WO2012053348A1 - シート - Google Patents

シート Download PDF

Info

Publication number
WO2012053348A1
WO2012053348A1 PCT/JP2011/072842 JP2011072842W WO2012053348A1 WO 2012053348 A1 WO2012053348 A1 WO 2012053348A1 JP 2011072842 W JP2011072842 W JP 2011072842W WO 2012053348 A1 WO2012053348 A1 WO 2012053348A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
sheet
inorganic particles
acrylate
parts
Prior art date
Application number
PCT/JP2011/072842
Other languages
English (en)
French (fr)
Inventor
麻美 久保
内藤 友也
梓 伊関
勉 水谷
孝司 荒井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2012053348A1 publication Critical patent/WO2012053348A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/006Presence of (meth)acrylic polymer in the substrate

Definitions

  • the present invention relates to a sheet, and more particularly to a sheet suitably used as a surface protective sheet.
  • a composite sheet obtained by laminating a resin layer on the surface of a substrate such as plastic is known as a sheet used for various industrial applications.
  • the sheet may require transparency depending on the purpose and application.
  • an object of the present invention is to provide a sheet that can improve various properties and further has excellent transparency.
  • the sheet of the present invention includes a base material and a resin layer laminated on at least one surface of the base material, and the resin layer includes a core made of inorganic particles and a shell made of resin that covers the inorganic particles.
  • grains formed from these are included.
  • the sheet since inorganic particles are blended in the resin layer, the sheet can be provided with functionality such as antireflection properties, antiglare properties, stain resistance, elasticity, rigidity, and the like. Since such inorganic particles form core-shell particles having the inorganic particles as a core and a resin covering the inorganic particles as a shell, excellent transparency can be ensured.
  • the content ratio of the inorganic particles in the resin layer is 60 parts by mass or more with respect to 100 parts by mass of the total amount of the inorganic particles and the resin.
  • inorganic particles can be blended in the resin layer at a high filling rate, it is possible to improve functionality such as antireflection, antiglare, stain resistance, elasticity and rigidity of the sheet.
  • the glass transition temperature of the shell is 25 to 50 ° C.
  • the said resin is an acrylic resin obtained by superposing
  • the content rate of the said methyl (meth) acrylate is 100 mass of total amounts of the said monomer component.
  • the amount is preferably 0.1 to 100 parts by mass with respect to parts.
  • the haze value at a thickness of 2 ⁇ m is 2% or less.
  • an adhesive layer is provided on at least one surface.
  • the sheet of the present invention is preferably a surface protective sheet.
  • the sheet of the present invention since inorganic particles are blended in the resin layer, the sheet can be provided with functions such as antireflection, antiglare, stain resistance, elasticity, and rigidity.
  • the sheet of the present invention includes core-shell particles formed from such a core made of inorganic particles and a shell made of a resin coating the inorganic particles, excellent transparency can be ensured.
  • the sheet of the present invention can be used in various industrial applications, and in particular, since excellent functionality and transparency can be ensured, it can be suitably used as a surface protective sheet.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a sheet of the present invention.
  • a sheet 1 includes a base material 2 and a resin layer 3 laminated on at least one surface of the base material 2.
  • the substrate 2 is not particularly limited, and a substrate that is usually used for an adhesive sheet is used.
  • plastic films such as polypropylene film, ethylene-propylene copolymer film, polyester film, polyvinyl chloride, Paper such as kraft paper, for example, cloth such as cotton cloth and sufu cloth, for example, non-woven cloth such as polyester non-woven fabric and vinylon non-woven fabric, for example, metal foil and the like are used.
  • any of an unstretched film and a stretched (uniaxially stretched or biaxially stretched) film can be used as the plastic film.
  • the surface of the laminated surface of the resin layer 3 may be subjected to a surface treatment by a commonly used primer coating or a corona discharge method.
  • the thickness of the base material 2 is appropriately selected according to its purpose and use, and is, for example, about 1 to 1000 ⁇ m.
  • the resin layer 3 includes core-shell particles formed of a core made of inorganic particles and a shell made of resin that coats the inorganic particles.
  • the inorganic particles forming the core are not particularly limited, and examples thereof include silica, tin oxide (including antimony-doped tin oxide), titanium oxide, zinc oxide, calcium carbonate, alumina, magnesium hydroxide. , Barium titanate, silicon nitride, and other fine metal particles.
  • examples of such inorganic particles include hollow particles and solid particles.
  • solid particles are used.
  • inorganic particles are also available as commercial products.
  • commercially available products include, for example, the SN series (manufactured by Ishihara Sangyo Co., Ltd.) as a commercial product of antimony-doped tin oxide.
  • SN-100S, SN-100P (primary particle size: 10 to 30 nm), SN-100D (aqueous dispersion, solid content concentration of 30% by mass) (above, manufactured by Ishihara Sangyo Co., Ltd.) and the like can be mentioned. .
  • TTO series manufactured by Ishihara Sangyo Co., Ltd.
  • TTO-51 (A) primary particle diameter: 10 to 30 nm
  • TTO-51 (C) primary particle size: 10 to 30 nm
  • TTO-55 (A) primary particle size: 30 to 50 nm
  • TTO-55 (B) primary particle size: 30 to 50 nm
  • TTO-55 (C) primary particle size: 30 to 50 nm
  • TTO-55 (D) (primary particle size: 30 to 50 nm)
  • TTO-S-1 short axis length: 10 to 20 nm
  • TTO-S-2 short axis length: 10 to 20 nm, long axis length: 50 to 100 nm
  • TTO-S-3 short axis length: 10 to 20
  • commercially available products of zinc oxide include, for example, ZnO-310 (primary particle diameter 15 to 35 nm), ZnO-350 (primary particle diameter: 10 to 30 nm), ZnO-410 (primary particle diameter: 5-15 nm) (above, manufactured by Sumitomo Osaka Cement Co., Ltd.).
  • inorganic particles having various shapes such as needle shape, plate shape (or scale shape), spherical shape, and lump shape can be used, and such inorganic particles (excluding colloidal inorganic particles described later).
  • the average primary particle diameter is, for example, 5 ⁇ m or less, preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.5 ⁇ m, and still more preferably 20 nm to 0.2 ⁇ m.
  • the particle diameter of inorganic particles (excluding colloidal inorganic particles described later) measured by dynamic light scattering (DLS method) is, for example, 1 to 100,000 nm, preferably 3 to 30000 nm.
  • the inorganic particles for example, the above colloidal inorganic particles can be used, and as such colloidal inorganic particles, for example, colloidal silica (colloidal silica) and the like can be mentioned.
  • colloidal silica examples include fine particles of silicon dioxide (anhydrous silicic acid) as described in, for example, JP-A-53-112732, JP-B-57-9051 and JP-B-57-51653. Examples thereof include colloids having an average particle diameter of, for example, 5 nm to 1 ⁇ m, preferably 10 to 100 nm.
  • the colloidal silica can contain, for example, alumina, sodium aluminate, etc., if necessary, and if necessary, an inorganic base (eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, etc.)
  • an inorganic base eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, etc.
  • a stabilizer such as an organic base (for example, tetramethylammonium) can be contained.
  • colloidal silica is not particularly limited and may be a known sol-gel method or the like, specifically, for example, Werner Stover et al; Colloid and Interface Sci. , 26, 62-69 (1968), Rickey D. It can be produced by the sol-gel method described in Badley et al; Langmuir 6, 792-801 (1990), Color Material Association Journal, 61 [9] 488-493 (1988).
  • Colloidal silica is also available as a commercial product.
  • Examples of such commercial products include SNOWTEX-XL (average primary particle size 40-60 nm), SNOWTEX-YL (average primary particle). 50 to 80 nm), Snowtex-ZL (average primary particle size 70 to 100 nm), PST-2 (average primary particle size 21 nm), Snowtex 20 (average primary particle size 10 to 20 nm, SiO 2 / Na 2 O> 57), Snowtex 30 (average primary particle size 10-20 nm, SiO 2 / Na 2 O> 50), Snowtex C (average primary particle size 10-20 nm, SiO 2 / Na 2 O> 100) ), Snowtex O (average primary particle size 10-20 nm, SiO 2 / Na 2 O> 500), Snowtex 50 (average primary particle size 20-30 nm) (above, Nissan Chemical Industries, Ltd.)
  • Adelite AT-40 average primary particle size: 20 to 30 nm, solid content concentration 40% by mass
  • Adelite AT-50 average primary particle size
  • SiO 2 / Na 2 O shows a content mass ratio of silicon dioxide and sodium hydroxide (converted to sodium oxide).
  • the average primary particle diameter of such colloidal inorganic particles is, for example, 5 to 100 nm, preferably 3 to 80 nm, more preferably 3 to 50 nm.
  • These inorganic particles can be used alone or in combination of two or more.
  • colloidal inorganic particles are preferable, and colloidal silica is more preferable.
  • Examples of the resin forming the shell in the core-shell particles include acrylic resin.
  • the acrylic resin can be obtained by polymerizing a monomer component containing a (meth) acrylic acid ester.
  • (meth) acryl includes acrylic and methacrylic.
  • examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl ( (Meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-eth
  • the (meth) acrylic acid ester further includes, for example, cycloalkyl (meth) acrylate (for example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.), aralkyl (meth) acrylate (for example, benzyl (meth)).
  • cycloalkyl (meth) acrylate for example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.
  • aralkyl (meth) acrylate for example, benzyl (meth)
  • Acrylates polycyclic (meth) acrylates (eg 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl -2-norbornylmethyl (meth) acrylate, etc.), hydroxyl group-containing (meth) acrylic acid esters (eg, hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxypropylmethyl) Butyl (meth) methacrylate), alkoxy group or phenoxy group-containing (meth) acrylic acid esters (2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth)
  • acrylic acid esters can be used alone or in combination of two or more.
  • the (meth) acrylic acid ester is preferably an acrylic acid (1-20 carbon atoms) alkyl ester, and more preferably methyl (meth) acrylate.
  • the monomer component can further contain a copolymerizable monomer copolymerizable with (meth) acrylic acid ester.
  • Examples of the copolymerizable monomer include (meth) acrylamides (for example, (meth) acrylamide, N-methyl (meth) acrylamide, Nn-butyl (meth) acrylamide, Ni-propyl (meth) Acrylamide, Nt-butyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (meth) acrylamidopropyltrimethylammonium chloride, diacetone (meth) acrylamide , (Meth) acryloylmorpholine, N-methylol (meth) acrylamide etc.), vinyl cyanides (eg (meth) acrylonitrile etc.), vinyl esters (eg vinyl acetate etc.), aromatic vinyl compounds (eg styrene) , P-chloros Len, t-butylstyrene, ⁇ -methylstyren
  • examples of the copolymerizable monomer also include a polyfunctional copolymerizable monomer having two or more unsaturated groups.
  • polyfunctional copolymerizable monomer examples include di (meth) acrylates (for example, 4,4′-isopropylidene diphenylene di (meth) acrylate, 1,3-butylene di (meth) acrylate, 1, 4-cyclohexylenedimethylene (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tetramethylene di (meth) Acrylate, diisopropylidene glycol di (meth) acrylate, ethylidene di (meth) acrylate, 2,2-dimethyl-1,3-trimethylene di (meth) acrylate, phenylethylene di (meth) acrylate, 2,2,2-trichloroethyl Dendi (meth) acrylates), tri (meth) acrylates (me
  • a copolymerizable monomer having a known reactive group for example, a hydroxyl group, a carboxyl group, an acid anhydride group, a glycidyl group, etc.
  • a known reactive group for example, a hydroxyl group, a carboxyl group, an acid anhydride group, a glycidyl group, etc.
  • the body also includes the body.
  • copolymerizable monomers can be used alone or in combination of two or more.
  • the copolymerizable monomer preferably includes vinyl esters, aromatic vinyl compounds, carboxyl group-containing monomers or salts thereof, more preferably carboxyl group-containing monomers, and still more preferably. , (Meth) acrylic acid.
  • the content ratio of the (meth) acrylic acid ester is, for example, 0.1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the monomer components.
  • the monomer component preferably contains methyl (meth) acrylate.
  • the content ratio of methyl (meth) acrylate is, for example, 0.1 to 100 parts by weight, preferably 40 to 80 parts by weight, more preferably 100 parts by weight of the total amount of monomer components. 65 to 75 parts by mass.
  • the core-shell particles are not particularly limited and can be obtained by a known production method.
  • inorganic particles are dispersed in an aqueous medium (for example, water), and the monomer component is polymerized on the surface of the inorganic particles (core) in the dispersion.
  • the shell which consists of resin can be formed in the surface of an inorganic particle (core), and a core-shell particle can be obtained.
  • the inorganic particles are surface-treated.
  • the inorganic particles when inorganic particles are dispersed in an aqueous medium (for example, water), the inorganic particles are usually negatively charged and stabilized in the dispersion.
  • the inorganic particle since it may be difficult to polymerize the monomer component on the surface of the inorganic particle, the inorganic particle is preferably subjected to a surface treatment in order to polymerize the monomer component on the surface of the inorganic particle.
  • Examples of the surface treatment include adsorbing a nonionic surfactant (hereinafter referred to as a first nonionic surfactant when distinguished from a second nonionic surfactant described later) on the surface of inorganic particles. Can be mentioned.
  • a nonionic surfactant hereinafter referred to as a first nonionic surfactant when distinguished from a second nonionic surfactant described later
  • the inorganic particles and the nonionic surfactant are mixed under a temperature condition below the cloud point of the nonionic surfactant, and then the nonionic surfactant is used. Heat to a temperature above the cloud point of the agent.
  • Nonionic surfactants include, for example, proteins (gelatin, colloidal albumin, casein, lecithin, etc.), sugar derivatives (agar, starch derivatives, etc.), cellulose derivatives (hydroxymethylcellulose, etc.), polyhydric alcohol esters (ethylene glycol) Mono fatty acid esters (for example, oleic acid monoglycol ester, stearic acid monoglycol ester, etc.), polyethylene glycol monofatty acid ester, propylene glycol monofatty acid ester (for example, stearic acid monoglyceride, etc.), glycerin difatty acid Ester, sucrose fatty acid ester, sorbitan fatty acid ester, etc.), synthetic hydrophilic polymer (eg, polyvinyl alcohol, terminal long chain alkyl group-modified polyvinyl alcohol) Coal, vinyl polymer (single component comprising at least one ethylenically unsaturated group monomer such as (meth) acrylic acid hydroxyalkyl ester,
  • nonionic surfactants include graft polymers, block polymers, macromers, etc., in which an anchor group and a dispersion stabilizing group are separated.
  • nonionic surfactants can be used alone or in combination of two or more.
  • nonionic surfactant having an unsaturated bond for example, vinyl, isopropenyl, (meth) acryloyl, etc.
  • the nonionic surfactant adsorbed on the surface of the inorganic particles and the monomer component Can be polymerized.
  • Nonionic surfactants are also available as commercial products. Examples of such commercially available products include Emulgen 108 (polyoxyethylene lauryl ether, manufactured by Kao Corporation, cloud point 40 ° C.), Emulgen 409P (poly Oxyethylene stearyl ether, manufactured by Kao Corporation, cloud point 55 ° C), Emulgen 909 (polyoxyethylene nonylphenyl ether, manufactured by Kao Corporation, cloud point 40 ° C), Pluronic L-61 (polyoxyethylene-polyoxypropylene block copolymer) Coalescence, Asahi Denka Kogyo Co., Ltd., cloud point 24 ° C.), Pluronic L-64 (polyoxyethylene-polyoxypropylene block copolymer, Asahi Denka Kogyo Co., Ltd., cloud point 58 ° C.), NE-10 (1-allyl) Oxymethyl-2-nonylphenyloxyethanol ethylene oxide adduct, Asahi Denka Kog
  • the HLB of the nonionic surfactant is not particularly limited, and is, for example, 1 to 30, preferably 3 to 25, more preferably 5 to 20.
  • the cloud point of the nonionic surfactant is, for example, 0 to 80 ° C., preferably 10 to 70 ° C., and more preferably 20 to 60 ° C.
  • the cloud point of the nonionic surfactant indicates a temperature at which white turbidity occurs due to temperature rise in a system in which inorganic particles are dispersed in an aqueous medium (for example, water) in the presence of the nonionic surfactant.
  • an anionic surfactant generally used in emulsion polymerization can be blended in order to stabilize the dispersion of inorganic particles.
  • anionic surfactant examples include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, sodium polyoxyethylene alkyl ether sulfate, ammonium polyoxyethylene alkylphenyl ether sulfate, sodium polyoxyethylene alkylphenyl ether sulfate, alkyl diphenyl ether disulfone.
  • examples of the anionic surfactant include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, sodium polyoxyethylene alkyl ether sulfate, ammonium polyoxyethylene alkylphenyl ether sulfate, sodium polyoxyethylene alkylphenyl ether sulfate, alkyl diphenyl ether disulfone.
  • examples include sodium acid.
  • anionic surfactants can be used alone or in combination of two or more.
  • the inorganic particles are usually negatively charged in an aqueous medium (for example, water), and therefore, the adsorption efficiency of the anionic surfactant is expected to be low.
  • an aqueous medium for example, water
  • the anionic surfactant having a negative charge is expected. May form micelles alone with respect to negatively charged inorganic particles. Therefore, if an anionic surfactant is added at the initial stage of mixing, a large number of polymer single particles may be generated.
  • a nonionic surfactant is adsorbed on the surface of the inorganic particles, and then an anionic surfactant is added.
  • the anionic surfactant is added after the nonionic surfactant is uniformly adsorbed on the inorganic particles, or after the monomer components are polymerized to form stabilized seed-like particles.
  • the nonionic surfactant can be effectively adsorbed on the surface of the inorganic particles, and the anionic surfactant can be effectively adsorbed on the surface of the inorganic particles.
  • the mixing ratio of the anionic surfactant is appropriately set according to the purpose and application.
  • the monomer component is polymerized in an aqueous medium (for example, water) in which inorganic particles are dispersed.
  • an aqueous medium for example, water
  • the monomer component is efficiently polymerized on the surface of the inorganic particles to form a resin. be able to.
  • the polymerization method is not particularly limited, and examples thereof include an emulsion polymerization method in an aqueous medium (for example, water).
  • a monomer component is blended in a dispersion system (an aqueous medium (for example, water) in which inorganic particles are dispersed in the presence of the above-described nonionic surfactant).
  • a dispersion system an aqueous medium (for example, water) in which inorganic particles are dispersed in the presence of the above-described nonionic surfactant.
  • the monomer component blending method may be batch, continuous, or stepwise. Preferably, it mix
  • the nonionic surfactant adsorbed on the surface of the inorganic particles is dissolved in the oil droplets of the monomer component, and the nonionic surfactant is reduced, so that the core-shell particles cannot be obtained efficiently. There is.
  • the monomer components may be blended together.
  • the composition of the monomer component may be the same as or different from the composition initially blended.
  • the blending ratio of each component in this polymerization is, for example, 80 to 5000 parts by weight, preferably 80 to 900 parts by weight, and more preferably 80 to 400 parts by weight with respect to 100 parts by weight of the monomer component.
  • the nonionic surfactant (first nonionic surfactant) is, for example, 0.1 to 20 parts by mass, preferably 0.5 to 15 parts by mass, and more preferably 1 to 10 parts by mass.
  • the polymerization conditions are such that the polymerization temperature exceeds, for example, the cloud point of the nonionic surfactant, and specifically, for example, 20 to 110 ° C., preferably 30 to 100 ° C., more preferably 60 to 100 ° C. ° C, more preferably 70 to 90 ° C.
  • a polymerization initiator can be blended if necessary.
  • polymerization initiator examples include peroxides (eg, hydrogen peroxide), persulfates (eg, potassium persulfate, ammonium persulfate), aqueous azo compounds, redox polymerization initiators, and the like.
  • peroxides eg, hydrogen peroxide
  • persulfates eg, potassium persulfate, ammonium persulfate
  • aqueous azo compounds e.g., redox polymerization initiators, and the like.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the blending ratio of the polymerization initiator is appropriately set according to the purpose and application.
  • a chain transfer agent can be blended in order to adjust the molecular weight of the resin.
  • chain transfer agent examples include organic peroxides, organic azo compounds, halogenated hydrocarbons (such as carbon tetrachloride), mercaptans, and thiols that are soluble in vinyl monomers.
  • chain transfer agents can be used alone or in combination of two or more.
  • the mixing ratio of the chain transfer agent is, for example, 5 parts by mass or less with respect to 100 parts by mass of the monomer component.
  • a pH adjuster for example, acid (sulfuric acid, hydrochloric acid, etc.), ammonia, amine, etc.
  • the pH of the reaction system (polymerization system) and / or the aqueous dispersion can be adjusted to, for example, 7 to 9, preferably 7.5 to 8.5.
  • the dispersion stability of inorganic particles can be improved by adjusting the pH of the reaction system (polymerization system) and / or the aqueous dispersion.
  • a crosslinking agent can be blended if necessary.
  • the crosslinking agent is not particularly limited and includes known crosslinking agents. More specifically, for example, isocyanate crosslinking agents, epoxy crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, metal chelate crosslinking agents. Agents and the like.
  • crosslinking agents can be used alone or in combination of two or more.
  • the blending ratio of the crosslinking agent is appropriately set according to the purpose and application.
  • the nonionic surfactant is adsorbed on the surface of the inorganic particles and / or as the polymerization of the monomer component proceeds, the inorganic particles become hydrophobic and the dispersion stability decreases. In some cases, gelling occurs.
  • a nonionic surfactant similar to the above is further added. Can do.
  • the nonionic surfactant to be added may be added, for example, at the initial stage of mixing the inorganic particles and the nonionic surfactant, or may be added at the time of temperature rise, at the initial stage of polymerization, after polymerization or the like.
  • the inorganic particles and the nonionic surfactant are mixed, heated to a temperature equal to or higher than the cloud point of the nonionic surfactant, and then the nonionic surfactant is further added.
  • the cloud point of the second nonionic surfactant preferably exceeds the cloud point of the first nonionic surfactant in order to disperse and stabilize inorganic particles adsorbed by the first nonionic surfactant.
  • the polymerization temperature (described later) is preferably exceeded.
  • Such a second nonionic surfactant is oriented on the surface of the hydrophobic inorganic particles, stabilizes the inorganic particles, and, together with the first nonionic surfactant, facilitates polymerization of the monomer component on the surface of the inorganic particles.
  • the second nonionic surfactant examples include surfactants similar to the above-described nonionic surfactant, and the blending ratio thereof is determined to be a critical micelle concentration (CMC) in order to prevent generation of a single particle of a monomer component due to micelle formation. ) It is mentioned below.
  • CMC critical micelle concentration
  • the blending ratio (in terms of solid content) of the second nonionic surfactant is, for example, 0.01 to 5 parts by mass, preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the inorganic particles. Part, more preferably 0.1 to 2 parts by weight.
  • core-shell particles in which the resin is bonded to inorganic particles directly or via a surfactant, and a dispersion liquid in which the core-shell particles are dispersed in an aqueous medium (for example, water) can be obtained.
  • a aqueous medium for example, water
  • the solid content concentration is, for example, 10 to 60% by mass, preferably 30 to 55% by mass.
  • the solid content in the dispersion may be core-shell particles, and the solid content may include core-shell particles and monomer components and / or inorganic particles.
  • the core-shell particles include those in which the resin covers the entire surface of the inorganic particles and those in which a part of the surface of the inorganic particles is coated with the resin.
  • the content ratio of the core-shell particles in the solid content is, for example, 80% by mass or more, preferably 90% by mass or more, and usually 99% by mass or less.
  • the average primary particle diameter of the core-shell particles depends on the size of the inorganic particles (core).
  • core inorganic particles
  • inorganic particles that are not colloidal are used as the inorganic particles, for example, 10 nm to 10 ⁇ m, preferably 50 nm. To 0.5 ⁇ m, more preferably 80 nm to 0.1 ⁇ m.
  • the average primary particle diameter of the core-shell particles is, for example, 5 to 500 nm, preferably 20 to 300 nm, more preferably 20 to 250 nm, and still more preferably 30. ⁇ 150 nm.
  • the average primary particle diameter is in the above range, the dispersion stability of the core-shell particles can be improved.
  • the glass transition temperature of the shell is, for example, ⁇ 50 to 50 ° C., preferably 25 to 50 ° C.
  • glass transition temperature of the shell is in the above range, more excellent transparency can be secured.
  • the glass transition temperature of the shell can be determined by, for example, preparing a resin similar to the resin forming the shell and measuring the glass transition temperature with a viscoelasticity measuring device or the like.
  • the content rate (filling rate) of the inorganic particles in the resin layer 3 is, for example, 40 parts by mass or more, preferably 60 parts by mass or more, and usually 98 parts by mass with respect to 100 parts by mass of the total amount of the inorganic particles and the resin. Or less.
  • the sheet 1 can be improved in functionality such as antireflection properties, antiglare properties, stain resistance, elasticity, and rigidity.
  • the method for laminating the resin layer 3 containing such core-shell particles on the base material 2 is not particularly limited, and the dispersion obtained as described above may be applied on the base material 2 and dried by heating.
  • a known coating method is used.
  • the dispersion liquid is coated on the substrate 2 using a coater and then dried by heating, whereby the resin layer 3 can be laminated.
  • the coater is not particularly limited, and for example, a coater usually used for laminating the resin layer 3 such as a gravure roll coater, a reverse roll coater, a kiss roll coater, a dip roll coater, a bar coater, a knife coater, or a spray coater is used. It is done.
  • a coater usually used for laminating the resin layer 3 such as a gravure roll coater, a reverse roll coater, a kiss roll coater, a dip roll coater, a bar coater, a knife coater, or a spray coater is used. It is done.
  • the dispersion is applied so that the thickness of the resin layer 3 after drying is, for example, about 1 to 3 ⁇ m.
  • the thickness of the resin layer 3 exceeds the above upper limit, it is necessary to increase the viscosity of the dispersion liquid, and further cause deterioration of moldability and transparency.
  • the resin layer 3 is formed by heating.
  • the heating is carried out by a known method, for example, at 65 to 150 ° C., preferably about 100 to 120 ° C.
  • the sheet 1 can be irradiated with an electron beam.
  • the resin layer 3 By irradiating the sheet 1 with an electron beam, the resin layer 3 can be crosslinked, and the mechanical strength of the sheet 1 can be improved.
  • the irradiation dose of the electron beam is, for example, 10 to 150 kGy, preferably 10 to 100 kGy, when the electron beam is uniformly irradiated from one side of the sheet 1 by accelerated electrons.
  • the sheet 1 may be deteriorated or destroyed by the electron beam irradiation.
  • the haze value at a thickness of 2 ⁇ m of the sheet 1 is, for example, 2% or less, preferably 1% or less.
  • the haze value can be measured by a known method using a haze meter or the like.
  • such a sheet 1 is stored by being attached with a release liner or the like and wound by a known method if necessary. Moreover, even if it does not wind, depending on the purpose and application, it can be stored and used in various forms.
  • the sheet 1 includes core-shell particles formed from a core made of such inorganic particles and a shell made of a resin that coats the inorganic particles, excellent transparency can be secured.
  • the sheet 1 can be used in various industrial applications, and in particular, since excellent functionality and transparency can be ensured, it can be suitably used as a surface protection sheet.
  • the resin layer 3 is laminated on one surface of the substrate 2, but the resin layer 3 may be laminated on at least one surface of the substrate 2. It may be laminated on both surfaces of the material 2.
  • FIG. 2 is a schematic configuration diagram showing another embodiment of the sheet of the present invention.
  • the same referential mark is attached
  • the adhesive layer 4 can be provided on the other side surface of the base material 2 (the other side surface with respect to the surface on which the resin layer 3 is laminated).
  • the pressure-sensitive adhesive layer 4 is not particularly limited, and for example, a known pressure-sensitive adhesive or pressure-sensitive adhesive sheet such as acrylic, urethane, or acrylic-urethane can be used.
  • the thickness of the adhesive layer 4 is, for example, 3 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the seat 1 since the seat 1 can be easily installed and fixed, the convenience can be improved.
  • Example 1 Production of core-shell particles
  • a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer, and a stirrer 85 parts of water and colloidal silica (Adelite AT-50, manufactured by ADEKA) in a solid content were placed, and a nonionic surfactant (No. 2.5 parts of 1 nonionic surfactant (Emulgen 108, cloud point 40 ° C., manufactured by Kao Corporation) was added.
  • a nonionic surfactant No. 2.5 parts of 1 nonionic surfactant (Emulgen 108, cloud point 40 ° C., manufactured by Kao Corporation) was added.
  • aqueous dispersion having a solid content (including core-shell particles) concentration of 43% was obtained.
  • the mixture ratio of colloidal silica (solid content) was 46 parts with respect to 100 parts of total amounts of colloidal silica (solid content) and a monomer component (resin).
  • Example 2 In (preparation of core-shell particles), 150 parts of water and colloidal silica (Adelite AT-50, manufactured by ADEKA Co., Ltd.) are added as solid components, and the mixing ratio of the monomer components is butyl acrylate (BA) / methyl methacrylate (MMA) / methacrylic. Core-shell particles were produced in the same manner as in Example 1 except that the acid (MAA) was 34.5 / 65 / 0.5 (mass ratio), and a sheet having a thickness of 2 ⁇ m was obtained.
  • BA butyl acrylate
  • MMA methyl methacrylate
  • mixture ratio of colloidal silica was 60 parts with respect to 100 parts of total amounts of colloidal silica (solid content) and a monomer component (resin).
  • Example 3 In (preparation of core-shell particles), 150 parts of water and colloidal silica (Adelite AT-50, manufactured by ADEKA Co., Ltd.) are added as solid components, and the mixing ratio of the monomer components is butyl acrylate (BA) / methyl methacrylate (MMA) / methacrylic. Core-shell particles were produced in the same manner as in Example 1 except that the acid (MAA) was 9.5 / 90 / 0.5 (mass ratio), and a sheet having a thickness of 2 ⁇ m was obtained.
  • BA butyl acrylate
  • MMA methyl methacrylate
  • mixture ratio of colloidal silica was 60 parts with respect to 100 parts of total amounts of colloidal silica (solid content) and a monomer component (resin).
  • Example 4 In (preparation of core-shell particles), 150 parts of water and colloidal silica (Adelite AT-50, manufactured by ADEKA Co., Ltd.) are added as solid components, and the mixing ratio of the monomer components is butyl acrylate (BA) / methyl methacrylate (MMA) / methacrylic. Core-shell particles were produced in the same manner as in Example 1 except that the acid (MAA) was 65 / 34.5 / 0.5 (mass ratio), and a sheet having a thickness of 2 ⁇ m was obtained.
  • BA butyl acrylate
  • MMA methyl methacrylate
  • the obtained sheet was irradiated with an electron beam from the resin layer side.
  • the electron beam irradiation conditions were acceleration voltage: 250 KV and radiation dose: 150 kGy.
  • mixture ratio of colloidal silica was 60 parts with respect to 100 parts of total amounts of colloidal silica (solid content) and a monomer component (resin).
  • Example 5 In (preparation of core-shell particles), 150 parts of water and colloidal silica (Adelite AT-50, manufactured by ADEKA Co., Ltd.) are added as solid components, and the mixing ratio of the monomer components is butyl acrylate (BA) / methyl methacrylate (MMA) / methacrylic. Core-shell particles were produced in the same manner as in Example 1 except that the acid (MAA) was 24.5 / 75 / 0.5 (mass ratio), and a sheet having a thickness of 2 ⁇ m was obtained.
  • BA butyl acrylate
  • MMA methyl methacrylate
  • the obtained sheet was irradiated with an electron beam from the resin layer side.
  • the electron beam irradiation conditions were acceleration voltage: 250 KV and radiation dose: 150 kGy.
  • mixture ratio of colloidal silica was 60 parts with respect to 100 parts of total amounts of colloidal silica (solid content) and a monomer component (resin).
  • Example 6 In (preparation of core-shell particles), 400 parts of water and colloidal silica (Adelite AT-50, manufactured by ADEKA Co., Ltd.) are added as solid components, and the mixing ratio of the monomer components is butyl acrylate (BA) / methyl methacrylate (MMA) / methacrylic. Core-shell particles were produced in the same manner as in Example 1 except that the acid (MAA) was 24.5 / 75 / 0.5 (mass ratio), and a sheet having a thickness of 2 ⁇ m was obtained.
  • BA butyl acrylate
  • MMA methyl methacrylate
  • the obtained sheet was irradiated with an electron beam from the resin layer side.
  • the electron beam irradiation conditions were acceleration voltage: 250 KV and radiation dose: 150 kGy.
  • the mixture ratio of colloidal silica was 80 parts with respect to 100 parts of total amounts of colloidal silica (solid content) and a monomer component (resin).
  • Example 7 In (preparation of core-shell particles), water and colloidal silica (Snowtex ZL, manufactured by Nissan Chemical Industries, Ltd.) in a solid content of 200 parts, and colloidal silica (Adelite AT300S, manufactured by ADEKA) in a solid content of 200 parts
  • BA butyl acrylate
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • the obtained sheet was irradiated with an electron beam from the resin layer side.
  • the electron beam irradiation conditions were acceleration voltage: 250 KV and radiation dose: 150 kGy.
  • the mixture ratio of the total amount of colloidal silica (solid content) was 80 parts with respect to 100 parts of the total amount of colloidal silica (solid content) and a monomer component (resin).
  • BA butyl acrylate
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • emulsifier polyoxyethylene ammonium lauryl sulfate
  • Hytenol LA-16 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • the amount of colloidal silica (solid content) is the same as in Example 2, that is, the acrylic system is 60 parts with respect to 100 parts of the total amount of colloidal silica (solid content) and monomer component (resin).
  • the aqueous dispersion of the copolymer and colloidal silica (Adelite AT-50, manufactured by ADEKA) were mixed.
  • the obtained acrylic copolymer and colloidal silica aqueous dispersion were placed on a base made of polyethylene terephthalate (Lumirror S10 # 25, manufactured by Toray Industries, Inc.) with a Mayer bar No. 5 and a heat treatment at 100 ° C. for 1 minute to form a resin layer, thereby obtaining a sheet having a thickness of 2 ⁇ m.
  • a base made of polyethylene terephthalate Limirror S10 # 25, manufactured by Toray Industries, Inc.
  • the obtained sheet was irradiated with an electron beam from the resin layer side.
  • the electron beam irradiation conditions were acceleration voltage: 250 KV and radiation dose: 150 kGy.
  • BA butyl acrylate
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • An aqueous dispersion of an acrylic copolymer was obtained.
  • the mixture ratio of colloidal silica (solid content) was 60 parts with respect to 100 parts of total amounts of colloidal silica (solid content) and a monomer component (resin).
  • the amount of colloidal silica (solid content) is the same as that of Example 4, that is, the acrylic system is 60 parts with respect to 100 parts of the total amount of colloidal silica (solid content) and monomer component (resin).
  • the aqueous dispersion of the copolymer and colloidal silica (Adelite AT-50, manufactured by ADEKA) were mixed.
  • the obtained acrylic copolymer and colloidal silica aqueous dispersion were placed on a base made of polyethylene terephthalate (Lumirror S10 # 25, manufactured by Toray Industries, Inc.) with a Mayer bar No. 5 and a heat treatment at 150 ° C. for 1 minute to form a resin layer, thereby obtaining a sheet having a thickness of 2 ⁇ m.
  • a base made of polyethylene terephthalate Limirror S10 # 25, manufactured by Toray Industries, Inc.
  • the obtained sheet was irradiated with an electron beam from the resin layer side.
  • the electron beam irradiation conditions were acceleration voltage: 250 KV and radiation dose: 150 kGy.
  • Comparative Example 3 (Production of sheet) Using the aqueous dispersion of the acrylic copolymer obtained in Comparative Example 2, the blending ratio of colloidal silica (solid content) is the same as in Example 6, that is, colloidal silica (solid content) and monomer component (resin).
  • the aqueous dispersion of the acrylic copolymer and colloidal silica (Adelite AT-50, manufactured by ADEKA) were mixed so that the total amount was 100 parts.
  • the obtained acrylic copolymer and colloidal silica aqueous dispersion were placed on a base made of polyethylene terephthalate (Lumirror S10 # 25, manufactured by Toray Industries, Inc.) with a Mayer bar No. 5 and a heat treatment at 150 ° C. for 1 minute to form a resin layer, thereby obtaining a sheet having a thickness of 2 ⁇ m.
  • a base made of polyethylene terephthalate Limirror S10 # 25, manufactured by Toray Industries, Inc.
  • the obtained sheet was irradiated with an electron beam from the resin layer side.
  • the electron beam irradiation conditions were acceleration voltage: 250 KV and radiation dose: 150 kGy.
  • Comparative Example 4 (Production of sheet) Using the aqueous dispersion of the acrylic copolymer obtained in Comparative Example 2, the blending ratio of the colloidal silica (solid content) is the same as in Example 7, that is, the colloidal silica (solid content) and the monomer component (resin). Aqueous dispersion of the above acrylic copolymer, colloidal silica (Snowtex ZL, manufactured by Nissan Chemical Industries, Ltd.), colloidal silica (Adelite AT300S, ADEKA) so that the total amount is 100 parts. The product was mixed.
  • the obtained acrylic copolymer and colloidal silica aqueous dispersion were placed on a base made of polyethylene terephthalate (Lumirror S10 # 25, manufactured by Toray Industries, Inc.) with a Mayer bar No. 5 and a heat treatment at 150 ° C. for 1 minute to form a resin layer, thereby obtaining a sheet having a thickness of 2 ⁇ m.
  • a base made of polyethylene terephthalate Limirror S10 # 25, manufactured by Toray Industries, Inc.
  • the obtained sheet was irradiated with an electron beam from the resin layer side.
  • the electron beam irradiation conditions were acceleration voltage: 250 KV and radiation dose: 150 kGy.
  • the blending ratio of methyl methacrylate in the monomer component is 65 to 75 parts by mass (Examples 2 and 5 to 7) with respect to the total amount of the monomer component, even when the content ratio of the inorganic particles is the same. In particular, it was confirmed that excellent transparency can be secured.
  • the sheet of the present invention can be used for various industrial uses such as a surface protective sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 シートは、基材と、基材の少なくとも一方の面に積層される樹脂層とを備える。樹脂層は、無機粒子からなるコアと、無機粒子を被覆する樹脂からなるシェルとから形成されるコアシェル粒子を含む。

Description

シート
 本発明は、シートに関し、詳しくは、表面保護シートなどとして好適に用いられるシートに関する。
 従来、各種産業用途に用いられるシートとして、プラスチックなどの基材の表面に、樹脂層を積層して得られる複合シートが、知られている。
 このようなシートにおいて、所望の性質の向上を図るため、例えば、樹脂層に無機粒子などを配合することが検討されており、そのような樹脂層を形成できるコート剤として、より具体的には、例えば、コロイダルシリカ(a)5~20質量%、飽和アルキル基(炭素数8~24)を側鎖に持つエチレン性不飽和モノマー(b)5~30質量%、エチレン性不飽和モノマー(c)40~88.9質量%及び親水性エチレン性不飽和モノマー(d)0.1~5質量%とからなる単量体混合物を、重合性官能基を有する界面活性剤(e)の存在下、水系媒質中で水溶性ラジカル重合開始剤を用いて、乳化共重合させることにより、水性クリアートップコート剤を得ることなどが、提案されている(例えば、特許文献1参照。)。
特開2001-146560号公報
 しかるに、シートは、目的および用途により、透明性が要求される場合がある。
 そのような場合、樹脂層として、引用文献1に記載の水性クリアートップコート剤からなる皮膜を形成すると、各種性質と透明性とを十分に兼ね備えることができないという不具合がある。
 そこで、本発明の目的は、各種性質の向上を図ることができ、さらに、優れた透明性を備えるシートを提供することにある。
 本発明のシートは、基材と、前記基材の少なくとも一方の面に積層される樹脂層とを備え、前記樹脂層は、無機粒子からなるコアと、前記無機粒子を被覆する樹脂からなるシェルとから形成されるコアシェル粒子を含むことを特徴としている。
 このようなシートによれば、樹脂層に無機粒子が配合されるため、シートに、反射防止性、防眩性、耐汚染性、弾性、剛性などの機能性を付与することができ、さらに、そのような無機粒子が、その無機粒子をコアとし、無機粒子を被覆する樹脂をシェルとするコアシェル粒子を形成するため、優れた透明性を確保することができる。
 また、本発明のシートでは、前記樹脂層において、前記無機粒子の含有割合が、前記無機粒子と前記樹脂との総量100質量部に対して、60質量部以上であることが好適である。
 このようなシートでは、高充填率で樹脂層に無機粒子を配合できるため、シートの反射防止性、防眩性、耐汚染性、弾性、剛性などの機能性の向上を図ることができる。
 また、本発明のシートでは、前記シェルのガラス転移温度が、25~50℃であることが好適である。
 このようなシートによれば、より優れた透明性を確保することができる。
 また、本発明のシートでは、前記樹脂が、メチル(メタ)アクリレートを含むモノマー成分を重合して得られるアクリル樹脂であり、前記メチル(メタ)アクリレートの含有割合が、前記モノマー成分の総量100質量部に対して、0.1~100質量部であることが好適である。
 このようなシートによれば、より優れた透明性を確保することができる。
 また、本発明のシートでは、厚み2μmにおけるヘイズ値が、2%以下であることが好適である。
 このようなシートによれば、より優れた透明性を確保することができる。
 また、本発明のシートでは、少なくとも一方の面に、粘着層を備えていることが好適である。
 このようなシートによれば、シートを容易に設置および固定できるため、利便性の向上を図ることができる。
 また、本発明のシートは、表面保護シートであることが好適である。
 本発明のシートでは、樹脂層に無機粒子が配合されるため、シートに、反射防止性、防眩性、耐汚染性、弾性、剛性などの機能性を付与することができる。
 また、本発明のシートは、そのような無機粒子からなるコアと、無機粒子を被覆する樹脂からなるシェルとから形成されるコアシェル粒子を含むため、優れた透明性を確保することができる。
 そのため、本発明のシートは、各種産業用途において用いることができ、とりわけ、優れた機能性および透明性を確保できることから、表面保護シートとして好適に用いることができる。
本発明のシートの一実施形態を示す概略構成図である。 本発明のシートの他の実施形態を示す概略構成図である。
発明の実施形態
 図1は、本発明のシートの一実施形態を示す概略構成図である。
 図1において、シート1は、基材2と、その基材2の少なくとも一方の面に積層される樹脂層3とを備えている。
 基材2としては、特に制限されず、粘着シートに通常使用される基材が用いられ、例えば、ポリプロピレンフィルム、エチレン-プロピレン共重合体フィルム、ポリエステルフィルム、ポリ塩化ビニルなどのプラスチックフィルム類、例えば、クラフト紙などの紙類、例えば、綿布、スフ布などの布類、例えば、ポリエステル不織布、ビニロン不織布などの不織布類、例えば、金属箔などが用いられる。なお、プラスチックフィルム類は、無延伸フィルムおよび延伸(一軸延伸または二軸延伸)フィルムの何れをも用いることができる。また、基材2において、樹脂層3の積層面には、通常使用される下塗剤の下塗処理や、コロナ放電方式などによる表面処理が施されていてもよい。基材2の厚みは、その目的および用途など応じて適宜選択されるが、例えば、1~1000μm程度である。
 樹脂層3は、無機粒子からなるコアと、無機粒子を被覆する樹脂からなるシェルとから形成されるコアシェル粒子を含んでいる。
 コアシェル粒子において、コアを形成する無機粒子としては、特に制限されず、例えば、シリカ、酸化スズ(例えば、アンチモンドープ酸化スズを含む。)、酸化チタン、酸化亜鉛、炭酸カルシウム、アルミナ、水酸化マグネシウム、チタン酸バリウム、窒化ケイ素、その他、金属微粒子などが挙げられる。
 また、このような無機粒子としては、中空粒子、中実粒子などが挙げられる。好ましくは、中実粒子が挙げられる。
 また、無機粒子は、市販品としても入手可能であり、そのような市販品としては、例えば、アンチモンドープ酸化スズの市販品として、例えば、SNシリーズ(石原産業社製)などが挙げられ、より具体的には、SN-100S、SN-100P(1次粒子径:10~30nm)、SN-100D(水分散品、固形分濃度30質量%)(以上、石原産業社製)などが挙げられる。
 また、例えば、酸化チタンの市販品としては、例えば、TTOシリーズ(石原産業社製)などが挙げられ、より具体的には、TTO-51(A)(1次粒子径:10~30nm)、TTO-51(C)(1次粒子径:10~30nm)、TTO-55(A)(1次粒子径:30~50nm)、TTO-55(B)(1次粒子径:30~50nm)、TTO-55(C)(1次粒子径:30~50nm)、TTO-55(D)(1次粒子径:30~50nm)、TTO-S-1(短軸長さ:10~20nm、長軸長さ:50~100nm)、TTO-S-2(短軸長さ:10~20nm、長軸長さ:50~100nm)、TTO-S-3(短軸長さ:10~20nm、長軸長さ:50~100nm)、TTO-S-4(短軸長さ:10~20nm、長軸長さ:50~100nm)、TTO-V-3(短軸長さ:5~15nm、長軸長さ:30~90nm)、TTO-V-4(短軸長さ:5~15nm、長軸長さ:30~90nm)、TTO-F-2(1次粒子径:30~50nm)、TTO-F-2(1次粒子径:30~50nm)、TTO-F-6(1次粒子径:50~90nm)(以上、石原産業社製)などが挙げられる。
 また、例えば、酸化亜鉛の市販品としては、例えば、ZnO-310(1次粒子径15~35nm)、ZnO-350(1次粒子径:10~30nm)、ZnO-410(1次粒子径:5~15nm)(以上、住友大阪セメント社製)などが挙げられる。
 これら無機粒子としては、針状、板状(または鱗片状)、球状、塊状などの種々の形状の無機粒子を用いることができ、そのような無機粒子(後述するコロイド状の無機粒子を除く)の平均1次粒子径は、例えば、5μm以下、好ましくは、5nm~1μm、より好ましくは、10nm~0.5μm、さらに好ましくは、20nm~0.2μmである。
 また、無機粒子(後述するコロイド状の無機粒子を除く)の動的光散乱(DLS法)により測定される粒子径は、例えば、1~100000nm、好ましくは、3~30000nmである。
 また、無機粒子としては、例えば、コロイド状の上記無機粒子を用いることもでき、そのようなコロイド状の無機粒子としては、例えば、コロイド状シリカ(コロイダルシリカ)などが挙げられる。
 コロイド状シリカとしては、例えば、特開昭53-112732号公報、特公昭57-9051号公報、特公昭57-51653号公報などにも記載されるように、二酸化ケイ素(無水ケイ酸)の微粒子(平均粒子径が、例えば、5nm~1μm、好ましくは、10~100nm)のコロイドなどが挙げられる。
 また、コロイド状シリカは、必要により、例えば、アルミナ、アルミン酸ナトリウムなどを含有することができ、また、必要により、無機塩基(例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなど)や、有機塩基(例えば、テトラメチルアンモニウムなど)などの安定剤を含有することもできる。
 このようなコロイド状シリカは、特に制限されず、公知のゾル-ゲル法など、具体的には、例えば、Werner Stober et al;J.Colloid and Interface Sci., 26, 62-69 (1968)、Rickey D.Badley et al;Langmuir 6, 792-801 (1990)、色材協会誌,61 [9] 488-493 (1988)などに記載されるゾル-ゲル法などにより、製造することができる。
 また、コロイド状シリカは、市販品としても入手可能であり、そのような市販品としては、例えば、スノーテックス-XL(平均1次粒径40~60nm)、スノーテックス-YL(平均1次粒径50~80nm)、スノーテックス-ZL(平均1次粒径70~100nm)、PST-2(平均1次粒径21nm)、スノーテックス20(平均1次粒径10~20nm、SiO/NaO>57)、スノーテックス30(平均1次粒径10~20nm、SiO/NaO>50)、スノーテックスC(平均1次粒径10~20nm、SiO/NaO>100)、スノーテックスO(平均1次粒径10~20nm、SiO/NaO>500)、スノーテックス50(平均1次粒径20~30nm)(以上、日産化学工業社製)や、例えば、アデライトAT-40(平均1次粒径:20~30nm、固形分濃度40質量%)、アデライトAT-50(平均1次粒径:20~30nm、固形分濃度50質量%)、アデライトAT300S(平均1次粒径:7nm)(以上、日本アエロジル社製)などが挙げられる。
 なお、SiO/NaOは、二酸化ケイ素および水酸化ナトリウム(酸化ナトリウムに換算)の含有質量比を示す。
 このようなコロイド状の無機粒子の平均1次粒子径は、例えば、5~100nm、好ましくは、3~80nm、より好ましくは、3~50nmである。
 これら無機粒子は、単独使用または2種類以上併用することもできる。
 無機粒子として、好ましくは、コロイド状の無機粒子、より好ましくは、コロイダルシリカが挙げられる。
 コアシェル粒子において、シェルを形成する樹脂としては、例えば、アクリル樹脂などが挙げられる。
 アクリル系樹脂は、(メタ)アクリル酸エステルを含むモノマー成分を重合することにより、得ることができる。なお、(メタ)アクリルとは、アクリルおよびメタクリルを含む。
 モノマー成分において、(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類などが挙げられる。
 また、(メタ)アクリル酸エステルとしては、さらに、例えば、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)などが挙げられる。
 これら(メタ)アクリル酸エステルは、単独使用または2種類以上併用することができる。
 (メタ)アクリル酸エステルとして、好ましくは、アクリル酸(炭素数1-20)アルキルエステル類が挙げられ、より好ましくは、メチル(メタ)アクリレートが挙げられる。
 また、モノマー成分は、さらに、(メタ)アクリル酸エステルと共重合可能な、共重合性単量体を含有することもできる。
 共重合性単量体としては、例えば、(メタ)アクリルアミド類(例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-i-プロピル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド、ジアセトン(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、N-メチロール(メタ)アクリルアミドなど)、シアン化ビニル類(例えば、(メタ)アクリロニトリルなど)、ビニルエステル類(例えば、酢酸ビニルなど)、芳香族ビニル化合物(例えば、スチレン、p-クロロスチレン、t-ブチルスチレン、α-メチルスチレン、スチレンスルホン酸ナトリウムなど)、カルボキシル基含有単量体またはその塩(例えば、(メタ)アクリル酸,イタコン酸,マレイン酸,フマル酸またはその塩など)、スルホン酸基含有単量体またはその塩(例えば、ビニルスルホン酸、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、メタリルスルホン酸ナトリウムなど)、不飽和多価カルボン酸誘導体(例えば、マレイン酸ジメチル、マレイン酸ジブチル、フマル酸ジエチルなどのエステル類、N-フェニルマレイミドなどのN-置換マレイミドなど)、N-ビニル多価カルボン酸イミド(例えば、N-ビニルスクシンイミドなど)、ジエン類(例えば、ブタジエン、シクロペンタジエン、イソプレンなど)、複素環式ビニル単量体(例えば、N-ビニルピロリドン、N-ビニルオキサゾリドン、1-ビニルイミダゾール、4-ビニルピリジンなど)、N-ビニルアミド類(N-ビニルホルムアミド、N-ビニル-N-メチルホルムアミド、N-ビニルアセトアミド、N-ビニル-N-メチルアセトアミドなど)、ハロゲン含有ビニル単量体(ビニルクロライド,ビリデンクロライドなど)、ビニルアルキルエーテル類(例えば、メチルビニルエーテルなど)、オレフィン類(エチレン、プロピレン、1-ブテン、イソブテンなど)などが挙げられる。
 また、共重合性単量体としては、さらに、2つ以上の不飽和基を有する、多官能性共重合性単量体も挙げられる。
 多官能性共重合性単量体としては、例えば、ジ(メタ)アクリレート類(例えば、4,4’-イソプロピリデンジフェニレンジ(メタ)アクリレート、1,3-ブチレンジ(メタ)アクリレート、1,4-シクロヘキシレンジメチレン(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラメチレンジ(メタ)アクリレート、ジイソプロピリデングリコールジ(メタ)アクリレート、エチリデンジ(メタ)アクリレート、2,2-ジメチル-1,3-トリメチレンジ(メタ)アクリレート、フェニルエチレンジ(メタ)アクリレート、2,2,2-トリクロロエチリデンジ(メタ)アクリレートなど)、トリ(メタ)アクリレート類(例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチリジントリ(メタ)メタクリレート、プロピリジントリ(メタ)アクリレートなど)、テトラ(メタ)アクリレート類(例えば、テトラメチロールメタンテトラ(メタ)アクリレートなど)、ビス(メタ)アクリルアミド類(例えば、N,N’-メチレンビス(メタ)アクリルアミド、N,N-(1,2-ジヒドロキシ)エチレンビス(メタ)アクリルアミドなど)、さらには、例えば、ジビニルベンゼン、ジビニルオキシメタン、アリル(メタ)アクリレート、1,6-ジ(メタ)アクリルアミドヘキサン、1,3,5-トリ(メタ)アクリロイルヘキサヒドロ-s-トリアジン、ビス(メタ)アクリルアミド酢酸、ビニルアリルオキシアセテートなどが挙げられる。
 さらに、共重合性単量体としては、架橋などを構成するため、さらに、公知の反応性基(例えば、ヒドロキシル基、カルボキシル基、酸無水物基、グリシジル基など)を有する共重合性単量体も挙げられる。
 これら共重合性単量体は、単独使用または2種類以上併用することができる。
 共重合性単量体として、好ましくは、ビニルエステル類、芳香族ビニル化合物、カルボキシル基含有単量体またはその塩が挙げられ、より好ましくは、カルボキシル基含有単量体が挙げられ、さらに好ましくは、(メタ)アクリル酸が挙げられる。
 モノマー成分において、(メタ)アクリル酸エステルの含有割合は、モノマー成分の総量100質量部に対して、例えば、0.1~100質量部である。
 また、モノマー成分は、好ましくは、メチル(メタ)アクリレートを含有している。
 このような場合において、メチル(メタ)アクリレートの含有割合は、モノマー成分の総量100質量部に対して、例えば、0.1~100質量部、好ましくは、40~80質量部、さらに好ましくは、65~75質量部である。
 メチル(メタ)アクリレートの含有割合が上記範囲であれば、より優れた透明性を備えるシートを得ることができる。
 コアシェル粒子は、特に制限されず、公知の製造方法により得ることができる。
 より具体的には、例えば、無機粒子を水性媒体(例えば、水)中に分散させ、その分散系において、無機粒子(コア)の表面でモノマー成分を重合させる。これにより、無機粒子(コア)の表面に、樹脂からなるシェルを形成することができ、コアシェル粒子を得ることができる。
 以下において、コアシェル粒子を製造する方法について、より具体的に説明する。
 このような方法では、必要により、まず、無機粒子を表面処理する。
 すなわち、無機粒子が水性媒体(例えば、水)中に分散する場合には、その分散系において、無機粒子は、通常、負電荷を帯び、安定化される。このような場合には、無機粒子の表面でモノマー成分を重合させることが困難である場合があるため、無機粒子の表面でモノマー成分を重合させるために、好ましくは、無機粒子を表面処理する。
 表面処理としては、例えば、無機粒子の表面にノニオン界面活性剤(以下、後述する第2ノニオン界面活性剤と区別する場合には、第1ノニオン界面活性剤と称する。)を吸着させることなどが挙げられる。このような表面処理により、無機粒子の表面が親水性である場合にも、無機粒子の表面を疎水化でき、無機粒子の表面におけるモノマー成分の重合を促進することができる。
 無機粒子の表面にノニオン界面活性剤を吸着させるには、例えば、まず、無機粒子とノニオン界面活性剤とを、ノニオン界面活性剤の曇点未満の温度条件下において混合し、その後、ノニオン界面活性剤の曇点以上の温度に加熱する。
 ノニオン界面活性剤としては、例えば、蛋白質(ゼラチン、コロイド状アルブミン、カゼイン、レシチンなど)、糖誘導体(寒天、デンプン誘導体など)、セルロース誘導体(ヒドロキシメチルセルロースなど)、多価アルコールのエステル類(エチレングリコールモノ脂肪酸エステル(例えば、オレイン酸のモノグリコールエステル、ステアリン酸のモノグリコールエステルなど)、ポリエチレングリコールモノ脂肪酸エステル、プロピレングリコールモノ脂肪酸エステル、グリセリンモノ脂肪酸エステル(例えば、ステアリン酸モノグリセリドなど)、グリセリンジ脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステルなど)、合成親水性高分子(例えば、ポリビニルアルコール、末端長鎖アルキル基変性ポリビニルアルコール、ビニル重合体((メタ)アクリル酸ヒドロキシアルキルエステル、アルキルビニルエーテル、酢酸ビニル、(メタ)アクリルアミド、ジアセトンアクリルアミドなどの少なくとも1つのエチレン性不飽和基を有する単量体を構成要素として含む単独、または、共重合体)、ポリオキシアルキレン(ポリオキシエチレン、ポリオキシプロピレン)、または、その誘導体(例えば、ポリオキシエチレン(炭素数6-20)アルキルエーテル(例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテルなど)、ポリオキシエチレン(炭素数6-20)アルキルアリールエーテル(例えば、ポリオキシエチレンアルキルフェニルエーテル(例えば、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンラウリルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなど)など)、脂肪酸エステルのアルキレンオキサイド付加体(例えば、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンショ糖(炭素数12-20)脂肪酸エステル、ポリオキシエチレンソルビタン(炭素数12-20)脂肪酸エステルなど)など))や、例えば、ポリオキシアルキレンブロック共重合体(例えば、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体など)、アリル基などのエチレン性不飽和基(重合性不飽和合)を少なくとも1つ有するポリオキシエチレン(炭素数6-20)アルキルフェニルエーテル(例えば、1-アリルオキシメチル-2-ノニルフェニルオキシエタノールエチレンオキサイド付加体など)などが挙げられる。
 また、ノニオン界面活性剤としては、さらに、アンカー基と分散安定化基とが分離した、グラフトポリマー、ブロックポリマー、マクロマーなども挙げられる。
 これらノニオン界面活性剤は、単独使用または2種類以上併用することができる。
 また、ノニオン界面活性剤として、不飽和結合(例えば、ビニル、イソプロペニル、(メタ)アクリロイルなど)を有するノニオン界面活性剤を用いると、無機粒子の表面に吸着したノニオン界面活性剤と、モノマー成分とを重合できる。
 また、ノニオン界面活性剤は、市販品としても入手可能であり、そのような市販品としては、例えば、エマルゲン108(ポリオキシエチレンラウリルエーテル、花王社製、曇点40℃)、エマルゲン409P(ポリオキシエチレンステアリルエーテル、花王社製、曇点55℃)、エマルゲン909(ポリオキシエチレンノニルフェニルエーテル、花王社製、曇点40℃)、プルロニックL-61(ポリオキシエチレン-ポリオキシプロピレンブロック共重合体、旭電化工業社製、曇点24℃)、プルロニックL-64(ポリオキシエチレン-ポリオキシプロピレンブロック共重合体、旭電化工業社製、曇点58℃)、NE-10(1-アリルオキシメチル-2-ノニルフェニルオキシエタノールエチレンオキサイド付加体、旭電化工業社製、曇点40℃)などが挙げられる。
 ノニオン界面活性剤のHLBは、特に制限されず、例えば、1~30、好ましくは、3~25、より好ましくは、5~20である。
 ノニオン界面活性剤の曇点は、例えば、0~80℃、好ましくは、10~70℃、より好ましくは、20~60℃である。
 なお、ノニオン界面活性剤の曇点とは、ノニオン界面活性剤の存在下、無機粒子が水性媒体(例えば、水)中に分散した系において、昇温により白濁が生じる温度を示す。
 また、この方法では、例えば、無機粒子の分散安定化を図るため、乳化重合に一般的に使用されるアニオン界面活性剤を配合することもできる。
 アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸アンモニウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムなどが挙げられる。
 これらアニオン界面活性剤は、単独使用または2種類以上併用することができる。
 なお、無機粒子は、通常、水性媒体(例えば、水)中において、負電荷を帯びているため、アニオン界面活性剤の吸着効率は低いものと予想されるが、負電荷を有するアニオン界面活性剤は、負電荷を帯びている無機粒子に対し、単独でミセルを形成する場合がある。そのため、混合初期にアニオン界面活性剤を添加すると、ポリマー単独粒子が多数生成するおそれがある。
 そこで、この方法では、例えば、まず、ノニオン界面活性剤を無機粒子の表面に吸着させ、その後、アニオン界面活性剤を添加する。
 より具体的には、例えば、ノニオン界面活性剤が無機粒子へ均一に吸着した後、または、モノマー成分が重合し、安定化されたシード状粒子が生成した後に、アニオン界面活性剤を添加する。
 これにより、ノニオン界面活性剤を無機粒子の表面に有効に吸着させることができ、さらには、アニオン界面活性剤を無機粒子の表面に有効に吸着させることができる。
 アニオン界面活性剤の配合割合は、目的および用途に応じて、適宜設定される。
 次いで、この方法では、無機粒子が分散された水性媒体(例えば、水)中において、モノマー成分を重合させる。
 このとき、無機粒子の表面はノニオン界面活性剤(および必要によりアニオン界面活性剤)による表面処理により疎水化されているため、モノマー成分を無機粒子の表面において効率的に重合させ、樹脂を形成することができる。
 重合方法としては、特に制限されないが、例えば、水性媒体(例えば、水)中における乳化重合法が挙げられる。
 乳化重合法では、例えば、分散系(上記したノニオン界面活性剤の存在下、無機粒子が分散された水性媒体(例えば、水))中に、モノマー成分を配合する。
 モノマー成分の配合方法は、一括であってもよく、連続的であってもよく、また、段階的であってもよい。好ましくは、連続的または段階的に配合する。
 分散系にモノマー成分を一括で配合すると、無機粒子の表面に吸着したノニオン界面活性剤がモノマー成分の油滴に溶解され、そのノニオン界面活性剤が減少し、コアシェル粒子を効率よく得られない場合がある。
 なお、例えば、シードとして、安定な粒子が生成した後、モノマー成分を一括で配合してもよい。また、反応系にモノマー成分を追加(添加)する場合、モノマー成分の組成は、最初に配合した組成と同一であってもよく、異なっていてもよい。
 この重合における各成分の配合割合は、モノマー成分100質量部に対して、無機粒子が、例えば、80~5000質量部、好ましくは、80~900質量部、より好ましくは、80~400質量部であり、ノニオン界面活性剤(第1ノニオン界面活性剤)が、例えば、0.1~20質量部、好ましくは、0.5~15質量部、より好ましくは、1~10質量部である。
 また、重合条件は、重合温度が、例えば、ノニオン界面活性剤の曇点を超過し、具体的には、例えば、20~110℃、好ましくは、30~100℃、より好ましくは、60~100℃、さらに好ましくは、70~90℃である。
 また、この方法では、必要により、重合開始剤を配合することができる。
 重合開始剤としては、例えば、過酸化物(例えば、過酸化水素など)、過硫酸塩(例えば、過硫酸カリウム、過硫酸アンモニウム)、水性アゾ化合物やレドックス重合開始剤などが挙げられる。
 これら重合開始剤は、単独使用または2種類以上併用することができる。
 重合開始剤の配合割合は、目的および用途に応じて、適宜設定される。
 また、重合において、樹脂の分子量を調整するため、さらに、例えば、連鎖移動剤を配合することができる。
 連鎖移動剤としては、例えば、ビニル単量体に可溶な有機過酸化物、有機アゾ化合物、ハロゲン化炭化水素(四塩化炭素など)、メルカプタン類、チオール類などが挙げられる。
 これら連鎖移動剤は、単独使用または2種類以上併用することができる。
 連鎖移動剤の配合割合は、例えば、モノマー成分100質量部に対して、例えば、5質量部以下である。
 また、この方法では、必要により、pH調整剤(例えば、酸(硫酸、塩酸など)、アンモニア、アミンなど)を、反応系(重合系)および/または反応終了後の水性分散体に添加し、反応系(重合系)および/または水性分散体のpHを、例えば、7~9、好ましくは、7.5~8.5に調整することができる。
 反応系(重合系)および/または水性分散体のpHを調整することにより、無機粒子の分散安定性の向上を図ることができる。
 さらに、この方法では、必要により、架橋剤を配合することができる。
 架橋剤としては、特に制限されず、公知の架橋剤が挙げられ、より具体的には、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤などが挙げられる。
 これら架橋剤は、単独使用または2種類以上併用することができる。
 架橋剤の配合割合は、目的および用途に応じて適宜設定される。
 また、この方法では、ノニオン界面活性剤が無機粒子の表面に吸着するに伴って、および/または、モノマー成分の重合が進行するに伴って、無機粒子が疎水化し、分散安定性が低下して、凝集ゲル化する場合がある。
 そのため、この方法では、疎水化した無機粒子を水性媒体(例えば、水)中で分散安定化させるために、さらに、上記と同様のノニオン界面活性剤(第2ノニオン界面活性剤)を添加することができる。
 添加されるノニオン界面活性剤は、例えば、無機粒子およびノニオン界面活性剤の混合初期に添加してもよく、また、昇温時、重合初期、重合後などに添加してもよい。
 好ましくは、無機粒子およびノニオン界面活性剤を混合し、ノニオン界面活性剤の曇点以上の温度に加熱した後、さらに、ノニオン界面活性剤を添加する。
 第2ノニオン界面活性剤の曇点は、第1ノニオン界面活性剤が吸着した無機粒子を分散安定化させるために、好ましくは、第1ノニオン界面活性剤の曇点を超過し、また、モノマー成分が重合する過程で無機粒子を安定化させるために、好ましくは、重合温度(後述)を超過する。
 このような第2ノニオン界面活性剤は、疎水化された無機粒子の表面に配向し、無機粒子を安定化し、さらには第1ノニオン界面活性剤とともに、無機粒子の表面におけるモノマー成分の重合を容易とする。
 第2ノニオン界面活性剤としては、上記したノニオン界面活性剤と同様の界面活性剤が挙げられ、その配合割合は、ミセル形成によるモノマー成分の単独粒生成を防止するために、臨界ミセル濃度(CMC)以下であることが挙げられる。
 より具体的には、第2ノニオン界面活性剤の配合割合(固形分換算)は、無機粒子100質量部に対して、例えば、0.01~5質量部、好ましくは、0.1~3質量部、より好ましくは、0.1~2質量部である。
 そして、これにより、樹脂が、無機粒子に直接または界面活性剤を介して結合するコアシェル粒子を形成でき、そのコアシェル粒子が水系媒体(例えば、水)に分散された分散液を得ることができる。
 分散液において、その固形分濃度は、例えば、10~60質量%、好ましくは、30~55質量%である。
 また、分散液中の固形分としては、その全てがコアシェル粒子でなくともよく、固形分は、コアシェル粒子と、モノマー成分および/または無機粒子とを含むことができる。
 また、コアシェル粒子は、無機粒子の表面すべてを樹脂が被覆するものの他、無機粒子の表面の一部を樹脂が被覆するものを含む。
 このような場合において、固形分中のコアシェル粒子の含有割合は、例えば、80質量%以上、好ましくは、90質量%以上、通常、99質量%以下である。
 また、コアシェル粒子の平均1次粒子径は、無機粒子(コア)の大きさによるが、例えば、無機粒子として、コロイド状ではない無機粒子を用いた場合、例えば、10nm~10μm、好ましくは、50nm~0.5μm、より好ましくは、80nm~0.1μmである。また、コロイド状の無機粒子を用いた場合には、コアシェル粒子の平均1次粒子径は、例えば、5~500nm、好ましくは、20~300nm、より好ましくは、20~250nm、さらに好ましくは、30~150nmである。
 平均1次粒子径が上記範囲であれば、コアシェル粒子の分散安定性の向上を図ることができる。
 また、コアシェル粒子において、シェルのガラス転移温度は、例えば、-50~50℃、好ましくは、25~50℃である。
 シェルのガラス転移温度が上記範囲であれば、より優れた透明性を確保することができる。
 なお、シェルのガラス転移温度は、例えば、シェルを形成する樹脂と同様の樹脂を調製し、そのガラス転移温度を粘弾性測定装置などで測定することにより、求めることができる。
 また、樹脂層3における無機粒子の含有割合(充填率)は、無機粒子と樹脂との総量100質量部に対して、例えば、40質量部以上、好ましくは、60質量部以上、通常、98質量部以下である。
 無機粒子の含有割合(充填率)が上記範囲であれば、シート1の反射防止性、防眩性、耐汚染性、弾性、剛性などの機能性の向上を図ることができる。
 このようなコアシェル粒子を含む樹脂層3を、基材2に積層する方法としては、特に制限されず、上記により得られた分散液を基材2上に塗布して、加熱乾燥すればよい。塗布には、公知の塗布方法が用いられ、例えば、コーターを用いて、分散液を基材2上に塗布した後、加熱により乾燥させることによって、樹脂層3として積層形成することができる。
 コーターとしては、特に制限されず、例えば、グラビヤロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、バーコーター、ナイフコーター、スプレーコーターなどの樹脂層3の積層に通常使用されるコーターが用いられる。
 また、このようなコーターによる塗布において、分散液は、乾燥後の樹脂層3の厚みが、例えば、1~3μm程度となるように塗布される。
 樹脂層3の厚みが上記上限を超過すると、分散液の増粘などを要し、さらには、成形性および透明性の低下を惹起する場合がある。
 次いで、この方法では、加熱することにより、樹脂層3を形成する。加熱は、公知の方法によって、例えば、65~150℃、好ましくは、100~120℃程度で加熱する。
 これにより、シート1を得ることができる。
 また、必要により、シート1に電子線(Electron Beam)を照射することもできる。
 シート1に電子線を照射することにより、樹脂層3を架橋させることができ、シート1の機械強度の向上を図ることができる。
 電子線の照射線量は、例えば、加速電子によりシート1の一方面側から均一に電子線を照射する場合には、例えば、10~150kGy、好ましくは、10~100kGyである。
 電子線の照射線量が上記上限を超過すると、電子線の照射により、シート1を劣化、破壊する場合がある。
 シート1の厚み2μmにおけるヘイズ値は、例えば、2%以下、好ましくは、1%以下である。
 このようなシート1によれば、より優れた透明性を確保することができる。
 なお、ヘイズ値は、ヘイズメーターなどを用いた公知の方法により、測定することができる。
 このようなシート1は、図示しないが、必要により、剥離ライナーなどが貼着され、公知の方法で巻回されることによって、保管される。また、巻回せずとも、その目的および用途によっては、種々の形態のまま保管および使用できる。
 そして、このシート1では、樹脂層3に無機粒子が配合されるため、シート1に、反射防止性、防眩性、耐汚染性、弾性、剛性などの機能性を付与することができる。
 また、このシート1は、そのような無機粒子からなるコアと、無機粒子を被覆する樹脂からなるシェルとから形成されるコアシェル粒子を含むため、優れた透明性を確保することができる。
 そのため、シート1は、各種産業用途において用いることができ、とりわけ、優れた機能性および透明性を確保できることから、表面保護シートとして好適に用いることができる。
 なお、上記した説明において、樹脂層3は、基材2の一方の面に積層されているが、樹脂層3は、基材2の少なくとも一方の面に積層されていればよく、例えば、基材2の両方の面に積層されていてもよい。
 図2は、本発明のシートの他の実施形態を示す概略構成図である。なお、上記した各部に対応する部材については、以下の各図において同一の参照符号を付し、その詳細な説明を省略する。
 シート1では、基材2の他方側面(樹脂層3が積層される面に対する他方側面)に、粘着層4を備えることができる。
 粘着層4としては、特に制限されず、例えば、アクリル系、ウレタン系、アクリル-ウレタン系などの、公知の粘着剤や粘着シートを用いることができる。
 粘着層4の厚みは、例えば、3~100μm、好ましくは、5~50μmである。
 このようなシート1によれば、シート1を容易に設置および固定できるため、利便性の向上を図ることができる。
 以下に実施例および比較例を挙げて、本発明をより具体的に説明する。ただし、本発明は、以下の実施例および比較例に何ら制限されるものではない。なお、以下の説明において、「部」および「%」は、特に明記のない限り、質量基準である。
  実施例1
 (コアシェル粒子の作製)
 冷却管、窒素導入管、温度計および攪拌機を備えた反応容器に、水およびコロイダルシリカ(アデライトAT-50、ADEKA社製)を固形分で85部入れ、窒素雰囲気下、ノニオン界面活性剤(第1ノニオン界面活性剤)(エマルゲン108、曇点40℃、花王社製)を2.5部添加した。70℃に昇温した後、過硫酸アンモニウム(重合開始剤)0.53部を添加し、さらに、ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=80/19.5/0.5(質量比)の配合比率で混合したモノマー成分10部を添加し、1時間放置した。
 次いで、アニオン界面活性剤(アルキルジフェニルエーテルジスルホン酸ナトリウム、ペレックスSS-H、花王社製)3.5部を加えた後、上記と同じ割合で混合したモノマー成分90部を、滴下速度0.35g/minで滴下した。
 その後、冷却し、10%アンモニア水溶液0.5部を添加した。
 これにより、固形分(コアシェル粒子を含む)濃度が43%の水分散液を得た。なお、コロイダルシリカ(固形分)の配合割合は、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、46部であった。
 (シートの作製)
 上記により得られたコアシェル粒子の水分散液を、ポリエチレンテレフタレートからなる基材(ルミラーS10#25、東レ社製)上に、マイヤーバーNo.5を用いて塗布し、100℃で1分間加熱処理して樹脂層を形成することにより、厚さ2μmのシートを得た。
  実施例2
 (コアシェル粒子の作製)において、水およびコロイダルシリカ(アデライトAT-50、ADEKA社製)を固形分で150部入れ、モノマー成分の配合比率を、ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=34.5/65/0.5(質量比)とした以外は、実施例1と同様にしてコアシェル粒子を作製し、厚み2μmのシートを得た。
 なお、コロイダルシリカ(固形分)の配合割合は、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、60部であった。
  実施例3
 (コアシェル粒子の作製)において、水およびコロイダルシリカ(アデライトAT-50、ADEKA社製)を固形分で150部入れ、モノマー成分の配合比率を、ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=9.5/90/0.5(質量比)とした以外は、実施例1と同様にしてコアシェル粒子を作製し、厚み2μmのシートを得た。
 なお、コロイダルシリカ(固形分)の配合割合は、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、60部であった。
 また、このシートでは、樹脂層に白濁が発生することが、確認された。
  実施例4
 (コアシェル粒子の作製)において、水およびコロイダルシリカ(アデライトAT-50、ADEKA社製)を固形分で150部入れ、モノマー成分の配合比率を、ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=65/34.5/0.5(質量比)とした以外は、実施例1と同様にしてコアシェル粒子を作製し、厚み2μmのシートを得た。
 得られたシートに、樹脂層側から電子線(Electron Beam)を照射した。なお、電子線の照射条件は、加速電圧:250KV、放射線量:150kGyとした。
 なお、コロイダルシリカ(固形分)の配合割合は、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、60部であった。
  実施例5
 (コアシェル粒子の作製)において、水およびコロイダルシリカ(アデライトAT-50、ADEKA社製)を固形分で150部入れ、モノマー成分の配合比率を、ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=24.5/75/0.5(質量比)とした以外は、実施例1と同様にしてコアシェル粒子を作製し、厚み2μmのシートを得た。
 得られたシートに、樹脂層側から電子線(Electron Beam)を照射した。なお、電子線の照射条件は、加速電圧:250KV、放射線量:150kGyとした。
 なお、コロイダルシリカ(固形分)の配合割合は、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、60部であった。
  実施例6
 (コアシェル粒子の作製)において、水およびコロイダルシリカ(アデライトAT-50、ADEKA社製)を固形分で400部入れ、モノマー成分の配合比率を、ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=24.5/75/0.5(質量比)とした以外は、実施例1と同様にしてコアシェル粒子を作製し、厚み2μmのシートを得た。
 得られたシートに、樹脂層側から電子線(Electron Beam)を照射した。なお、電子線の照射条件は、加速電圧:250KV、放射線量:150kGyとした。
 なお、コロイダルシリカ(固形分)の配合割合は、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、80部であった。
  実施例7
 (コアシェル粒子の作製)において、水と、コロイダルシリカ(スノーテックスZL、日産化学工業社製)を固形分で200部と、コロイダルシリカ(アデライトAT300S、ADEKA社製)を固形分で200部とを入れ、モノマー成分の配合比率を、ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=24.5/75/0.5(質量比)とした以外は、実施例1と同様にしてコアシェル粒子を作製し、厚み2μmのシートを得た。
 得られたシートに、樹脂層側から電子線(Electron Beam)を照射した。なお、電子線の照射条件は、加速電圧:250KV、放射線量:150kGyとした。
 なお、コロイダルシリカ(固形分)の総量の配合割合は、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、80部であった。
  比較例1
 (ポリマーの作製)
 ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=65/34.5/0.5(質量比)の配合比率で混合したモノマー成分100部と、ポリオキシエチレンラウリル硫酸アンモニウム(乳化剤、ハイテノールLA-16、第一工業製薬社製)2部と、水62.5部とを混合し、ホモミキサー(プライミクス社製)を用いて、5000rpmで5分間撹拌することにより強制乳化させ、プレエマルジョン液を得た。
 次いで、冷却管、窒素導入管、温度計および攪拌機を備えた反応容器に、上記のプレエマルジョン液の10%(10分の1量)を入れ、さらに、水92.3部と、ポリオキシエチレンラウリル硫酸アンモニウム(乳化剤、ハイテノールLA-16、第一工業製薬社製)1部とを仕込み、窒素置換した後、過硫酸アンモニウム(重合開始剤)0.03部を添加し、65℃で1時間重合させた。さらに、過硫酸アンモニウム(重合開始剤)0.07部を加えた後、上記のプレエマルジョン液の残部90%(10分の9量)を、反応容器中に、75℃で3時間かけて滴下し、さらに、3時間重合させた。なお、このとき、反応容器の温度を75℃に保ち、窒素気流下にて重合させた。これにより、固形分濃度40質量%のアクリル系共重合体の水分散液を得た。
 冷却後、10%アンモニア水を添加して、水分散液のpHを8付近に調整した。
 (シートの作製)
 コロイダルシリカ(固形分)の配合割合が、実施例2と同じ、つまり、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、60部となるように、上記のアクリル系共重合体の水分散液と、コロイダルシリカ(アデライトAT-50、ADEKA社製)を混合した。
 次いで、得られたアクリル系共重合体およびコロイダルシリカの水分散液を、ポリエチレンテレフタレートからなる基材(ルミラーS10#25、東レ社製)上に、マイヤーバーNo.5を用いて塗布し、100℃で1分間加熱処理して樹脂層を形成することにより、厚さ2μmのシートを得た。
 得られたシートに、樹脂層側から電子線(Electron Beam)を照射した。なお、電子線の照射条件は、加速電圧:250KV、放射線量:150kGyとした。
  比較例2
 (ポリマーの作製)
 モノマー成分の配合比率を、ブチルアクリレート(BA)/メチルメタクリレート(MMA)/メタクリル酸(MAA)=24.5/75/0.5(質量比)とした以外は、比較例1と同様にしてアクリル系共重合体の水分散液を得た。なお、コロイダルシリカ(固形分)の配合割合は、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、60部であった。
 (シートの作製)
 コロイダルシリカ(固形分)の配合割合が、実施例4と同じ、つまり、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、60部となるように、上記のアクリル系共重合体の水分散液と、コロイダルシリカ(アデライトAT-50、ADEKA社製)を混合した。
 次いで、得られたアクリル系共重合体およびコロイダルシリカの水分散液を、ポリエチレンテレフタレートからなる基材(ルミラーS10#25、東レ社製)上に、マイヤーバーNo.5を用いて塗布し、150℃で1分間加熱処理して樹脂層を形成することにより、厚さ2μmのシートを得た。
 得られたシートに、樹脂層側から電子線(Electron Beam)を照射した。なお、電子線の照射条件は、加速電圧:250KV、放射線量:150kGyとした。
  比較例3
 (シートの作製)
 比較例2で得られたアクリル系共重合体の水分散液を用い、コロイダルシリカ(固形分)の配合割合が、実施例6と同じ、つまり、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、80部となるように、上記のアクリル系共重合体の水分散液と、コロイダルシリカ(アデライトAT-50、ADEKA社製)とを混合した。
 次いで、得られたアクリル系共重合体およびコロイダルシリカの水分散液を、ポリエチレンテレフタレートからなる基材(ルミラーS10#25、東レ社製)上に、マイヤーバーNo.5を用いて塗布し、150℃で1分間加熱処理して樹脂層を形成することにより、厚さ2μmのシートを得た。
 得られたシートに、樹脂層側から電子線(Electron Beam)を照射した。なお、電子線の照射条件は、加速電圧:250KV、放射線量:150kGyとした。
  比較例4
 (シートの作製)
 比較例2で得られたアクリル系共重合体の水分散液を用い、コロイダルシリカ(固形分)の配合割合が、実施例7と同じ、つまり、コロイダルシリカ(固形分)およびモノマー成分(樹脂)の総量100部に対して、80部となるように、上記のアクリル系共重合体の水分散液と、コロイダルシリカ(スノーテックスZL、日産化学工業社製)と、コロイダルシリカ(アデライトAT300S、ADEKA社製)とを混合した。
 次いで、得られたアクリル系共重合体およびコロイダルシリカの水分散液を、ポリエチレンテレフタレートからなる基材(ルミラーS10#25、東レ社製)上に、マイヤーバーNo.5を用いて塗布し、150℃で1分間加熱処理して樹脂層を形成することにより、厚さ2μmのシートを得た。
 得られたシートに、樹脂層側から電子線(Electron Beam)を照射した。なお、電子線の照射条件は、加速電圧:250KV、放射線量:150kGyとした。
  評価
(シェルTg)
 各実施例および各比較例において用いられたモノマー成分と同様のモノマー成分を、各実施例および各比較例と同様に重合させ、得られた樹脂のガラス転移温度を、粘弾性測定装置(型番:ARES2 KFRTN1-FCO、TA instruments Japan Inc製、温度分散モード(周波数1Hz))により測定した。これにより、各シートに含まれるコアシェル粒子のシェル(樹脂)のガラス転移温度を求めた。その結果を、表1に示す。
(ヘイズ値)
 各実施例および各比較例において得られたシート(厚み2μm)のヘイズ値を、ヘイズメーター(HM-150、村上色彩技術研究所製)にて測定した。その結果を、表1に示す。
(表面硬さ)
 電子線(Electron Beam)を照射したシートの表面硬さを、ナノインデンター(DCM SA2、MTS社製)にて測定した。その結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
(考察)
 各実施例および各比較例より、モノマー成分におけるモノマー比率や、樹脂中の無機粒子の含有割合が同等である場合にも、コアシェル粒子を用いる場合、優れた透明性を確保できることが確認された。
 また、モノマー成分中におけるメチルメタクリレートの配合比が、モノマー成分の総量に対して65~75質量部(実施例2、5~7)であれば、無機粒子の含有割合が同等である場合にも、とりわけ優れた透明性を確保できることが確認された。
 また、無機粒子の含有割合を向上させることにより、物性(表面硬さなど)の向上を図ることができることも確認された。
  なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。
 本発明のシートは、表面保護シートなど各種産業用途に用いることができる。

Claims (7)

  1.  基材と、前記基材の少なくとも一方の面に積層される樹脂層とを備え、
     前記樹脂層は、無機粒子からなるコアと、前記無機粒子を被覆する樹脂からなるシェルとから形成されるコアシェル粒子を含むことを特徴とする、シート。
  2.  前記樹脂層において、前記無機粒子の含有割合が、前記無機粒子と前記樹脂との総量100質量部に対して、60質量部以上であることを特徴とする、請求項1に記載のシート。
  3.  前記シェルのガラス転移温度が、25~50℃であることを特徴とする、請求項1または2に記載のシート。
  4.  前記樹脂が、メチル(メタ)アクリレートを含むモノマー成分を重合して得られるアクリル樹脂であり、
     前記メチル(メタ)アクリレートの含有割合が、前記モノマー成分の総量100質量部に対して、0.1~100質量部であることを特徴とする、請求項1に記載のシート。
  5.  厚み2μmにおけるヘイズ値が、2%以下であることを特徴とする、請求項1に記載のシート。
  6.  少なくとも一方の面に、粘着層を備えていることを特徴とする、請求項1に記載のシート。
  7.  表面保護シートであることを特徴とする、請求項1に記載のシート。
PCT/JP2011/072842 2010-10-21 2011-10-04 シート WO2012053348A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-236300 2010-10-21
JP2010236300A JP2012086490A (ja) 2010-10-21 2010-10-21 シート

Publications (1)

Publication Number Publication Date
WO2012053348A1 true WO2012053348A1 (ja) 2012-04-26

Family

ID=45975067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072842 WO2012053348A1 (ja) 2010-10-21 2011-10-04 シート

Country Status (2)

Country Link
JP (1) JP2012086490A (ja)
WO (1) WO2012053348A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140130B1 (ko) * 2017-01-26 2020-07-31 주식회사 엘지화학 분리막의 제조방법, 이로부터 제조된 분리막 및 이를 포함하는 전기화학소자
WO2018139805A1 (ko) * 2017-01-26 2018-08-02 주식회사 엘지화학 분리막의 제조방법, 이로부터 제조된 분리막 및 이를 포함하는 전기화학소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335721A (ja) * 2000-05-25 2001-12-04 Mizutani Paint Co Ltd コロイド状微粒子及びその製造方法並びにコーティング組成物
JP2004175113A (ja) * 2002-11-12 2004-06-24 Nippon Paper Industries Co Ltd インクジェット記録媒体およびその製造方法
JP2004300172A (ja) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd コーティング組成物、その塗膜、反射防止膜、反射防止フィルム、及び、画像表示装置
JP2005194363A (ja) * 2004-01-06 2005-07-21 Fuji Photo Film Co Ltd 硬化性組成物およびハードコート処理物品
WO2010016480A1 (ja) * 2008-08-07 2010-02-11 積水化学工業株式会社 絶縁シート及び積層構造体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335721A (ja) * 2000-05-25 2001-12-04 Mizutani Paint Co Ltd コロイド状微粒子及びその製造方法並びにコーティング組成物
JP2004175113A (ja) * 2002-11-12 2004-06-24 Nippon Paper Industries Co Ltd インクジェット記録媒体およびその製造方法
JP2004300172A (ja) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd コーティング組成物、その塗膜、反射防止膜、反射防止フィルム、及び、画像表示装置
JP2005194363A (ja) * 2004-01-06 2005-07-21 Fuji Photo Film Co Ltd 硬化性組成物およびハードコート処理物品
WO2010016480A1 (ja) * 2008-08-07 2010-02-11 積水化学工業株式会社 絶縁シート及び積層構造体

Also Published As

Publication number Publication date
JP2012086490A (ja) 2012-05-10

Similar Documents

Publication Publication Date Title
TWI750317B (zh) 光硬化性樹脂組成物、有機el顯示元件用密封劑、有機el顯示元件、量子點裝置用密封劑及量子點裝置
JP4046451B2 (ja) 水性分散体およびその製造方法並びに塗料組成物
US20070049697A1 (en) Emulsion for vibration damping materials
JP2020084117A (ja) 複合粒子ならびに水性コーティング組成物およびその製造方法と被膜
JP5212853B2 (ja) 光拡散ポリマー粒子、その製造方法およびこの光拡散ポリマー粒子を含む光拡散シート
JP2008150401A (ja) 無機質系窯業建材用バックシーラーおよび無機質系窯業建材
WO2009098883A1 (ja) 無機コンポジット水分散型樹脂の製造方法
US20180327626A1 (en) Coating Composition, and Super Water-Repellent Film
WO2009098884A1 (ja) 無機-ポリマー複合材、粘着剤層および粘着フィルム
WO2012053349A1 (ja) プライマー組成物および粘着シート
Li et al. Acrylic emulsion pressure-sensitive adhesives (PSAS) reinforced with layered silicate
WO2012053348A1 (ja) シート
JP3806417B2 (ja) 水性コーティング組成物及び被膜の耐溶剤性を向上させる方法
JP4441847B2 (ja) 水性粘着剤組成物、その製造方法及び粘着製品
KR101124362B1 (ko) 에멀젼형 감압 접착제 및 그 제조방법
JP2007246913A (ja) 水性分散体およびその製造方法並びに塗料組成物
JP2006152051A (ja) アクリル系水性粘着剤組成物及びその製造方法
EP0780411A1 (en) Hydrophilic crosslinked polymer fine particles and process for production thereof
JPH03106948A (ja) 多孔質皮膜形成水分散型組成物と多孔質皮膜と多孔質皮膜形成方法
JPH11209622A (ja) 水性分散体およびその製造方法並びに塗料組成物
US10961420B2 (en) Composition for bonding, optical adhesive, and adhesive for pressure sensor
TW200844174A (en) Particles for anti-glare film, process for producing the same, and a composition containing particles for anti-glare film
JP4304903B2 (ja) 水性粘着剤組成物およびその製造方法
CN112534021A (zh) 减振材料用树脂组合物
JP6651283B2 (ja) 難燃性付与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834188

Country of ref document: EP

Kind code of ref document: A1