WO2012050018A1 - 電子ビーム装置 - Google Patents
電子ビーム装置 Download PDFInfo
- Publication number
- WO2012050018A1 WO2012050018A1 PCT/JP2011/072941 JP2011072941W WO2012050018A1 WO 2012050018 A1 WO2012050018 A1 WO 2012050018A1 JP 2011072941 W JP2011072941 W JP 2011072941W WO 2012050018 A1 WO2012050018 A1 WO 2012050018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deflector
- electron beam
- deflection
- electron
- chromatic aberration
- Prior art date
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 150
- 230000004075 alteration Effects 0.000 claims abstract description 138
- 238000012937 correction Methods 0.000 claims abstract description 72
- 230000008859 change Effects 0.000 claims description 15
- 239000004020 conductor Substances 0.000 claims description 3
- 230000003071 parasitic effect Effects 0.000 abstract description 20
- 230000003287 optical effect Effects 0.000 description 20
- 230000000694 effects Effects 0.000 description 14
- 201000009310 astigmatism Diseases 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 206010010071 Coma Diseases 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000005405 multipole Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/023—Means for mechanically adjusting components not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/153—Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/153—Correcting image defects, e.g. stigmators
- H01J2237/1534—Aberrations
Definitions
- the present invention relates to an electron beam apparatus that can be used for inspection and measurement.
- a scanning electron microscope (SEM) used for observation, inspection, and measurement of a sample using an electron beam accelerates electrons emitted from an electron source, and irradiates them by focusing them on the sample surface by electrostatic or electromagnetic lenses. This is called primary electrons. Secondary electrons and reflected electrons are generated from the sample by the incidence of primary electrons. By detecting these secondary electrons and reflected electrons while deflecting and scanning the electron beam, a scanned image of a fine pattern and composition distribution on the sample can be obtained. Further, an absorption current image can be formed by detecting electrons absorbed in the sample.
- a desirable function in a scanning electron microscope is that a wide field of view can be scanned without significantly reducing the resolution of the electron beam.
- semiconductors become finer, a two-dimensional high-speed inspection of a resist pattern has become necessary, and scanning with a wide field of view is required for expanding the inspection region and reducing shrinkage.
- Patent Document 1 it is proposed in Patent Document 1 or Patent Document 2 to use an electro-optical element expressed as a so-called E ⁇ B in which an electromagnetic deflector and an electrostatic deflector are combined.
- the E ⁇ B element is also used as an electron beam energy filter component and a secondary electron deflecting element, and is disclosed in Patent Document 3, Patent Document 4, Patent Document 5, Non-Patent Document 1, and the like.
- a first object of the present invention is to provide an electron beam apparatus that can suppress response delay and parasitic aberration caused by deflection even when correcting deflection chromatic aberration, and can realize deflection in a wide field of view with high resolution.
- a second object of the present invention is to provide an electron beam apparatus that can suppress manufacturing-induced parasitic aberrations and can realize deflection in a wide field of view with high resolution.
- a third object of the present invention is to provide an electron beam apparatus in which an E ⁇ B element can be easily adjusted.
- a fourth object of the present invention is to provide an electron beam apparatus capable of suppressing the parasitic aberration caused by deflection and the parasitic aberration caused by manufacturing.
- an electromagnetic deflector above a deflector that defines an electron beam position on a sample, and an offset voltage having a smaller inner diameter than the electromagnetic deflector so as to overlap the electromagnetic deflector Providing an electrostatic deflector capable of applying
- the electrostatic deflector also serves as an astigmatism corrector and a focus corrector, respectively. It is valid.
- the present invention makes it possible to correct deflection chromatic aberration with high sensitivity and to reduce or correct parasitic aberrations, thereby enabling wide field deflection while maintaining high resolution.
- FIG. 10 is an overall schematic diagram of an electron beam apparatus (scanning electron microscope) according to the present embodiment.
- the electron beam 102 emitted from the electron gun 101 is imaged on the sample by the first condenser lens 103, the second condenser lens 130, and the objective lens 108. Secondary electrons and reflected electrons 104 emitted from the sample are detected by a detector 105 in the middle.
- the electron beam on the sample is scanned two-dimensionally by the objective deflector 106, and as a result, a two-dimensional image can be obtained.
- the two-dimensional image is displayed on the display device 119.
- the electromagnetic deflector 1023 and the electrostatic deflector 122 for suppressing the deflection chromatic aberration are concentrically above the objective deflector 106 and the second condenser lens 130 that define the position on the sample. And are arranged so that the height positions from the sample overlap.
- Reference numeral 109 is a sample
- reference numeral 110 is a holder (stage)
- reference numeral 111 is an electron gun controller
- reference numeral 112 is a first condenser lens controller
- reference numeral 114 is a scanning deflector controller
- reference numeral 115 is an electromagnetic lens controller
- Reference numeral 116 is a sample voltage control unit
- reference numeral 117 is a storage device
- reference numeral 118 is a control calculation unit for the entire apparatus
- reference numeral 120 is an electromagnetic deflector control unit
- reference numeral 121 is an electrostatic deflector control unit with an offset
- reference numeral 131 is a second control unit.
- the condenser lens control unit is shown.
- FIG. 11 shows in detail a part of the electron optical configuration in the scanning electron microscope.
- the deflection chromatic aberration correction element 207 includes an electromagnetic deflector 1116 and an electrostatic deflector 206.
- the magnetic field of the electromagnetic deflector 1116 orthogonal to the magnetic field of the electrostatic deflector 206, it is possible to generate deflection chromatic aberration while maintaining the position of the electron beam generally.
- the objective deflector 210 defines the position of the electron beam on the sample, and generates deflection chromatic aberration with the deflection.
- each deflector of the deflection chromatic aberration correction element 207 is also a deflector capable of two-dimensional deflection.
- Reference numeral 201 denotes an electron source
- reference numeral 202 denotes a ground electrode
- reference numeral 208 denotes an electron orbit for only electromagnetic deflection
- reference numeral 209 denotes an electron orbit for only electrostatic deflection
- reference numeral 211 denotes secondary electrons and reflected electrons
- reference numeral 212 denotes a detector.
- Reference numeral 213 denotes an objective lens
- reference numeral 214 denotes a condenser lens
- reference numeral 215 denotes a sample.
- Fig. 12 shows a top view around the deflector.
- the electrostatic deflector 206 is disposed inside the electromagnetic deflector 1116, and the electron beam is decelerated by applying a voltage offset to the electrostatic deflector 206. ing.
- the electrostatic deflector 206 is preferably arranged concentrically with the electromagnetic deflector 1116. The superior point of this method is that the electromagnetic deflector 1116 and the electrostatic deflector 206 are separated.
- the electromagnetic deflector 1116 can be disposed outside the vacuum, and deterioration of the vacuum degree due to degassing from the electromagnetic coil 1201 used in the electromagnetic deflector 1116 and charge-up due to the non-conductive ferrite 1202 are avoided. I can do it. Further, the electromagnetic deflector 1116 can be driven at a ground level potential. On the other hand, the relative deflection directions of both deflectors are susceptible to mechanical errors, but geometrical aberrations (parasitic aberrations) associated with the mechanical errors are corrected by making the electrostatic deflector 206 octupole. Is possible.
- the electrostatic deflector 206 is an octupole deflector in which electrodes are arranged on the circumference. By arranging the electrodes on the circumference, the offset voltage of the electrostatic deflector 206 and the potential of the electron beam are matched as much as possible. I am letting.
- a ground electrode 202 is inserted between the electrostatic deflector 206 and the electromagnetic deflector 1116. The ground electrode 202 serves to stabilize the potential above and below the electrostatic deflector and also serves as a vacuum partition for maintaining a vacuum in the electron beam path.
- the electromagnetic deflector 1116 is cosine wound to reduce the multipole field. Cosine winding itself for reducing the multipole field is a conventional technique.
- the cosine wound electromagnetic deflector 1116 is different from the octupole electrostatic deflector 206 in the geometrical symmetry.
- the electromagnetic deflector 1116 of this embodiment employs cosine winding that generates only dipole components, and the electrostatic deflector 206 is an octupole deflector capable of correcting geometric aberration (parasitic aberration) that can generate multipole components. Adopted. This is important for reducing the geometrical aberration that occurs with the cancellation of deflection chromatic aberration.
- cylindrical electrodes (upper control electrode 203 and lower control electrode 204) capable of applying a voltage are arranged above and below the electrostatic deflector 206, and the offset of the electrostatic deflector 206 is arranged.
- a voltage equivalent to the voltage is applied.
- a deflection voltage and an offset voltage are applied to the electrostatic deflector.
- the effect of this electrode is to enlarge the deceleration region of the electron beam.
- the deflecting electric field of the electrostatic deflector 206 oozes up and down the deflector. Therefore, in order to decelerate the electron beam in the upper and lower regions to the equivalent of the offset voltage, it is necessary to further dispose the control electrodes above and below.
- the length of the deflection electric field oozing depends on the inner diameter of the electrostatic deflector, and the deceleration effect can be ensured by making the length of the electrode longer than the inner diameter. This is important in order to improve the accuracy of canceling out the orbit change of the electron beam by the electromagnetic deflector and the orbit change of the electron beam by the electrostatic deflector. Accordingly, it is desirable that the voltage applied to the control electrodes in the vertical direction is approximately the same as the offset voltage applied to the electrostatic deflector 206. In addition, the deceleration and acceleration of the electron beam cause an electrostatic lens effect.
- FIG. 8 illustrates the spread of the electron beam in the electron microscope according to the present embodiment.
- the sensitivity of deflection chromatic aberration correction greatly depends on the distance between the deflection chromatic aberration correction element (electrostatic deflector 122, electromagnetic deflector 1023) and the crossover position.
- the position of the second crossover 802 changes depending on, for example, the energy of the electron beam 102 used for observing the sample 109 in order to optimize the characteristics of the objective lens 108. Therefore, the deflection chromatic aberration correcting elements (electrostatic deflector 122 and electromagnetic deflector 1023) are further arranged above the upper first crossover 801 so that the characteristics of the deflection chromatic aberration correcting element do not change greatly.
- the electromagnetic deflector 1023 and the electrostatic deflector 122 are disposed above the lens (second condenser lens 130) above the objective deflector 106 that defines the electron beam position.
- Increasing the sensitivity of deflection chromatic aberration correction eliminates the need for a high voltage source or a large current source, and improves response delay during deflection-dependent dynamic correction.
- Electromagnetic deflector power supply 1301 and electrostatic deflector power supply with offset 402 are given a predetermined intensity to each deflector, and the electron source power supply 407 changes the position of the electron beam when the voltage of the electron source 101 is changed by a minute amount. Measure. Thereby, the correction capability in the deflection chromatic aberration correction element (electrostatic deflector 206, electromagnetic deflector 1116) can be evaluated.
- the evaluation can be performed by measuring the change in the position of the electron beam when the strength of the electromagnetic deflector power supply 1301 and the electrostatic deflector power supply 402 is changed by a minute ratio.
- the same evaluation can be used for the deflection chromatic aberration characteristics in the objective deflector 210, and by measuring changes in the deflection amount (scanning magnification) and deflection direction (scanning area rotation) of the deflector that defines the position. Can be evaluated. From these data, the deflection by the objective deflector 210 and the operation of the deflection chromatic aberration element can be linked.
- Reference numeral 213 denotes an objective lens
- reference numeral 404 denotes an objective deflector power source
- reference numeral 405 denotes an objective lens power source
- reference numeral 406 denotes a digital control system.
- ⁇ 2 kV was applied as an offset voltage to the electron source voltage ⁇ 3 kV.
- an electrostatic deflector that can apply an offset voltage having an inner diameter smaller than that of the electromagnetic deflector so as to overlap with the electromagnetic deflector above the deflector that defines the position of the electron beam on the sample.
- an electron beam apparatus that can suppress response lag and parasitic aberration caused by deflection even when correcting deflection chromatic aberration, and can realize deflection in a wide field of view with high resolution.
- an electron beam apparatus that allows easy adjustment of a deflection chromatic aberration correction element (E ⁇ B element) by disposing an electromagnetic deflector and an electrostatic deflector above a lens above an objective deflector that defines an electron beam position. Can be provided.
- an electron beam apparatus capable of suppressing parasitic aberrations caused by deflection and manufacturing-induced parasitic aberrations by having means for automatically measuring changes in deflection amount (scanning magnification) and deflection direction (scanning region rotation). be able to.
- FIG. 1 is a schematic overall configuration diagram of an electron beam apparatus (scanning electron microscope) according to the present embodiment.
- This embodiment is different from the first embodiment in that the electromagnetic deflector 123 constituting the deflection chromatic aberration correcting element has two stages.
- FIG. 2 is a cross-sectional view of an essential part for explaining an electron optical configuration in the scanning electron microscope according to the present embodiment.
- the deflection chromatic aberration correction element 207 has two electromagnetic deflectors 216 and 217 and an electrostatic deflector 206.
- symbol as FIG. 11 shows the same structure.
- the effect that the electromagnetic deflectors (the upper electromagnetic deflector 216 and the lower electromagnetic deflector 217) are in two stages is that the deflection fulcrum can be adjusted. If the deflection fulcrums of the electromagnetic deflector and the electrostatic deflector do not coincide with each other, the electron trajectory is deviated inside the deflection chromatic aberration correcting element, and geometric aberration (parasitic aberration) increases. Even if the positions of the electromagnetic deflector and the electrostatic deflector are made coincident with each other by design, an actual deflection fulcrum does not coincide because an error in processing or assembly occurs. Therefore, it is desirable that either the electromagnetic deflector or the electrostatic deflector has two stages.
- FIG. 3 shows a top view of the deflection chromatic aberration correcting element.
- an octupole deflector is used for electrostatic deflection.
- a beam position measurement mark 410 is provided as a reference mark.
- the electron source power supply 407 changes the voltage of the electron source by a minute amount. The change in the position of the electron beam is measured. Thereby, the correction capability in the deflection chromatic aberration correction element can be evaluated.
- the evaluation can also be performed by measuring the change in the position of the electron beam when the intensity of the upper electromagnetic deflector power source 401, the lower electromagnetic deflector power source 403, and the electrostatic deflector power source 402 is changed by a minute ratio.
- the same evaluation can be used for the deflection chromatic aberration characteristics in the objective deflector 210, and by measuring changes in the deflection amount (scanning magnification) and deflection direction (scanning area rotation) of the deflector that defines the position. Can be evaluated. From these data, the deflection by the objective deflector and the operation of the deflection chromatic aberration element can be linked.
- the upper and lower stage strength and deflection of the electromagnetic deflection so that it passes through the center of the objective lens with the movement amount of each deflection on the sample offset. The orientation is adjusted.
- ⁇ 2 kV was applied as an offset voltage to the electron source voltage ⁇ 3 kV.
- the third embodiment will be described with reference to FIG. Note that the matters described in the first embodiment or the second embodiment but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
- FIG. 5 is a schematic cross-sectional view of an essential part for explaining the electron optical configuration of the electron beam apparatus (scanning electron microscope) according to the present embodiment.
- the same reference numerals as those in FIG. 2 indicate the same configurations.
- the overall configuration of the scanning electron microscope is substantially the same as that of the first or second embodiment. The difference from these is that, in this embodiment, the electrostatic deflector has two stages of an upper stage electrostatic deflector 502 and a lower stage electrostatic deflector 503, and the electromagnetic deflector 501 has one stage.
- the effect is that the deflection fulcrums can be matched.
- ⁇ 2 kV was applied as an offset voltage to the electron source voltage ⁇ 3 kV.
- FIG. 6 is a schematic cross-sectional view of an essential part for explaining the electron optical configuration of the electron beam apparatus (scanning electron microscope) according to the present embodiment.
- the same reference numerals as those in FIG. 2 indicate the same configurations.
- the overall configuration of the scanning electron microscope is substantially the same as that of the first or second embodiment.
- the feature (difference) of this embodiment is that a voltage application electrode 602 is provided instead of the ground electrode.
- the purpose is to accelerate the electron beam in a region other than the deflection chromatic aberration correction element 207. This has the effect of strengthening the electron beam trajectory from disturbance.
- the offset voltage applied to the electrostatic deflector 206 needs to be determined in consideration of the voltage applied to the voltage application electrode, and is determined in consideration of both the correction sensitivity and the electrostatic lens effect.
- the electron source voltage is -2 kV, +2 kV is applied to the voltage application electrode, and -1 kV is applied to the electrostatic deflector.
- the electrostatic lens effect is larger than that of the first embodiment, the stability of the electron beam trajectory in the region other than the deflection chromatic aberration correcting element is increased.
- the deflection chromatic aberration can be corrected, and a large area can be imaged without moving the stage.
- the throughput in multipoint measurement was improved by 80% or more, and the length measurement reproducibility was improved by 0.1 nm.
- the same effects as in the second embodiment can be obtained in this embodiment. Further, by providing a voltage application electrode between the electromagnetic deflector and the electrostatic deflector, the electron beam in the region other than the deflection chromatic aberration correction element can be accelerated, and the electron beam trajectory can be strengthened from disturbance. it can.
- the fifth embodiment will be described with reference to FIG. Note that the matters described in any one of the first to fourth embodiments but not described in the present embodiment can be applied to the present embodiment as long as there are no special circumstances.
- FIG. 7 is a schematic cross-sectional view of an essential part for explaining the electron optical configuration of the electron beam apparatus (scanning electron microscope) according to the present embodiment.
- the same reference numerals as those in FIG. 2 indicate the same configurations.
- the feature of this embodiment is that the electrostatic deflector 701 serves as a focus corrector and an astigmatism corrector.
- the geometrical aberrations parasite aberrations
- coma cannot be corrected, but field curvature (focal deviation) and astigmatism can be corrected by using an appropriate optical element.
- the deceleration electric field produces an electrostatic lens effect. Therefore, focus correction can be performed by controlling the electrostatic lens effect.
- the focal point on the sample can be changed by 10 ⁇ m by setting the offset voltage of ⁇ 3 kV to ⁇ 3.01 kV. This is because the focus sensitivity is improved due to the presence of the offset voltage, and when there is no offset voltage, an order of magnitude voltage is required for the same focus correction. That is, it can be seen that decelerating the electron beam is an effective means for simultaneously correcting the deflection chromatic aberration and the focus. In this case, since it is effective to perform correction at a large potential change, it is effective to change the offset voltage of the upper and lower control electrodes 703 and 704, that is, to use as a control electrode and focus corrector.
- the electrostatic deflector is formed of eight-pole electrodes.
- a voltage can be superimposed on these electrodes so that an electric field having a quadrupole symmetry is generated, and astigmatism due to the quadrupole field can be corrected.
- coma aberration correction caused by the hexapole field can be corrected by applying a voltage so that an electric field having hexapole symmetry is generated on these electrodes.
- the voltage applied to the eight electrodes is as follows.
- the optical element in this embodiment it is possible to correct not only deflection chromatic aberration but also geometric aberration (parasitic aberration) such as field curvature and astigmatism.
- the geometric aberration correction function can correct not only the geometric aberration generated by the deflection chromatic aberration correction element itself but also the curvature of field and astigmatism generated by the deflection that defines the beam position on the sample at the subsequent stage. This is extremely effective for realizing deflection with a wide field of view, which is an object of the present invention, with high resolution.
- FIG. 9 is an electron trajectory diagram for explaining the spread of the electron beam in the scanning electron microscope according to the present embodiment.
- the same reference numerals as those in FIG. 8 indicate the same configurations.
- the sensitivity of the deflection chromatic aberration correcting element greatly depends on the distance from the first crossover 801. Therefore, in this embodiment, the distance from the first crossover 801 is fixed by using three condenser lenses. That is, the change of the crossover position depending on the electron beam voltage and the opening angle applied to the sample can be dealt with only by the change of the second crossover 802 position and the third crossover 902 position.
- ⁇ 2 kV was applied as an offset voltage to the electron source voltage ⁇ 3 kV.
- three aberrations of deflection chromatic aberration, curvature of field, and astigmatism caused by deflection on the sample were corrected.
- the sample was scanned to a size of 150 ⁇ m square on the sample using the objective deflector, it was possible to maintain high resolution in the obtained image, and it was possible to image a large area without moving the stage. This improved the throughput in multipoint measurement by 120% or more.
- the same effects as in the second embodiment can be obtained in this embodiment. Further, since the electrostatic deflector serves as the focus corrector and the astigmatism corrector, focus correction and astigmatism correction can be performed in the deflection chromatic aberration correction element. Also, by fixing the distance between the deflection chromatic aberration correction element and the crossover position, the sensitivity of the deflection chromatic aberration correction element can be made constant.
- the present invention relates to the basic characteristics of an electron beam apparatus, and is not limited to a scanning electron microscope.
- the present invention is not limited to a scanning electron microscope. It can be widely applied to electron beam devices such as observation in the field of view.
- FIG. 14 is a diagram in which the spread of the electron beam is added to FIG. 10, and FIG. 15 shows the electron optical system in this embodiment.
- the electron beam 102 emitted from the electron gun is imaged by the first condenser lens 103 and the deflection chromatic aberration correction element.
- the deflection chromatic aberration correction element acts as an electrostatic lens. Accordingly, in FIG. 10, an image is formed by the two lenses of the first condenser lens 103 and the deflection chromatic aberration correction element.
- the image is formed only by the deflection chromatic aberration correcting element.
- the offset voltage By adjusting the offset voltage, it is possible to improve the deflection chromatic aberration correction sensitivity and form the second intermediate image plane 1402, and to simplify the electron optical system.
- the deflection chromatic aberration correction sensitivity and the intermediate image plane position are formed. Can be adjusted independently.
- the deflection chromatic aberration correction element also serves as an electrostatic lens for forming an intermediate image, whereby the electron optical system can be simplified.
- the present invention is not limited to the above-described embodiments, and includes various modifications.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
- an electron beam apparatus for obtaining an image of the sample based on a secondary electron signal, reflected signal electron or absorbed electron signal generated from the sample,
- An electromagnetic deflector disposed closer to the electron beam source than the deflector with respect to the sample, and the electromagnetic deflector are separated from each other and have a smaller inner diameter than the electromagnetic deflector and a height position from the sample is the electromagnetic
- An electron beam apparatus further comprising a deflection chromatic aberration correction element including an electrostatic deflector disposed inside so as to overlap with the deflector and capable of applying an offset voltage.
- the electron beam apparatus according to (1) wherein the electrostatic deflector of the deflection chromatic aberration correcting element also serves as a focus corrector.
- An electron source and a deflector for defining the position of the electron beam emitted from the electron source on the sample, and being irradiated with the electron beam whose position is defined by the deflector
- An electron beam apparatus for obtaining an image of the sample based on a secondary electron signal generated from the sample, a reflected signal electron or an absorbed electron signal,
- An electrostatic deflector disposed closer to the electron beam source than the deflector with respect to the sample, and an inner diameter larger than the electrostatic deflector so that a height position from the sample overlaps the electrostatic deflector.
- a deflection chromatic aberration correction element including an electromagnetic deflector disposed inside One of the electrostatic deflector and the electromagnetic deflector of the deflection chromatic aberration correcting element is configured in two stages.
- the deflection chromatic aberration correction element is a deflection fulcrum when a deflector constituted by two stages of the electrostatic deflector or the electromagnetic deflector is interlocked.
- the electron beam apparatus is characterized in that the intensity ratio and the deflection direction of the two-stage deflector are adjusted so that the deflection fulcrum of the other deflector coincides with that of the other deflector.
- the electron beam apparatus according to (1) or (4) wherein the electrostatic deflector of the deflection chromatic aberration correction element also serves as a quadrupole aberration corrector or a hexapole aberration corrector. apparatus.
- a voltage can be applied to the upper and lower sides of the electrostatic deflector of the deflection chromatic aberration correction element, and upper and lower electrodes longer than an inner diameter of the electrostatic deflector.
- the electron beam apparatus further comprising: (8) In the electron beam apparatus according to (1) or (4), a grounded conductor or an electrode capable of applying a voltage is provided between the electrostatic deflector and the electromagnetic deflector of the deflection chromatic aberration correction element.
- An electron beam apparatus further comprising: (9) In the electron beam apparatus according to (1) or (4), the total length of the electrostatic deflector and the upper and lower electrodes is longer than a total length of the electromagnetic deflector of the deflection chromatic aberration correction element.
- An electron beam device characterized by the above.
- a lens is further disposed between the deflector that defines the electron beam position on the sample and the deflection chromatic aberration correction element.
- An electron beam apparatus characterized by that. (11) An electron source, a deflector that defines the position of the electron beam emitted from the electron source on the sample, and the electron beam whose position is defined by the deflector are irradiated from the sample.
- An electromagnetic deflector disposed closer to the electron beam source than the deflector with respect to the sample, and the electromagnetic deflector are separated from each other and have a smaller inner diameter than the electromagnetic deflector and a height position from the sample is the electromagnetic A deflection chromatic aberration correction element that includes an electrostatic deflector that is arranged inside so as to overlap with the deflector and to which an offset voltage can be applied; A change in the position of the electron beam when the voltage of the electron source or the intensity of each of the electromagnetic deflector and the electrostatic deflector of the deflection chromatic aberration correction element is simultaneously minutely changed, or the deflection amount of the deflector An electron beam apparatus further comprising means for automatically measuring a change in the deflection direction or both.
- 101-electron gun (electron source), 102-electron beam, 103-first condenser lens, 104-2 secondary and reflected electrons, 105-detector, 106-objective deflector, 108-objective lens, 109-sample, 110-holder (stage), 111-electron gun controller, 112-first condenser lens controller, 114-scanning deflector controller, 115-electromagnetic lens controller, 116-sample voltage controller, 117-storage device, 118—Control unit for the entire apparatus, 119—Display device, 120—Electromagnetic deflector controller, 121—Electrostatic deflector controller with offset, 122—Electrostatic deflector, 123—Electromagnetic deflector, 130—Second Condenser lens 131-second condenser lens controller 201-electron source 202-ground electrode 203-upper control electrode 204-lower control electrode 206-electrostatic Deflect
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
本発明の第2の目的は、製造起因の寄生収差を抑制でき、広い視野での偏向を高分解能で実現することのできる電子ビーム装置を提供することにある。
本発明の第3の目的は、E×B素子の調整が容易な電子ビーム装置を提供することにある。
本発明の第4の目的は、偏向起因の寄生収差及び製造起因の寄生収差を抑制することのできる電子ビーム装置を提供することにある。
上記第2の目的を達成するために、(2)電磁偏向器若しくは静電偏向器のどちらかを2段とすること、
上記第3の目的を達成するために、(3)電子ビーム位置を規定する対物偏向器の上方のレンズより上方に電磁偏向器と静電偏向器を配置すること、
上記第4の目的を達成するために、(4)各々の偏向器の強度を同時に微小変化させるか、電子源の電圧を微小変化させた際の、ビームの位置の変化や位置を規定する偏向器の偏向量(走査倍率)と偏向方向(走査領域の回転)の変化を自動計測する手段を有すること、或いは(5)静電偏向器が非点補正器や焦点補正器を兼ねることがそれぞれ有効である。
また、電子ビーム位置を規定する対物偏向器の上方のレンズより上方に電磁偏向器と静電偏向器を配置することにより、偏向色収差補正素子(E×B素子)の調整が容易な電子ビーム装置を提供することができる。
また、各々の偏向器(電磁偏向器、静電偏向器)の強度を同時に微小変化させるか、電子源の電圧を微小変化させた際の、ビームの位置の変化や位置を規定する偏向器の偏向量(走査倍率)と偏向方向(走査領域の回転)の変化を自動計測する手段を有することにより、偏向起因の寄生収差及び製造起因の寄生収差を抑制することのできる電子ビーム装置を提供することができる。
また、電磁偏向器を2段とすることにより、製造起因の寄生収差を抑制でき、広い視野での偏向を高分解能で実現することのできる電子ビーム装置を提供することができる。
また、静電偏向器を2段とすることにより、製造起因の寄生収差を抑制でき、広い視野での偏向を高分解能で実現することのできる電子ビーム装置を提供することができる。
また、電磁偏向器と静電偏向器との間に電圧印加電極を備えることにより、偏向色収差補正素子以外の領域での電子ビームを加速することができ、電子ビーム軌道を外乱から強くすることができる。
また、静電偏向器が焦点補正器と非点補正器とを兼ねることにより、焦点補正と非点補正とを偏向色収差補正素子内で行うことができる。また、偏向色収差補正素子とクロスオーバー位置との距離を固定化することにより、偏向色収差補正素子の感度を一定にすることができる。
以上のように偏向色収差補正素子が中間像を形成するための静電レンズを兼ねることで電子光学系の簡素化が可能となる。
(1) 電子源と、前記電子源から放出された電子ビームの試料上での位置を規定する偏向器とを有し、前記偏向器により位置を規定された前記電子ビームが照射されることにより前記試料から発生する2次電子信号や反射信号電子あるいは吸収電子の信号に基づいて前記試料の画像を得る電子ビーム装置において、
前記試料に対して前記偏向器よりも前記電子線源側に配置された電磁偏向器と、前記電磁偏向器と分離され、前記電磁偏向器より内径が小さく前記試料からの高さ位置が前記電磁偏向器と重なるように内側に配置され、オフセット電圧の印加が可能な静電偏向器とを含む偏向色収差補正素子を更に有することを特徴とする電子ビーム装置。
(2) 上記(1)記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器が焦点補正器を兼ねることを特徴とする電子ビーム装置。
(3) 上記(1)記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器の上下に配置され、電圧の印加が可能な上下電極を更に有し、前記上下電極は焦点補正器として用いられるものであることを特徴とする電子ビーム装置。
(4) 電子源と、前記電子源から放出された電子ビームの試料上での位置を規定する偏向器とを有し、前記偏向器により位置を規定された前記電子ビームが照射されることにより前記試料から発生する2次電子信号や反射信号電子あるいは吸収電子の信号に基づいて前記試料の画像を得る電子ビーム装置において、
前記試料に対して前記偏向器よりも前記電子線源側に配置された静電偏向器と、前記静電偏向器より内径が大きく前記試料からの高さ位置が前記静電偏向器と重なるように内側に配置された電磁偏向器とを含む偏向色収差補正素子を更に有し、
前記偏向色収差補正素子の前記静電偏向器、若しくは、前記電磁偏向器のいずれか一方が2段で構成されていることを特徴とする電子ビーム装置。
(5) 上記(4)記載の電子ビーム装置において、前記偏向色収差補正素子は、前記静電偏向器若しくは前記電磁偏向器のうち、2段で構成される偏向器を連動させた時の偏向支点と他の偏向器の偏向支点が一致するように前記2段で構成される偏向器の強度比と偏向方向が調整されるものであることを特徴とする電子ビーム装置。
(6) 上記(1)又は(4)記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器が4極子収差補正器や6極子収差補正器を兼ねることを特徴とする電子ビーム装置。
(7) 上記(1)又は(4)記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器の上下に電圧の印加が可能で、前記静電偏向器の内径より長い上下電極を更に有することを特徴とする電子ビーム装置。
(8) 上記(1)又は(4)記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器と前記電磁偏向器の間に、接地された導体もしくは電圧印加が可能な電極を更に有することを特徴とする電子ビーム装置。
(9) 上記(1)又は(4)記載の電子ビーム装置において、前記偏向色収差補正素子の前記電磁偏向器の合計の長さより前記静電偏向器と前記上下電極の長さの合計が長いことを特徴とする電子ビーム装置。
(10) 上記(1)又は(4)記載の電子ビーム装置において、前記試料上での前記電子ビーム位置を規定する前記偏向器と前記偏向色収差補正素子との間にレンズが更に配置されていることを特徴とする電子ビーム装置。
(11) 電子源と、前記電子源から放出された電子ビームの試料上での位置を規定する偏向器と、前記偏向器により位置を規定された前記電子ビームが照射されることにより前記試料から発生する2次電子信号や反射信号電子あるいは吸収電子の信号に基づいて前記試料の画像を得る電子ビーム装置において、
前記試料に対して前記偏向器よりも前記電子線源側に配置された電磁偏向器と、前記電磁偏向器と分離され、前記電磁偏向器より内径が小さく前記試料からの高さ位置が前記電磁偏向器と重なるように内側に配置され、オフセット電圧の印加が可能な静電偏向器とを含む偏向色収差補正素子と、
前記電子源の電圧または前記偏向色収差補正素子の前記電磁偏向器と前記静電偏向器の各々の強度を同時に微小変化させたときの前記電子ビームの位置の変化、あるいは前記偏向器の偏向量と偏向方向の変化、若しくはその両方を自動計測する手段とを更に有することを特徴とする電子ビーム装置。
Claims (16)
- 電子源と、前記電子源から放出された電子ビームの試料上での位置を規定する偏向器とを有し、前記偏向器により位置を規定された前記電子ビームが照射されることにより前記試料から発生する2次電子信号や反射信号電子あるいは吸収電子の信号に基づいて前記試料の画像を得る電子ビーム装置において、
前記試料に対して前記偏向器よりも前記電子線源側に配置された電磁偏向器と、前記電磁偏向器と分離され、前記電磁偏向器より内径が小さく前記試料からの高さ位置が前記電磁偏向器と重なるように内側に配置され、オフセット電圧の印加が可能な静電偏向器とを含む偏向色収差補正素子を更に有することを特徴とする電子ビーム装置。 - 請求項1記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器が焦点補正器を兼ねることを特徴とする電子ビーム装置。
- 請求項1記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器の上下に配置され、電圧の印加が可能な上下電極を更に有し、前記上下電極は焦点補正器として用いられるものであることを特徴とする電子ビーム装置。
- 電子源と、前記電子源から放出された電子ビームの試料上での位置を規定する偏向器とを有し、前記偏向器により位置を規定された前記電子ビームが照射されることにより前記試料から発生する2次電子信号や反射信号電子あるいは吸収電子の信号に基づいて前記試料の画像を得る電子ビーム装置において、
前記試料に対して前記偏向器よりも前記電子線源側に配置された静電偏向器と、前記静電偏向器より内径が大きく前記試料からの高さ位置が前記静電偏向器と重なるように内側に配置された電磁偏向器とを含む偏向色収差補正素子を更に有し、
前記偏向色収差補正素子の前記静電偏向器、若しくは、前記電磁偏向器のいずれか一方が2段で構成されていることを特徴とする電子ビーム装置。 - 請求項4記載の電子ビーム装置において、前記偏向色収差補正素子は、前記静電偏向器若しくは前記電磁偏向器のうち、2段で構成される偏向器を連動させた時の偏向支点と他の偏向器の偏向支点が一致するように前記2段で構成される偏向器の強度比と偏向方向とが調整されるものであることを特徴とする電子ビーム装置。
- 請求項1記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器が4極子収差補正器や6極子収差補正器を兼ねることを特徴とする電子ビーム装置。
- 請求項4記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器が4極子収差補正器や6極子収差補正器を兼ねることを特徴とする電子ビーム装置。
- 請求項1記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器の上下に電圧の印加が可能で、前記静電偏向器の内径より長い上下電極を更に有することを特徴とする電子ビーム装置。
- 請求項4記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器の上下に電圧の印加が可能で、前記静電偏向器の内径より長い上下電極を更に有することを特徴とする電子ビーム装置。
- 請求項1記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器と前記電磁偏向器の間に、接地された導体もしくは電圧印加が可能な電極を更に有することを特徴とする電子ビーム装置。
- 請求項4記載の電子ビーム装置において、前記偏向色収差補正素子の前記静電偏向器と前記電磁偏向器の間に、接地された導体もしくは電圧印加が可能な電極を更に有することを特徴とする電子ビーム装置。
- 請求項1記載の電子ビーム装置において、前記偏向色収差補正素子の前記電磁偏向器の合計の長さより前記静電偏向器と前記上下電極の長さの合計が長いことを特徴とする電子ビーム装置。
- 請求項4記載の電子ビーム装置において、前記偏向色収差補正素子の前記電磁偏向器の合計の長さより前記静電偏向器と前記上下電極の長さの合計が長いことを特徴とする電子ビーム装置。
- 請求項1記載の電子ビーム装置において、前記試料上での前記電子ビーム位置を規定する前記偏向器と前記偏向色収差補正素子との間にレンズが更に配置されていることを特徴とする電子ビーム装置。
- 請求項4記載の電子ビーム装置において、前記試料上での前記電子ビーム位置を規定する前記偏向器前記偏向色収差補正素子との間にレンズが更に配置されていることを特徴とする電子ビーム装置。
- 電子源と、前記電子源から放出された電子ビームの試料上での位置を規定する偏向器と、前記偏向器により位置を規定された前記電子ビームが照射されることにより前記試料から発生する2次電子信号や反射信号電子あるいは吸収電子の信号に基づいて前記試料の画像を得る電子ビーム装置において、
前記試料に対して前記偏向器よりも前記電子線源側に配置された電磁偏向器と、前記電磁偏向器と分離され、前記電磁偏向器より内径が小さく前記試料からの高さ位置が前記電磁偏向器と重なるように内側に配置され、オフセット電圧の印加が可能な静電偏向器とを含む偏向色収差補正素子と、
前記電子源の電圧または前記偏向色収差補正素子の前記電磁偏向器と前記静電偏向器の各々の強度を同時に微小変化させたときの前記電子ビームの位置の変化、あるいは前記偏向器の偏向量と偏向方向の変化、若しくはその両方を自動計測する手段とを更に有することを特徴とする電子ビーム装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012538648A JP5492306B2 (ja) | 2010-10-15 | 2011-10-05 | 電子ビーム装置 |
US13/879,051 US8735814B2 (en) | 2010-10-15 | 2011-10-05 | Electron beam device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-232630 | 2010-10-15 | ||
JP2010232630 | 2010-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012050018A1 true WO2012050018A1 (ja) | 2012-04-19 |
Family
ID=45938247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072941 WO2012050018A1 (ja) | 2010-10-15 | 2011-10-05 | 電子ビーム装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8735814B2 (ja) |
JP (1) | JP5492306B2 (ja) |
WO (1) | WO2012050018A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150034836A1 (en) * | 2013-07-31 | 2015-02-05 | Hitachi High-Technologies Corporation | Electron beam equipment |
WO2016006539A1 (ja) * | 2014-07-07 | 2016-01-14 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置および収差補正器 |
US9960006B2 (en) | 2014-05-13 | 2018-05-01 | Hitachi High-Technologies Corporation | Charged-particle-beam device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6087154B2 (ja) | 2013-01-18 | 2017-03-01 | 株式会社ニューフレアテクノロジー | 荷電粒子ビーム描画装置、試料面へのビーム入射角調整方法、および荷電粒子ビーム描画方法 |
US10090131B2 (en) * | 2016-12-07 | 2018-10-02 | Kla-Tencor Corporation | Method and system for aberration correction in an electron beam system |
JP6951123B2 (ja) * | 2017-05-23 | 2021-10-20 | 株式会社ニューフレアテクノロジー | 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置 |
US10354832B2 (en) * | 2017-06-07 | 2019-07-16 | Kla-Tencor Corporation | Multi-column scanning electron microscopy system |
JP2019164886A (ja) * | 2018-03-19 | 2019-09-26 | 株式会社日立ハイテクノロジーズ | ビーム照射装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001015055A (ja) * | 1999-04-15 | 2001-01-19 | Applied Materials Inc | 荷電粒子ビームカラム |
JP2003332206A (ja) * | 2002-05-10 | 2003-11-21 | Advantest Corp | 電子ビーム露光装置及び電子ビーム処理装置 |
JP2005063983A (ja) * | 2000-01-25 | 2005-03-10 | Hitachi Ltd | 走査電子顕微鏡 |
JP2006221870A (ja) * | 2005-02-08 | 2006-08-24 | Ebara Corp | 電子線装置 |
JP2007188937A (ja) * | 2006-01-11 | 2007-07-26 | Jeol Ltd | 荷電粒子ビーム装置 |
JP2009199904A (ja) * | 2008-02-22 | 2009-09-03 | Hitachi High-Technologies Corp | 収差補正器を備えた荷電粒子線装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3757371B2 (ja) | 1999-07-05 | 2006-03-22 | 日本電子株式会社 | エネルギーフィルタ及びそれを用いた電子顕微鏡 |
EP1235251B1 (en) | 1999-10-29 | 2011-02-16 | Hitachi, Ltd. | Electron beam apparatus |
US6787772B2 (en) | 2000-01-25 | 2004-09-07 | Hitachi, Ltd. | Scanning electron microscope |
WO2002001597A1 (fr) * | 2000-06-27 | 2002-01-03 | Ebara Corporation | Appareil d'inspection a faisceau de particules chargees et procede de fabrication d'un dispositif utilisant cet appareil d'inspection |
US7041988B2 (en) * | 2002-05-10 | 2006-05-09 | Advantest Corp. | Electron beam exposure apparatus and electron beam processing apparatus |
JP2006277996A (ja) | 2005-03-28 | 2006-10-12 | Ebara Corp | 電子線装置及び該装置を用いたデバイス製造方法 |
JP2007035386A (ja) | 2005-07-26 | 2007-02-08 | Ebara Corp | 電子線装置及び該装置を用いたデバイス製造方法 |
-
2011
- 2011-10-05 US US13/879,051 patent/US8735814B2/en not_active Expired - Fee Related
- 2011-10-05 JP JP2012538648A patent/JP5492306B2/ja not_active Expired - Fee Related
- 2011-10-05 WO PCT/JP2011/072941 patent/WO2012050018A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001015055A (ja) * | 1999-04-15 | 2001-01-19 | Applied Materials Inc | 荷電粒子ビームカラム |
JP2005063983A (ja) * | 2000-01-25 | 2005-03-10 | Hitachi Ltd | 走査電子顕微鏡 |
JP2003332206A (ja) * | 2002-05-10 | 2003-11-21 | Advantest Corp | 電子ビーム露光装置及び電子ビーム処理装置 |
JP2006221870A (ja) * | 2005-02-08 | 2006-08-24 | Ebara Corp | 電子線装置 |
JP2007188937A (ja) * | 2006-01-11 | 2007-07-26 | Jeol Ltd | 荷電粒子ビーム装置 |
JP2009199904A (ja) * | 2008-02-22 | 2009-09-03 | Hitachi High-Technologies Corp | 収差補正器を備えた荷電粒子線装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150034836A1 (en) * | 2013-07-31 | 2015-02-05 | Hitachi High-Technologies Corporation | Electron beam equipment |
JP2015032360A (ja) * | 2013-07-31 | 2015-02-16 | 株式会社日立ハイテクノロジーズ | 電子ビーム装置 |
US9543053B2 (en) | 2013-07-31 | 2017-01-10 | Hitachi High-Technologies Corporation | Electron beam equipment |
US9960006B2 (en) | 2014-05-13 | 2018-05-01 | Hitachi High-Technologies Corporation | Charged-particle-beam device |
DE112015001763B4 (de) | 2014-05-13 | 2022-03-03 | Hitachi High-Tech Corporation | Vorrichtung mit einem Strahl geladener Teilchen |
WO2016006539A1 (ja) * | 2014-07-07 | 2016-01-14 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置および収差補正器 |
JP2016018626A (ja) * | 2014-07-07 | 2016-02-01 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置および収差補正器 |
Also Published As
Publication number | Publication date |
---|---|
US20130270435A1 (en) | 2013-10-17 |
JPWO2012050018A1 (ja) | 2014-02-24 |
JP5492306B2 (ja) | 2014-05-14 |
US8735814B2 (en) | 2014-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5492306B2 (ja) | 電子ビーム装置 | |
CN102064074B (zh) | 用于粒子光学透镜的轴向像差的校正器 | |
US8592776B2 (en) | Charged particle beam apparatus | |
TWI401721B (zh) | 電子束裝置 | |
JP6490772B2 (ja) | 荷電粒子ビーム装置 | |
JP5097512B2 (ja) | 荷電粒子ビーム用軌道補正器、及び荷電粒子ビーム装置 | |
US7875858B2 (en) | Charged particle beam trajectory corrector and charged particle beam apparatus | |
US7872240B2 (en) | Corrector for charged-particle beam aberration and charged-particle beam apparatus | |
WO2017002243A1 (ja) | 収差補正方法、収差補正システムおよび荷電粒子線装置 | |
JP6265643B2 (ja) | 電子ビーム装置 | |
JP2018174016A (ja) | 荷電粒子線装置 | |
WO2016125844A1 (ja) | 複合荷電粒子線装置 | |
JP2023110072A (ja) | 走査型電子顕微鏡および走査型電子顕微鏡の2次電子検出方法 | |
JP4781211B2 (ja) | 電子線装置及びこれを用いたパターン評価方法 | |
US10832886B2 (en) | Beam irradiation device | |
JP2003187730A (ja) | ビームセパレータ及び反射電子顕微鏡 | |
JP7051655B2 (ja) | 荷電粒子線装置 | |
JP4135221B2 (ja) | 写像型電子顕微鏡 | |
US12062519B2 (en) | Beam deflection device, aberration corrector, monochromator, and charged particle beam device | |
JP2023545002A (ja) | 調整可能な作動距離付近の高速オートフォーカスを伴うマルチビーム粒子顕微鏡および関連方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11832453 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012538648 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13879051 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11832453 Country of ref document: EP Kind code of ref document: A1 |