WO2012053304A1 - 回転電機及び車載回転電機システム - Google Patents

回転電機及び車載回転電機システム Download PDF

Info

Publication number
WO2012053304A1
WO2012053304A1 PCT/JP2011/071299 JP2011071299W WO2012053304A1 WO 2012053304 A1 WO2012053304 A1 WO 2012053304A1 JP 2011071299 W JP2011071299 W JP 2011071299W WO 2012053304 A1 WO2012053304 A1 WO 2012053304A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating electrical
electrical machine
vehicle
converter
machine system
Prior art date
Application number
PCT/JP2011/071299
Other languages
English (en)
French (fr)
Inventor
孝志 福重
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/880,257 priority Critical patent/US9227518B2/en
Priority to CN201180050722.2A priority patent/CN103201930B/zh
Priority to EP11834146.0A priority patent/EP2632023B1/en
Priority to JP2012539645A priority patent/JP5742850B2/ja
Publication of WO2012053304A1 publication Critical patent/WO2012053304A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a rotating electrical machine and a vehicle-mounted rotating electrical machine system that uses the rotating electrical machine.
  • an electric vehicle or the like that is driven by a battery has a circuit for driving and controlling a rotating electrical machine and an external power transfer circuit (mainly a charging circuit).
  • An object of the present invention is to provide a rotating electrical machine that is further downsized and an in-vehicle rotating electrical machine system that uses the rotating electrical machine.
  • the rotary electric machine includes a rotor and a stator iron core.
  • the stator iron core is wound in an insulated state, and is formed in a transformer primary coil connected to a power circuit, and is wound in the stator iron core in an insulated state, and is connected to a battery via a DC / AC converter.
  • a transformer secondary coil connected to
  • FIG. 1 is a sectional view showing a schematic configuration of a first embodiment of a rotating electrical machine according to the present invention.
  • FIG. 2 is a perspective view showing the main part of the first embodiment of the rotating electrical machine according to the present invention.
  • FIG. 3 is a diagram showing an in-vehicle rotating electrical machine system using the rotating electrical machine according to the present invention.
  • FIG. 4 is a diagram illustrating the installation of the reactor when the rotating electrical machine is an in-wheel type.
  • FIG. 5 is a perspective view showing a main part of a second embodiment of the rotating electrical machine according to the present invention.
  • FIG. 6 is a cross-sectional view showing a third embodiment of the rotating electrical machine according to the present invention.
  • FIG. 1 is a sectional view showing a schematic configuration of a first embodiment of a rotating electrical machine according to the present invention.
  • FIG. 2 is a perspective view showing the main part of the first embodiment of the rotating electrical machine according to the present invention.
  • FIG. 3 is a diagram showing an in
  • FIG. 7A is a diagram for explaining the function and effect of the third embodiment of the rotating electrical machine according to the present invention.
  • FIG. 7B is a diagram for explaining the operational effects of the third embodiment of the rotating electrical machine according to the present invention.
  • FIG. 8 is a diagram showing a second embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • FIG. 9 is a diagram showing a third embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • FIG. 10 is a diagram showing a fourth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • FIG. 11 is a diagram showing a fifth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • FIG. 12 is a diagram showing a sixth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • FIG. 13 is a diagram showing a seventh embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • FIG. 14 is a view showing an eighth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • FIG. 15 is a diagram showing a ninth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • FIG. 1 is a sectional view showing a schematic configuration of a first embodiment of a rotating electrical machine according to the present invention.
  • the rotary electric machine 1 will be described by taking a three-phase 12-pole 18-slot permanent magnet type three-phase AC motor as an example.
  • the gist of the invention will be briefly described first.
  • An electric vehicle or the like that runs on a battery has a circuit that controls driving of the rotating electrical machine and an external power transfer circuit (mainly a charging circuit). These circuits are large in size. Therefore, it is desired to further reduce the size of these circuits.
  • the inventor of the present invention pays attention to the fact that the circuit for driving and controlling the rotating electrical machine and the external power transfer circuit (mainly charging circuit) use many similar parts but are not used at the same time. Inspired by sharing the circuit. Specific invention contents will be described below.
  • the rotating electrical machine 1 includes a rotor 10 and a stator 20.
  • the rotor 10 includes a shaft 11, a rotor iron core 12, and a permanent magnet 13.
  • the shaft 11 is the rotation center axis of the rotor 10.
  • the rotor core 12 is attached around the shaft 11.
  • the rotor core 12 is formed by laminating a large number of thin circular steel plates.
  • a hole is formed in the outer peripheral portion of the rotor core 12.
  • a permanent magnet 13 is inserted into the hole.
  • the permanent magnet 13 extends over almost the entire length of the rotor 10.
  • the permanent magnets 13 are arranged so that the magnetic poles of adjacent permanent magnets are different from each other.
  • the stator 20 includes a stator iron core 21 and a stator coil 22.
  • the stator 20 is disposed on the outer periphery of the rotor 10.
  • the stator iron core 21 is formed by laminating a large number of thin steel plates. Teeth 211 is formed on the inner peripheral side of the stator core 21.
  • the stator coil 22 is wound around the tooth 211 via an insulating layer.
  • the stator iron core 21 is formed with a hole 21a.
  • a tab 212 in which a part of the stator core 21 is protruded is formed.
  • a hole 21 a is formed in the tab 212.
  • FIG. 2 is a perspective view showing the main part of the first embodiment of the rotating electrical machine according to the present invention.
  • a U-phase AC power line, a V-phase AC power line, and a W-phase AC power line are arranged along the back yoke 213 of the stator core 21. Further, an N line that is a neutral point is arranged. Stator coil 22 formed on teeth 211 is connected to N line and one of the AC power lines.
  • the stator coil (U-phase coil) 22 formed on the left tooth 211 is connected to the N-line and the U-phase AC power line.
  • Stator coil (V-phase coil) 22 formed in middle tooth 211 is connected to the N line and the V-phase AC power line.
  • Stator coil 22 (W-phase coil) formed on right tooth 211 is connected to the N line and the W-phase AC power line.
  • the primary coil 41 and the secondary coil 42 are wound through the hole 21a and the outside of the stator core 21.
  • the primary coil 41 is connected to a power circuit as will be described later.
  • the secondary coil 42 has one end connected to a neutral point (N line) and the other end connected to the DC / AC converter 7 as described later.
  • a transformer is formed by the primary coil 41, the secondary coil 42, and the stator core 21.
  • the overall size is small as compared with the case of using a separate component transformer.
  • FIG. 3 is a diagram showing an in-vehicle rotating electrical machine system using the rotating electrical machine according to the present invention.
  • the in-vehicle rotating electrical machine system S includes a rotating electrical machine 1, a DC / AC converter 7, a battery 8, and a power circuit 9.
  • the DC / AC converter 7 is provided between the rotating electrical machine 1 and the battery 8.
  • the DC / AC converter 7 has both an inverter function that converts DC power from the battery 8 into AC and a converter function that converts AC power from the rotating electrical machine 1 into DC.
  • the DC / AC converter 7 includes a positive side DC power line 71p, a negative side DC power line 71n, a U-phase AC power line 72u, a V-phase AC power line 72v, and a W-phase AC power line 72w.
  • the positive side DC power line 71 p is connected to the positive electrode of the battery 8.
  • the negative side DC power line 71 n is connected to the negative electrode of the battery 8.
  • a capacitor 75 is connected in parallel with the battery 8 between the positive side DC power line 71p and the negative side DC power line 71n. The capacitor 75 smoothes the DC power.
  • the U-phase AC power line 72u is connected to the U-phase coil of the rotating electrical machine 1.
  • V-phase AC power line 72v is connected to the V-phase coil of rotating electrical machine 1.
  • W-phase AC power line 72 w is connected to the W-phase coil of rotating electrical machine 1.
  • the DC / AC converter 7 includes six IGBT modules (positive U-phase IGBT module, negative U-phase IGBT module, positive V-phase IGBT module, negative V-phase IGBT module, positive DC line between the DC power line and the AC power line. Side W-phase IGBT module, negative W-phase IGBT module).
  • Each IGBT module (switching module) includes a switching element IGBT (Insulated Gate Bipolar Transistor) and a rectifier element (rectifier diode; Free Wheeling Diode) connected in parallel in the reverse direction to the IGBT. Included).
  • Each IGBT module is turned on / off based on a pulse width modulation (PWM) signal of the controller 100.
  • PWM pulse width modulation
  • the primary coil 41 of the rotating electrical machine 1 is connected to the power circuit 9 and is finally connected to an external power source via an insertion port.
  • the secondary coil 42 of the rotating electrical machine 1 has one end connected to a neutral point (N line) and the other end connected to a negative-side DC power line 71n via a reactor 51 and a switch 52.
  • the switch 52 when the rotating electrical machine 1 is driven to travel, the switch 52 is turned off. Then, the electric power of the battery 8 is converted into alternating current by the DC / AC converter 7 and supplied to the rotating electrical machine 1 to drive the rotating electrical machine 1. In addition, the regenerative power of the rotating electrical machine 1 is converted into direct current by the direct current alternating current converter 7 and supplied to the battery 8 to charge the battery 8. By using the switch 52 in this way, the current can be interrupted.
  • the switch 52 When charging the battery 8 using the external power source, the switch 52 is turned on and connected to the external power source. Then, AC power from the external power source is transmitted to the primary coil 41. As described above, since the transformer is formed by the primary coil 41, the secondary coil 42, and the stator core 21, the electric power boosted to an appropriate voltage is converted from the secondary coil 42 to direct current by the direct current alternating current converter 7. The battery 8 is charged by being supplied to the battery 8.
  • the primary coil 41, the secondary coil 42, and the stator core 21 form a transformer for charging using an external power source.
  • the battery 8 is insulated from the power supply outside the vehicle. If it is not insulated, a situation may occur in which the high voltage of the battery 8 is applied to the jack to the external power source when some failure occurs. However, such a problem does not occur if they are connected via a transformer as in this embodiment.
  • a transformer function is built in the rotating electrical machine 1 instead of providing a separate transformer. Accordingly, the overall size can be reduced as compared with the case of using a separate component transformer, and the manufacturing cost can be reduced.
  • the DC / AC converter 7 that is normally used for driving the rotating electrical machine 1 is configured to be usable as a power converter between the secondary coil 42 and the battery 8. . Therefore, the number of DC / AC converters for charging can be reduced by one and the size can be reduced.
  • FIG. 4 is a diagram for explaining the installation of the reactor when the rotating electrical machine is an in-wheel type.
  • the inductance (hereinafter referred to as “zero-phase inductance”) between the neutral point of the rotating electrical machine and the battery 8 is small in a general rotating electrical machine. For this reason, there is a problem that current ripple due to PWM becomes enormous and loss and radiation noise increase. What is necessary is just to provide a reactor in order to solve this.
  • a reactor that can absorb charging power fluctuations synchronized with the PWM frequency of the charging current in other words, a reactor having a large energy storage capacity is large in size.
  • the reactor 51 shown in FIG. 3 can be a motor room (plug-in hybrid electric vehicle (PHEV)). In the engine room).
  • PHEV plug-in hybrid electric vehicle
  • the size of the reactor 51 is large, there is a possibility that the cabin space of the vehicle is narrowed.
  • the inventor of the present invention has come up with the idea of installing a reactor 51 in this space. If it does in this way, the space efficiency by an in-wheel rotary electric machine unit can be raised, and the cabin space of a vehicle is not narrowed.
  • FIG. 5 is a perspective view showing a main part of a second embodiment of the rotating electrical machine according to the present invention.
  • a part of the rotating electrical machine 1 is shared to obtain a reactor function.
  • a slit hole 21 b is formed in the stator core 21.
  • the slit hole 21 b is formed particularly in the tab 212.
  • a reactor coil 51 a is formed so as to pass outside the slit hole 21 b and the stator core 21.
  • Reactor coil 51 a has one end connected to secondary coil 42 and the other end connected to DC / AC converter 7.
  • the reactor is formed by the reactor coil 51a and the stator core 21.
  • the reactor function can be obtained by sharing a part of the rotating electrical machine 1, the overall size is small and the manufacturing cost is low as compared with the case of using a separate reactor.
  • FIG. 6 is a cross-sectional view showing a third embodiment of the rotating electrical machine according to the present invention.
  • the transformer function is realized by forming the primary coil 41 and the secondary coil 42 so as to pass outside the hole 21a and the stator core 21.
  • the primary coil 41 and the secondary coil 42 are formed on the teeth 211 of the stator core 21 with a predetermined pitch number and a predetermined distribution number so as to realize a transformer function. .
  • the primary coil 41 includes a first coil 411, a second coil 412, and a third coil 413. That is, the primary coil 41 consists of three coils, and the distribution number is three. Moreover, the 1st coil 411, the 2nd coil 412, and the 3rd coil 413 are formed over six teeth. That is, the pitch number is six.
  • the secondary coil 42 is the same as the primary coil 41. That is, the secondary coil 42 includes a first coil 421, a second coil 422, and a third coil 423. That is, the secondary coil 42 consists of three coils, and the distribution number is three. Moreover, the 1st coil 421, the 2nd coil 422, and the 3rd coil 423 are formed over six teeth. That is, the pitch number is six.
  • FIG. 7A and FIG. 7B are diagrams illustrating the operational effects of the third embodiment of the rotating electrical machine according to the present invention.
  • the primary coil 41 and the secondary coil 42 are formed on the teeth 211 of the stator core 21 so as to face each other.
  • an alternating current is passed through the primary coil 41 in this way, a magnetic flux is generated as shown by an arrow in FIG. 7A, and an alternating current also flows through the secondary coil 42 by the mutual induction action, thereby obtaining a transformer function. That is, according to the present embodiment, the hole 21a required in the first embodiment is unnecessary, and the size is further reduced as compared with the first embodiment.
  • neither the primary coil 41 nor the secondary coil 42 is formed on the teeth 211a of the stator iron core 21. If it does in this way, as shown by the arrow in Drawing 7B, the leakage flux of a transformer will arise, the self inductance of a transformer will increase, and a reactor action will occur. As a result, the shortage of zero phase inductance of the rotating electrical machine can be compensated. Therefore, the reactor becomes unnecessary, or a reactor having a small energy storage capacity can be used, so that the manufacturing cost can be reduced and the overall size is reduced.
  • the number of coil pitches is set to an integral multiple of the value (3) obtained by dividing the number of slots (18) by the number of pole pairs (6).
  • the number of coils distributed was an integral multiple of the value (3) obtained by dividing the number of slots (18) by the number of pole pairs (6).
  • the number of coil pitches and the number of distributions are integral multiples of the polar arc, so that the transformer magnetic flux flows evenly to the north and south poles of the magnet. it can.
  • the winding coefficient is zero, no torque is generated even when a current flows through the coil.
  • the short-pitch coefficient becomes zero.
  • the distribution coefficient becomes zero by making the number of coil distributions an integral multiple of the value obtained by dividing the number of slots by the number of pole pairs. Therefore, by configuring as in the present embodiment, a transformer function can be obtained without generating torque.
  • FIG. 8 is a diagram showing a second embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • the reactor 51 and the negative DC power line 71n are connected via the switch 52, but in this embodiment, a capacitor 53 is used instead of the switch 52 in FIG.
  • the capacitor 53 is used instead of the switch 52 of the first embodiment, so that the same function as that of the first embodiment can be achieved at a low cost.
  • FIG. 9 is a diagram showing a third embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • a capacitor 751 and a capacitor 752 connected in series are connected to the battery 8 in parallel.
  • Reactor 51 has one end connected to secondary coil 42 and the other end connected between capacitors 751 and 752.
  • the capacitor 752 also functions as the capacitor 53 in FIG. Therefore, the manufacturing cost can be reduced as compared with the second embodiment. Also, the overall size can be reduced.
  • FIG. 10 is a diagram showing a fourth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • the power circuit 9 of the present embodiment includes an AC / AC converter in which a diode bridge type full-wave rectifier, a power factor correction circuit, and a MOSFET type inverter are combined.
  • the power circuit 9 rectifies the frequency (50 to 60 Hz) of the external power source, converts it to direct current, and converts it into an alternating current such as a sine wave of several hundred Hz to several kHz by an inverter.
  • the operating frequency of the transformer and the capacitor can be increased, so that the energy storage amount is reduced. As a result, the manufacturing cost can be reduced and the overall size can be reduced.
  • the current flowing through the rotating electrical machine during charging can be increased in frequency, vibration attenuation due to the minute torque of the rotating electrical machine can be increased. That is, even when the frequency of the external power supply is about 50 to 60 Hz, it is possible to prevent noise and vibration from the rotating electric machine during charging.
  • the diode bridge type full-wave rectifier is used.
  • the present invention is not limited to this.
  • a full-bridge full-wave rectifier composed of a MOSFET or the like may be used. This is particularly effective when power is returned from the vehicle to the external power source (so-called power sale).
  • FIG. 11 is a diagram showing a fifth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • the power factor correction circuit provided in the fourth embodiment is omitted, and the DC factor converter (rotary electric machine driving inverter) 7 executes the power factor correction control.
  • the charging power supplied from the power supply outside the vehicle is obtained by multiplying the transformer current by the transformer voltage. Since the transformer current can be controlled by the inverter 7 for driving the rotating electrical machine, the electric power on the external power source side can be controlled. Specifically, in order to make the vehicle power supply side current a sine wave having a power factor of 1, the transformer current is set so that the power proportional to the square of the voltage Vs becomes a frequency component twice the power supply frequency outside the vehicle. Can be produced by the inverter 7 for driving the rotating electrical machine. That is, (Transformer current amplitude) ⁇ Vs 2 ⁇ (Transformer voltage amplitude)
  • This control eliminates the need for a power factor correction circuit dedicated to the external power supply side, thereby reducing the manufacturing cost and reducing the overall size.
  • FIG. 12 is a diagram showing a sixth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • This embodiment shows an example in which the above embodiments are optimally combined.
  • the secondary coil 42 has one end connected to a neutral point (N line) and the other end connected between a capacitor 751 and a capacitor 752. Further, the power factor improvement control is executed by the DC / AC converter (rotary electric machine drive inverter) 7 without providing a power factor improvement circuit.
  • DC / AC converter rotary electric machine drive inverter
  • FIG. 13 is a diagram showing a seventh embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • the charging power supplied from the external power source is obtained by multiplying the transformer current by the transformer voltage.
  • the transformer current and transformer voltage are controlled.
  • the transformer current can be controlled by the inverter 7 for driving the rotating electrical machine.
  • the transformer voltage can be controlled by the AC / AC converter of the power circuit 9.
  • phase of the transformer current controlled by the rotating electrical machine drive inverter 7 and the phase of the transformer voltage controlled by the AC / AC converter of the power circuit 9 are controlled to coincide with each other.
  • the transformer operating power factor increases. If the power factor is increased, the transformer and the coupling capacitor can be miniaturized and the manufacturing cost can be reduced.
  • FIG. 14 is a view showing an eighth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • the power circuit 9 of the present embodiment forms a resonance circuit by connecting a capacitor 91 in parallel with the primary coil 41.
  • the transformer operating power factor increases. If the power factor is increased, the transformer and the coupling capacitor can be miniaturized and the manufacturing cost can be reduced. Moreover, since the voltage of the inverter INV in the AC / AC converter of the power circuit 9 can be suppressed, a small inverter can be used.
  • FIG. 15 is a diagram showing a ninth embodiment of the in-vehicle rotating electrical machine system according to the present invention.
  • the power circuit 9 of the present embodiment is a circuit that supplies current to an auxiliary battery mounted on the vehicle and charges the auxiliary battery (voltage 12 to 14 V) mounted on the vehicle.
  • the configurations of the rotating electrical machine 1 and the transformer are the same as those in the above embodiments, and it is possible to reduce the size and cost of the entire apparatus in the same way.
  • the hole 21a is formed in the tab 212 in which a part of the stator iron core 21 is protruded is illustrated.
  • the hole 21a is formed in the stator iron core 21 without forming the tab 212. May be.
  • the case where the battery 8 is charged by using the external power source has been described as an example. It can also be applied to power transmission systems.
  • radial gap motor has been described as an example in the above embodiment, it may be applied to an axial gap motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 回転電機は、ローターと、ステーター鉄心と、ステーター鉄心に絶縁状態で巻かれて形成されるとともに、電力回路に接続されるトランス一次コイルと、ステーター鉄心に絶縁状態で巻かれて形成されるとともに、直流交流変換器を介してバッテリーに接続されるトランス二次コイルと、を含む。

Description

回転電機及び車載回転電機システム
 この発明は、回転電機及びその回転電機を使用する車載回転電機システムに関する。
 JP-H09-233709-Aに示されるように、バッテリーによって走行する電気車輌等では、回転電機を駆動制御する回路と、外部用電力移動回路(主は充電回路)を保有している。
 しかしながら、これらの回路はサイズが大きく、よりコンパクト化することが望まれている。
 本発明は、このような従来の問題点に着目してなされた。本発明の目的は、より小形化した回転電機及びその回転電機を使用する車載回転電機システムを提供することである。
 本発明のある態様の回転電機は、ローターと、ステーター鉄心と、を含む。そして前記ステーター鉄心に絶縁状態で巻かれて形成されるとともに、電力回路に接続されるトランス一次コイルと、前記ステーター鉄心に絶縁状態で巻かれて形成されるとともに、直流交流変換器を介してバッテリーに接続されるトランス二次コイルと、を含む。
 本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。
図1は、本発明による回転電機の第1実施形態の概略構成を示す断面図である。 図2は、本発明による回転電機の第1実施形態の主要部を示す斜視図である。 図3は、本発明による回転電機を使用する車載回転電機システムを示す図である。 図4は、回転電機がインホイールタイプである場合のリアクトルの設置について説明する図である。 図5は、本発明による回転電機の第2実施形態の主要部を示す斜視図である。 図6は、本発明による回転電機の第3実施形態を示す断面図である。 図7Aは、本発明による回転電機の第3実施形態による作用効果を説明する図である。 図7Bは、本発明による回転電機の第3実施形態による作用効果を説明する図である。 図8は、本発明による車載回転電機システムの第2実施形態を示す図である。 図9は、本発明による車載回転電機システムの第3実施形態を示す図である。 図10は、本発明による車載回転電機システムの第4実施形態を示す図である。 図11は、本発明による車載回転電機システムの第5実施形態を示す図である。 図12は、本発明による車載回転電機システムの第6実施形態を示す図である。 図13は、本発明による車載回転電機システムの第7実施形態を示す図である。 図14は、本発明による車載回転電機システムの第8実施形態を示す図である。 図15は、本発明による車載回転電機システムの第9実施形態を示す図である。
(第1実施形態)
 <回転電機の構造>
 図1は、本発明による回転電機の第1実施形態の概略構成を示す断面図である。
 ここでは、回転電機1として、3相12極18スロットの永久磁石型三相交流モーターを例に挙げて説明する。また発明のコンセプトを明確にするために、最初に発明の要旨を簡単に説明する。バッテリーによって走行する電気車輌等では、回転電機を駆動制御する回路と、外部用電力移動回路(主は充電回路)を保有している。これらの回路は、サイズが大きい。そのためこれらの回路のサイズを、よりコンパクト化することが望まれている。これに対して本件発明者は、回転電機を駆動制御する回路と外部用電力移動回路(主は充電回路)とは、類似した部品を多数使っている一方で、同時には使用されないことに着目し、回路を共用することに着想した。具体的な発明内容を以下に説明する。
 回転電機1は、ローター10と、ステーター20と、を含む。
 ローター10は、シャフト11と、ローター鉄心12と、永久磁石13と、を含む。
 シャフト11は、ローター10の回転中心軸である。
 ローター鉄心12は、シャフト11の周囲に取り付けられる。ローター鉄心12は、円形の薄い鋼板が多数積層されて形成される。ローター鉄心12の外周部分には孔が形成される。その孔に永久磁石13が挿入される。
 永久磁石13は、ローター10のほぼ全長に渡って延設される。永久磁石13は隣接する永久磁石の磁極が互いに相違するよう配置される。
 ステーター20は、ステーター鉄心21と、ステーターコイル22と、を含む。ステーター20は、ローター10の外周に配置される。
 ステーター鉄心21は、薄い鋼板が多数積層されて形成される。ステーター鉄心21の内周側にはティース211が形成される。そのティース211に絶縁層を介してステーターコイル22が巻かれる。
 ステーターコイル22に電流が流れると磁束が生じて永久磁石13に反発力/吸引力が発生する。この結果、ローター10がシャフト11を中心に回転する。
 ステーター鉄心21には、孔21aが形成される。本実施形態では、ステーター鉄心21の一部が凸設されたタブ212が形成される。このタブ212に孔21aが形成される。
 図2は、本発明による回転電機の第1実施形態の主要部を示す斜視図である。
 ステーター鉄心21のバックヨーク213に沿って、U相交流電力線、V相交流電力線及びW相交流電力線が配置される。また中性点であるN線が配置される。ティース211に形成されたステーターコイル22は、N線といずれかの交流電力線とに接続される。図2では、左のティース211に形成されたステーターコイル(U相コイル)22は、N線及びU相交流電力線に接続される。真中のティース211に形成されたステーターコイル(V相コイル)22は、N線及びV相交流電力線に接続される。右のティース211に形成されたステーターコイル22(W相コイル)は、N線及びW相交流電力線に接続される。図2の左右は省略されているが、これが順次繰り返される。
 一次コイル41及び二次コイル42は、孔21a及びステーター鉄心21の外側を通って巻かれる。一次コイル41は、後述するように電力回路に接続される。二次コイル42は、一端が中性点(N線)に接続され、他端が後述するように直流交流変換器7に接続される。
 このように構成することで、一次コイル41及び二次コイル42並びにステーター鉄心21でトランスが形成される。このように回転電機1の一部を共用してトランス機能を得ることができるので、別体部品のトランスを用いる場合と比較して全体として小形である。
 <車載回転電機システムについて>
 図3は、本発明による回転電機を使用する車載回転電機システムを示す図である。
 車載回転電機システムSは、回転電機1と、直流交流変換器7と、バッテリー8と、電力回路9と、を含む。
 直流交流変換器7は、回転電機1とバッテリー8との間に設けられる。直流交流変換器7は、バッテリー8からの直流電力を交流に変換するインバーター機能と、回転電機1からの交流電力を直流に変換するコンバーター機能と、を併せ持つ。直流交流変換器7は、正側直流電力線71pと、負側直流電力線71nと、U相交流電力線72uと、V相交流電力線72vと、W相交流電力線72wと、を有する。
 正側直流電力線71pは、バッテリー8の正極に接続される。負側直流電力線71nは、バッテリー8の負極に接続される。正側直流電力線71pと負側直流電力線71nとの間には、バッテリー8に並列にコンデンサー75が接続される。コンデンサー75は、直流電力を平滑化する。
 U相交流電力線72uは、回転電機1のU相コイルに接続される。V相交流電力線72vは、回転電機1のV相コイルに接続される。W相交流電力線72wは、回転電機1のW相コイルに接続される。
 直流交流変換器7は、直流電力線と交流電力線との間に6つのIGBTモジュール(正側U相IGBTモジュール,負側U相IGBTモジュール,正側V相IGBTモジュール,負側V相IGBTモジュール,正側W相IGBTモジュール,負側W相IGBTモジュール)を有する。
 各IGBTモジュール(スイッチングモジュール)は、スイッチング素子IGBT(Insulated Gate Bipolar Transistor;絶縁ゲート型バイポーラトランジスター)と、IGBTに逆方向に並列接続された整流素子(整流ダイオード;Free Wheeling Diode;以下「FWD」と称す)を含む。各IGBTモジュールは、コントローラー100のパルス幅変調(Pulse Width Modulation;PWM)信号に基づいてオンオフする。
 回転電機1の一次コイル41は、電力回路9に接続され、差込口を介して最終的には車外電源に接続される。
 回転電機1の二次コイル42は、一端が中性点(N線)に接続され、他端がリアクトル51及びスイッチ52を介して負側直流電力線71nに接続される。
 このような車載回転電機システムにおいて、回転電機1を駆動して走行するときは、スイッチ52をオフする。すると、バッテリー8の電力が直流交流変換器7で交流に変換されて回転電機1に供給されて回転電機1が駆動される。また回転電機1の回生電力が直流交流変換器7で直流に変換されてバッテリー8に供給されてバッテリー8が充電される。このようにスイッチ52を用いることで、電流を遮断できる。
 車外電源を使用してバッテリー8を充電するときは、スイッチ52をオンするとともに、車外電源に接続する。すると、車外電源の交流電力が一次コイル41に伝わる。そして上述のように、一次コイル41及び二次コイル42並びにステーター鉄心21でトランスが形成されるので、適正電圧に昇圧された電力が二次コイル42から直流交流変換器7で直流に変換されてバッテリー8に供給されてバッテリー8が充電される。
 このように本実施形態の車載回転電機システムによれば、一次コイル41及び二次コイル42並びにステーター鉄心21で、車外電源を使用して充電するときのトランスを形成した。このようにすることで、バッテリー8と車外電源との間が絶縁される。仮に絶縁されていないと、何らかの故障が生じたときに、車外電源への差込ジャックにバッテリー8の高電圧が印加されてしまう事態が発生しうる。しかしながら、本実施形態のようにトランスを介して接続されれば、そのような問題を生じない。
 そして本実施形態では、別途トランスを設けるのではなく、回転電機1にトランス機能を内蔵する。したがって、別体部品のトランスを用いる場合と比較して全体として小形にでき、また製造コストを安価にすることができる。
 また上述の通り、本実施形態では、通常、回転電機1を駆動するために用いられる直流交流変換器7を、二次コイル42とバッテリー8との間の電力変換器として利用可能な構成にした。したがって、充電用の直流交流変換器をまるまる1つ減らすことができ、小形化が可能になる。
 図4は、回転電機がインホイールタイプである場合のリアクトルの設置について説明する図である。
 回転電機の中性点とバッテリー8との間のインダクタンス(以下「零相インダクタンス」と称す)は、一般的な回転電機では小さい。このため、PWMによる電流リップルが巨大化し、損失、放射ノイズが増大するという問題がある。これを解決するには、リアクトルを設ければよい。
 しかしながら、充電電流のPWM周波数に同期した充電パワー変動を吸収できる、換言すれば、ある程度大きなエネルギー貯蔵能力があるリアクトルは、サイズが大きい。
 回転電機1がロードホイールの内周側に配置されるいわゆるインホイールタイプの場合に、図3に示したリアクトル51をモータールーム(プラグインハイブリッド電気車輌(plug-in hybrid electric vehicle;PHEV)であればエンジンルーム)に設置してもよい。しかしながら、リアクトル51のサイズが大きいことから、車輌の客室空間を狭める可能性がある。
 ところで、インホイールタイプでは、図4に示すように、ロードホイール201の内側にブレーキ202や、サスペンションメンバー203が存在することから、必然的に回転電機1の外周部分に無用な空間が存在することとなる。
 そこで本件発明者は、この空間にリアクトル51を設置することに着想した。このようにすれば、インホイール回転電機ユニットによる空間効率をアップでき、車輌の客室空間を狭めることがない。
 (回転電機の第2実施形態)
 図5は、本発明による回転電機の第2実施形態の主要部を示す斜視図である。
 本実施形態では、回転電機1の一部を共用して、リアクトル機能をも得るようにした。具体的には、ステーター鉄心21に、スリット孔21bを形成する。本実施形態では、特にタブ212にスリット孔21bが形成される。そしてスリット孔21b及びステーター鉄心21の外側を通るようにリアクトルコイル51aを形成する。リアクトルコイル51aは、一端が二次コイル42に接続され、他端が直流交流変換器7に接続される。
 本実施形態によれは、リアクトルコイル51a及びステーター鉄心21でリアクトルが形成される。このように回転電機1の一部を共用してリアクトル機能を得ることができるので、別体部品のリアクトルを用いる場合と比較して全体として小形であり、また製造コストが安価である。
 (回転電機の第3実施形態)
 図6は、本発明による回転電機の第3実施形態を示す断面図である。
 第1実施形態では、孔21a及びステーター鉄心21の外側を通るように、一次コイル41及び二次コイル42を形成してトランス機能を実現した。これに対して本実施形態では、互いに対向し、かつ、所定のピッチ数及び所定の分布数でステーター鉄心21のティース211に、一次コイル41及び二次コイル42を形成してトランス機能を実現する。
 一次コイル41は、第1コイル411と、第2コイル412と、第3コイル413と、を含む。すなわち一次コイル41は、3つのコイルからなり、分布数が3である。また、第1コイル411、第2コイル412及び第3コイル413は、6つのティースに渡って形成される。すなわちピッチ数が6である。
 二次コイル42も一次コイル41と同様である。すなわち二次コイル42は、第1コイル421と、第2コイル422と、第3コイル423と、を含む。すなわち二次コイル42は、3つのコイルからなり、分布数が3である。また、第1コイル421、第2コイル422及び第3コイル423は、6つのティースに渡って形成される。すなわちピッチ数が6である。
 なおステーター鉄心21の18個のティースの内、ティース211aには、一次コイル41も二次コイル42も形成されていない。このようにした理由は後述する。
 図7A及び図7Bは、本発明による回転電機の第3実施形態による作用効果を説明する図である。
 本実施形態では、ステーター鉄心21のティース211に、互いに対向するように、一次コイル41及び二次コイル42を形成した。このようにして一次コイル41に交流を流すと、図7Aに矢印で示すように磁束が生じて、相互誘導作用によって二次コイル42にも交流が流れ、トランス機能を得ることができる。すなわち本実施形態によれば、第1実施形態で必要であった孔21aが不要であり、第1実施形態に比較してさらに小形になる。
 また本実施形態では、ステーター鉄心21のティース211aには、一次コイル41も二次コイル42も形成しない。このようにすると、図7Bに矢印で示すようにトランスの漏れ磁束が生じて、トランスの自己インダクタンスが高まり、リアクトル作用が発生する。この結果、回転電機の零相インダクタンスの不足を補うことができる。したがって、リアクトルが不要になったり、又はエネルギー貯蔵能力が小さいリアクトルを使用することができ、製造コストを低減できるとともに全体として小形になる。
 また本実施形態では、コイルのピッチ数を、スロット数(18)を極対数(6)で除算した値(3)の整数倍にした。コイルの分布数を、スロット数(18)を極対数(6)で除算した値(3)の整数倍にした。
 このようにすることで、コイルのピッチ数及び分布数が極弧の整数倍長になるので、磁石のN極S極に均等にトランス磁束が流れるため、この磁束によるトルク発生を抑制することができる。
 すなわち、巻線係数は、短節係数に分布係数を乗算して得られる。つまり(巻線係数)=(短節係数)×(分布係数)である。巻線係数が零であると、コイルに電流が流れてもトルクが発生しない。コイルのピッチ数を、スロット数を極対数で除算した値の整数倍にすることで、短節係数が零になる。またコイルの分布数を、スロット数を極対数で除算した値の整数倍にすることで、分布係数が零になる。そこで本実施形態のように構成することで、トルクを発生することなく、トランス機能を得ることができるのである。
 (車載回転電機システムの第2実施形態)
 図8は、本発明による車載回転電機システムの第2実施形態を示す図である。
 第1実施形態(図3)では、リアクトル51及び負側直流電力線71nがスイッチ52を介して接続されていたが、本実施形態では、図3のスイッチ52に代えてコンデンサー53を使用する。
 このような車載回転電機システムでは、回転電機1を駆動して走行するときは、中性点の電圧が、バッテリー8の電圧の半分の一定電圧になる。コンデンサーは、交流を流すが直流を流さないという特性がある。したがって、回転電機1を駆動して走行するときは、コンデンサー53に電流が流れない。
 車外電源を使用してバッテリー8を充電するときは、車外電源に接続する。すると、車外電源の交流電力が一次コイル41に伝わる。そして上述のように、一次コイル41及び二次コイル42並びにステーター鉄心21でトランスが形成されるので、適正電圧に昇圧された交流電力が二次コイル42から流れる。コンデンサー53は交流を流すので、その電力が直流交流変換器7に流れ、直流交流変換器7で直流に変換されてバッテリー8に供給されてバッテリー8が充電される。
 このように本実施形態の車載回転電機システムでは、第1実施形態のスイッチ52に代えてコンデンサー53を使用するので、第1実施形態と同様の機能を安価に達成できる。
 (車載回転電機システムの第3実施形態)
 図9は、本発明による車載回転電機システムの第3実施形態を示す図である。
 本実施形態では、直列接続されたコンデンサー751及びコンデンサー752が、バッテリー8に並列に接続されている。そしてリアクトル51は、一端が二次コイル42に接続され、他端がコンデンサー751及びコンデンサー752の間に接続される。
 本実施形態のように構成すれば、コンデンサー752が、図8のコンデンサー53の機能をも果たすようになる。したがって第2実施形態に比較して製造コストを安価にすることができる。また全体的なサイズを小形化できる。
 (車載回転電機システムの第4実施形態)
 図10は、本発明による車載回転電機システムの第4実施形態を示す図である。
 本実施形態の電力回路9は、ダイオードブリッジ形全波整流器と、力率改善回路と、MOSFET型インバーターと、を組み合わせたAC/ACコンバーターを含む。
 電力回路9は、車外電源の周波数(50~60Hz)を整流して一旦直流にしてインバーターによって数100Hz~数kHzの正弦波などの交流電流に変換する。
 このような構成にすることで、トランス及びコンデンサーの動作周波数を高くすることができるので、エネルギー貯蔵量が小さくなる。この結果、製造コストを安価にすることができるとともに、全体的なサイズを小形化できる。また、充電中に回転電機に流れる電流を高周波化できるので、回転電機の微小トルクによる振動減衰を高めることができる。すなわち車外電源の周波数が50~60Hz程度の場合であっても、充電中に回転電機から騒音や振動を発生することを防止できる。
 なお本実施形態では、ダイオードブリッジ形全波整流器を用いる場合で説明した。しかしながらこれには限定されない。MOSFETなどで構成されるフルブリッジ全波整流器を用いてもよい。これは、特に、車輌から車外電源に電力を戻す場合(いわゆる売電の場合)に有効である。
 (車載回転電機システムの第5実施形態)
 図11は、本発明による車載回転電機システムの第5実施形態を示す図である。
 本実施形態では、第4実施形態で設けていた力率改善回路を省略し、直流交流変換器(回転電機駆動用インバーター)7で力率改善制御を実行する。
 車外電源から供給される充電電力は、トランス電流にトランス電圧を乗算して求められる。トランス電流は回転電機駆動用インバーター7で制御できるので、車外電源側の電力をコントロールできる。具体的には、車外電源側電流を力率1の正弦波とするため、電圧Vsの2乗に比例した電力を、トランス通過電力の車外電源周波数の2倍周波数成分となるように、トランス電流を回転電機駆動用インバーター7で作り出せばよい。すなわち、
    (トランス電流振幅)∝Vs2÷(トランス電圧振幅)
 このように制御することで、車外電源側専用の力率改善回路が不要となるので、製造コストを安価にすることができるとともに、全体的なサイズを小形化できる。
 (車載回転電機システムの第6実施形態)
 図12は、本発明による車載回転電機システムの第6実施形態を示す図である。
 本実施形態は、上記各実施形態を最適に組み合わせた例を示す。
 回転電機としては、図6に示したものを用いる。これによってリアクトルが不要になる。また二次コイル42は、一端が中性点(N線)に接続され、他端がコンデンサー751及びコンデンサー752の間に接続される。さらに力率改善回路は設けることなく、直流交流変換器(回転電機駆動用インバーター)7で力率改善制御を実行する。
 このようにすることで、部品点数を大幅に減らすことができ、製造コストが非常に安価になるとともに、全体的なサイズを小形化できる。
 (車載回転電機システムの第7実施形態)
 図13は、本発明による車載回転電機システムの第7実施形態を示す図である。
 車外電源から供給される充電電力は、トランス電流にトランス電圧を乗算して求められる。本実施形態では、トランス電流及びトランス電圧を制御する。トランス電流は、回転電機駆動用インバーター7で制御可能である。トランス電圧は、電力回路9のAC/ACコンバーターで制御可能である。
 そして本実施形態では、回転電機駆動用インバーター7で制御するトランス電流の位相と、電力回路9のAC/ACコンバーターで制御するトランス電圧の位相と、が、一致するように制御する。
 このように制御することで、トランス動作力率が高まる。力率が高まれば、トランス、カップリングコンデンサーを小形化でき、製造コストも安価になる。
 (車載回転電機システムの第8実施形態)
 図14は、本発明による車載回転電機システムの第8実施形態を示す図である。
 本実施形態の電力回路9は、一次コイル41と並列にコンデンサー91を接続して共振回路を形成する。
 このように構成しても、トランス動作力率が高まる。力率が高まれば、トランス、カップリングコンデンサーを小形化でき、製造コストも安価になる。また、電力回路9のAC/ACコンバーター内のインバーターINVの電圧を抑制できるので、小形のインバーターを使用できる。
 (車載回転電機システムの第9実施形態)
 図15は、本発明による車載回転電機システムの第9実施形態を示す図である。
 上記各実施形態では、電力回路9として、車外電源からの電力を流す回路を掲げて、車外電源からの電力でバッテリー8を充電する場合を説明した。
 本実施形態の電力回路9は、車両に搭載された補機用バッテリーに電流を流し、車両に搭載された補機用バッテリー(電圧12~14V)を充電する回路である。
 図15に示されるように、回転電機1,トランスなどの構成は、上記各実施形態と同様であり、同じように装置全体の小形化、低コスト化を図ることが可能である。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 たとえば、上記実施形態では、孔21aを、ステーター鉄心21の一部が凸設されたタブ212に形成する場合を例示したが、タブ212を形成することなく、ステーター鉄心21に孔21aを形成してもよい。
 また、車載回転電機システムの第1~8実施形態においては、車外電源を使用してバッテリー8を充電する場合を例示して説明したが、同様のシステムで、車輌で発電した電力を車外電源に送電するシステムにも適用できる。
 さらに上記実施形態では、ラジアルギャップモーターを例示して説明したが、アキシャルギャップモーターに適用してもよい。
 さらにまた上記実施形態は、適宜組み合わせ可能である。
 本願は、2010年10月19日に日本国特許庁に出願された特願2010-234765に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (20)

  1.  ローター(10)と、
     ステーター鉄心(21)と、
     前記ステーター鉄心(21)に絶縁状態で巻かれて形成されるとともに、電力回路(9)に接続されるトランス一次コイル(41)と、
     前記ステーター鉄心(21)に絶縁状態で巻かれて形成されるとともに、直流交流変換器(7)を介してバッテリー(8)に接続されるトランス二次コイル(42)と、
    を含む回転電機。
  2.  請求項1に記載の回転電機において、
     前記直流交流変換器(7)は、直流電力線(71p,71n)がバッテリー(8)に接続され、交流電力線(72u,72v,72w)が前記ステーター鉄心(21)のティース(211)に絶縁状態で巻かれて形成されるステーターコイル(22)に接続され、
     前記トランス二次コイル(42)は、一端が回転電機の中性点に接続され、他端が前記直流交流変換器(7)の正側直流電力線(71p)又は負側直流電力線(71n)に接続される、
    回転電機。
  3.  請求項1又は請求項2に記載の回転電機において、
     前記ステーター鉄心(21)は、前記ローター(10)の外に配置されるとともに、ローター軸方向に貫通するトランス形成孔(21a)を有し、
     前記トランス一次コイル(41)及び前記トランス二次コイル(42)は、前記トランス形成孔(21a)を挿通して前記ステーター鉄心(21)に巻かれて形成される、
    回転電機。
  4.  請求項1又は請求項2に記載の回転電機において、
     前記トランス一次コイル(41)及び前記トランス二次コイル(42)は、前記ステーター鉄心(21)の軸を対称に互いに対向するように前記ステーター鉄心(21)のティース(211)に巻かれて形成される、
    回転電機。
  5.  請求項4に記載の回転電機において、
     前記トランス一次コイル(41)及び前記トランス二次コイル(42)は、所定のピッチ数及び所定の分布数で前記ステーター鉄心(21)のティース(211)に巻かれて形成されるが、少なくとも1ペアのティース(211a)には巻かれない、
    回転電機。
  6.  請求項5に記載の回転電機において、
     前記所定のピッチ数は、スロット数を極対数で除算した値の整数倍である、
    回転電機。
  7.  請求項5又は請求項6に記載の回転電機において、
     前記所定の分布数は、スロット数を極対数で除算した値の整数倍である、
    回転電機。
  8.  請求項1から請求項7までのいずれか1項に記載の回転電機において、
     ロードホイール(201)の内周側に配置されるインホイールタイプであり、
     前記トランス二次コイル(42)と前記直流交流変換器(7)との間に接続されるとともに、回転電機ハウジングの外周に配置されるリアクトル(51)をさらに含む、
    回転電機。
  9.  請求項1から請求項7までのいずれか1項に記載の回転電機において、
     前記ステーター鉄心(21)は、ローター軸方向に貫通するリアクトル形成孔(21b)を有し、
     前記トランス二次コイル(42)と前記直流交流変換器(7)との間に接続されるとともに、前記リアクトル形成孔(21b)を挿通して前記ステーター鉄心(21)に巻かれたコイル(51a)で形成されるリアクトル(51)をさらに含む、
    回転電機。
  10.  請求項1から請求項7までのいずれか1項に記載の回転電機を使用する車載回転電機システムにおいて、
     前記トランス一次コイル(41)に接続される電力回路(9)と、
     前記トランス二次コイル(42)及びステーターコイル(22)に接続される直流交流変換器(7)と、
     前記直流交流変換器(7)に接続されるバッテリー(8)と、
    を有し、
     前記トランス二次コイル(42)に接続され、前記回転電機がトルクを出力しているときにトランス二次コイル(42)に流れる電流を遮断する電流断続器(52,53,752)をさらに含む、
    車載回転電機システム。
  11.  請求項10に記載の車載回転電機システムにおいて、
     前記電流断続器は、前記トランス二次コイル(42)と前記直流交流変換器(7)との間に配置され、前記回転電機がトルクを出力しているときに開放するスイッチ(52)である、
    車載回転電機システム。
  12.  請求項10に記載の車載回転電機システムにおいて、
     前記電流断続器は、前記トランス二次コイル(42)と前記直流交流変換器(7)との間に配置されたコンデンサー(53)である、
    車載回転電機システム。
  13.  請求項8又は請求項9に記載の回転電機を使用する車載回転電機システムにおいて、
     前記トランス一次コイル(41)に接続される電力回路(9)と、
     前記リアクトル(51)及びステーターコイル(22)に接続される直流交流変換器(7)と、
     前記直流交流変換器(7)に接続されるバッテリー(8)と、
    を有し、
     前記リアクトル(51)に接続され、前記回転電機がトルクを出力しているときにリアクトル(51)に流れる電流を遮断する電流断続器(52,53,752)をさらに含む、
    車載回転電機システム。
  14.  請求項13に記載の車載回転電機システムにおいて、
     前記電流断続器は、前記リアクトル(51)と前記直流交流変換器(7)との間に配置され、前記回転電機がトルクを出力しているときに開放するスイッチ(52)である、
    車載回転電機システム。
  15.  請求項13に記載の車載回転電機システムにおいて、
     前記電流断続器は、前記リアクトル(51)と前記直流交流変換器(7)との間に配置されたコンデンサー(53)である、
    車載回転電機システム。
  16.  請求項10又は請求項13に記載の車載回転電機システムにおいて、
     前記電流断続器は、前記直流交流変換器(7)のコンデンサー(752)で兼用される、
    車載回転電機システム。
  17.  請求項10から請求項16までのいずれか1項に記載の車載回転電機システムにおいて、
     前記電力回路(9)は、力率改善回路を含む、
    車載回転電機システム。
  18.  請求項10から請求項16までのいずれか1項に記載の車載回転電機システムにおいて、
     前記直流交流変換器(7)は、車外電源側交流の電流及び電圧に基づいて、力率改善制御を実行する、
    車載回転電機システム。
  19.  請求項10から請求項18までのいずれか1項に記載の車載回転電機システムにおいて、
     前記電力回路(9)は、前記トランス一次コイル(41)の電圧を制御し、
     前記直流交流変換器(7)は、前記トランス二次コイル(42)の電流を制御し、
     前記電力回路(9)及び前記直流交流変換器(7)は、前記トランス一次コイル(41)の電圧の位相と前記トランス二次コイル(42)の電流の位相とが一致するように制御する、
    車載回転電機システム。
  20.  請求項10から請求項19までのいずれか1項に記載の車載回転電機システムにおいて、
     前記トランス一次コイル(41)に並列に接続されるコンデンサー(91)をさらに含む、
    車載回転電機システム。
PCT/JP2011/071299 2010-10-19 2011-09-20 回転電機及び車載回転電機システム WO2012053304A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/880,257 US9227518B2 (en) 2010-10-19 2011-09-20 Rotary electric machine and in-vehicle rotary electric machine system
CN201180050722.2A CN103201930B (zh) 2010-10-19 2011-09-20 车载旋转电机系统
EP11834146.0A EP2632023B1 (en) 2010-10-19 2011-09-20 Dynamo-electric machine and on-vehicle dynamo-electric machine system
JP2012539645A JP5742850B2 (ja) 2010-10-19 2011-09-20 回転電機システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010234765 2010-10-19
JP2010-234765 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053304A1 true WO2012053304A1 (ja) 2012-04-26

Family

ID=45975026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071299 WO2012053304A1 (ja) 2010-10-19 2011-09-20 回転電機及び車載回転電機システム

Country Status (5)

Country Link
US (1) US9227518B2 (ja)
EP (1) EP2632023B1 (ja)
JP (1) JP5742850B2 (ja)
CN (1) CN103201930B (ja)
WO (1) WO2012053304A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457414A (zh) * 2012-05-28 2013-12-18 博世电动工具(中国)有限公司 一种电动机
WO2021181824A1 (ja) * 2020-03-09 2021-09-16 日立Astemo株式会社 回転電機の固定子、回転電機、および車両駆動装置
JP2022030833A (ja) * 2020-08-07 2022-02-18 株式会社Ihi 磁極および磁気軸受

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305293B2 (ja) * 2014-09-17 2018-04-04 株式会社豊田中央研究所 磁気結合リアクトル及び電力変換装置
DE102016201444B4 (de) * 2016-02-01 2018-11-15 Continental Automotive Gmbh Gleichspannungswandler-Anordnung für eine elektrische Maschine
DE102017206497B4 (de) * 2017-04-18 2022-02-03 Audi Ag Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs, sowie Kraftfahrzeug
CN107370259B (zh) * 2017-08-22 2024-06-18 广东美芝制冷设备有限公司 定子、电机、压缩机和制冷设备
CN107317419B (zh) * 2017-08-22 2024-05-14 广东美芝制冷设备有限公司 定子、电机、压缩机和制冷设备
CN113412566B (zh) 2019-05-24 2024-06-04 华为数字能源技术有限公司 包括变压器和多电平功率变换器的集成充电和电机控制系统
JP2021065038A (ja) * 2019-10-15 2021-04-22 トヨタ自動車株式会社 車両
WO2021074661A1 (en) 2019-10-16 2021-04-22 ZHU, Karen Ming Multibridge power converter with multiple outputs
EP3928411B1 (en) * 2019-11-22 2023-07-19 Huawei Digital Power Technologies Co., Ltd. Integrated charger and motor control system isolated by motor
CN116171521A (zh) * 2021-02-27 2023-05-26 华为数字能源技术有限公司 一种电机、充电装置、动力总成及车辆
KR102659333B1 (ko) * 2021-09-24 2024-04-22 성실에너지 주식회사 원코드 전원플러그를 이용한 전력 동기화 방법을 구비한 자동차

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239849A (ja) * 1986-04-11 1987-10-20 Takashi Yano 変圧巻線付分相形単相誘導電動機
JPH0613250A (ja) * 1993-02-08 1994-01-21 Takashi Yano 電動変圧機
JPH0775213A (ja) * 1993-06-29 1995-03-17 Hitachi Ltd 電気自動車用駆動装置および電気自動車
JPH09233709A (ja) 1996-02-29 1997-09-05 Denso Corp 電気自動車用充電器
JPH10304688A (ja) * 1997-04-24 1998-11-13 Nippon Densan Corp 充電回路付き駆動装置
JP2000061360A (ja) * 1998-08-18 2000-02-29 Hitachi Koki Co Ltd 遠心機用モータの制御装置
JP2000278868A (ja) * 1999-03-24 2000-10-06 Densei Lambda Kk モータ駆動用コントローラ主回路を利用したバッテリー充電方法
JP2002369545A (ja) * 2001-06-13 2002-12-20 Toyota Industries Corp 電源装置
JP2005073500A (ja) * 2004-12-06 2005-03-17 Hitachi Industrial Equipment Systems Co Ltd インバータ駆動電動機、及びインバータ駆動電動機で駆動される機器
JP2010051144A (ja) * 2008-08-25 2010-03-04 Toyota Motor Corp 充電システムおよびそれを備えた車両
JP2010151595A (ja) * 2008-12-25 2010-07-08 Omron Corp 検知装置および方法
JP2010234765A (ja) 2009-03-31 2010-10-21 Dainippon Printing Co Ltd 化粧シートの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220883A (en) * 1977-11-07 1980-09-02 Dante Padoan Stator core for electric motor with transformer coil or the like incorporated therein but magnetically isolated therefrom
JP4003409B2 (ja) * 2001-03-30 2007-11-07 株式会社豊田自動織機 多出力電力変換回路
JP2003324922A (ja) * 2002-04-26 2003-11-14 Honda Motor Co Ltd 多極型磁石発電機
US6707222B2 (en) * 2002-07-03 2004-03-16 Ut-Battelle, Llc Motor stator using corner scraps for additional electrical components
US20040263099A1 (en) * 2002-07-31 2004-12-30 Maslov Boris A Electric propulsion system
JP4367391B2 (ja) 2005-09-01 2009-11-18 トヨタ自動車株式会社 充電制御装置および電動車両
JP4749852B2 (ja) * 2005-11-30 2011-08-17 日立オートモティブシステムズ株式会社 モータ駆動装置及びそれを用いた自動車
JP2008005659A (ja) * 2006-06-23 2008-01-10 Toyota Motor Corp 電動車両
JP2009027831A (ja) 2007-07-19 2009-02-05 Toyota Motor Corp 電気自動車のコンデンサ放電システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239849A (ja) * 1986-04-11 1987-10-20 Takashi Yano 変圧巻線付分相形単相誘導電動機
JPH0613250A (ja) * 1993-02-08 1994-01-21 Takashi Yano 電動変圧機
JPH0775213A (ja) * 1993-06-29 1995-03-17 Hitachi Ltd 電気自動車用駆動装置および電気自動車
JPH09233709A (ja) 1996-02-29 1997-09-05 Denso Corp 電気自動車用充電器
JPH10304688A (ja) * 1997-04-24 1998-11-13 Nippon Densan Corp 充電回路付き駆動装置
JP2000061360A (ja) * 1998-08-18 2000-02-29 Hitachi Koki Co Ltd 遠心機用モータの制御装置
JP2000278868A (ja) * 1999-03-24 2000-10-06 Densei Lambda Kk モータ駆動用コントローラ主回路を利用したバッテリー充電方法
JP2002369545A (ja) * 2001-06-13 2002-12-20 Toyota Industries Corp 電源装置
JP2005073500A (ja) * 2004-12-06 2005-03-17 Hitachi Industrial Equipment Systems Co Ltd インバータ駆動電動機、及びインバータ駆動電動機で駆動される機器
JP2010051144A (ja) * 2008-08-25 2010-03-04 Toyota Motor Corp 充電システムおよびそれを備えた車両
JP2010151595A (ja) * 2008-12-25 2010-07-08 Omron Corp 検知装置および方法
JP2010234765A (ja) 2009-03-31 2010-10-21 Dainippon Printing Co Ltd 化粧シートの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457414A (zh) * 2012-05-28 2013-12-18 博世电动工具(中国)有限公司 一种电动机
WO2021181824A1 (ja) * 2020-03-09 2021-09-16 日立Astemo株式会社 回転電機の固定子、回転電機、および車両駆動装置
JP2021141774A (ja) * 2020-03-09 2021-09-16 日立Astemo株式会社 回転電機の固定子、回転電機、および車両駆動装置
JP7288414B2 (ja) 2020-03-09 2023-06-07 日立Astemo株式会社 回転電機の固定子、回転電機、および車両駆動装置
JP2022030833A (ja) * 2020-08-07 2022-02-18 株式会社Ihi 磁極および磁気軸受
JP7512753B2 (ja) 2020-08-07 2024-07-09 株式会社Ihi 磁極および磁気軸受

Also Published As

Publication number Publication date
JP5742850B2 (ja) 2015-07-01
EP2632023A1 (en) 2013-08-28
CN103201930A (zh) 2013-07-10
EP2632023A4 (en) 2016-07-20
EP2632023B1 (en) 2019-06-26
US20130200697A1 (en) 2013-08-08
US9227518B2 (en) 2016-01-05
JPWO2012053304A1 (ja) 2014-02-24
CN103201930B (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5742850B2 (ja) 回転電機システム
US10056794B2 (en) Rotating electric machine and vehicle equipped with the rotating electric machine
US10797550B2 (en) Rotary electric machine and vehicle provided with the same
US11811284B2 (en) Stator for rotary electric machine and rotary electric machine using same
JP4319961B2 (ja) 回転電機及び電機巻線
US10868448B2 (en) Dynamo-electric machine and vehicle
EP1508955A1 (en) Motor generator
JP5940770B2 (ja) 給電及び充電用複合電源装置の交流電動モータ
JP2001169490A (ja) 車両用回転電機
WO2013051618A1 (ja) 回転電機及び電動車両
JP2012222983A (ja) 固定子および回転電機
JP2012070613A5 (ja)
US20100065354A1 (en) Driving device for vehicle
US11735968B2 (en) Rotary electric machine and vehicle provided with the same
JP2004215483A (ja) モータジェネレータ
WO2022208929A1 (ja) 回転電機の固定子、回転電機
JP5696438B2 (ja) 永久磁石型電動機
JP6626768B2 (ja) 回転電機の固定子、及びこれを備えた回転電機
JP5114354B2 (ja) 分割コアおよびそれを用いた回転電機
WO2022249568A1 (ja) 電動駆動システム
WO2015199105A1 (ja) 回転電機
Mueller et al. Highly Integrated Axial Flux Drive for Low-Voltage Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539645

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13880257

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011834146

Country of ref document: EP