WO2012053483A1 - 防湿絶縁材料 - Google Patents

防湿絶縁材料 Download PDF

Info

Publication number
WO2012053483A1
WO2012053483A1 PCT/JP2011/073846 JP2011073846W WO2012053483A1 WO 2012053483 A1 WO2012053483 A1 WO 2012053483A1 JP 2011073846 W JP2011073846 W JP 2011073846W WO 2012053483 A1 WO2012053483 A1 WO 2012053483A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
insulating material
proof insulating
solvent
styrene
Prior art date
Application number
PCT/JP2011/073846
Other languages
English (en)
French (fr)
Inventor
一彦 大賀
律子 東
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CA2814138A priority Critical patent/CA2814138A1/en
Priority to JP2012539721A priority patent/JP5791623B2/ja
Priority to US13/824,253 priority patent/US20130178578A1/en
Priority to KR1020127033830A priority patent/KR101587510B1/ko
Priority to CN201180040087.XA priority patent/CN103068914B/zh
Priority to SG2013020557A priority patent/SG189028A1/en
Publication of WO2012053483A1 publication Critical patent/WO2012053483A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer

Definitions

  • the present invention relates to a moisture-proof insulating material for an electronic component excellent in workability and quick drying property, and an electronic component insulated by the moisture-proof insulating material.
  • coating with an insulating film is performed for the purpose of protecting exposed metal parts such as mounting circuit boards and electrodes from moisture, dust, corrosive gas, and the like.
  • This coating material includes types such as an ultraviolet curable type, a moisture curable type, and a solvent dry type, and acrylic resin, silicone resin, styrene block copolymer resin, and the like are used, respectively.
  • Moisture-curing coating materials are excellent in moisture resistance of silicone resin itself, but have moisture permeability, so there is a problem that a thick coating material must be applied to protect the metal of circuits and electrodes. is there.
  • UV curable coating materials are widely used because they can be cured in a short time and have excellent productivity.
  • an ultraviolet curable coating material for example, a urethane-modified acrylate compound derived from a polyolefin polyol described in Patent Document 1 or a polycarbonate polyol described in Patent Document 2 is known.
  • Patent Document 3 discloses a composition comprising a styrene-based thermoplastic elastomer, a tackifier, and toluene.
  • a highly toxic solvent such as toluene.
  • Patent Documents 4 and 5 disclose a composition comprising a styrene-based thermoplastic elastomer, a tackifier, a silane coupling agent, and ethylcyclohexane.
  • a solvent containing ethylcyclohexane as a main component if the solid content concentration is increased in order to increase the drying property, the viscosity of the composition increases, and as a result, workability (ie, potting performance) decreases.
  • the solvent-drying coating material does not involve a curing reaction, the necessary physical properties must be expressed only by coating and drying, and the molecular weight of the resin must be increased. However, as the molecular weight of the resin increases, the viscosity of the coating material increases and workability decreases. Alternatively, if the coating material is diluted to ensure workability, the thickness of the coating film after application / drying may be reduced, resulting in inferior moisture resistance. Since it took a long time, there was a problem that productivity decreased.
  • the solvent-drying type coating material be transferred to the next process in about 3 minutes after application, and quick drying is required.
  • drying is too fast, problems such as clogging of the syringe tip at the time of potting occur, and therefore an appropriate drying property is required.
  • an aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or more and less than 110 ° C. in a solvent-drying coating material containing a styrene-based thermoplastic elastomer.
  • a solvent-drying coating material containing a styrene-based thermoplastic elastomer By using it as a main component of the solvent, it has been found that an excellent moisture-proof insulating film having a low viscosity and a sufficient solid content concentration and exhibiting quick drying properties can be obtained, and the present invention has been completed.
  • the present invention (I) is a moisture-proof insulating material containing a styrenic thermoplastic elastomer, a tackifier, and a solvent, wherein the solvent has an aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or higher and lower than 110 ° C. It is a moisture-proof insulating material characterized by including.
  • the present invention (II) is an electronic component that has been insulated using the moisture-proof insulating material described in the present invention (I).
  • a moisture-proof insulating material including a styrene-based thermoplastic elastomer, a tackifier, and a solvent, wherein the solvent includes an aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or higher and lower than 110 ° C.
  • the solvent includes an aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or higher and lower than 110 ° C.
  • Moisture-proof insulating material [2] The moisture-proof insulating material according to [1], wherein the solvent further includes an aliphatic hydrocarbon solvent having a boiling point of 110 ° C. or higher and lower than 140 ° C.
  • the moisture-proof insulating material contained in the moisture-proof insulating material to the aliphatic hydrocarbon solvent having a boiling point of 110 ° C. or higher and lower than 140 ° C. is 50:50.
  • the total amount of the styrene-based thermoplastic elastomer and the tackifier is 20 to 40% by mass and the total amount of the solvent is 60 to 80% by mass with respect to the total mass of the moisture-proof insulating material.
  • the moisture-proof insulating material as described in 1.
  • the styrenic thermoplastic elastomer is selected from the group consisting of a styrene-butadiene block copolymer elastomer, a styrene-isoprene block copolymer elastomer, a styrene-ethylene / butylene block copolymer elastomer, and a styrene-ethylene / propylene block copolymer elastomer.
  • the moisture-proof insulating material according to any one of [1] to [6], which is at least one selected.
  • the content of structural units derived from styrene contained in the styrenic thermoplastic elastomer is 15 to 50% by mass based on the total amount of the styrenic thermoplastic elastomer [1] to [7]
  • the moisture-proof insulating material of the present invention (I) has a low viscosity and a sufficient solid content, and is excellent in workability, adhesion to a substrate, moisture-proof, and insulation reliability. By processing, it is possible to obtain a highly moisture-proof and insulated electronic component.
  • the present invention will be specifically described below. First, the moisture-proof insulating material of the present invention (I) will be described.
  • the present invention (I) is a moisture-proof insulating material containing a styrene thermoplastic elastomer, a tackifier, and a solvent, and the solvent contains an aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or higher and lower than 110 ° C.
  • thermoplastic elastomer described in the present specification is flowable by heating and can be molded in the same manner as ordinary thermoplastics, and exhibits rubber elasticity (that is, remarkable elastic recovery) at room temperature. This is a high-molecular compound with properties. Details are described in “Edition Committee for Physicochemical Dictionary”, “All about Thermoplastic Elastomers”, first edition, first edition, published by Industrial Research Co., Ltd., December 20, 2003. ing.
  • thermoplastic elastomer described in the present specification means a thermoplastic elastomer having a structural unit derived from styrene in the molecular structure.
  • the styrene thermoplastic elastomer used for the moisture-proof insulating material of the present invention (I) is excellent in moisture resistance and insulation reliability.
  • styrenic thermoplastic elastomers include styrene-butadiene block copolymer elastomers, styrene-isoprene block copolymer elastomers, styrene-ethylene / butylene block copolymer elastomers, styrene-ethylene / propylene block copolymer elastomers, and the like. it can.
  • styrenic thermoplastic elastomers include D1101, D1102, D1155, DKX405, DKX410, DKX415, D1192, D1161, D1171, G1652, and G1730 (above, Kraton Polymer Co., Ltd.), Tufprene (registered trademark) A TUFPRENE (registered trademark) 125, TUFPRENE (registered trademark) 126S, TUFTEC (registered trademark) H1141, TUFTECH (registered trademark) H1041, TUFTECH (registered trademark) H1043, TUFTEC (registered trademark) H1052, (above, Asahi Kasei Chemicals Corporation Manufactured). These can be used alone or in combination of two or more.
  • the content of structural units derived from styrene contained in the styrene-based thermoplastic elastomer is preferably 15 to 50% by mass, more preferably 18 to 45% by mass, based on the total amount of the styrene-based thermoplastic elastomer. More preferably, it is 19 to 43% by mass.
  • the content of the structural unit derived from styrene contained in the styrene-based thermoplastic elastomer is less than 15% by mass with respect to the total amount of the styrene-based thermoplastic elastomer, the cohesive force of the elastomer may be insufficient, which is preferable. That's not true.
  • the tackifier used in the present invention is a substance that is added to a polymer compound typified by an elastomer having rubber elasticity to give an adhesive function.
  • the molecular weight is much smaller and is generally a compound in an oligomer region having a molecular weight of several hundred to several thousand, and has a property of not exhibiting rubber elasticity by itself in a glass state at room temperature.
  • tackifier a petroleum resin tackifier, a terpene resin tackifier, a rosin resin tackifier, a coumarone indene resin tackifier, a styrene resin tackifier, or the like can be generally used.
  • Examples of petroleum resin tackifiers include aliphatic petroleum resins, aromatic petroleum resins, aliphatic-aromatic copolymer petroleum resins, alicyclic petroleum resins, dicyclopentadiene resins, and hydrogenated products thereof. Of the modified product.
  • the synthetic petroleum resin may be C5 or C9.
  • terpene resin tackifier examples include ⁇ -pinene resin, ⁇ -pinene resin, terpene-phenol resin, aromatic modified terpene resin, hydrogenated terpene resin and the like. Many of these terpene resins are resins having no polar group.
  • Rosin resin tackifiers include rosins such as gum rosin, tall oil rosin, wood rosin; hydrogenated rosin, disproportionated rosin, polymerized rosin, modified rosin such as maleated rosin; rosin glycerin ester, hydrogenated rosin ester, water Examples thereof include rosin esters such as rosin glycerol ester. These rosin resins have polar groups.
  • tackifiers petroleum resin tackifiers and terpene resin tackifiers are preferred. Furthermore, a petroleum resin tackifier is preferable. These tackifiers can be used alone or in combination of two or more.
  • the total blending amount of the styrene-based thermoplastic elastomer and the tackifier is 20 to 40% by mass, preferably 23, based on the total mass of the moisture-proof insulating material. Is 35% by mass, more preferably 25-33% by mass. If the total amount of the styrene-based thermoplastic elastomer and the tackifier is less than 20% by mass with respect to the total mass of the moisture-proof insulating material, the thickness of the coating material becomes thin, and sufficient moisture-proof properties and film strength can be obtained. There may not be.
  • the blending ratio of the styrenic thermoplastic elastomer and the tackifier is in the range of 2: 1 to 10: 1, preferably in the range of 2.5: 1 to 9.5: 1, by mass ratio.
  • the range is preferably 3: 1 to 9: 1. If the blending ratio of the styrene-based thermoplastic elastomer and the tackifier is greater than 10: 1 by mass ratio, it may not be possible to develop a sufficient adhesion function, which is not preferable. On the other hand, if the blending ratio of the styrene-based thermoplastic elastomer and the tackifier is less than 2: 1 by mass ratio, the tensile (breaking) strength of the coating after application and drying may be significantly reduced.
  • the moisture-proof insulating material of the present invention (I) contains an aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or higher and lower than 110 ° C. as an essential component.
  • the boiling point refers to the boiling point at 1 atmosphere.
  • the aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or higher and lower than 110 ° C. include n-heptane (boiling point 98.4 ° C.), cyclohexane (boiling point 80.7 ° C.), methylcyclohexane (boiling point 101.1 ° C.). Etc. Of these, preferred are cyclohexane and methylcyclohexane. Most preferred is methylcyclohexane.
  • the moisture-proof insulating material of the present invention (I) further includes an aliphatic hydrocarbon solvent having a boiling point of 110 ° C. or higher and lower than 140 ° C.
  • an aliphatic hydrocarbon solvent having a boiling point of 110 ° C. or higher and lower than 140 ° C examples of the aliphatic hydrocarbon solvent having a boiling point of 110 ° C. or higher and lower than 140 ° C.
  • n-octane (boiling point 125.7 ° C.), cis-1,2-dimethylcyclohexane (boiling point 129.7 ° C.), cis- 1,3-dimethylcyclohexane (boiling point 120.1 ° C.), cis-1,4-dimethylcyclohexane (boiling point 124.3 ° C.), trans-1,2-dimethylcyclohexane (boiling point 123.4 ° C.), trans-1, Examples thereof include 3-dimethylcyclohexane (boiling point 124.5 ° C.), trans-1,4-dimethylcyclohexane (boiling point 119.4 ° C.), ethylcyclohexane (boiling point 132 ° C.), and the like.
  • cis-1,2-dimethylcyclohexane preferred are cis-1,2-dimethylcyclohexane, cis-1,3-dimethylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,2-dimethylcyclohexane, trans-1, 3-Dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and ethylcyclohexane.
  • ethylcyclohexane is most preferable.
  • these solvents include hydrocarbon solvents having an alicyclic structure such as decahydronaphthalene, acetate esters such as n-propyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, isopropyl acetate, and ethyl acetate.
  • Solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, propylene glycol monomethyl ether, alcohol solvents such as ethanol, 1-propanol, 2-propanol, acetone, methyl ethyl ketone, Examples thereof include ketone solvents such as methyl isobutyl ketone and petroleum naphtha.
  • the boiling point is desirably 140 ° C.
  • Acetate solvents such as isopropyl acetate, ethyl acetate, and n-propyl acetate are preferred, and n-propyl acetate, isobutyl acetate, t-butyl acetate, and n-butyl acetate are more preferred.
  • the total amount of the solvent containing an aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or higher and lower than 110 ° C. is preferably 60 to 80% by mass, more preferably 67 to 77% by mass, based on the total mass of the moisture-proof insulating material. %, More preferably 70 to 75% by mass.
  • the ratio of the aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or higher and lower than 110 ° C. to the total solvent is preferably 50 to 100% by mass.
  • an aliphatic hydrocarbon solvent having a boiling point of 110 ° C. or more and less than 140 ° C. is used in combination, an aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or more and less than 110 ° C. and a boiling point of 110 ° C. or more and less than 140 ° C. are used.
  • the ratio of the total amount of the aliphatic hydrocarbon solvent to the total solvent is preferably 60 to 100% by mass.
  • the blending ratio is 50 by mass. : 50 to 95: 5, preferably 65:35 to 95: 5.
  • the blending ratio of the aliphatic hydrocarbon solvent having a boiling point of 80 ° C. or more and less than 110 ° C. and the aliphatic hydrocarbon solvent having a boiling point of 110 ° C. or more and less than 140 ° C. is greater than 95: 5 by mass ratio, In the case of a composition having a high thermoplastic elastomer concentration, drying is too fast, the syringe of the dispenser may be clogged, and the coating solution may have spinnability, which is not preferable.
  • the moisture-proof insulating material of the present invention has a viscosity at 25 ° C. of preferably 1.5 Pa ⁇ s or less, more preferably 1.1 Pa ⁇ s or less, and still more preferably 1. 0 Pa ⁇ s or less. Since it is generally applied using a dispenser, the pressure at the time of application increases when the viscosity at 25 ° C. of the moisture-proof insulating material is higher than 1.5 Pa ⁇ s in consideration of the pressure of the dispenser at the time of application. When the moisture-proof insulating material is applied by a dispenser, the spread after the application is suppressed, and as a result, the thickness after drying may be unnecessarily thick. It is not preferable.
  • the viscosity described in the present specification is a value measured at 25 ° C. and a rotation speed of 20 rpm using a DV-II + Pro viscometer small sample adapter (spindle model number: SC4-31) manufactured by Brookfield.
  • additives such as a leveling agent, an antifoaming agent, an antioxidant, a coloring agent, and a silane coupling agent can be used as necessary.
  • the leveling agent is not particularly limited as long as it is a material having a function of improving the leveling property of the coating film surface when added.
  • polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, polyether-modified methylalkylpolysiloxane copolymer, aralkyl-modified methylalkylpolysiloxane copolymer, and the like can be used. These may be used alone or in combination of two or more. 0.01 to 3 parts by mass can be added to 100 parts by mass of the moisture-proof insulating material of the present invention (I).
  • the amount is less than 0.01 part by mass, the effect of adding the leveling agent may not be exhibited.
  • the amount is more than 3 parts by mass, the surface of the coating film may become sticky or the insulating properties may be deteriorated depending on the type of the leveling agent used.
  • the antifoaming agent is not particularly limited as long as it has an action of eliminating or suppressing bubbles generated or remaining when the moisture-proof insulating material of the present invention (I) is applied.
  • antifoaming agents used in the moisture-proof insulating material of the present invention (I) include known antifoaming agents such as silicone oils, fluorine-containing compounds, polycarboxylic acid compounds, polybutadiene compounds, and acetylenic diol compounds. .
  • Silicone defoaming agents such as Toray Dow Corning Co., Ltd., Dappo SN-348 (manufactured by San Nopco), Dappo SN-354 (manufactured by San Nopco), Dappo SN-368 (manufactured by San Nopco), Acetylene such as acrylic polymer antifoaming agents such as Disparon 230HF (manufactured by Enomoto Kasei Co., Ltd.), Surfinol DF-110D (manufactured by Nissin Chemical Industry Co., Ltd.), Surfynol DF-37 (manufactured by Nissin Chemical Industry Co., Ltd.) Diol-based antifoaming agent, FA-630 (Shin-Etsu Chemical) Business Co., Ltd.), a fluorine-containing silicone-based anti-foaming agent such as, etc.
  • Dappo SN-348 manufactured by San Nopco
  • Dappo SN-354
  • the moisture-proof insulating material of the present invention can be mentioned. These may be used alone or in combination of two or more. Usually, 0.001 to 5 parts by mass can be added to 100 parts by mass of the moisture-proof insulating material of the present invention (I). If the amount is less than 0.01 parts by mass, the effect of adding the antifoaming agent may not be exhibited. On the other hand, when the amount is more than 5 parts by mass, the surface of the coating film may become sticky or the insulating properties may be deteriorated depending on the type of antifoaming agent used.
  • the colorant used in the moisture-proof insulating material of the present invention (I) is preferably an oil-soluble dye.
  • Specific examples include, for example, OIL BLACK860 (manufactured by Orient Chemical Industry Co., Ltd.), OIL BLACK 803 (Orient Chemical Industry Co., Ltd.).
  • OIL BLUE 2N made by Orient Chemical Co., Ltd.
  • OIL BLUE 630 made by Orient Chemical Co., Ltd.
  • SOT Black made by Hodogaya Chemical Co., Ltd.
  • the added amount of these dyes can be 0.01 to 5 parts by mass with respect to 100 parts by mass of the moisture-proof insulating material of the present invention (I).
  • an antioxidant can be used and is preferable.
  • the antioxidant is not particularly limited as long as it is a compound capable of preventing thermal deterioration and discoloration of the moisture-proof insulating material of the present invention (I).
  • a phenol-based antioxidant can be used.
  • examples of phenolic antioxidants include compounds represented by the following formulas (1) to (11).
  • a silane coupling agent can be used when a strong adhesion to a glass or metal oxide of a coating film formed by applying the moisture-proof insulating material of the present invention (I) is required.
  • a silane coupling agent is an organosilicon compound having a functional group reactively bonded to an organic material and a functional group reactively bonded to an inorganic material in the molecule, and generally has a structure as shown in the following formula (12). Indicated.
  • Y is a functional group reactively bonded to an organic material, and representative examples thereof include a vinyl group, an epoxy group, an amino group, a substituted amino group, a (meth) acryloyl group, a mercapto group, and the like.
  • X is a functional group that reacts with an inorganic material and is hydrolyzed by water or moisture to produce silanol. This silanol reacts with the inorganic material.
  • Representative examples of X include an alkoxy group, an acetoxy group, a chlorochlorine atom, and the like.
  • R 1 is a divalent organic group, and R 2 represents an alkyl group.
  • a represents an integer of 1 to 3
  • silane coupling agent examples include 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, p-styryltrimethoxysilane, p -Styryltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltris (2-methoxyethoxy) silane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3 -Acryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldi Toxisilane, 3-methacryloyloxyprop
  • silane coupling agents preferred are N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N -(2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propyl Amino group-containing silane coupling agents such as amines and N-phenyl-3-aminopropyltrimethoxysilane, mercapto group-containing silane coupling agents such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane, 3- Acryloyloxypropyltriethoxys
  • Examples of commercially available products include KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd.), KBM-903 (manufactured by Shin-Etsu Chemical Co., Ltd.), and KBE-903 (stock of Shin-Etsu Chemical Co., Ltd.). Company-made), Z-6062 (manufactured by Toray Dow Corning Co., Ltd.), Z-6023 (manufactured by Toray Dow Corning Co., Ltd.), and the like. These can be used alone or in combination of two or more.
  • the amount of the silane coupling agent is 0.1 to 10 with respect to 100 parts by mass of the styrene thermoplastic elastomer.
  • the amount is preferably part by mass, and more preferably 0.5 to 8 parts by mass.
  • the present invention (II) is an electronic component that is insulated using the moisture-proof insulating material of the present invention (I).
  • electronic components include microcomputers, transistors, capacitors, resistors, relays, transformers, etc., and mounting circuit boards on which these are mounted, and lead wires, harnesses, and film substrates that are joined to these electronic components. Etc. can also be included.
  • the signal input part of flat panel display panels such as a liquid crystal display panel, a plasma display panel, an organic electroluminescent panel, and a field emission display panel, are also mentioned as an electronic component.
  • the moisture-proof insulating material of the present invention (I) can be preferably used in IC peripheral parts such as display boards for electronic parts, panel bonding parts, and the like.
  • the electronic component of the present invention (II) is manufactured by insulating the electronic component using a moisture-proof insulating material.
  • a specific method for producing the electronic component of the present invention (II) first, the above-described moisture-proof insulating material is applied to the electronic component by a generally known method such as dipping, brushing, spraying, or drawing.
  • the electronic component can be obtained by applying to the substrate and evaporating the organic solvent contained in the moisture-proof insulating material and drying the coating film.
  • Example 1 25 g of D1155 (made by Kraton Polymer Co., Ltd., styrene content 40% by mass) as a styrene-butadiene block copolymer elastomer, and Quinton (registered trademark) D100 (aliphatic-aromatic copolymer petroleum resin made by Nippon Zeon Co., Ltd.) as a tackifier 6.1 g, 53.3 g of methylcyclohexane (manufactured by Maruzen Petrochemical Co., Ltd .: trade name: Suwaclean MCH) as a solvent, and 26.7 g of ethylcyclohexane (trade name: Maruzen Petrochemical Co., Ltd .: trade name: Suwaclean ECH) are mixed and blended. It was set as the thing D1. The viscosity of the formulation D1 at 25 ° C. was 0.85 Pa ⁇ s.
  • Example 2 22.5 g of D1155 (made by Kraton Polymer Co., Ltd., styrene content 40% by mass) as a styrene-butadiene block copolymer elastomer, 5.5 g of Quinton (registered trademark) D100 (made by Nippon Zeon Co., Ltd.) as a tackifier, and methylcyclohexane as a solvent (Made by Maruzen Petrochemical Co., Ltd., trade name: Swaclean MCH), 42 g of ethylcyclohexane (Made by Maruzen Petrochemical Co., Ltd., trade name: Swaclean ECH), n-butyl acetate (Kyowa Hakko Chemical Co., Ltd., trade name: butyl acetate) -P) 8 g was mixed to make Formulation D2.
  • the viscosity of the formulation D2 at 25 ° C. was 0.64 Pa ⁇ s.
  • Example 3 22.5 g of D1155 (manufactured by Kraton Polymer Co., Ltd., styrene content 40 mass%) as a styrene-butadiene block copolymer elastomer, 3.0 g of Quinton (registered trademark) D100 (manufactured by Nippon Zeon Co., Ltd.) and Imabe (registered trademark) as a tackifier ) S-110 (manufactured by Idemitsu Kosan Co., Ltd., 2.5 g of dicyclopentadiene / aromatic copolymer hydrogenated petroleum resin mainly composed of C5 fraction), methylcyclohexane (manufactured by Maruzen Petrochemical Co., Ltd.) Name: Swaclean MCH (42 g), ethylcyclohexane (manufactured by Maruzen Petrochemical Co., Ltd., trade name: Swaclean ECH) 22 g, and n-butyl
  • Example 4 22.5 g of D1161 (manufactured by Kraton Polymer, styrene content 15% by mass) as a styrene-isoprene block copolymer elastomer, 5.5 g of Quinton (registered trademark) D100 (manufactured by ZEON Corporation) as a tackifier, and methylcyclohexane as a solvent (Product name: Maruzen Petrochemical Co., Ltd., trade name: Suwaclean MCH) 36.0 g, Ethylcyclohexane (Product name: Maruzen Petrochemical Co., Ltd .: trade name: Suwaclean ECH), n-butyl acetate (Kyowa Hakko Chemical Co., Ltd.) (Name: butyl acetate-P) was mixed to obtain a formulation D4. The viscosity of the formulation D4 at 25 ° C. was 1.20 Pa ⁇ s.
  • Example 5 25 g of D1155 (made by Kraton Polymer, styrene content 40% by mass) as a styrene-butadiene block copolymer elastomer, 6.1 g of Quinton (registered trademark) D100 (made by Nippon Zeon Co., Ltd.) as a tackifier, and methylcyclohexane (Maruzen as a solvent) 98.5 g of Petrochemical Co., Ltd. trade name: Swaclean MCH) was mixed to prepare a compound D5. The viscosity of the formulation D5 at 25 ° C. was 0.30 Pa ⁇ s.
  • Comparative Example 1 20 g of D1161 (manufactured by Kraton Polymer Co., Ltd., styrene content 15% by mass) as a styrene-isoprene block copolymer elastomer, and Imabe (registered trademark) P-100 (manufactured by Idemitsu Kosan Co., Ltd., based on C5 fraction as a tackifier) Hydrogenated petroleum resin of dicyclopentadiene / aromatic copolymer system, P grade has a hydrogenation (hydrogenation) rate higher than S grade) 10 g, N-2- (aminoethyl) -3 as silane coupling agent -Compound 1 was prepared by mixing 1 g of aminopropylmethyldimethoxysilane (trade name: KBM-602, manufactured by Shin-Etsu Chemical Co., Ltd.) and 70 g of ethylcyclohexane (trade name: Suwaclean ECH, manufactured by
  • Comparative Example 2 20 g of G1652 (manufactured by Kraton Polymer, styrene content 30% by mass) and 20 g of styrene-butadiene block copolymer elastomer D1101 (manufactured by Kraton Polymer, 31% by mass of styrene) as a styrene-ethylene / butylene block copolymer elastomer, tackifier 10 g of I-MAB (registered trademark) P-100 (manufactured by Idemitsu Kosan Co., Ltd., dicyclopentadiene / aromatic copolymer hydrogenated petroleum resin mainly containing C5 fraction), N-2- as a silane coupling agent 1 g of (aminoethyl) -3-aminopropylmethyldimethoxysilane (trade name: KBM-602, manufactured by Shin-Etsu Chemical Co., Ltd.) and 70 g of e
  • Comparative Example 3 25 g of D1155 (made by Kraton Polymer Co., Ltd., styrene content 40% by mass) as a styrene-butadiene block copolymer elastomer, and Quinton (registered trademark) D100 (aliphatic-aromatic copolymer petroleum resin made by Nippon Zeon Co., Ltd.) as a tackifier 6.1 g and 80 g of ethylcyclohexane (manufactured by Maruzen Petrochemical Co., Ltd., trade name: SWACLEAN ECH) as a solvent were mixed to obtain a formulation E3. The viscosity of the formulation E3 at 25 ° C. was 0.88 Pa ⁇ s.
  • Comparative Example 4 22.5 g of D1155 (made by Kraton Polymer Co., Ltd., styrene content 40% by mass) as a styrene-butadiene block copolymer elastomer, 5.5 g of Quinton (registered trademark) D100 (made by Nippon Zeon Co., Ltd.), and ethylcyclohexane as a solvent (Maruzen Petrochemical Co., Ltd., trade name: Swaclean ECH) 64 g and n-butyl acetate (Kyowa Hakko Chemical Co., Ltd., trade name: butyl acetate-P) 8 g were mixed to obtain a blend E4. The viscosity in 25 degreeC of the compound E4 was 0.66 Pa.s.
  • Comparative Example 5 22.5 g of D1155 (manufactured by Kraton Polymer Co., Ltd., styrene content 40 mass%) as a styrene-butadiene block copolymer elastomer, 3.0 g of Quinton (registered trademark) D100 (manufactured by Nippon Zeon Co., Ltd.) and Imabe (registered trademark) as a tackifier ) S-110 (manufactured by Idemitsu Kosan Co., Ltd., 2.5 g of dicyclopentadiene / aromatic copolymer hydrogenated petroleum resin mainly containing C5 fraction), ethylcyclohexane (manufactured by Maruzen Petrochemical Co., Ltd.) Name: Swaclean ECH) 64 g and n-butyl acetate (trade name: butyl acetate-P, manufactured by Kyowa Hakko Chemical Co., Ltd.) 8 g were mixed to obtain
  • Comparative Example 6 22.5 g of D1161 (manufactured by Kraton Polymer, styrene content: 15% by mass) as a styrene-isoprene block copolymer elastomer, 5.5 g of Quinton (registered trademark) D100 (manufactured by ZEON Corporation) as a tackifier, and ethylcyclohexane as a solvent (Maruzen Petrochemical Co., Ltd., trade name: Swaclean ECH) 67 g and n-butyl acetate (Kyowa Hakko Chemical Co., Ltd., trade name: butyl acetate-P) were mixed to obtain a formulation E6.
  • the viscosity in 25 degreeC of the compound E6 was 1.22 Pa.s.
  • Comparative Example 7 25 g of D1155 (made by Kraton Polymer Co., Ltd., styrene content 40% by mass) as a styrene-butadiene block copolymer elastomer, 6.1 g of Quinton (registered trademark) D100 (made by Nippon Zeon Co., Ltd.) as a tackifier, and ethylcyclohexane (Maruzen) as a solvent 98.5 g of Petrochemical Co., Ltd. trade name: SWACLEAN ECH) was mixed to prepare a compound E7. The viscosity in 25 degreeC of the compound E7 was 0.32 Pa.s.
  • the viscosity was measured by the following method. Using a sample of 10 mL, using a viscometer (manufactured by Brookfield, model: DV-II + Pro), using a small sample adapter and a spindle of model number C4-31, at a temperature of 25.0 ° C. and a rotation speed of 20 rpm The value when the viscosity became almost constant was measured.
  • tack free time was evaluated by the following method.
  • Formulations D1 to D5 and Formulations E1 and E3 to E7 were applied on a glass using a dispenser so that the thickness after drying was about 130 ⁇ m. After coating, the coating surface was checked for stickiness every 30 seconds. It was confirmed by finger touch. The first time when stickiness disappeared was defined as tack-free time.
  • the tack free time is an index of quick drying property, and the shorter the free time, the better.
  • the formulation E2 was too high in viscosity and could not be applied with a dispenser.
  • the adhesive force is fixed to a tensile tester (manufactured by Shimadzu Corporation, EZ Test / CE) so that the cured film peeled off from the glass plate forms an angle of 90 degrees, and the initial distance between chucks is 2.5 cm.
  • the 90-degree peel strength was measured at 23 ° C. at a speed of 50 mm / min. The results are shown in Tables 1 and 2.
  • “X” in “peelability” means that the cured film was cut during measurement of 90-degree peel strength
  • in “peelability” means 90-degree peel strength. It means that the cured film could be peeled off without being cut during the measurement.
  • a certain level of adhesion is necessary to maintain moisture resistance and insulation reliability, but if there is a defect in the LCD panel pre-shipment inspection, the glass panel will be reused (the flexible wiring board will be discarded).
  • the film can be peeled off without breaking the coating film.
  • the board (henceforth a "polyimide film sticking epoxy resin board") which bonded the surface in which this compound of polyimide film was not apply
  • the epoxy resin board containing glass cloth with the double-sided adhesive tape was produced.
  • the adhesive force is fixed to a tensile tester (manufactured by Shimadzu Corporation, EZ Test / CE) so that the cured film peeled off from the polyimide resin-attached epoxy resin plate forms an angle of 90 degrees.
  • peel strength was determined by measuring 90 ° at a speed of 50 mm / min at 23 ° C. and 2.5 cm. The results are shown in Tables 1 and 2.
  • X in “peelability” means that the cured film was cut during measurement of 90-degree peel strength
  • in “peelability” means 90-degree peel strength. It means that the cured film could be peeled off without being cut during the measurement.
  • a self-supporting film was formed by recoating the compounds D1 to D5 and the compounds E1 and E3 to E7 on a Teflon (registered trademark) plate using a bar coater so that the thickness after drying was about 130 ⁇ m. Produced. Using a moisture permeable cup jig (manufactured by Tester Sangyo Co., Ltd.), the moisture permeability of these free-standing films was measured in accordance with JIS Z0208. The results are shown in Tables 1 and 2. The test conditions for moisture permeability were a temperature of 40 ° C., a humidity of 90% RH, and 24 hours.
  • a substrate having a fine comb pattern shape described in JPCA-ET01, manufactured by etching a flexible copper-clad laminate (manufactured by Sumitomo Metal Mining Co., Ltd., grade name: Esperflex, copper thickness: 8 ⁇ m, polyimide thickness: 38 ⁇ m) (Copper wiring width / copper wiring width 15 ⁇ m / 15 ⁇ m)
  • a flexible wiring board having been subjected to tin plating was applied with the compounds D1 to D5, E1, and E3 to E7 so that the thickness after drying was 100 ⁇ m. After being kept at room temperature for 10 minutes, it was dried at 70 ° C. for 1.5 hours.
  • composition D1 to D5, E1, and E3 to E7 were each dried to a thickness of 100 ⁇ m on a patterned electrode in which a comb-shaped ITO wiring having a line / space of 40 ⁇ m / 10 ⁇ m was formed on a glass substrate. After coating and holding at room temperature for 10 minutes, it was dried at 70 ° C. for 1.5 hours. Using this test piece, a bias voltage of 30 V was applied, and a constant temperature and humidity test under the conditions of a temperature of 85 ° C. and a humidity of 85% RH was performed using MIGRATION TESTER MODEL MIG-8600 (manufactured by IMV). Tables 1 and 2 show the resistance values at the initial start of the temperature and humidity test and at 1000 hours after the start.
  • the compounds D1 to D5 are excellent in drying property, adhesion to a glass substrate, and long-term insulation reliability, and have a viscosity of 1.5 Pa ⁇ s or less (in particular, D1 to D5). It can be seen that the viscosity of D3 and D5 is as low as less than 1.0 Pa ⁇ s.
  • the compound E2 has high viscosity and poor handling properties, and the compounds E1, E3 to E7 are inferior in drying speed, and the composition of the present invention is a moisture-proof insulating material to be applied using a dispenser. It turns out that it is suitable for.
  • the moisture-proof insulating material of the present invention is a composition that can exhibit low viscosity and quick drying properties, and by coating with this moisture-proof insulating material, it is possible to obtain an electronic component that is highly moisture-proof and insulated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 ディスペンサーにより容易に塗布可能である粘度範囲において、塗布・乾燥後に十分な防湿性能を発現する厚みが確保できる固形分濃度であり、かつ、ガラス基材やポリイミドへの密着性および長期絶縁信頼性に優れた防湿絶縁材料、および該防湿絶縁材料によって絶縁処理された電子部品を提供する。スチレン系熱可塑性エラストマー、粘着付与剤、および溶媒を含む防湿絶縁材料であって、前記溶媒が80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒(例えば、メチルシクロヘキサン、シクロヘキサン)を含むことを特徴とする。前記溶媒は、好ましくは、さらに110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒(例えば、エチルシクロヘキサン、ジメチルシクロヘキサン)を含む。

Description

防湿絶縁材料
 本発明は、作業性、速乾燥性に優れた電子部品の防湿絶縁材料、およびその防湿絶縁材料によって絶縁処理された電子部品に関する。
 従来、電子機器の製造工程においては、実装回路板や電極などの金属露出部を、湿気や塵埃あるいは腐食性ガスなどから保護する目的で、絶縁性皮膜によるコーティングが行われている。このコーティング材料には紫外線硬化型、湿気硬化型、溶媒乾燥型などのタイプがあり、それぞれアクリル樹脂、シリコーン樹脂、スチレンブロック共重合体樹脂などが使用されている。
 湿気硬化型のコーティング材料は、シリコーン樹脂自身の耐湿性には優れているものの、透湿性があるため、回路や電極の金属を保護するためにはコーティング材料を厚く塗布しなければならない問題点がある。
 紫外線硬化型のコーティング材料は、短時間での硬化が可能で生産性に優れているため広く使用されている。このような紫外線硬化型コーティング材料としては、例えば、特許文献1に記載のポリオレフィンポリオールや特許文献2に記載のポリカーボネートポリオールから誘導されたウレタン変性アクリレート化合物などが知られている。
 電子機器の製造工程においては、防湿絶縁材料によるコーティング処理を実施した後に何らかの不具合が確認されると、その不具合が発生した部品を除去して再度新たな部品を接合し直すというリペア工程がある。このリペア工程において部品を再接合する際には、不具合の発生する部位が不確定であるため、紫外線照射時の位置決めが困難であり、溶媒乾燥型のコーティング材料が使用されることが多い。
 溶媒乾燥型のコーティング材料用組成物としては、特許文献3にスチレン系熱可塑性エラストマー、粘着付与剤およびトルエンからなる組成物が開示されている。しかし、トルエンのような毒性の強い溶媒を使用することは環境上好ましくない。
 また、特許文献4および特許文献5にスチレン系熱可塑性エラストマー、粘着付与剤、シランカップリング剤およびエチルシクロヘキサンからなる組成物が開示されている。しかし、エチルシクロヘキサンを主成分とする溶媒では、乾燥性を速めるために固形分濃度を高くすると、組成物の粘度が高くなってしまい、その結果、作業性(即ち、ポッティング性能)が低下する。また、低粘度化するために、エチルシクロヘキサンの量を増やすと、130μm程度の乾燥後の膜厚を形成する場合には、室温でタックが無くなるまでの時間が5分程度或いはそれ以上かかってしまう状況にあった。
特開2007-308681号公報 特開2007-332279号公報 特開2003-145687号公報 特開2005-126456号公報 特開2005-162986号公報
 溶媒乾燥型のコーティング材料は硬化反応を伴わないため、塗布・乾燥のみで必要な物性が発現できなければならず、そのため樹脂の分子量は大きくならざるを得ない。しかし樹脂の分子量が大きくなるほどコーティング材料の粘度が高くなり、作業性が低下する。あるいは作業性を確保するためにコーティング材料を希釈すると、塗布・乾燥後のコーティング膜の厚みが薄くなり、防湿性に劣る懸念があり、さらに、塗布後、塗膜の表面のタックが無くなるまでの時間が長くかかるため、生産性が落ちるという問題があった。
 工程の効率化のため溶媒乾燥型のコーティング材料は塗布後3分程度で次工程に移ることが望ましく、速乾燥性が求められる。しかし、乾燥があまりに速すぎるとポッティングの際のシリンジ先端部の詰まりなどの不具合が生じるため、適度な乾燥性が必要である。
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、スチレン系熱可塑性エラストマーを含有する溶媒乾燥型コーティング材料において、80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒を溶媒の主成分として使用することによって、低粘度かつ十分な固形分濃度を有し、速乾燥性を発現する優れた防湿絶縁皮膜が得られることを見出し、本発明を完成するに至った。
 即ち、本発明(I)は、スチレン系熱可塑性エラストマー、粘着付与剤、および溶媒を含む防湿絶縁材料であって、前記溶媒が80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒を含むことを特徴とする防湿絶縁材料である。
 本発明(II)は、本発明(I)に記載の防湿絶縁材料を用いて絶縁処理された電子部品である。
 さらに言えば、本発明は以下の[1]~[10]に関する。
[1] スチレン系熱可塑性エラストマー、粘着付与剤、および溶媒を含む防湿絶縁材料であって、前記溶媒が80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒を含むことを特徴とする防湿絶縁材料。
[2] 前記溶媒が、さらに110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒を含むことを特徴とする[1]に記載の防湿絶縁材料。
[3] 防湿絶縁材料中に含まれる80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒と110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒の質量比が50:50~95:5の範囲であることを特徴とする[2]に記載の防湿絶縁材料。
[4] 80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒が、シクロヘキサンおよび/またはメチルシクロヘキサンであることを特徴とする[1]~[3]のいずれかに記載の防湿絶縁材料。
[5] 110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒が、cis-1,2-ジメチルシクロヘキサン、cis-1,3-ジメチルシクロヘキサン、cis-1,4-ジメチルシクロヘキサン、trans-1,2-ジメチルシクロヘキサン、trans-1,3-ジメチルシクロヘキサン、trans-1,4-ジメチルシクロヘキサンおよびエチルシクロヘキサンからなる群から選ばれる少なくとも1種であることを特徴とする[2]~[4]のいずれかに記載の防湿絶縁材料。
[6] 防湿絶縁材料の総質量に対して、スチレン系熱可塑性エラストマーと粘着付与剤の総量が20~40質量%であり、溶媒の総量が60~80質量%であり、防湿絶縁材料中に含まれるスチレン系熱可塑性エラストマーと粘着付与剤の質量比が2:1~10:1の範囲であり、防湿絶縁材料中に含まれる80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒が、溶媒の総量に対して50質量%以上であり、さらに、防湿絶縁材料の25℃での粘度が1.5Pa・s以下であることを特徴とする[1]~[5]のいずれかに記載の防湿絶縁材料。
[7] スチレン系熱可塑性エラストマーが、スチレン-ブタジエンブロック共重合エラストマー、スチレン-イソプレンブロック共重合エラストマー、スチレン-エチレン/ブチレンブロック共重合エラストマー、およびスチレン-エチレン/プロピレンブロック共重合エラストマーからなる群から選ばれる少なくとも1種であることを特徴とする[1]~[6]のいずれかに記載の防湿絶縁材料。
[8] スチレン系熱可塑性エラストマー中に含まれるスチレン由来の構造単位の含量が、スチレン系熱可塑性エラストマーの総量に対して15~50質量%であることを特徴とする[1]~[7]のいずれかに記載の防湿絶縁材料。
[9] 粘着付与剤が、石油系樹脂粘着付与剤であることを特徴とする[1]~[8]のいずれかに記載の防湿絶縁材料。
[10] [1]~[9]のいずれかに記載の防湿絶縁材料を用いて絶縁処理された電子部品。
 本発明(I)の防湿絶縁材料は、低粘度かつ十分な固形分濃度を有し、作業性、基材との密着性、防湿性、絶縁信頼性に優れており、この防湿絶縁材料でコーティング処理することにより、高度に防湿絶縁保護された電子部品を得ることができる。
 以下、本発明を具体的に説明する。
 まず、本発明(I)の防湿絶縁材料について説明する。
 本発明(I)は、スチレン系熱可塑性エラストマー、粘着付与剤、および溶媒を含む防湿絶縁材料であって、前記溶媒が80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒を含むことを特徴とする防湿絶縁材料である。
 なお、本明細書に記載の「熱可塑性エラストマー」とは、加熱することによって流動して通常の熱可塑性プラスチックと同様の成形加工ができ、常温ではゴム弾性(即ち、顕著な弾性回復)を示す性質を有する高分子化合物であり、詳細は、物理化学辞典編集委員会編、「熱可塑性エラストマーのすべて」、初版第1刷、(株)工業調査会発行、2003年12月20日 に記載されている。
 また、本明細書に記載の「スチレン系熱可塑性エラストマー」とは、分子構造中にスチレンに由来する構造単位を有する熱可塑性エラストマーを意味する。
 本発明(I)の防湿絶縁材料に用いられるスチレン系熱可塑性エラストマーは、耐湿性、絶縁信頼性に優れている。スチレン系熱可塑性エラストマーの例としては、スチレン-ブタジエンブロック共重合エラストマー、スチレン-イソプレンブロック共重合エラストマー、スチレン-エチレン/ブチレンブロック共重合エラストマー、スチレン-エチレン/プロピレンブロック共重合エラストマー等を挙げることができる。このようなスチレン系熱可塑性エラストマーの市販品としては、D1101、D1102、D1155、DKX405、DKX410、DKX415、D1192、D1161、D1171、G1652、G1730(以上、クレイトンポリマー社製)、タフプレン(登録商標)A、タフプレン(登録商標)125、タフプレン(登録商標)126S、タフテック(登録商標)H1141、タフテック(登録商標)H1041、タフテック(登録商標)H1043、タフテック(登録商標)H1052、(以上、旭化成ケミカルズ株式会社製)などが挙げられる。これらは1種または2種以上を組み合わせて用いることができる。
 スチレン系熱可塑性エラストマー中に含まれるスチレン由来の構造単位の含量が、スチレン系熱可塑性エラストマーの総量に対して15~50質量%であることが好ましく、より好ましくは18~45質量%であり、さらに好ましくは19~43質量%である。スチレン系熱可塑性エラストマー中に含まれるスチレン由来の構造単位の含量が、スチレン系熱可塑性エラストマーの総量に対して15質量%未満の場合には、該エラストマーの凝集力不足になる場合があり、好ましいこととはいえない。また、スチレン系熱可塑性エラストマーの総量に対して50質量%より多くなると、該エラストマーのゴム的性質が無くなる傾向になり、また、防湿性能が不足する傾向にあり、好ましいこととはいえない。
 本発明に用いられる粘着付与剤とは、ゴム弾性を有するエラストマーに代表される高分子化合物に配合して粘着機能を持たせるための物質である。エラストマーに代表される高分子化合物に比べ、分子量ははるかに小さく、一般に、分子量数百~数千のオリゴマー領域の化合物であり、室温ではガラス状態でそのもの自体ではゴム弾性を示さない性質を有する。
 粘着付与剤としては、一般に、石油系樹脂粘着付与剤、テルペン系樹脂粘着付与剤、ロジン系樹脂粘着付与剤、クマロンインデン樹脂粘着付与剤、スチレン系樹脂粘着付与剤などを用いることができる。
 石油系樹脂粘着付与剤としては、脂肪族系石油樹脂、芳香族系石油樹脂、脂肪族-芳香族共重合系石油樹脂、脂環族系石油樹脂、ジシクロペンタジエン樹脂およびこれらの水添物等の変性物が挙げられる。合成石油樹脂は、C5系でも、C9系でもよい。
 テルペン系樹脂粘着付与剤としては、β-ピネン樹脂、α-ピネン樹脂、テルペン-フェノール樹脂、芳香族変性テルペン樹脂、水添テルペン樹脂などが挙げられる。これらのテルペン系樹脂の多くは、極性基を有しない樹脂である。
 ロジン系樹脂粘着付与剤としては、ガムロジン、トール油ロジン、ウッドロジンなどのロジン;水添ロジン、不均化ロジン、重合ロジン、マレイン化ロジンなどの変性ロジン;ロジングリセリンエステル、水添ロジンエステル、水添ロジングリセリンエステルなどのロジンエステルなどが挙げられる。これらのロジン系樹脂は、極性基を有するものである。
 これらの粘着付与剤の中で、石油系樹脂粘着付与剤、テルペン系樹脂粘着付与剤が好ましい。さらに、好ましくは、石油系樹脂粘着付与剤である。
 これらの粘着付与剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 スチレン系熱可塑性エラストマーおよび粘着付与剤の配合量については、防湿絶縁材料の総質量に対して、スチレン系熱可塑性エラストマーと粘着付与剤の総配合量は20~40質量%であり、好ましくは23~35質量%であり、さらに好ましくは、25~33質量%である。防湿絶縁材料の総質量に対して、スチレン系熱可塑性エラストマーと粘着付与剤の総配合量が、20質量%よりも少ないとコーティング材料の厚みが薄くなり、十分な防湿性と膜強度が得られない場合がある。さらに、固形分濃度が低くなることにより、塗布後の塗膜表面のタックが無くなるまでの時間が長くなり、その結果、生産性が低くなる場合がある。また、スチレン系熱可塑性エラストマーと粘着付与剤の総配合量が、防湿絶縁材料の総質量に対して40質量%よりも多いとコーティング材料の粘度が高くなって作業性が劣り、均一に塗布することが困難になる場合や、ディスペンサーでのポッティングの際に、シリンジが詰まる場合があり、好ましいこととはいえない。
 スチレン系熱可塑性エラストマーと粘着付与剤の配合比率については、質量比で、2:1~10:1の範囲であり、好ましくは2.5:1~9.5:1の範囲であり、さらに好ましくは3:1~9:1の範囲である。
 スチレン系熱可塑性エラストマーと粘着付与剤の配合比率が、質量比で、10:1より大きくなると、十分な粘着機能を発現することができない場合があり好ましくない。また、スチレン系熱可塑性エラストマーと粘着付与剤の配合比率が、質量比で、2:1より小さくなると、塗布乾燥後の皮膜の引張(破断)強度が、著しく低下してしまうことがある。その結果、不具合が発生した部品を除去して再度新たな部品を接合し直すというリペア工程の際に行われる防湿絶縁皮膜を引き剥がして除去する際に、防湿絶縁皮膜が切断されて1枚ものの膜として除去できなくなる場合が生じてしまい、好ましくない。
 本発明(I)の防湿絶縁材料は、80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒を必須成分として含む。本明細書において、別段の定めがない限り、沸点とは、1気圧における沸点をいう。
 80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒としては、例えば、n-ヘプタン(沸点98.4℃)、シクロヘキサン(沸点80.7℃)、メチルシクロヘキサン(沸点101.1℃)等を挙げることができる。これらの中で、好ましいものとしては、シクロヘキサン、メチルシクロヘキサンである。最も好ましいものとしては、メチルシクロヘキサンである。
 本発明(I)の防湿絶縁材料は、さらに、110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒を含むことが好ましい。
 110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒としては、例えば、n-オクタン(沸点125.7℃)、cis-1,2-ジメチルシクロヘキサン(沸点129.7℃)、cis-1,3-ジメチルシクロヘキサン(沸点120.1℃)、cis-1,4-ジメチルシクロヘキサン(沸点124.3℃)、trans-1,2-ジメチルシクロヘキサン(沸点123.4℃)、trans-1,3-ジメチルシクロヘキサン(沸点124.5℃)、trans-1,4-ジメチルシクロヘキサン(沸点119.4℃)、エチルシクロヘキサン(沸点132℃)等を挙げることができる。これらの中で、好ましいものとしては、cis-1,2-ジメチルシクロヘキサン、cis-1,3-ジメチルシクロヘキサン、cis-1,4-ジメチルシクロヘキサン、trans-1,2-ジメチルシクロヘキサン、trans-1,3-ジメチルシクロヘキサン、trans-1,4-ジメチルシクロヘキサン、エチルシクロヘキサンであり、入手の容易さを考慮すると、エチルシクロヘキサンが最も好ましい。
 また、80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒および110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒以外の溶媒を併用することも可能である。これらの溶媒としては、例えば、デカヒドロナフタリン等の脂環構造を有する炭化水素溶媒、酢酸n-プロピル、酢酸n-ブチル、酢酸イソブチル、酢酸t-ブチル、酢酸イソプロピル、酢酸エチル等の酢酸エステル系溶媒、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル系溶媒、エタノール、1-プロパノール、2-プロパノール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒および石油ナフサ等が挙げられる。防湿絶縁材料を塗布後、室温無風の条件下における乾燥性と作業性を考慮すると、沸点が140℃以下であることが望ましく、具体的には、酢酸n-ブチル、酢酸イソブチル、酢酸t-ブチル、酢酸イソプロピル、酢酸エチル、酢酸n-プロピル等の酢酸エステル系溶媒が好ましく、さらに好ましくは、酢酸n-プロピル、酢酸イソブチル、酢酸t-ブチル、酢酸n-ブチルである。
 80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒を含む溶媒の総量は、防湿絶縁材料の総質量に対して、好ましくは60~80質量%であり、より好ましくは67~77質量%であり、さらに好ましくは70~75質量%である。
 80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒の全溶媒に占める割合は、50~100質量%が好ましい。
 また110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒を併用する場合には、80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒と110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒との合計量の全溶媒に占める割合は、60~100質量%が好ましい。
 80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒と110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒を併用する場合には、その配合比率は、質量比で、50:50~95:5の範囲で、好ましくは65:35~95:5である。80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒と110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒の配合比率は、質量比で50:50より小さくなると、防湿絶縁材料を塗布した後、塗膜表面のタックが無くなるまでの時間が長くかかってしまう場合がある。80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒と110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒の配合比率は、質量比で95:5より大きくなると、スチレン系熱可塑性エラストマーの濃度が高い組成物の場合には、乾燥が速くなりすぎ、ディスペンサーのシリンジが詰まったり、塗出液が曳糸性を有する場合があり、好ましいこととは言えない。
 本発明(I)の防湿絶縁材料は、防湿絶縁材料の25℃での粘度は、好ましくは1.5Pa・s以下であり、より好ましくは1.1Pa・s以下であり、さらに好ましくは1.0Pa・s以下である。一般的にディスペンサーを用いて塗布されるので、塗布する際のディスペンサーの圧力を考慮すると、防湿絶縁材料の25℃での粘度が1.5Pa・sより高くなると、塗布する際の圧力が高くなりすぎる場合があり、また、防湿絶縁材料をディスペンサーにより塗布する場合、塗布後の広がりが抑制され、その結果、乾燥後の厚みが必要以上に厚くなる懸念があり。好ましいこととはいえない。
 なお、本明細書に記載の粘度は、ブルックフィールド社製のDV-II+Pro viscometer 少量サンプルアダプター(スピンドルの型番:SC4-31)を用いて、25℃、回転数20rpmで測定した値である。
 本発明(I)の防湿絶縁材料は、必要に応じてレベリング剤、消泡剤、酸化防止剤、着色剤、シランカップリング剤等の添加剤を用いることができる。
 レベリング剤としては、添加することにより塗膜表面のレベリング性を向上させる機能を有する材料であれば、特に制限はない。具体的には、ポリエーテル変性ジメチルポリシロキサン共重合物、ポリエステル変性ジメチルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物、アラルキル変性メチルアルキルポリシロキサン共重合物等が使用できる。これらは、単独で使用しても、2種以上組み合わせて使用してもよい。本発明(I)の防湿絶縁材料100質量部に対し、0.01~3質量部添加することができる。0.01質量部未満の場合には、レベリング剤の添加効果が発現しない可能性がある。また、3質量部より多い場合には、使用するレベリング剤の種類によっては、塗膜表面にべたつきが発生したり、絶縁特性を劣化させる可能性がある。
 消泡剤としては、本発明(I)の防湿絶縁材料を塗布する際に、発生或いは残存する気泡を消す或いは抑制する作用を有するものであれば、特に制限はない。本発明(I)の防湿絶縁材料に使用される消泡剤としては、シリコーン系オイル、フッ素含有化合物、ポリカルボン酸系化合物、ポリブタジエン系化合物、アセチレンジオール系化合物など公知の消泡剤が挙げられる。その具体例としては、例えば、BYK-077(ビックケミー・ジャパン株式会社製)、SNデフォーマー470(サンノプコ株式会社製)、TSA750S(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)、シリコーンオイルSH-203(東レ・ダウコーニング株式会社製)等のシリコーン系消泡剤、ダッポーSN-348(サンノプコ株式会社製)、ダッポーSN-354(サンノプコ株式会社製)、ダッポーSN-368(サンノプコ株式会社製)、ディスパロン230HF(楠本化成株式会社製)等のアクリル重合体系消泡剤、サーフィノールDF-110D(日信化学工業株式会社製)、サーフィノールDF-37(日信化学工業株式会社製)等のアセチレンジオール系消泡剤、FA-630(信越化学工業株式会社製)等のフッ素含有シリコーン系消泡剤等を挙げることができる。これらは、単独で使用しても、2種以上組み合わせて使用してもよい。通常、本発明(I)の防湿絶縁材料100質量部に対し、0.001~5質量部添加することができる。0.01質量部未満の場合には、消泡剤の添加効果が発現しない可能性がある。また、5質量部より多い場合には、使用する消泡剤の種類によっては、塗膜表面にべたつきが発生したり、絶縁特性を劣化させる可能性がある。
 着色剤としては、公知の無機顔料、有機系顔料、および有機系染料等が挙げられ、所望する色調に応じてそれぞれを配合する。本発明(I)の防湿絶縁材料に用いられる着色剤としては油溶性の染料が好ましく、具体例としては、例えば、OIL BLACK860(オリエント化学工業株式会社製)、OIL BLACK 803(オリエント化学工業株式会社製)、OIL BLUE 2N(オリエント化学工業株式会社製)、OIL BLUE 630(オリエント化学工業株式会社製)、SOT Black(保土谷化学工業株式会社製)などを挙げることができる。これらは、単独で使用しても、2種以上組み合わせて使用してもよい。通常、これらの染料の添加量は、本発明(I)の防湿絶縁材料100質量部に対し、0.01~5質量部添加することができる。
 本発明(I)の防湿絶縁材料の酸化劣化および加熱時の変色を押さえることが必要な場合には、酸化防止剤を使用することができ、かつ、好ましい。
 酸化防止剤としては、本発明(I)の防湿絶縁材料の熱劣化や変色を防止する作用のある化合物であれば特に制限は無く、例えば、フェノール系酸化防止剤等を使用することができる。
 フェノール系酸化防止剤としては、例えば、下記式(1)~式(11)のような化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 本発明(I)の防湿絶縁材料を塗布してできる塗膜のガラスや金属酸化物への強固な密着性が要求される場合には、シランカップリング剤を使用することができる。
 シランカップリング剤とは、分子内に有機材料と反応結合する官能基、および無機材料と反応結合する官能基を同時に有する有機ケイ素化合物で、一般的にその構造は下記式(12)のように示される。
Figure JPOXMLDOC01-appb-C000012
 ここで、Yは有機材料と反応結合する官能基で、ビニル基、エポキシ基、アミノ基、置換アミノ基、(メタ)アクリロイル基、メルカプト基等がその代表例として挙げられる。Xは無機材料と反応する官能基で、水、あるいは湿気により加水分解を受けてシラノールを生成する。このシラノールが無機材料と反応結合する。Xの代表例としてアルコキシ基、アセトキシ基、クロル塩素原子などを挙げることができる。R1は、2価の有機基であり、R2はアルキル基を表す。aは1~3の整数を表し、bは0~2の整数を表す。ただし、a+b=3である。
 シランカップリング剤としては、例えば、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、アリルトリメトキシシラン等を挙げることができる。
 これらのシランカップリング剤の中で、好ましいものとしては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプト基含有シランカップリング剤、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン等の(メタ)アクリロイル基含有シランカップリング剤が挙げられ、市販品としては、KBM-503(信越化学工業株式会社製)、KBM-903(信越化学工業株式会社製)、KBE-903(信越化学工業株式会社製)、Z-6062(東レ・ダウコーニング株式会社製)、Z-6023(東レ・ダウコーニング株式会社製)などが挙げられる。これらは1種または2種以上を組み合わせて用いることができる。
 本発明(I)の防湿絶縁材料に好適なガラス基材への密着性を与えるためには、シランカップリング剤の配合量が、スチレン系熱可塑性エラストマー100質量部に対して0.1~10質量部であることが好ましく、0.5~8質量部であることがさらに好ましい。
 本発明(II)は、本発明(I)の防湿絶縁材料を用いて絶縁処理された電子部品である。このような電子部品としては、マイクロコンピュータ、トランジスタ、コンデンサ、抵抗、リレー、トランス等、およびこれらを搭載した実装回路板などが挙げられ、さらにこれら電子部品に接合されるリード線、ハーネス、フィルム基板等も含むことができる。
 また、液晶ディスプレイパネル、プラズマディスプレイパネル、有機エレクトロルミネッセンスパネル、フィールドエミッションディスプレイパネル等のフラットパネルディスプレイパネルの信号入力部等も、電子部品として挙げられる。特に、電子部品用ディスプレイ用基板等のIC周辺部やパネル張り合わせ部等に、本発明(I)の防湿絶縁材料を好ましく使用できる。
 本発明(II)の電子部品は、防湿絶縁材料を用いて電子部品を絶縁処理することにより製造される。本発明(II)の電子部品の具体的な製造方法としては、まず、一般に知られている浸漬法、ハケ塗り法、スプレー法、線引き塗布法等の方法によって上述した防湿絶縁材料を上記電子部品に塗布し、防湿絶縁材料に含まれる有機溶媒を揮発させて塗膜を乾燥させることにより、電子部品が得られる。
 以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例にのみ制限されるものではない。
 実施例1
 スチレン-ブタジエンブロック共重合エラストマーとしてD1155(クレイトンポリマー社製,スチレン含量40質量%)25g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製脂肪族-芳香族共重合系石油樹脂)6.1g、溶媒としてメチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンMCH)53.3g、エチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)26.7gを混合し、配合物D1とした。
 配合物D1の25℃での粘度は、0.85Pa・sであった。
 実施例2
 スチレン-ブタジエンブロック共重合エラストマーとしてD1155(クレイトンポリマー社製,スチレン含量40質量%)22.5g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製)5.5g、溶媒としてメチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンMCH)42g、エチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)22g、酢酸n-ブチル(協和発酵ケミカル株式会社製 商品名:酢酸ブチル-P)8gを混合し、配合物D2とした。
 配合物D2の25℃での粘度は、0.64Pa・sであった。
 実施例3
 スチレン-ブタジエンブロック共重合エラストマーとしてD1155(クレイトンポリマー社製,スチレン含量40質量%)22.5g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製)3.0gおよびアイマーブ(登録商標)S-110(出光興産株式会社製、C5留分を主成分とするジシクロペンタジエン/芳香族共重合系の水添石油樹脂)2.5g、溶媒としてメチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンMCH)42g、エチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)22g、酢酸n-ブチル(協和発酵ケミカル株式会社製 商品名:酢酸ブチル-P)8gを混合し、配合物D3とした。
 配合物D3の25℃での粘度は、0.66Pa・sであった。
 実施例4
 スチレン-イソプレンブロック共重合エラストマーとしてD1161(クレイトンポリマー社製,スチレン含量15質量%)22.5g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製)5.5g、溶媒としてメチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンMCH)36.0g、エチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)31.0g、酢酸n-ブチル(協和発酵ケミカル株式会社製 商品名:酢酸ブチル-P)5gを混合し、配合物D4とした。
 配合物D4の25℃での粘度は、1.20Pa・sであった。
 実施例5
 スチレン-ブタジエンブロック共重合エラストマーとしてD1155(クレイトンポリマー社製,スチレン含量40質量%)25g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製)6.1g、溶媒としてメチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンMCH)98.5gを混合し、配合物D5とした。
 配合物D5の25℃での粘度は、0.30Pa・sであった。
 比較例1
 スチレン-イソプレンブロック共重合エラストマーとしてD1161(クレイトンポリマー社製,スチレン含量15質量%)20g、粘着付与剤としてアイマーブ(登録商標)P-100(出光興産株式会社製、C5留分を主成分とするジシクロペンタジエン/芳香族共重合系の水添石油樹脂、PグレードはSグレードよりも水素化(水添)率が高いグレード)10g、シランカップリング剤としてN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(信越化学工業株式会社製 商品名:KBM-602)1g、溶媒としてエチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)70gを混合し、配合物E1とした。
 配合物E1の25℃での粘度は、1.11Pa・sであった。
 比較例2
 スチレン-エチレン/ブチレンブロック共重合エラストマーとしてG1652(クレイトンポリマー社製,スチレン含量30質量%)20gおよびスチレン-ブタジエンブロック共重合エラストマーD1101(クレイトンポリマー社製,スチレン含量31質量%)20g、粘着付与剤としてアイマーブ(登録商標)P-100(出光興産株式会社製、C5留分を主成分とするジシクロペンタジエン/芳香族共重合系の水添石油樹脂)10g、シランカップリング剤としてN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(信越化学工業株式会社製 商品名:KBM-602)1g、溶媒としてエチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)70gを混合し、配合物E2とした。
 配合物E2の25℃での粘度は高すぎて、前記の粘度測定条件で測定することができなかった。
 比較例3
 スチレン-ブタジエンブロック共重合エラストマーとしてD1155(クレイトンポリマー社製,スチレン含量40質量%)25g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製脂肪族-芳香族共重合系石油樹脂)6.1g、溶媒としてエチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)80gを混合し、配合物E3とした。
 配合物E3の25℃での粘度は、0.88Pa・sであった。
 比較例4
 スチレン-ブタジエンブロック共重合エラストマーとしてD1155(クレイトンポリマー社製,スチレン含量40質量%)22.5g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製)5.5g、溶媒としてエチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)64g、酢酸n-ブチル(協和発酵ケミカル株式会社製 商品名:酢酸ブチル-P)8gを混合し、配合物E4とした。
 配合物E4の25℃での粘度は、0.66Pa・sであった。
 比較例5
 スチレン-ブタジエンブロック共重合エラストマーとしてD1155(クレイトンポリマー社製,スチレン含量40質量%)22.5g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製)3.0gおよびアイマーブ(登録商標)S-110(出光興産株式会社製、C5留分を主成分とするジシクロペンタジエン/芳香族共重合系の水添石油樹脂)2.5g、溶媒としてエチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)64g、酢酸n-ブチル(協和発酵ケミカル株式会社製 商品名:酢酸ブチル-P)8gを混合し、配合物E5とした。
 配合物E5の25℃での粘度は、0.68Pa・sであった。
 比較例6
 スチレン-イソプレンブロック共重合エラストマーとしてD1161(クレイトンポリマー社製,スチレン含量15質量%)22.5g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製)5.5g、溶媒としてエチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)67g、酢酸n-ブチル(協和発酵ケミカル株式会社製 商品名:酢酸ブチル-P)5gを混合し、配合物E6とした。
 配合物E6の25℃での粘度は、1.22Pa・sであった。
 比較例7
 スチレン-ブタジエンブロック共重合エラストマーとしてD1155(クレイトンポリマー社製,スチレン含量40質量%)25g、粘着付与剤としてクイントン(登録商標)D100(日本ゼオン株式会社製)6.1g、溶媒としてエチルシクロヘキサン(丸善石油化学株式会社製 商品名:スワクリーンECH)98.5gを混合し、配合物E7とした。
 配合物E7の25℃での粘度は、0.32Pa・sであった。
[配合物の評価]
 上記の組成により調製した配合物D1~D5およびE1、E3~E7の特性を、以下に示す方法により評価した。結果を表1および表2に示す。
<粘度の測定>
 粘度は以下の方法により測定した。
 試料10mLを使用して、粘度計(Brookfield社製、型式:DV-II+Pro)を用いて、少量サンプルアダプターおよび型番C4-31のスピンドルを使用し、温度25.0℃、回転数20rpmの条件で粘度がほぼ一定になったときの値を測定した。
<タックフリータイムの評価>
 タックフリータイムは以下の方法により評価した。
 配合物D1~D5および配合物E1、E3~E7をそれぞれガラス上に乾燥後の厚みが約130μmになるようにディスペンサーを用いて塗布し、塗布後、塗膜表面のべたつきの有無を30秒ごとに指触により確認した。べたつきが無くなった最初の時間をタックフリータイムとした。
 タックフリータイムは速乾燥性の指標であり、短いほど好ましい。
 なお、配合物E2は、粘度が高すぎて、ディスペンサーでの塗布ができなかった。
<ガラスへの密着性およびガラスからの引き剥がし性の評価>
 ガラスへの密着性は以下の方法により評価した。
 配合物D1~D5および配合物E1、E3~E7を、それぞれガラス上に乾燥後の厚みが130μmになるよう塗布し、室温で10分間保持した後に、70℃で0.5時間乾燥した後、室温で12時間放置した。これらの塗膜について、評価試験用の硬化膜の一端のみを剥離して、幅2.5mmの接着力測定用試験片を作製した。接着力は、ガラス板と剥離した硬化フィルムが90度の角度を成すように引張り試験機(株式会社島津製作所製、EZ Test/CE)に固定し、最初のチャック間距離を2.5cmとし、23℃において50mm/minの速度で90度引き剥がし強さを測定して求めた。結果を表1および表2に示す。
 また、「引き剥がし性」における×印とは、90度引き剥がし強さの測定中に硬化膜が切れたことを意味し、「引き剥がし性」における○印とは、90度引き剥がし強さの測定中に硬化膜が切れずに剥離できたことを意味する。
 ある程度の密着性は、防湿性、絶縁信頼性を維持するために必要であるが、LCDパネルの出荷前検査で不良がある場合には、ガラスパネルは再利用したい(フレキシブル配線板は捨てる)ので、引き剥がしたいときには、塗膜が切れることなくきれいに引き剥がしを行えることが好ましい。
<ポリイミドフィルムへの密着性の評価およびポリイミドからの引き剥がし性の評価>
 ポリイミドフィルムへの密着性は以下の方法により評価した。
 配合物D1~D5および配合物E1、E3~E7を、それぞれポリイミドフィルム(商品名:カプトン(登録商標)150EN、東レ・デュポン株式会社製)上に乾燥後の厚みが130μmになるよう塗布し、室温で10分間保持した後に、70℃で0.5時間乾燥した後、室温で12時間放置した。その後、このポリイミドフィルムの配合物が塗布されていない面とガラスクロス入りエポキシ樹脂板を両面接着テープで貼り合わせた板(以下、「ポリイミドフィルム貼り付けエポキシ樹脂板」と記す。)を作製した。これらの塗膜について、評価試験用の硬化膜の一端のみを剥離して、幅2.5mmの接着力測定用試験片を作製した。接着力は、ポリイミドフィルム貼り付けエポキシ樹脂板と剥離した硬化フィルムが90度の角度を成すように引張り試験機(株式会社島津製作所製、EZ Test/CE)に固定し、最初のチャック間距離を2.5cmとし、23℃において50mm/minの速度で90度引き剥がし強さを測定して求めた。結果を表1および表2に示す。
 また、「引き剥がし性」における×印とは、90度引き剥がし強さの測定中に硬化膜が切れたことを意味し、「引き剥がし性」における○印とは、90度引き剥がし強さの測定中に硬化膜が切れずに剥離できたことを意味する。
<透湿度評価>
 配合物D1~D5および配合物E1、E3~E7を、それぞれテフロン(登録商標)板上に乾燥後の厚みが約130μmになるように、バーコーターを用いて、重ね塗りすることにより自立膜を作製した。
 透湿カップ治具(テスター産業株式会社製)を使用して、これらの自立膜の透湿度を、JIS Z0208に準拠して測定した。その結果を表1および表2に記す。
 なお、透湿度の試験条件は、温度40℃、湿度90%RH、24時間とした。
<フレキシブル基板を用いた長期電気絶縁信頼性の評価>
 フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックス、銅厚:8μm、ポリイミド厚:38μm)をエッチングして製造した、JPCA-ET01に記載の微細くし形パターン形状の基板(銅配線幅/銅配線間幅=15μm/15μm)に錫メッキ処理を施したフレキシブル配線板に、配合物D1~D5およびE1、E3~E7を、それぞれ乾燥後の厚みが100μmになるよう塗布し、室温で10分間保持した後に、70℃で1.5時間乾燥した。
 この試験片を用いて、バイアス電圧30Vを印加し、温度85℃、湿度85%RHの条件での温湿度定常試験を、MIGRATION TESTER MODEL MIG-8600(IMV社製)を用いて行った。上記温湿度定常試験をスタートしてから1000時間後の抵抗値を表1および表2に記す。
<ガラス基板上配線を用いた長期絶縁信頼性の評価>
 ガラス基板上にライン/スペースが40μm/10μmである櫛形パターン形状のITO配線を形成したパターン電極上に、配合物D1~D5およびE1、E3~E7を、それぞれ乾燥後の厚みが100μmになるよう塗布し、室温で10分間保持した後に、70℃で1.5時間乾燥した。
 この試験片を用いて、バイアス電圧30Vを印加し、温度85℃、湿度85%RHの条件での温湿度定常試験を、MIGRATION TESTER MODEL MIG-8600(IMV社製)を用いて行った。上記温湿度定常試験をスタート初期およびスタートしてから1000時間後の抵抗値を表1および表2に記す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表1および表2の結果より、配合物D1~D5は乾燥性、ガラス基材への密着性、長期絶縁信頼性に優れており、かつ、粘度が1.5Pa・s以下(特に、D1~D3およびD5の粘度は1.0Pa・s未満)と低粘度であることがわかる。これに対して、配合物E2は粘度が高くハンドリング性が悪く、配合物E1、E3~E7は乾燥速度に劣る結果となっており、本発明の組成物はディスペンサーを用いて塗布する防湿絶縁材料に適していることがわかる。
 本発明の防湿絶縁材料は、低粘度かつ速乾燥性を発現できる組成物であり、この防湿絶縁材料でコーティング処理することにより、高度に防湿絶縁保護された電子部品を得ることができる。

Claims (10)

  1.  スチレン系熱可塑性エラストマー、粘着付与剤、および溶媒を含む防湿絶縁材料であって、前記溶媒が80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒を含むことを特徴とする防湿絶縁材料。
  2.  前記溶媒が、さらに110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒を含むことを特徴とする請求項1に記載の防湿絶縁材料。
  3.  防湿絶縁材料中に含まれる80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒と110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒の質量比が50:50~95:5の範囲であることを特徴とする請求項2に記載の防湿絶縁材料。
  4.  80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒が、シクロヘキサンおよび/またはメチルシクロヘキサンであることを特徴とする請求項1~3のいずれか1項に記載の防湿絶縁材料。
  5.  110℃以上140℃未満の沸点を有する脂肪族炭化水素系溶媒が、cis-1,2-ジメチルシクロヘキサン、cis-1,3-ジメチルシクロヘキサン、cis-1,4-ジメチルシクロヘキサン、trans-1,2-ジメチルシクロヘキサン、trans-1,3-ジメチルシクロヘキサン、trans-1,4-ジメチルシクロヘキサンおよびエチルシクロヘキサンからなる群から選ばれる少なくとも1種であることを特徴とする請求項2~4のいずれか1項に記載の防湿絶縁材料。
  6.  防湿絶縁材料の総質量に対して、スチレン系熱可塑性エラストマーと粘着付与剤の総量が20~40質量%であり、溶媒の総量が60~80質量%であり、防湿絶縁材料中に含まれるスチレン系熱可塑性エラストマーと粘着付与剤の質量比が2:1~10:1の範囲であり、防湿絶縁材料中に含まれる80℃以上110℃未満の沸点を有する脂肪族炭化水素系溶媒が、溶媒の総量に対して50質量%以上であり、さらに、防湿絶縁材料の25℃での粘度が1.5Pa・s以下であることを特徴とする請求項1~5のいずれか1項に記載の防湿絶縁材料。
  7.  スチレン系熱可塑性エラストマーが、スチレン-ブタジエンブロック共重合エラストマー、スチレン-イソプレンブロック共重合エラストマー、スチレン-エチレン/ブチレンブロック共重合エラストマー、およびスチレン-エチレン/プロピレンブロック共重合エラストマーからなる群から選ばれる少なくとも1種であることを特徴とする請求項1~6のいずれか1項に記載の防湿絶縁材料。
  8.  スチレン系熱可塑性エラストマー中に含まれるスチレン由来の構造単位の含量が、スチレン系熱可塑性エラストマーの総量に対して15~50質量%であることを特徴とする請求項1~7のいずれか1項に記載の防湿絶縁材料。
  9.  粘着付与剤が、石油系樹脂粘着付与剤であることを特徴とする請求項1~8のいずれか1項に記載の防湿絶縁材料。
  10.  請求項1~9のいずれか1項に記載の防湿絶縁材料を用いて絶縁処理された電子部品。
PCT/JP2011/073846 2010-10-22 2011-10-17 防湿絶縁材料 WO2012053483A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2814138A CA2814138A1 (en) 2010-10-22 2011-10-17 Moisture-proof insulating material
JP2012539721A JP5791623B2 (ja) 2010-10-22 2011-10-17 防湿絶縁材料
US13/824,253 US20130178578A1 (en) 2010-10-22 2011-10-17 Moisture-proof insulating material
KR1020127033830A KR101587510B1 (ko) 2010-10-22 2011-10-17 방습 절연재료
CN201180040087.XA CN103068914B (zh) 2010-10-22 2011-10-17 防湿绝缘材料
SG2013020557A SG189028A1 (en) 2010-10-22 2011-10-17 Moisture-proof insulating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010237476 2010-10-22
JP2010-237476 2010-10-22

Publications (1)

Publication Number Publication Date
WO2012053483A1 true WO2012053483A1 (ja) 2012-04-26

Family

ID=45975194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073846 WO2012053483A1 (ja) 2010-10-22 2011-10-17 防湿絶縁材料

Country Status (8)

Country Link
US (1) US20130178578A1 (ja)
JP (1) JP5791623B2 (ja)
KR (1) KR101587510B1 (ja)
CN (1) CN103068914B (ja)
CA (1) CA2814138A1 (ja)
SG (1) SG189028A1 (ja)
TW (1) TWI487759B (ja)
WO (1) WO2012053483A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146747A1 (ja) * 2018-01-26 2019-08-01 日東シンコー株式会社 コーティング剤供給装置
WO2022054583A1 (ja) * 2020-09-11 2022-03-17 日本ゼオン株式会社 コーティング溶液

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104312363B (zh) * 2014-11-07 2016-08-24 烟台德邦科技有限公司 一种绝缘防潮层的制作方法
CN105199300A (zh) * 2015-10-30 2015-12-30 太仓市天合新材料科技有限公司 一种新型防火绝缘材料
CN105513907A (zh) * 2016-02-19 2016-04-20 彭伟成 一种卧式断路器
KR102343368B1 (ko) * 2017-06-30 2021-12-24 코오롱인더스트리 주식회사 경화 가능한 석유수지, 이의 제조방법 및 이의 용도
CN112322173B (zh) * 2020-11-25 2022-04-19 上海库弗新材料有限公司 一种耐溶剂橡胶型三防漆及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126456A (ja) * 2003-10-21 2005-05-19 Hitachi Chem Co Ltd 防湿絶縁塗料、絶縁処理された電子部品及びその製造方法
JP2005162986A (ja) * 2003-12-05 2005-06-23 Hitachi Chem Co Ltd 防湿絶縁塗料および絶縁処理された電子部品の製造法
JP2006016531A (ja) * 2004-07-02 2006-01-19 Hitachi Chem Co Ltd 防湿絶縁塗料および絶縁処理された電子部品の製造方法
JP2007153999A (ja) * 2005-12-02 2007-06-21 Riken Technos Corp 塗料組成物
JP2008189763A (ja) * 2007-02-02 2008-08-21 Sekisui Chem Co Ltd 絶縁塗料、放熱絶縁塗料、電子部品及び半導体装置
JP2011122051A (ja) * 2009-12-10 2011-06-23 Showa Denko Kk 防湿絶縁塗料
JP2011162576A (ja) * 2010-02-04 2011-08-25 Showa Denko Kk 実装回路板用防湿絶縁塗料
JP2011162686A (ja) * 2010-02-10 2011-08-25 Showa Denko Kk 実装回路板用防湿絶縁塗料および電子部品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145687A (ja) 2001-11-15 2003-05-20 Nitto Shinko Kk 電子機器部品用防湿シート
KR20080078646A (ko) * 2005-11-25 2008-08-27 니폰 제온 가부시키가이샤 경화성 수지 조성물 및 그의 이용
JP4339328B2 (ja) * 2006-03-29 2009-10-07 日本ビー・ケミカル株式会社 模様形成用塗料及び塗装物品
JP5162893B2 (ja) 2006-04-18 2013-03-13 日立化成株式会社 光硬化性樹脂組成物の製造方法、実装回路板用光硬化性防湿絶縁塗料、実装回路板及び実装回路板の製造方法
JP2007332279A (ja) 2006-06-15 2007-12-27 Hitachi Kasei Polymer Co Ltd 一液湿気硬化型コーティング剤、それで絶縁処理された電気・電子部品、及びその製造方法
KR100938745B1 (ko) * 2007-11-28 2010-01-26 제일모직주식회사 고비점 용매 및 저비점 용매를 포함하는 반도체 다이접착제 조성물 및 이에 의한 접착필름
JP4498443B2 (ja) * 2008-06-27 2010-07-07 大阪印刷インキ製造株式会社 インキ組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126456A (ja) * 2003-10-21 2005-05-19 Hitachi Chem Co Ltd 防湿絶縁塗料、絶縁処理された電子部品及びその製造方法
JP2005162986A (ja) * 2003-12-05 2005-06-23 Hitachi Chem Co Ltd 防湿絶縁塗料および絶縁処理された電子部品の製造法
JP2006016531A (ja) * 2004-07-02 2006-01-19 Hitachi Chem Co Ltd 防湿絶縁塗料および絶縁処理された電子部品の製造方法
JP2007153999A (ja) * 2005-12-02 2007-06-21 Riken Technos Corp 塗料組成物
JP2008189763A (ja) * 2007-02-02 2008-08-21 Sekisui Chem Co Ltd 絶縁塗料、放熱絶縁塗料、電子部品及び半導体装置
JP2011122051A (ja) * 2009-12-10 2011-06-23 Showa Denko Kk 防湿絶縁塗料
JP2011162576A (ja) * 2010-02-04 2011-08-25 Showa Denko Kk 実装回路板用防湿絶縁塗料
JP2011162686A (ja) * 2010-02-10 2011-08-25 Showa Denko Kk 実装回路板用防湿絶縁塗料および電子部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146747A1 (ja) * 2018-01-26 2019-08-01 日東シンコー株式会社 コーティング剤供給装置
WO2022054583A1 (ja) * 2020-09-11 2022-03-17 日本ゼオン株式会社 コーティング溶液

Also Published As

Publication number Publication date
KR20130021416A (ko) 2013-03-05
CA2814138A1 (en) 2012-04-26
TW201233747A (en) 2012-08-16
JPWO2012053483A1 (ja) 2014-02-24
CN103068914A (zh) 2013-04-24
CN103068914B (zh) 2015-07-01
KR101587510B1 (ko) 2016-01-21
SG189028A1 (en) 2013-05-31
US20130178578A1 (en) 2013-07-11
JP5791623B2 (ja) 2015-10-07
TWI487759B (zh) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5791623B2 (ja) 防湿絶縁材料
JPWO2012124737A1 (ja) 可視光に対して隠蔽性を有する防湿絶縁塗料
CN107513367B (zh) 一种脱醇型耐贮存rtv电子披敷胶及其制备方法
JP2011122051A (ja) 防湿絶縁塗料
JP5893001B2 (ja) 防湿絶縁材料
JP5623094B2 (ja) 実装回路板用防湿絶縁塗料および電子部品
KR20050024404A (ko) 이방성 도전 필름
CN103871544A (zh) 各向异性导电膜、用于该膜的组合物和半导体装置
JP2012167144A (ja) エッチング用コーティング材
JP2012046553A (ja) プライマー組成物および封止構造体
EP2571916B1 (en) Uv-curable polymer thick film dielectric compositions with excellent adhesion to ito
WO2015098424A1 (ja) 透明導電膜で形成された配線を含む基材の一時的な保護方法
JP2011162576A (ja) 実装回路板用防湿絶縁塗料
JP2012153877A (ja) 導電性塗料
JP5188669B2 (ja) 防湿絶縁塗料および絶縁処理された電子部品の製造法
JP2017125120A (ja) 光硬化性防湿絶縁コート剤組成物
KR102474259B1 (ko) 박리형 페이스트 조성물 및 이의 경화물
JP6614409B2 (ja) スクリーン印刷用粘着剤組成物
KR100737428B1 (ko) 대전방지 기능이 있는 이형필름
JP2006016531A (ja) 防湿絶縁塗料および絶縁処理された電子部品の製造方法
JP6501555B2 (ja) 透明導電膜で形成された配線を含む基材の一時的な保護に使用される組成物、塗膜および一時的な保護方法
JP2001011156A (ja) 端子部保護膜用組成物
JP2006045340A (ja) 防湿絶縁塗料並びに絶縁処理された電子部品及びその製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040087.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539721

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127033830

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13824253

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2814138

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834322

Country of ref document: EP

Kind code of ref document: A1