WO2012049735A1 - Pzt薄膜の形成方法及び半導体装置の製造方法 - Google Patents

Pzt薄膜の形成方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2012049735A1
WO2012049735A1 PCT/JP2010/067892 JP2010067892W WO2012049735A1 WO 2012049735 A1 WO2012049735 A1 WO 2012049735A1 JP 2010067892 W JP2010067892 W JP 2010067892W WO 2012049735 A1 WO2012049735 A1 WO 2012049735A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thd
thin film
raw material
dmhd
Prior art date
Application number
PCT/JP2010/067892
Other languages
English (en)
French (fr)
Inventor
増田 健
梶沼 雅彦
山田 貴一
植松 正紀
弘綱 鄒
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to PCT/JP2010/067892 priority Critical patent/WO2012049735A1/ja
Publication of WO2012049735A1 publication Critical patent/WO2012049735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material

Definitions

  • the present invention relates to a method for forming a PZT thin film and a method for manufacturing a semiconductor device including the thin film.
  • a ferroelectric thin film used for a ferroelectric memory such as a DRAM (Dynamic Random Access Memory), a dielectric conductor filter, etc.
  • a ferroelectric memory such as a DRAM (Dynamic Random Access Memory), a dielectric conductor filter, etc.
  • it exhibits large remanent polarization, ferroelectricity, etc., so that zircon titanate having a perovskite structure.
  • a thin film of lead acid (Pb (Zr x , Ti 1-x ) O 3 ; hereinafter referred to as PZT) is used.
  • MOCVD metal organic chemical vapor deposition
  • This MOCVD method is a method in which an organic metal compound is used as a raw material in a CVD process in which a thin film raw material is reacted at a high temperature to form a film on a substrate, and an organic metal compound gas and a reactive gas (oxidizing gas or (Reducing gas) is reacted to form a film (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 Pb (thd) 2 , Zr (dmhd) 4, and Ti (i-PrO) 2 (thd) 2 are used as raw materials, and these organometallic compound raw gases and oxidizing gases that change their concentrations with time
  • Patent Document 2 the film is formed using Pb (CH 3 COO) 2 .3H 2 O, Zr (t-BuO) 4 and Ti (i-PrO) 4. Yes.
  • Patent Document 3 a method of manufacturing an oxide film by supplying a gas mixture of a source gas, an oxidizing gas and a dilution gas onto a substrate and reacting them is also known (for example, see Patent Document 3).
  • a film is formed using Pb (thd) 2 , Zr (dmhd) 4, and Ti (i-PrO) 2 (thd) 2 as organometallic compound raw materials.
  • an organometallic compound selected from Pb (thd) 2 , Zr (thd) 4 , Zr (dmhd) 4 , Ti (i-PrO) 2 (thd) 2 , Zr (mmp) 4 , Ti (mmp) 4 A method of forming a PZT thin film using a raw material gas and a reactive gas is also known (see, for example, Patent Document 4).
  • Patent Document 5 a film forming apparatus for realizing in-plane uniformity of a large-diameter substrate is known (for example, see Patent Document 5).
  • in-plane uniformity is improved by optimizing the diameter of the shower plate, the distance between the shower plate and the substrate, and the like.
  • Patent Documents 6 and 7 a thin film manufacturing apparatus and a thin film manufacturing method that realize a low number of particles during film formation are known (see, for example, Patent Documents 6 and 7).
  • Pb (dpm) 2 , Zr (dmhd) 4 , and Ti (i-PrO) 2 (dpm) 2 are used as organometallic compound raw materials, and oxygen particles are used as a reaction gas to reduce particles.
  • the film is formed by the number.
  • FeRAM which is a ferroelectric memory device that stores the reproducibility and composition distribution of the electrical characteristics of the obtained PZT thin film, for example, in the form of spontaneous polarization of the ferroelectric film
  • the current situation is that the flow rate control and the raw material gas cocktail alone have not yet reached a sufficient level in terms of reduction of the surface roughness of the obtained film, reproducibility of electrical characteristics, and film composition distribution.
  • the amount of each metal incorporated at a predetermined film formation temperature is not always stable, and even if the film composition distribution and film formation reproducibility within the substrate surface can be satisfied.
  • the present situation is that the microscopic variation in the generation of crystal grains in the substrate surface cannot be suppressed and the surface roughness is inferior.
  • An object of the present invention is to solve the above-described problems of the prior art, and the combination of specific organometallic compound raw materials stabilizes the amount of each metal taken in at a predetermined film formation temperature, so Formation of a PZT thin film that can improve the distribution of the film composition, suppress microscopic variations in the generation of crystal grains in the substrate surface, and achieve an improvement in surface roughness.
  • a method and a manufacturing method of a semiconductor device including the thin film are provided.
  • the method of forming a PZT thin film according to the present invention is a method of forming a PZT thin film on a substrate placed in a film forming chamber by MOCVD.
  • three types of metals organometallic compounds for Pb, Zr and Ti
  • organometallic compounds for Pb, Zr and Ti As a raw material, one kind of organometallic compound raw material for Pb selected from Pb (thd) 2 and Pb (dmhd) 2 , Zr (dmhd) 4 , Zr (thd) 2 (dmhd) 2 , Zr (thd) 3
  • organometallic compound raw material for Zr selected from (dmhd), Zr (i-PrO) 2 (thd) 2 , and Zr (i-PrO) (thd) 3
  • Ti (i-PrO) 2 ( dmhd) 2 of an organometallic compound raw material for Ti is a raw material, one kind of organometallic compound raw
  • organometallic compound raw materials as described above stabilizes the amount of each metal incorporated into the PZT thin film at a predetermined film forming temperature, and improves the film composition distribution and film forming reproducibility within the substrate surface. In addition, it is possible to suppress microscopic variations in the generation of crystal grains in the substrate surface, thereby achieving improvement in surface roughness.
  • Pb (thd) 2 , Zr (i-PrO) (thd) 3 , and Ti (i-PrO) 2 (dmhd) 2 are used as the respective organometallic compound raw materials for Pb, Zr, and Ti. It is characterized by.
  • the respective organometallic compound raw materials for Pb, Zr, and Ti are dissolved in a solvent selected from tetrahydrofuran, n-butyl acetate, sec-butyl acetate, octane, cyclohexane, and ethylcyclohexane, vaporized, and used together with an oxidizing gas. It is characterized by that.
  • the temperature of the substrate is 560 to 620 ° C.
  • the ratio of the amount of each of Pb, Zr, and Ti incorporated into the PZT thin film is difficult to be constant.
  • W which is often used for substrates, particularly FeRAM, is used. There is a concern that the plug will be oxidized.
  • the gas obtained by vaporizing the solution of the organometallic compound raw material and the oxidizing gas as the reaction gas are mixed, and then the mixed gas is supplied to the film forming chamber. Thereby, there is no unevenness and a reaction can be sufficiently generated on the substrate.
  • the film formation is performed by setting the pressure in the film formation chamber to 266.6 to 1333 Pa.
  • the staying time of the film forming gas increases, so that the film forming gas undergoes vapor phase decomposition and abnormal grain growth occurs.
  • the lower limit is a normal film forming pressure that can be used in PZT film formation.
  • a method of manufacturing a semiconductor device according to the present invention includes a PZT ferroelectric film, and in the method of manufacturing a semiconductor device in which ferroelectric crystals are mainly (111) oriented in the ferroelectric film.
  • the film is formed by the above-described method for forming a PZT thin film.
  • the PZT thin film obtained as described above is used as the ferroelectric film constituting the ferroelectric memory or the like, a useful memory or the like can be realized.
  • the present invention it is possible to improve the film composition distribution and film reproducibility of the PZT thin film in the substrate surface, and to suppress microscopic variations in the generation of crystal grains in the substrate surface. And the effect of improving the surface roughness can be achieved.
  • Example 1 is the case where the raw material F is used
  • (b) is the case where the raw material G of Example 1 is used
  • (c-1) is the substrate in-plane when the raw material F of Example 1 is used.
  • (C-2) is a graph showing the composition distribution of each metal in the substrate surface when the raw material G of Example 1 is used.
  • 6 is a photograph showing an SEM image of a thin film obtained by performing PZT film formation according to Example 2, and (a-1) shows the film formation state on the surface of the thin film in the case of Process-A of Example 2 on an oblique side of the substrate.
  • FIG. 6 is a graph showing the crystal orientation of a thin film obtained in the case of Processes A, B and C according to Example 3.
  • FIG. 6 is a graph showing the electrical characteristics of the thin film obtained in the case of Processes A, B and C according to Example 4 and shows the relationship between electric field (kV / cm) and polarization ( ⁇ C / cm 2 ).
  • Pb, Zr and Ti In a method of forming a PZT thin film on a substrate placed in a film forming chamber by MOCVD, three kinds of metals: for Pb, Zr and Ti (A) Pb (thd) 2 (bis 2,2,6,6-tetramethyl-3,5-heptanedionate lead) and Pb (dmhd) 2 (bis 2,6)
  • Pb (thd) 2 bis 2,2,6,6-tetramethyl-3,5-heptanedionate lead
  • Pb (dmhd) 2 bis 2,6
  • One kind of organometallic compound raw material for Pb selected from -dimethyl-3,5-heptanedionate lead, preferably Pb (thd) 2 and (b) Zr (dmhd) 4 (tetrakis 2,6-dimethyl -3,5-heptanedionate zirconium), Zr (thd) 2 (dmhd) 2 (bis-2,2,6,6-t
  • a gas and an oxidizing gas (reactive gas) such as oxygen are supplied at a predetermined flow rate onto a substrate placed in the film formation chamber via a shower plate, and preferably an organic metal compound raw material gas and an oxidizing gas After mixing, the mixed gas is supplied to the film forming chamber and reacted on a substrate set at a predetermined substrate temperature (preferably 560 to 620 ° C.) under a pressure set at 266.6 to 1333 Pa.
  • a predetermined substrate temperature preferably 560 to 620 ° C.
  • the apparatus for forming the above-described PZT ferroelectric thin film is not particularly limited.
  • a vaporizer for vaporizing the respective organometallic compound raw materials for Pb, Zr, and Ti, the obtained raw material gas, and Any film forming chamber having a vacuum controllable line provided with a line for introducing an oxidizing gas may be used.
  • the thin film manufacturing apparatus described in Japanese Patent Application Laid-Open No. 2005-054252 or Japanese Patent Application Laid-Open No. 2005-054253 may be used.
  • the thin film manufacturing apparatus described in Japanese Patent Application Laid-Open Nos. 2005-054252 and 2005-054253 introduces a film forming gas into the reaction chamber from the upper part of the reaction chamber, which is the reaction space of the vacuum chamber, through the shower head, and the substrate stage.
  • a concentric circle composed of a substrate stage, a shower head, and a deposition plate, in which the upper reaction space does not rotate or lift, and a deposition plate and the substrate stage
  • the gas exhaust path is provided as a gas exhaust path, and an inert gas flows from above the gas exhaust path along the deposition preventing plate.
  • a lower space is provided on the secondary side of the gas exhaust path.
  • a vent line for introducing a vent gas into the vacuum chamber may be provided via a built-in shower head, and this vent line shares a film forming gas line connected to the shower head.
  • the vent line may be provided with a slow vent system, the shower head surface is composed of a disc-shaped shower plate, and a heat exchange means is provided on the contact surface between the upper lid and the shower plate. The temperature of the shower plate is controlled by heat exchange with the upper lid.
  • a method for manufacturing a semiconductor device including a PZT thin film according to the present invention includes, for example, a ferroelectric memory obtained by a known method, in which a crystal is mainly (111) oriented as a PZT ferroelectric film constituting this memory.
  • the film is formed by the method described above.
  • the present inventors have noticed that the amount of Pb, Zr, and Ti incorporated into the PZT thin film is dependent on the substrate temperature.
  • a film was formed by using a combination of organometallic compound raw materials in which the differential coefficients (temperature gradients) of the respective metals with respect to the substrate temperature were equal.
  • the distribution of the composition of each metal in the substrate surface and the reproducibility of film formation can be improved, and the microscopic variation in the generation of crystal grains of each metal in the substrate surface can be controlled.
  • the surface roughness of the film can be improved.
  • a general method for selecting an organic metal compound raw material in the present invention will be described.
  • the change in the amount of each metal incorporated into the film when the film formation temperature in the PZT film formation is varied is examined.
  • the differential coefficient with respect to the film formation temperature of the amount of each metal incorporated with respect to the actual film formation temperature is compared.
  • the replacement will be examined in the direction in which this differential coefficient is aligned with each of the metals Pb, Zr, and Ti.
  • DTA Different Thermal Analysis
  • Example 1 in the combination of the organic metal compound raw materials of Pb, Zr, and Ti, the change in the amount of each metal incorporated into the film when the film formation temperature in the PZT film formation is varied (500 to 620 ° C.) is compared.
  • Example 1 and Example 1 will be described.
  • raw material C Pb (thd) 2 , Ti (i-PrO) 2 (thd) 2 , Zr (dmhd) 4 , Zr (thd) 2 (dmhd) 2 , or Zr (thd) 3 (dmhd), each raw material is dissolved in THF, and raw material D: Pb (thd) 2 , Ti (i-PrO) 2 (thd) 2 , and Zr (i-PrO) 2 (thd) 2 are used.
  • each raw material is dissolved in octane, and each raw material is mixed with acetic acid using raw material E: Pb (thd) 2 , Ti (i-PrO) 2 (thd) 2 , and Zr (i-PrO) (thd) 3. Dissolved in n-butyl.
  • each raw material solution was vaporized at a vaporization temperature of 220 to 250 ° C. at a bulk raw material flow rate of about 0.6 mL / min, and the obtained raw material gas was formed through a shower plate.
  • the film was introduced into the film chamber, supplied onto the substrate, and PZT film formation was performed while introducing 3500 sccm of oxygen gas at a predetermined substrate temperature (500 to 620 ° C.).
  • a predetermined substrate temperature 500 to 620 ° C.
  • the horizontal axis represents the substrate temperature (Tsub; ° C.), and the vertical axis represents the normalized XRF intensity.
  • 1 (a), (b) and (c) show the case where Zr (dmhd) 4 , Zr (thd) 2 (dmhd) 2 and Zr (thd) 3 (dmhd) are used as Zr raw materials, respectively.
  • FIG. 1D shows the case where Zr (i-PrO) 2 (thd) 2 is used as the Zr raw material
  • FIG. 1E shows the case where Zr (i-PrO) ( thd) 3 is used.
  • the raw materials F: Pb (thd) 2 , Zr (i-PrO) (thd) 3 , and Ti (i-PrO) 2 (thd) 2 were used as raw materials for PZT film formation, and each raw material was changed to n-butyl acetate. Each raw material was dissolved in n-butyl acetate using raw materials G: Pb (thd) 2 , Zr (i-PrO) (thd) 3 , and Ti (i-PrO) 2 (dmhd) 2 . Using the obtained organometallic compound raw material solution, each raw material solution was vaporized at a vaporization temperature of 220 to 250 ° C.
  • composition distribution in the substrate surface of the PZT film obtained by forming the film at the substrate temperature of 620 ° C. according to the same method as above using the solution of the raw materials F and G was measured with a fluorescent X-ray analyzer. The results are shown in FIG. 2 (c-1) for the raw material F and in FIG. 2 (c-2) for the raw material G.
  • FIG. 2 (a) and 2 (b) the horizontal axis is the substrate temperature (Tsub; ° C.), the vertical axis is the normalized XRF intensity, and FIG. 2 (a) is the case where the raw material F is used.
  • FIG. 2B shows the case where the raw material G is used.
  • the temperature dependence of the amount of each metal incorporated into the PZT film at the substrate temperature of 560 to 620 ° C. is as follows. In the case of the raw material G, all the metals were aligned at the same inclination, and showed a tendency to decrease from a lower temperature.
  • each metal in the substrate surface will be described with reference to FIGS. 2 (c-1) and (c-2).
  • the horizontal axis represents the position (mm) from the center of the substrate, and the vertical axis represents Pb / (Zr + Ti) and Zr / (Zr + Ti).
  • the temperature dependence of the amount of incorporation in the film can be made uniform at the same inclination around the substrate temperature of 560 to 620 ° C.
  • the ratio of the amount of each metal incorporated in the PZT film at the substrate temperature of 560 to 620 ° C. is the same.
  • Ti (i-PrO) 2 (dmhd) 2 an organometallic compound having a dmhd group instead of a thd group
  • Pb, Zr, and Ti can be incorporated into all PZT films with the same inclination depending on the substrate temperature.
  • Pb (dmhd) 2 having a low decomposition temperature is used as the Pb raw material, the amounts of Pb, Zr, and Ti incorporated into all PZT films can be made to have the same slope dependency on the substrate temperature.
  • the substrate temperature is 620 ° C.
  • Ma In the heat-up time 200 seconds, was performed PZT film while oxygen gas was introduced 3500 sccm.
  • the surface morphology (surface roughness) of the PZT thin film thus obtained was observed with an SEM image, and the result is shown in FIG.
  • the surface roughness was measured with an AFM (atomic force microscope) and displayed as Ra / PV.
  • FIG. 3 (a-1) shows a case where Pb (thd) 2 , Zr (dmhd) 4 , and Ti (i-PrO) 2 (thd) 2 are used as the organometallic compound raw material (Process-A). 3) is a photograph taken from obliquely above the substrate surface, and FIG. 3A-2 shows a cross section of the substrate.
  • FIG. 3 (b-1) is performed using the above Pb (thd) 2 , Zr (i-PrO) 1 (thd) 3 , and Ti (i-PrO) 2 (dmhd) 2 as organometallic compound raw materials.
  • the film formation state on the thin film surface in the case of (Process-B) was photographed obliquely from above the substrate, and FIG. 3 (b-2) shows a cross section of the substrate.
  • the crystal orientation of the PZT ferroelectric thin film was examined.
  • the PZT ferroelectric thin film has a remanent polarization value in the (001) direction and no remanent polarization value in the (100) direction, the lattice lengths of (001) and (100) are almost the same.
  • (100) grows and the remanent polarization value decreases.
  • this (111) -oriented PZT ferroelectric thin film is excellent in polarization reversal fatigue characteristics and imprint characteristics, which are indicators of device reliability. Therefore, when the crystal orientation of the PZT thin film obtained in the case of Processes A, B, and C in Example 2 was examined, all three showed PZT (111) orientation (FIG. 4).
  • the PZT films obtained for all of the processes A to C show the hysteresis characteristics peculiar to the ferroelectric film, and it can be seen that they have ferroelectricity.
  • the polarization amount (spontaneous polarization amount) when the electric field is 0 kV / cm is the same, and has almost the same ferroelectricity.
  • Example 1 The method described in Example 1 was repeated. However, PZT film formation was performed using sec-butyl acetate, octane, cyclohexane, and ethylcyclohexane instead of n-butyl acetate as a solvent for dissolving each raw material.
  • PZT film thus obtained, the ratio of the substrate temperature and the amount of each metal incorporated in the PZT film is almost the same, and the composition distribution of each metal in the substrate surface is uniform as in Example 1. It is.
  • the amount of each metal taken in at a predetermined film formation temperature is stabilized, and it is possible to improve the film composition distribution and film formation reproducibility in the substrate surface. Since the microscopic variation in the generation of crystal grains in the substrate surface can be suppressed and the improvement of the surface roughness can be achieved, the obtained thin film can be used as a ferroelectric memory constituting a ferroelectric memory or the like. It is useful as a body film and can be used in the technical field of the semiconductor device industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

Pb、Zr及びTi用のそれぞれの有機金属化合物原料として、Pb(thd)及びPb(dmhd)から選ばれた1種類のPb用有機金属化合物原料と、Zr(dmhd)、Zr(thd)(dmhd)、Zr(thd)(dmhd)、Zr(i-PrO)(thd)、及びZr(i-PrO)(thd)から選ばれた1種類のZr用有機金属化合物原料と、Ti(i-PrO)(dmhd)のTi用有機金属化合物原料とを用いる。この強誘電体薄膜を含む半導体装置を製造する。

Description

PZT薄膜の形成方法及び半導体装置の製造方法
 本発明は、PZT薄膜の形成方法及びこの薄膜を含んでなる半導体装置の製造方法に関する。
 近年、DRAM(ダイナミックランダムアクセスメモリ)等の強誘電体メモリや、誘電導体フィルタ等に用いられる強誘電体薄膜として、大きな残留分極、強誘電性等を示すことから、ペロブスカイト構造を有するチタン酸ジルコン酸鉛(Pb(Zr,Ti1-x)O;以下、PZTと称す)の薄膜が利用されている。
 このPZT薄膜からなる強誘電体膜の形成に関しては、欠陥の少ない高品質な膜であって、段差被覆性(ステップカバレッジ性)にも優れ、かつ大口径基板の面内均一性にも優れたPZT薄膜を再現性良く製造する方法として、有機金属化学気相成長(Metal Organic Chemical Vapor Deposition;以下、MOCVD)法が検討されている。
 このMOCVD法は、薄膜原料を高温中で反応させて基板上に成膜するCVDプロセスのうち、特に原料として有機金属化合物を用いる方法であり、有機金属化合物のガスと反応性ガス(酸化ガス又は還元ガス)とを反応させて成膜するものである(例えば、特許文献1及び2参照)。特許文献1では、原料としてPb(thd)とZr(dmhd)とTi(i-PrO)(thd)とを用い、これらの有機金属化合物原料ガスと濃度を時間と共に変化させる酸化ガスとを用いて成膜し、また、特許文献2では、Pb(CHCOO)・3HOとZr(t-BuO)とTi(i-PrO)とを用いて成膜している。
 また、原料ガス、酸化ガス及び希釈ガスからなる混合ガスを基板上に供給して反応せしめて、酸化物膜を製造する方法も知られている(例えば、特許文献3参照)。特許文献3では、有機金属化合物原料として、Pb(thd)とZr(dmhd)とTi(i-PrO)(thd)とを用いて成膜している。
 さらに、Pb(thd)、Zr(thd)、Zr(dmhd)、Ti(i-PrO)(thd)、Zr(mmp)、Ti(mmp)から選ばれた有機金属化合物原料のガスと反応ガスとを用いてPZT薄膜を形成する方法も知られている(例えば、特許文献4参照)。
 さらにまた、大口径基板の面内均一性を実現するための成膜装置が知られている(例えば、特許文献5参照)。特許文献5では、シャワープレートの直径やシャワープレートと基板間の距離等を最適化することで面内均一性を向上させている。
 さらにまた、成膜中の低パーティクル数を実現する薄膜製造装置及び薄膜製造方法が知られている(例えば、特許文献6及び7参照)。特許文献6及び7では、有機金属化合物原料として、Pb(dpm)、Zr(dmhd)、及びTi(i-PrO)(dpm)を用い、反応ガスとして酸素ガスを用いて低パーティクル数で成膜している。
特開2003-324101号公報 特開2005-150756号公報 特開2004-273787号公報 特開2005-166965号公報 特開2004-35971号公報 特開2005-054252号公報 特開2005-054253号公報
 従来、MOCVD法によるPZT薄膜の形成技術においては、高品質の膜を形成するために、PZT薄膜の結晶配向性の制御、成膜ガス(混合ガス)供給の際の事前加熱等の手法が採られてきたが、微視的な結晶組織の制御は困難で、表面ラフネスが非常に大きいという問題があった。
 また、成膜再現性の観点から考えると、得られるPZT薄膜の電気特性の再現性や組成分布を、例えば情報を強誘電体膜の自発分極の形で記憶する強誘電体記憶装置であるFeRAMの量産に使用できるレベルにするためには、PZT薄膜の膜組成の再現性及び分布を±1%以下に管理する必要がある。そのため、原料ガスや反応ガスの流量を制御するマスフローコントローラーの精度向上や、原料ガスのカクテル化等の面から開発が進められている。しかしながら、流量制御や原料ガスのカクテル化だけでは、得られる膜の表面ラフネス低減や、電気特性再現性、膜組成分布の点から、いまだ十分なレベルには達していないのが現状である。
 すなわち、上記従来技術で得られたPZT薄膜の場合、所定の成膜温度での各金属の取り込み量が必ずしも安定せず、基板面内の膜組成の分布及び成膜再現性が満足できるものでもなく、基板面内の結晶粒の発生の微視的なバラツキが抑制できず、表面ラフネスにも劣るのが現状である。
 本発明の課題は、上述の従来技術の問題点を解決することにあり、特定の有機金属化合物原料の組み合わせにより、所定の成膜温度での各金属の取り込み量が安定し、基板面内の膜組成の分布を向上せしめることが可能になると共に、基板面内の結晶粒の発生の微視的なバラツキを抑制することができ、さらに表面ラフネスの向上を達成することができるPZT薄膜の形成方法及びこの薄膜を含んでなる半導体装置の製造方法を提供することにある。
 本発明のPZT薄膜の形成方法は、MOCVD法により、成膜室内に載置された基板上にPZT薄膜を形成する方法において、3種類の金属:Pb、Zr及びTi用のそれぞれの有機金属化合物原料として、Pb(thd)及びPb(dmhd)から選ばれた1種類のPb用有機金属化合物原料と、Zr(dmhd)、Zr(thd)(dmhd)、Zr(thd)(dmhd)、Zr(i-PrO)(thd)、及びZr(i-PrO)(thd)から選ばれた1種類のZr用有機金属化合物原料と、Ti(i-PrO)(dmhd)のTi用有機金属化合物原料とを用いることを特徴とする。
 上記したような有機金属化合物原料の組み合わせにより、所定の成膜温度でのPZT薄膜中への各金属の取り込み量が安定し、基板面内の膜組成の分布及び成膜再現性を向上せしめることが可能になると共に、基板面内の結晶粒の発生の微視的なバラツキを抑制することができ、表面ラフネスの向上を達成することができる。
 前記Pb、Zr及びTi用のそれぞれの有機金属化合物原料として、例えば、Pb(thd)、Zr(i-PrO)(thd)、及びTi(i-PrO)(dmhd)を用いることを特徴とする。
 前記Pb、Zr及びTi用のそれぞれの有機金属化合物原料を、テトラヒドロフラン、酢酸n-ブチル、酢酸sec-ブチル、オクタン、シクロヘキサン、及びエチルシクロヘキサンから選ばれた溶媒に溶かし、気化して酸化ガスと共に用いることを特徴とする。
 前記基板の温度が、560~620℃であることを特徴とする。基板温度が560℃未満であると、PZT薄膜中へのPb、Zr及びTiの各金属の取り込み量の割合が一定となり難く、また、620℃を超えると、基板、特にFeRAMでよく用いられるWプラグが酸化される懸念がある。
 前記有機金属化合物原料の溶液を気化して得たガスと反応ガスとしての酸化ガスとを混合した後、この混合ガスを成膜室へ供給することを特徴とする。これにより、むらが無く、十分に基板上で反応を生じさせることができる。
 前記成膜室内の圧力を266.6~1333Paに設定して成膜することを特徴とする。圧力が1333Paを超えるような高圧で成膜すると、成膜ガスの室内滞在時間が増えるため、成膜ガスが気相分解を起こし、異常な粒成長が起きてしまう。また、下限はPZT成膜において使用され得る通常の成膜圧力である。
 本発明の半導体装置の製造方法は、PZT強誘電体膜を含んでなり、この強誘電体膜中において強誘電体結晶が主として(111)配向している半導体装置の製造方法において、強誘電体膜を上記したPZT薄膜の形成方法により形成することを特徴とする。
 例えば、強誘電体メモリ等を構成する強誘電体膜として、上記のようにして得られたPZT薄膜を用いれば、有用なメモリ等を実現できる。
 本発明によれば、基板面内におけるPZT薄膜の膜組成の分布及び成膜再現性を向上せしめることが可能になると共に、基板面内の結晶粒の発生の微視的なバラツキを抑制することができ、表面ラフネスの向上を達成することができるという効果を奏する。
 また、このようなPZT薄膜を含んでなる強誘電体メモリ等の半導体装置において、優れたメモリ効果を提供できるという効果を奏する。
比較例1で得られた、Zr原料の違いによるPb、Zr及びTiの各金属のPZT膜中取り込み量と基板温度(成膜温度)との関係を示すグラフであり、(a)、(b)及び(c)は、それぞれ、比較例1の原料Cを用いた場合であり、(d)は、比較例1の原料Dを用いた場合であり、(e)は、比較例1の原料Eを用いた場合である。 実施例1で得られた、Ti原料の違いによるPb、Zr及びTiの各金属のPZT膜中取り込み量と基板温度(成膜温度)との関係を示すグラフであり、(a)は実施例1の原料Fを用いた場合であり、(b)は実施例1の原料Gを用いた場合であり、また、(c-1)は実施例1の原料Fを用いた場合の基板面内の各金属の組成分布を示すグラフであり、(c-2)は実施例1の原料Gを用いた場合の基板面内の各金属の組成分布を示すグラフである。 実施例2に従ってPZT成膜を行って得られた薄膜のSEM像を示す写真であり、(a-1)は、実施例2のプロセス-Aの場合の薄膜表面の成膜状態を基板の斜め上から撮影したものであり、(a-2)はその基板の断面を示し、(b-1)は、実施例2のプロセス-Bの場合の薄膜表面の成膜状態を基板の斜め上から撮影したものであり、(a-2)はその基板の断面を示す。 実施例3に従ってプロセス-A、B及びCの場合に得られた薄膜の結晶配向性を示すグラフである。 実施例4に従ってプロセス-A、B及びCの場合に得られた薄膜の電気特性について示すグラフであり、電界(kV/cm)と分極(μC/cm)との関係を示す。
 以下、本発明の実施の形態について説明する。
 本発明に係るPZT薄膜形成方法の実施の形態によれば、MOCVD法により、成膜室内に載置された基板上にPZT薄膜を形成する方法において、3種類の金属:Pb、Zr及びTi用のそれぞれの有機金属化合物原料として、(a)Pb(thd)(ビス2,2,6,6-テトラメチル-3,5-ヘプタンジオナート鉛)及びPb(dmhd)(ビス2,6-ジメチル-3,5-ヘプタンジオナート鉛)から選ばれた1種類のPb用有機金属化合物原料、好ましくはPb(thd)と、(b)Zr(dmhd)(テトラキス2,6-ジメチル-3,5-ヘプタンジオナートジルコニウム)、Zr(thd)(dmhd)(ビス2,2,6,6-テトラメチル-3,5-ヘプタンジオナートビス2,6-ジメチル-3,5-ヘプタンジオナートジルコニウム)、Zr(thd)(dmhd)(トリス2,2,6,6-テトラメチル-3,5-ヘプタンジオナート2,6-ジメチル-3,5-ヘプタンジオナートジルコニウム)、Zr(i-PrO)(thd)(ジイソプロポキシビス2,2,6,6-テトラメチル-3,5-ヘプタンジオナートジルコニウム)、及びZr(i-PrO)(thd)(イソプロポキシトリス2,2,6,6-テトラメチル-3,5-ヘプタンジオナートジルコニウム)から選ばれた1種類のZr用有機金属化合物原料、好ましくはZr(i-PrO)(thd)と、(c)Ti(i-PrO)(dmhd)(ジイソプロポキシビス2,6-ジメチル-3,5-ヘプタンジオナートチタン)のTi用有機金属化合物原料とを用い、これらのPb、Zr及びTi用有機金属化合物原料を、それぞれ、テトラヒドロフラン(THF)、酢酸n-ブチル、酢酸sec-ブチル、オクタン、及びシクロヘキサンから選ばれた溶媒に溶かし、気化し、得られた有機金属化合物原料のガスと酸素等の酸化ガス(反応ガス)とを、所定の流量で、シャワープレートを介して成膜室内に載置された基板上に供給し、好ましくは有機金属化合物原料のガスと酸化ガスとを混合した後にこの混合ガスを成膜室へ供給し、所定の基板温度(好ましくは、560~620℃)に設定した基板上で、266.6~1333Paに設定した圧力下で反応させて、PZT薄膜を形成する。
 上記したPZT強誘電体薄膜を形成する装置は、特に制限されるわけではなく、例えば、Pb、Zr及びTi用のそれぞれの有機金属化合物原料を気化するための気化装置、得られた原料ガス及び酸化ガスを導入するためのラインを備えた真空制御可能な成膜室を有するものであればよい。例えば、特開2005-054252号公報や、特開2005-054253号公報に記載の薄膜製造装置でも良い。
 特開2005-054252号公報及び特開2005-054253号公報記載の薄膜製造装置は、真空槽の反応空間である反応室上部からシャワーヘッドを介して反応室内に成膜ガスを導入し、基板ステージにより加熱される基板上で成膜する薄膜製造装置において、上部の反応空間が回転又は昇降しない基板ステージとシャワーヘッドと防着板とで構成され、防着板と基板ステージとで構成される同心円の隙間をガス排気経路として設け、このガス排気経路の上方から防着板に沿って不活性ガスが流れるように構成し、ガス排気経路の2次側に下部空間を設けてあり、防着板は、基板搬送時は下降して基板を搬送でき、成膜時は上昇して反応空間を構成できる昇降自在の機構を備えており、シャワーヘッドは温度制御可能に構成され上蓋に組み込まれた構造を有し、防着板で仕切られた反応空間の外側は、成膜時には不活性ガスで満たされるように構成され、基板を載置する基板ステージと対向して上蓋内に組み込んで設けたシャワーヘッドを介して、真空槽内にベントガスを導入するためのベントラインを備えていても良く、このベントラインは、シャワーヘッドに繋がっている成膜用ガスラインを共有していても良く、このベントラインに、スローベントのシステムが設けられていても良く、シャワーヘッド表面は、円盤状のシャワープレートで構成されており、上蓋とシャワープレートとの接触面に熱交換手段が設けられており、シャワープレートの温度制御は、上蓋との熱交換で行われるものである。
 本発明に係るPZT薄膜を含む半導体装置の製造方法は、例えば、公知の方法により得られる強誘電体メモリにおいて、このメモリを構成するPZT強誘電体膜として、結晶が主として(111)配向している膜を、上記した方法により形成するものである。
 本発明者らは、以下、実施例を参照して説明するように、Pb、Zr及びTiの各金属のPZT薄膜中への取り込み量に基板温度依存性があることに気が付き、本発明においては、各金属の基板温度に対する微分係数(温度勾配)が同等になる有機金属化合物原料の組み合わせを採用し、成膜した。かくして得られたPZT薄膜において、基板面内の各金属の組成の分布及び成膜再現性を向上することができると共に、基板面内の各金属の結晶粒の発生の微視的なバラツキを制御することができ、さらに、膜の表面ラフネスの向上を達成することができた。
 本発明における一般的な有機金属化合物原料の選定方法について説明する。Pb、Zr及びTiのそれぞれの有機金属化合物原料の組み合わせにおいて、PZT成膜における成膜温度を振った場合の各金属の膜中への取り込み量の変化を調べる。ここで、実際の成膜温度に対する各金属の取り込み量の成膜温度に対する微分係数を比較する。この微分係数をPb、Zr及びTiの各金属に対して揃える方向で取り替えを検討していく。未知原料の成膜評価をする前に、ある一定の条件下で行われるDTA(示差熱分析)法により明らかになる吸熱のピークから読み出される有機金属化合物の分解温度を抑えておくと良いことが分かる。同じ金属の異種原料間で比較して、温度に対して分解され易いか否かを検討し、調製しておくと良い。
 まず、Pb、Zr及びTiのそれぞれの有機金属化合物原料の組み合わせにおいて、PZT成膜における成膜温度を振った場合(500~620℃)の各金属の膜中への取り込み量の変化について、比較例1及び実施例1で説明する。
(比較例1)
 PZT成膜の原料として、原料C:Pb(thd)、Ti(i-PrO)(thd)、及びZr(dmhd)、Zr(thd)(dmhd)、又はZr(thd)(dmhd)を用い、各原料をTHFに溶解し、原料D:Pb(thd)、Ti(i-PrO)(thd)、及びZr(i-PrO)(thd)を用い、各原料をオクタンに溶解し、また、原料E:Pb(thd)、Ti(i-PrO)(thd)、及びZr(i-PrO)(thd)を用い、各原料を酢酸n-ブチルに溶解した。得られた有機金属化合物原料の溶液を用いて、バルク原料流量約0.6mL/minで、各原料溶液を気化温度220~250℃で気化せしめ、得られた原料ガスをシャワープレートを介して成膜室内へ導入して、基板上に供給し、所定の基板温度(500~620℃)で、酸素ガスを3500sccm導入しながらPZT成膜を行った。かくして、Zr原料の違いによる、各金属のPZT膜中取り込み量と基板温度(成膜温度)との関係を検討した。その結果を図1(a)~(e)に示す。
 図1において、横軸は基板温度(Tsub;℃)であり、縦軸は規格化XRF強度である。図1(a)、(b)及び(c)は、それぞれ、Zr原料として、Zr(dmhd)、Zr(thd)(dmhd)、及びZr(thd)(dmhd)を用いた場合であり、図1(d)は、Zr原料として、Zr(i-PrO)(thd)を用いた場合であり、図1(e)は、Zr原料として、Zr(i-PrO)(thd)を用いた場合である。
 図1(a)~(e)から明らかなように、Pb原料としてPb(thd)、また、Ti原料としてTi(i-PrO)(thd)を用い、Zr原料の種類を振ったとしても、基板温度560~620℃における各金属のPZT膜中取り込み量の温度依存性は、殆ど変わらず、いずれの場合も、全金属が同じ傾きになり、その大きさが揃うようなことはなく、各金属の膜中取り込み量は同じ大きさとならない。かくして、基板面内の各金属の組成分布は均一にならなかったことが分かる。
 PZT成膜の原料として、原料F:Pb(thd)、Zr(i-PrO)(thd)、及びTi(i-PrO)(thd)を用い、各原料を酢酸n-ブチルに溶解し、また、原料G:Pb(thd)、Zr(i-PrO)(thd)、及びTi(i-PrO)(dmhd)を用い、各原料を酢酸n-ブチルに溶解した。得られた有機金属化合物原料の溶液を用いて、バルク原料流量約0.6mL/minで、各原料溶液を気化温度220~250℃で気化せしめ、得られた原料ガスをシャワープレートを介して成膜室内へ導入して、基板上に供給し、所定の基板温度(560~620℃)で、酸素ガスを3500sccm導入しながらPZT成膜を行った。かくして、低温で膜中に取り込み難いTi原料の違いによる、各金属の膜中取り込み量と基板温度(成膜温度)との関係を検討した。その結果を図2(a)及び(b)に示す。
 また、上記原料F、Gの溶液を用い、上記と同じ方法に従って、基板温度620℃において成膜して得られたPZT膜の基板面内組成分布を蛍光X線分析装置により測定した。その結果を、原料Fの場合、図2(c-1)に、原料Gの場合、図2(c-2)に示す。
 図2(a)及び(b)において、横軸は基板温度(Tsub;℃)であり、縦軸は規格化XRF強度であって、図2(a)は上記原料Fを用いた場合であり、図2(b)は上記原料Gを用いた場合である。図2(a)及び(b)から明らかなように、原料Fの場合と原料Gの場合とを比べると、基板温度560~620℃における各金属のPZT膜中取り込み量の温度依存性は、原料Gの場合全ての金属で同じ傾きで揃っており、より低温から減少に転じる傾向を示した。かくして、より高温領域で原料Gの組み合わせを用いた方が、傾きの大きさが揃う傾向があり、各金属のPZT膜中取り込み量は同じ大きさとなり、基板面内の各金属の組成分布が均一であることが分かる。
 基板面内の各金属の組成分布について、図2(c-1)及び(c-2)に基づいて説明する。図2(c-1)及び(c-2)のそれぞれにおいて、横軸は基板の中心からの位置(mm)であり、縦軸はPb/(Zr+Ti)及びZr/(Zr+Ti)である。図2(c-1)及び(c-2)から明らかなように、原料Fの場合、基板面内の各金属の膜組成分布は、Pb/(Zr+Ti)=±1.3%及びZr/(Zr+Ti)=±2.6%と一定しないが、原料Gの場合、基板面内の各金属の膜組成分布は、Pb/(Zr+Ti)=±0.39%及びZr/(Zr+Ti)=±0.30%と一定していることが分かる。
 上記した図1及び2に示す結果を纏めると、各有機金属化合物を溶解する溶媒の違いによる各金属の膜中取り込み量には殆ど違いはないこと、Pb原料としてPb(thd)、また、Ti原料としてTi(i-PrO)(thd)を用い、Zr原料の種類を振ったとしても、基板温度560~620℃における各金属の膜中取り込み量の温度依存性は、殆ど変わらず、いずれの場合も、全金属が同じ傾きになり、その大きさが揃うようなことはなく、各金属の膜中取り込みの量の比は同じ大きさとならない。そしてTi原料として分解温度の低いTi(i-PrO)(dmhd)を用いることで、膜中取り込み量の温度依存性を基板温度560~620℃付近で同じ傾きで揃うようにすることができ、基板温度560~620℃における各金属のPZT膜中取り込み量の比は同じ大きさとなる。かくして、得られたPZT膜において、基板面内の各金属の膜組成分布が均一であることが分かる。
 従って、上記全てのZr原料に対して、Ti原料として、分解温度の低いTi(i-PrO)(dmhd)(thd基の代わりにdmhd基を有する有機金属化合物とする)を用いることで、Pb、Zr及びTiの全てのPZT膜中取り込み量を同じ傾きの基板温度依存性にすることができる。かくして、Pb原料として、分解温度の低いPb(dmhd)を用いる場合も、Pb、Zr及びTiの全てのPZT膜中への取り込み量を同じ傾きの基板温度依存性にすることができる。
 本実施例では本発明の方法で得られたPZT膜の表面モフォロジーを検討した。
 原料として、0.3M-Pb(thd)/THF、0.3M-Zr(dmhd)/THF、及び0.3M-Ti(i-PrO)(thd)/THFからなるPb、Zr及びTi用のそれぞれの有機金属化合物原料の溶液、また、0.25M-Pb(thd)/酢酸n-ブチル、0.25M-Zr(i-PrO)(thd)/酢酸n-ブチル、及び0.25M-Ti(i-PrO)(dmhd)/酢酸n-ブチルからなるPb、Zr及びTi用のそれぞれの有機金属化合物原料の溶液を用いて、バルク原料流量約0.6mL/minで、各原料溶液を気化温度220~250℃で気化せしめ、得られた原料ガスをシャワープレートを介して成膜室内へ導入して、基板上に供給し、基板温度620℃、この温度までの昇温時間200秒で、酸素ガスを3500sccm導入しながらPZT成膜を行った。かくして得られたPZT薄膜の表面モフォロジー(表面ラフネス)をSEM像で観察し、その結果を図3に示す。また、表面粗さをAFM(原子間力顕微鏡)で測定し、Ra/P-Vで表示してある。
 図3(a-1)は、有機金属化合物原料として、上記Pb(thd)、Zr(dmhd)、及びTi(i-PrO)(thd)を用いて行った場合(プロセス-A)の薄膜表面の成膜状態を基板の斜め上から撮影したものであり、図3(a-2)はその基板の断面を示す。図3(b-1)は、有機金属化合物原料として、上記Pb(thd)、Zr(i-PrO)(thd)、及びTi(i-PrO)(dmhd)を用いて行った場合(プロセス-B)の薄膜表面の成膜状態を基板の斜め上から撮影したものであり、図3(b-2)はその基板の断面を示す。
 図3(a-1)及び(a-2)と、図3(b-1)及び(b-2)とを比べると明らかなように、薄膜表面の山と谷の大きさは、前者のプロセス-Aの場合:Ra/P-V:12.0nm/95.7nmであり、後者のプロセス-Bの場合:Ra/P-V:5.4nm/4.0nmであり、後者のプロセス-Bの方が小さく、プロセス-Bの場合に表面モフォロジーが大きく改善されていることが分かる。なお、1時間当たりのウェハの処理枚数(wf./hr)は、プロセス-Aの場合で3.8枚であり、プロセス-Bの場合で4.0枚であったが、プロセス-Bの場合のバルク原料流量を約1.5mL/minにし、成膜温度までの昇温時間を30秒短縮した場合(プロセス-C)には6.1枚となり、スループットが改善された。
 上記プロセス-Aの場合、Pb/(Zr+Ti)=1.177及びZr/(Zr+Ti)=0.450、PZT膜厚は104nmであり、プロセス-Bの場合、Pb/(Zr+Ti)=1.179及びZr/(Zr+Ti)=0.457、PZT膜厚は99nmであった。
 本実施例では、PZT強誘電体薄膜の結晶配向性について検討した。PZT強誘電体薄膜は、(001)方向に残留分極値を持ち、(100)方向には残留分極値を持たないが、(001)と(100)の格子長がほぼ同じため、(001)と同時に(100)が成長してしまい、残留分極値は小さくなる。一般的には、(111)配向に揃えた方が、膜中の全ての結晶が分極に寄与し、残留分極が大きくなる。この(111)配向しているPZT強誘電体薄膜が、デバイス信頼性の指標となる分極反転疲労特性やインプリント特性に優れていることが分かっている。そのため、実施例2におけるプロセス-A、B及びCの場合に得られたPZT薄膜の結晶配向性について検討したところ、3者とも同じようにPZT(111)配向を示した(図4)。
 図4において、プロセス-A及びBの場合、Pb/(Zr+Ti)、Zr/(Zr+Ti)、及びPZT膜厚は上記した通りであり、プロセス-Cの場合、Pb/(Zr+Ti)=1.177及びZr/(Zr+Ti)=0.444、PZT膜厚は94nmであった。
 本実施例では、PZT強誘電体薄膜の電気特性について検討した。実施例2におけるプロセス-A、B及びCの場合に得られた薄膜の電気特性として、分極量の電界に対する特性について検討した。その結果を図5に示す。
 図5から明らかなように、プロセスA~Cの全てについて、得られたPZT膜は、強誘電体膜特有のヒステリシス特性を示しており、強誘電性を有していることが分かる。また、各プロセス間を比較すると、電界が0kV/cmの時の分極量(自発分極量)が同等で、ほぼ同等の強誘電性を有していることが分かる。
 PZT成膜の原料として、Pb(dmhd)と、Zr(thd)(dmhd)、Zr(thd)(dmhd)、Zr(i-PrO)(thd)、の1種と、Ti(i-PrO)(dmhd)とを用い、各原料を酢酸n-ブチルに溶解した。得られた各有機金属化合物原料の溶液を用いて、実施例1記載の方法に従ってPZT成膜を行った。かくして得られたPZT膜に対して、基板温度と各金属のPZT膜中取り込み量の比はほぼ同じ大きさとなり、実施例1の場合と同様に、基板面内の各金属の組成分布が均一である。また、得られたPZT膜は、その表面粗さが実施例2の場合と同様に表面モフォロジーは良好であり、実施例3と同様にPZT(111)配向を示し、また、実施例4と同様に電気特性も良好である。
 実施例1記載の方法を繰り返した。但し、各原料を溶解する溶媒として、酢酸n-ブチルの代わりに、酢酸sec-ブチル、オクタン、シクロヘキサン、及びエチルシクロヘキサンをそれぞれ用いて、PZT成膜を行った。かくして得られたPZT膜に対して、基板温度と各金属のPZT膜中取り込み量の比はほぼ同じ大きさとなり、実施例1の場合と同様に、基板面内の各金属の組成分布が均一である。
 本発明のPZT薄膜の形成方法によれば、所定の成膜温度での各金属の取り込み量が安定し、基板面内の膜組成の分布及び成膜再現性を向上せしめることが可能になると共に、基板面内の結晶粒の発生の微視的なバラツキを抑制することができ、表面ラフネスの向上を達成することができるので、得られた薄膜は、強誘電体メモリ等を構成する強誘電体膜として有用であり、半導体装置産業の技術分野において利用可能である。

Claims (7)

  1. MOCVD法により、成膜室内に載置された基板上にPZT薄膜を形成する方法において、3種類の金属:Pb、Zr及びTi用のそれぞれの有機金属化合物原料として、Pb(thd)及びPb(dmhd)から選ばれた1種類のPb用有機金属化合物原料と、Zr(dmhd)、Zr(thd)(dmhd)、Zr(thd)(dmhd)、Zr(i-PrO)(thd)、及びZr(i-PrO)(thd)から選ばれた1種類のZr用有機金属化合物原料と、Ti(i-PrO)(dmhd)のTi用有機金属化合物原料とを用いることを特徴とするPZT薄膜の形成方法。
  2. 前記Pb、Zr及びTi用のそれぞれの有機金属化合物原料として、Pb(thd)、Zr(i-PrO)(thd)、及びTi(i-PrO)(dmhd)を用いることを特徴とする請求項1記載のPZT薄膜の形成方法。
  3. 前記Pb、Zr及びTi用のそれぞれの有機金属化合物原料を、テトラヒドロフラン、酢酸n-ブチル、酢酸sec-ブチル、オクタン、シクロヘキサン、及びエチルシクロヘキサンから選ばれた溶媒に溶かし、気化して酸化ガスと共に用いることを特徴とする請求項1又は2記載のPZT薄膜の形成方法。
  4. 前記基板の温度が、560~620℃であることを特徴とする請求項1~3のいずれか1項に記載のPZT薄膜の形成方法。
  5. 前記有機金属化合物原料の溶液を気化して得たガスと反応ガスとしての酸化ガスとを混合した後、この混合ガスを成膜室へ供給することを特徴とする請求項1~4のいずれか1項に記載のPZT薄膜の形成方法。
  6. 前記成膜室内の圧力を266.6~1333Paに設定して成膜することを特徴とする請求項1~5のいずれか1項に記載のPZT薄膜の形成方法。
  7. PZT強誘電体膜を含んでなり、該強誘電体膜中において強誘電体結晶が主として(111)配向している半導体装置の製造方法において、該強誘電体膜を請求項1~6のいずれか1項に記載のPZT薄膜の形成方法により形成することを特徴とする半導体装置の製造方法。
PCT/JP2010/067892 2010-10-12 2010-10-12 Pzt薄膜の形成方法及び半導体装置の製造方法 WO2012049735A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067892 WO2012049735A1 (ja) 2010-10-12 2010-10-12 Pzt薄膜の形成方法及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067892 WO2012049735A1 (ja) 2010-10-12 2010-10-12 Pzt薄膜の形成方法及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2012049735A1 true WO2012049735A1 (ja) 2012-04-19

Family

ID=45937985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067892 WO2012049735A1 (ja) 2010-10-12 2010-10-12 Pzt薄膜の形成方法及び半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2012049735A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079695A (ja) * 2002-08-14 2004-03-11 Fujitsu Ltd Pzt強誘電体薄膜の形成方法、並びにそれにより形成したpzt強誘電体薄膜及びこれを用いた半導体装置
JP2004087585A (ja) * 2002-08-23 2004-03-18 Ulvac Japan Ltd 成膜装置及び成膜方法
WO2008016047A1 (fr) * 2006-08-02 2008-02-07 Ulvac, Inc. Procédé et dispositif de formation de film
WO2008016044A1 (en) * 2006-08-02 2008-02-07 Ulvac, Inc. Film-forming method and film-forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079695A (ja) * 2002-08-14 2004-03-11 Fujitsu Ltd Pzt強誘電体薄膜の形成方法、並びにそれにより形成したpzt強誘電体薄膜及びこれを用いた半導体装置
JP2004087585A (ja) * 2002-08-23 2004-03-18 Ulvac Japan Ltd 成膜装置及び成膜方法
WO2008016047A1 (fr) * 2006-08-02 2008-02-07 Ulvac, Inc. Procédé et dispositif de formation de film
WO2008016044A1 (en) * 2006-08-02 2008-02-07 Ulvac, Inc. Film-forming method and film-forming apparatus

Similar Documents

Publication Publication Date Title
JP4387723B2 (ja) ビスマス−チタン−シリコン酸化物、ビスマス−チタン−シリコン酸化物薄膜及びその製造法
JP5719849B2 (ja) 薄膜製造方法
KR100819318B1 (ko) 반도체 장치의 제조방법
JP4505471B2 (ja) 半導体装置の製造方法及び基板処理装置
CN1309814A (zh) 制造光滑电极和具有改进存储保持的薄膜铁电电容器的dc溅射工艺
JP2003338500A (ja) アルコールを用いた化学気相蒸着法または原子層蒸着法による金属酸化物薄膜の製造方法
US20030080325A1 (en) Chemical vapor deposition method of making layered superlattice materials using trimethylbismuth
JP5883263B2 (ja) 半導体デバイスで使用する金属−絶縁体−金属キャパシタの製造方法
Antony Premkumar et al. NiO thin films synthesized by atomic layer deposition using Ni (dmamb) 2 and ozone as precursors
US20030091740A1 (en) Forming ferroelectric Pb (Zr, Ti)O3 films
JP2001053253A (ja) 半導体メモリ素子のキャパシタ及びその製造方法
Kang et al. Structural, chemical, and electrical properties of Y2O3 thin films grown by atomic layer deposition with an (iPrCp) 2Y (iPr-amd) precursor
WO2006085427A1 (ja) 容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装置
TWI482874B (zh) 金紅石結構氧化鈦的製備方法及其疊層結構
CN1496584A (zh) 金属氧化物介电膜气相生长方法和pzt膜
WO2012049735A1 (ja) Pzt薄膜の形成方法及び半導体装置の製造方法
JP2010258046A (ja) Pzt薄膜の形成方法及び半導体装置の製造方法
US20050167713A1 (en) Ferroelectric capacitor and method of production of same
KR100522762B1 (ko) 금속막의 화학기상증착법
JPWO2005020311A1 (ja) 酸化物薄膜製造方法及びその製造装置
JP4212013B2 (ja) 誘電体膜の作製方法
TW201215698A (en) Method of forming PZT thin film and method of manufacturing semiconductor device
TWI828023B (zh) 有機金屬前體化合物
KR100760962B1 (ko) 금속-알킬아마이드과 금속-알콕사이드 전구체 조합을사용한 원자층 화학 증착법을 이용한 하프늄 실리케이트박막 제조
Otani et al. Influence of post-annealing on the characteristics of Pb (Zr, Ti) O3 thin films deposited by liquid delivery MOCVD using a cocktail solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP