剂、水蒸发防止剂、水溶性高分子中的一种或几种。
本发明的另一实施例中,还提供了一种采用前面所述的W/O 乳液油墨组合物固定生物活性物质的方法,包括以下步骤:以含有需要固定的生物活性物质的W/O乳液油墨组合物为载体;通过印刷技术将W/O乳液油墨组合物均匀分散在基片上;W/O乳液油墨组合物中的连接剂成膜后,将生物活性物质包埋固定在目标基片上。
其中,印刷技术为丝网印刷、移印或漏印或喷墨印刷技术;目标基片可以是需要固定生物活性物质的固体材料,是平面的或者非平面的。目标基片材质可以是但不限于以下种类:石英、玻璃、金属、陶瓷、塑料、硅胶、化学功能化的玻璃、聚合物覆盖的玻璃等。
下面通过具体的实施例说明本发明的W/O 乳液油墨组合物的制备过程,及采用所制备的W/O 乳液油墨组合物印刷固定后的生物活性物质活性检测过程,需要说明的是,以下所举例子仅为本发明的几个较佳实施例,并不用于限定本发明。
实施例1
配制含有葡萄糖氧化酶的W/O乳液油墨组合物。
配制流程如下:将1 g醋酸纤维素溶解于9 g环己酮中,在醋酸纤维素/环己酮混合液中加入1g TritonX-100(聚乙二醇辛基苯基醚,采用搅拌器搅拌均匀,将600 mg葡萄糖氧化酶溶解在1ml pH 7.0的磷酸缓冲液中,边搅拌边缓慢滴加入油相混合物中,搅拌乳化30 min。
采用光学显微镜观察乳化液滴在油相中的分散情况,所制备的含有葡萄糖氧化酶的W/O乳液油墨组合物分散良好且稳定性好,可在室温密封条件下保持15天左右。
将所制备的含有葡萄糖氧化酶的W/O乳液油墨组合物用于葡萄糖氧化酶生物传感器的酶电极中,从而检测被固定葡萄糖氧化酶的活性。本实施例中载体为PVC基片,采用Ag/AgCl为参比电极、碳电极为工作电极,碳电极上依次印刷银导电层、碳导电层和1,1二甲基二茂铁修饰的碳导电层。最后将葡萄糖氧化酶乳液油墨丝网印刷到碳电极工作区制成酶电极。根据葡萄糖氧化还原反应的氧化峰的位置将酶电极的工作电位定于0.40 V vs. Ag/AgCl,利用电化学系统即时电流扫描方法,检测酶电极对被测葡萄糖样品在某一时段内的电流响应值。
图1所示为酶电极在不同葡萄糖浓度下的即时电流扫描曲线。结果显示在某一时间区间内电流值与检测的葡萄糖浓度成正比,说明了葡萄糖氧化酶在葡萄糖的氧化还原反应中的催化活性。
实施例2
配制含有EGF(表皮生长因子)的W/O乳液油墨。
配制流程如下:将1 g醋酸纤维素溶解于9 g环己酮中,在醋酸纤维素/环己酮混合液中加入0.5g Triton X-100和0.5 g 吐温20,采用搅拌器搅拌均匀,加入300 mg/ml浓度的EGF溶液1 ml,边搅拌边缓慢滴加入油相混合物中,搅拌乳化30 min。
采用光学显微镜观察乳化液滴在油相中的分散情况,所制备的含有EGF的W/O乳液油墨组合物分散良好且稳定性好,可在4℃密封条件下保持15天左右。
将所制备的W/O乳液油墨组合物平铺于聚苯乙烯(PS)基板上,在室温下干燥20 min。组合物中的醋酸纤维素干燥后在基板上成膜,EGF被固定在基板的表面。利用辣根过氧化物酶标记的EGF抗体与EGF的免疫反应检测大分子生物物质与被固定抗原的相互作用。
检测结果如图2所示,图2中示出了不同浓度的EGF抗体与EGF进行酶联免疫反应后标记的辣根过氧化物酶与底物ABTS(2, 2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐)进行显色反应的数据。其中,横坐标为表皮生长因子抗体浓度对数值,纵坐标OD405-630nm为溶液以630nm为次波长,405nm为主波长时的-吸光度值,结果显示随着EGF抗体的浓度增加显色反应的OD405值相应增加,说明EGF抗体能与固定的EGF有效的发生免疫反应。
实施例3
配制含有DNA的W/O乳液油墨。
配制流程如下:将1 g醋酸纤维素溶解于9 g环己酮中,在醋酸纤维素/环己酮混合液中加入0.5g SPAN83,搅拌器搅拌均匀,200 mg pET-15b 质粒DNA(5.7 kb)溶解于1ml ddH2O中,边搅拌边缓慢滴加入油相混合物中,搅拌乳化30 min。
采用光学显微镜观察乳化液滴在油相中的分散情况,所制备的含有葡萄糖氧化酶的W/O乳液油墨组合物分散良好且稳定性好,可在4℃密封条件下保持5天左右。
采用丝网印刷技术将所制备的W/O乳液油墨组合物按网版的设计图案印刷在目标玻璃基片上,在室温下干燥20 min。醋酸纤维素干燥后在基片上成膜,DNA被固定在玻璃基片上。利用EB(溴化乙锭)染色法检验DNA二级结构的完整性。EB的染色原理是能够嵌入到dsDNA的大沟之中,形成复合物而在紫外光下发出荧光,如果DNA的双螺旋二级结构被破坏或者降解的话,EB是不能有效染色的。
检测结果:实验结果中没有添加DNA的油墨印刷后的条带EB染色后在紫外光下还是白色的,而添加pET-15b的油墨印刷后的条带EB染色后在紫外光下发出淡红色荧光。这说明乳液油墨通过印刷可以将DNA固定在玻璃基片,且固定后的DNA分子仍可以与外部的其他分子相互作用。
实施例4
配制含胆固醇的W/O乳液油墨组合物。
胆固醇不溶于水,在W/O乳液油墨的制备过程中,预先将200mg胆固醇与油相成分醋酸纤维素/环己酮/ Triton X-100 (W:W:W=1:9:1) 10ml混合溶解,搅拌器搅拌均匀,缓慢滴加水溶液1ml,搅拌乳化30 min。
采用光学显微镜观察乳化液滴在油相中的分散情况,所制备的含有胆固醇的W/O乳液油墨组合物分散良好且稳定性好,可在4℃密封条件下保持15天左右。
本实施例中基片为PVC材质,Ag/AgCl为参比电极、碳电极为工作电极。碳电极上依次印刷银导电层、碳导电层和亚铁氰化钾修饰的碳导电层。最后将含胆固醇的W/O乳液油墨组合物印刷在碳电极表面,形成胆固醇膜。反应液即检测样品为胆固醇氧化酶溶液。在室温和恒定电压下,先测定空白组(碳电极表面的醋酸纤维素膜不含胆固醇)的电流响应值,再测定胆固醇组(碳电极表面的醋酸纤维素膜含有胆固醇)的电流响应值。
检测结果显示,胆固醇组的电流响应值(0.30 μA)高于空白组的电流响应值(0.05μA ),说明反应液中的胆固醇氧化酶与固定的胆固醇能有效的进行氧化还原反应。
实施例5
配制含油相和水相分别含有胆固醇和辣根过氧化物酶的W/O乳液油墨组合物。
配制方法与实施例4类似,预先将200mg胆固醇与油相成分醋酸纤维素/环己酮/ Triton X-100 (W:W:W=1:9:1) 10ml混合溶解;预先将200mg辣根过氧化物酶溶于1ml PH 6.8磷酸缓冲液;搅拌器均匀搅拌油相,缓慢滴加酶溶液1ml,搅拌乳化30 min。
采用光学显微镜观察乳化液滴在油相中的分散情况,所制备的含有胆固醇的W/O乳液油墨组合物分散良好且稳定性好,可在4℃密封条件下保持15天左右。
本实施例中基片为PVC材质,Ag/AgCl为参比电极、碳电极为工作电极。碳电极上依次印刷银导电层、碳导电层和亚铁氰化钾修饰的碳导电层。最后将W/O乳液油墨组合物印刷在碳电极表面,形成生物敏感膜。反应液即检测样品为胆固醇氧化酶溶液。
在室温和恒定电压下,分别测定空白组(碳电极表面的醋酸纤维素膜不含胆固醇/辣根过氧化物酶)、胆固醇组(碳电极表面的醋酸纤维素膜含有胆固醇,制作方法见实施例4)和胆固醇/辣根过氧化物酶组(碳电极表面的醋酸纤维素膜含胆固醇/辣根过氧化物酶)、的电流响应值。
检测结果显示,各组的电流相应值由高到低依次为胆固醇/辣根过氧化物酶组(0.62 μA)、胆固醇组(0.31 μA)、空白组(0.05μA ),说明反应液中的胆固醇氧化酶与固定的胆固醇能有效的进行氧化还原反应,而固定在电极上的辣根过氧化物酶可以有效的提高氧化还原反应效率,使其电流响应信号提高。
本发明中,对于与水相极性相似的生物活性物质,利用乳液将其与生物相容性差的油相成分隔开,使两者位于不同相内,减少相互作用,从而降低油相有机物对这种生物活性物质的影响;对于与油相极性相似的生物活性物质,油相成分对其影响不大则将其溶解在油相中,或者以O/W的形式分散在水相中,这样可以利用乳液油墨良好的印刷性能,以油墨作为载体将生物活性物质精确定位或者固定于承载物上,解决了生物活性物质与非水性油墨相容性差的问题,以及水性生物油墨印刷性能差的问题,有效实现了生物活性物质的固定。从而达到利用现代高效、高产量、低成本的印刷技术来快速大量生产临床诊断产品、分析试剂、生物传感器以及其他生物产品的目的。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种W/O 乳液油墨组合物,按重量百分比计包括:90~10 %的油相和10~90 %的水相,其特征在于,所述油相和/或所述水相中溶解有与所述油相和/或所述水相极性相似的生物活性物质。
  2. 根据权利要求1所述的组合物,其特征在于,所述W/O 乳液油墨组合物中按重量百分比计包括:10~50 %的水相和90~50 %的油相。
  3. 根据权利要求1所述的组合物,其特征在于,所述W/O 乳液油墨组合物中按重量百分比计包括:10~30 %的水相和90~70 %的油相。
  4. 根据权利要求1所述的组合物,其特征在于,所述生物活性物质包括蛋白、多肽、寡肽、细胞、生物组织、酶、DNA、DNA片段、RNA、抗体、抗原、多糖、寡核苷酸、凝集素、生物素和脂类中的一种或几种。
  5. 根据权利要求1所述的组合物,其特征在于,所述水相包括不阻碍乳液形成的水、电解质、高极性醇类、防腐剂、水蒸发防止剂、水溶性高分子中的一种或几种。
  6. 根据权利要求1所述的组合物,其特征在于,所述油相包括非水溶性连接剂和溶剂,按重量百分比计,其中包含所述连接剂0.1%~70%;
    所述溶剂为挥发性溶剂或者是挥发性溶剂与非挥发性溶剂的混合物,其中所述挥发性溶剂的含量为油相中液体成分的10%~95%。
  7. 根据权利要求6所述的组合物,其特征在于,按重量百分比计,所述连接剂含量为0.5%~20%,所述挥发性溶剂的含量为油相中液体成分的60%~90%。
  8. 根据权利要求7所述的组合物,其特征在于,所述连接剂包括:聚酯树脂、烷基树脂、聚苯乙烯树脂、环氧树脂、聚氯乙烯树脂、聚乙烯醇树脂、丙烯酸系树脂、马来酸树脂、醇酸树脂、萜烯树脂、松香系树脂、纤维素衍生物和天然多聚物中的一种或多种的混合物;
    所述溶剂为有机溶剂,包括酮类溶剂、酯类溶剂、醇类溶剂、醚酯类溶剂、萜烃类溶剂、苯类溶剂中的一种或几种 。
  9. 一种采用如权利要求1-8中任一项所述W/O 乳液油墨组合物固定生物活性物质的方法,其特征在于,包括以下步骤:
    以含有需要固定的生物活性物质的W/O乳液油墨组合物为载体;
    通过印刷技术将所述W/O乳液油墨组合物均匀分散在基片上;
    所述W/O乳液油墨组合物中的连接剂成膜后,将生物活性物质包埋固定在目标基片上。
  10. 根据权利要求9所述的方法,其特征在于,所述印刷技术为丝网印刷、移印、漏印或喷墨印刷技术;
    所述目标基片包括石英、玻璃、金属、陶瓷、塑料、硅胶、化学功能化的玻璃、聚合物覆盖的玻璃中的一种或几种。
PCT/CN2010/078198 2010-10-28 2010-10-28 一种w/o乳液油墨组合物及其应用 WO2012055107A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/078198 WO2012055107A1 (zh) 2010-10-28 2010-10-28 一种w/o乳液油墨组合物及其应用
CN201080069746.8A CN103328588B (zh) 2010-10-28 2010-10-28 一种w/o乳液油墨组合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078198 WO2012055107A1 (zh) 2010-10-28 2010-10-28 一种w/o乳液油墨组合物及其应用

Publications (1)

Publication Number Publication Date
WO2012055107A1 true WO2012055107A1 (zh) 2012-05-03

Family

ID=45993067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078198 WO2012055107A1 (zh) 2010-10-28 2010-10-28 一种w/o乳液油墨组合物及其应用

Country Status (2)

Country Link
CN (1) CN103328588B (zh)
WO (1) WO2012055107A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674572A (zh) * 2015-03-09 2015-06-03 昆山大世界油墨涂料有限公司 一种用于pvc夹网布防红外线凹版印刷油墨
WO2019236787A1 (en) * 2018-06-07 2019-12-12 Videojet Technologies Inc. Dna-tagged inks and systems and methods of use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108047817A (zh) * 2017-12-18 2018-05-18 北京印刷学院 包含rna的喷墨油墨及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044891A1 (en) * 1999-01-30 2000-08-03 Genotech Corporation Dna-containing ink
CN1316473A (zh) * 2000-04-06 2001-10-10 理想科学工业株式会社 模版印刷用乳液油墨
WO2002032559A1 (de) * 2000-10-19 2002-04-25 Inverness Medical Limited Siebdruckfähige paste zur herstellung einer porösen polymermembran für einen biosensor
JP2005097346A (ja) * 2003-09-22 2005-04-14 E4C-Link Corp インキ及び印刷物
CN101001959A (zh) * 2004-08-11 2007-07-18 西巴特殊化学品控股有限公司 基于酶的时间温度指示剂
CN101310184A (zh) * 2005-11-14 2008-11-19 拜尔健康护理有限责任公司 具有纤维素聚合物的测试传感器试剂

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183742A (en) * 1984-02-24 1993-02-02 Dai Nippon Insatsu Kabushiki Kaisha Test device for detecting glucose, protein urobilinogen, and/or occult blood in body fluids and/or determining the PH thereof
JP3201914B2 (ja) * 1994-05-30 2001-08-27 千葉製粉株式会社 W/o型マイクロカプセル状エマルジョン。
JPH08218025A (ja) * 1995-02-13 1996-08-27 Riso Kagaku Corp 孔版印刷用エマルジョンインク
JPH08302262A (ja) * 1995-05-01 1996-11-19 Riso Kagaku Corp 孔版印刷用エマルジョンインク
CN1052499C (zh) * 1995-12-05 2000-05-17 理想科学工业株式会社 模版印刷用乳化油墨
US7008474B2 (en) * 2003-01-31 2006-03-07 Tohoku Ricoh Co., Ltd. Water-in-oil type emulson ink for stencil printing
JP2006124464A (ja) * 2004-10-27 2006-05-18 Tohoku Ricoh Co Ltd 孔版印刷用エマルションインキ
AU2006201333A1 (en) * 2005-04-12 2006-11-02 Lifescan Scotland Limited Water-miscible conductive ink for use in enzymatic electrochemical-based sensors
JP4845457B2 (ja) * 2005-09-06 2011-12-28 東北リコー株式会社 孔版印刷用エマルジョンインキ
JP5659060B2 (ja) * 2010-11-19 2015-01-28 理想科学工業株式会社 インクジェット用油中水(w/o)型エマルションインキ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044891A1 (en) * 1999-01-30 2000-08-03 Genotech Corporation Dna-containing ink
CN1316473A (zh) * 2000-04-06 2001-10-10 理想科学工业株式会社 模版印刷用乳液油墨
WO2002032559A1 (de) * 2000-10-19 2002-04-25 Inverness Medical Limited Siebdruckfähige paste zur herstellung einer porösen polymermembran für einen biosensor
JP2005097346A (ja) * 2003-09-22 2005-04-14 E4C-Link Corp インキ及び印刷物
CN101001959A (zh) * 2004-08-11 2007-07-18 西巴特殊化学品控股有限公司 基于酶的时间温度指示剂
CN101310184A (zh) * 2005-11-14 2008-11-19 拜尔健康护理有限责任公司 具有纤维素聚合物的测试传感器试剂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674572A (zh) * 2015-03-09 2015-06-03 昆山大世界油墨涂料有限公司 一种用于pvc夹网布防红外线凹版印刷油墨
WO2019236787A1 (en) * 2018-06-07 2019-12-12 Videojet Technologies Inc. Dna-tagged inks and systems and methods of use

Also Published As

Publication number Publication date
CN103328588A (zh) 2013-09-25
CN103328588B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
JP3867959B2 (ja) グルコースセンサ
US6077408A (en) Biosensor and method of manufacturing the same
US6773564B1 (en) Glucose sensor
KR0128159B1 (ko) 효소 전극 및 이의 제조방법
US6656702B1 (en) Biosensor containing glucose dehydrogenase
EP1521960B1 (en) Enzyme electrodes and method of manufacture
US20040020777A1 (en) Biosensor
JPH06109698A (ja) 基質濃度測定方法
WO2012055107A1 (zh) 一种w/o乳液油墨组合物及其应用
US6451372B2 (en) Biosensor and method of producing the same
CN1374518A (zh) 生理传感器和基质定量方法
Liu et al. An amperometric lactate sensor employing tetrathiafulvalene in Nafion film as electron shuttle
US6071392A (en) Cholesterol sensor
WO2018062542A1 (ja) 電子メディエーター修飾酵素並びにそれを用いた酵素電極、分光学的分析キット及び酵素試験紙
JP2004264247A (ja) バイオセンサ
JP3770757B2 (ja) バイオセンサ
JP5627858B2 (ja) バイオセンサ
Schumacher et al. Investigations with respect to stabilization of screen-printed enzyme electrodes
La Salle et al. Determination of alkaline phosphatase using a Nafion®-modified electrode
Tsiafoulis et al. Development of an amperometric biosensing method for the determination of L-fucose in pretreated urine
JP3611268B2 (ja) バイオセンサおよびその製造方法
JP3070818B2 (ja) バイオセンサおよびその製造方法
JP2702818B2 (ja) バイオセンサおよびその製造法
JPH112618A (ja) コレステロールセンサおよびその製造方法
JP2006512574A (ja) 酵素電極調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858836

Country of ref document: EP

Kind code of ref document: A1