WO2012046727A1 - ウイルスベクターの製造方法 - Google Patents

ウイルスベクターの製造方法 Download PDF

Info

Publication number
WO2012046727A1
WO2012046727A1 PCT/JP2011/072871 JP2011072871W WO2012046727A1 WO 2012046727 A1 WO2012046727 A1 WO 2012046727A1 JP 2011072871 W JP2011072871 W JP 2011072871W WO 2012046727 A1 WO2012046727 A1 WO 2012046727A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
virus
cells
cell
culture
Prior art date
Application number
PCT/JP2011/072871
Other languages
English (en)
French (fr)
Inventor
和久 新村
敬章 片山
研輔 酒井
俊浩 小代
広文 吉岡
峰野 純一
Original Assignee
タカラバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカラバイオ株式会社 filed Critical タカラバイオ株式会社
Priority to EP11830659.6A priority Critical patent/EP2612909B1/en
Priority to KR1020137009301A priority patent/KR101362111B1/ko
Priority to JP2011551335A priority patent/JP5010760B2/ja
Priority to US13/823,805 priority patent/US9102943B2/en
Priority to CN201180048256.4A priority patent/CN103124787B/zh
Publication of WO2012046727A1 publication Critical patent/WO2012046727A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/867Retroviral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/36Lipids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/065Modulators of histone acetylation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10051Methods of production or purification of viral material

Definitions

  • the present invention relates to a method for producing a viral vector and a medium for producing a viral vector.
  • gene therapy using viral vectors has been developed for the treatment of cancer and infectious diseases, and many clinical trials have been conducted.
  • many attempts have been made for gene therapy using retrovirus vectors or adenovirus vectors.
  • transfer vectors used for the production of a recombinant retroviral vector used to incorporate a target gene include the virus particle structural protein genes (gag, pol, pol) from the genome of wild-type Moloney leukemia virus (MoMLV). env) has been removed, such as pLXSN (Genbank Access M28248) and pMFG. In addition to these, further modified vectors are used in human clinical trials.
  • Production of a recombinant retroviral vector involves culturing a virus-producing cell induced by transfection of a DNA vector into which a target gene has been inserted into a packaging cell (Psi-Crip, GP + E86, GP + envAm12, PG13, etc.) This is done by collecting the supernatant containing the viral vector. Furthermore, a production cell clone that stably produces a retroviral vector for expression of the target gene is selected from the infected cells by a method such as infecting the supernatant again with the packaging cells. Through these steps, a master cell bank (MCB) and a working cell bank (WCB) are prepared, and a genetically modified retroviral vector for gene therapy is stably produced.
  • MCB master cell bank
  • WB working cell bank
  • virus titer In order to improve the titer of virus produced by retrovirus-producing cells, culture of retrovirus-producing cells is extremely important. That is, it is necessary to examine the culture conditions for obtaining a high virus titer (hereinafter sometimes referred to as virus titer).
  • methods for increasing titer include superinfection (for example, Non-patent Document 1), addition of histone deacetylase inhibitor sodium butyrate or trichostatin A (for example, non-patented)
  • references 2 and 3 There are references 2 and 3). However, the remarkable effect is not acquired in either.
  • the object of the present invention is to develop a medium used for the production of virus vectors, particularly a medium used for culturing virus-producing cells that makes it possible to maintain a high virus titer.
  • An object of the present invention is to provide a production method and a method for producing a transformed cell population using a viral vector produced by the method.
  • the present inventors use a medium containing retinoic acids and histone deacetylase (hereinafter sometimes referred to as histone deacetylase) inhibitors as active ingredients.
  • histone deacetylase hereinafter sometimes referred to as histone deacetylase
  • the inventors have found that by culturing virus-producing cells, high virus production can be continued for a long period of time, and surprisingly, a virus supernatant having a high virus titer can be obtained, and the present invention has been completed.
  • the present invention provides: [1] A method for producing a viral vector comprising a step of culturing cells having the ability to produce a viral vector in a medium containing retinoic acids and a histone deacetylase inhibitor as active ingredients, [2] The production method according to [1], wherein the medium further contains lipids as an active ingredient, [3] The production method according to [1] or [2], wherein the cell is a cell capable of continuously producing a viral vector.
  • virus production can be continued for a long time and a high virus titer can be obtained as compared with the conventional method. Therefore, in the method of the present invention, a large amount of virus can be recovered by a single culture preparation. Moreover, since the viral vector prepared from the virus-producing cells cultured in the medium of the present invention has a high virus titer, it exhibits higher gene transfer efficiency than the conventional method.
  • FIG. 1 It is a figure which shows the gene transfer efficiency to the SUP-T1 cell in the retroviral vector obtained using the culture medium A, B group, C group, etc. It is a figure which shows the gene expression intensity
  • the present invention discloses a medium suitable for culturing cells that produce viral vectors.
  • the aforementioned medium is a basic medium prepared by mixing components necessary for cell culture, and contains retinoic acids and histone deacetylase inhibitor as active ingredients.
  • the medium may further contain lipids.
  • retinoic acid is also called vitamin A acid, which is either all-trans-retinoic acid in which all double bonds in the chain are trans or 9-cis-retinoic acid in which the 9-position has a cis structure.
  • vitamin A acid is either all-trans-retinoic acid in which all double bonds in the chain are trans or 9-cis-retinoic acid in which the 9-position has a cis structure.
  • Other retinoic acid isomers, retinoic acid derivatives, and artificially synthesized synthetic retinoids can also be used in the present invention.
  • the above-mentioned retinoic acid, retinoic acid isomers, retinoic acid derivatives, and artificially synthesized synthetic retinoids or salts thereof are collectively referred to herein as retinoic acids.
  • the retinoic acid to be used may be one kind or a combination of plural kinds.
  • the concentration of retinoic acid used in the present invention in the medium is not particularly limited as long as it is a concentration that acts as an active ingredient.
  • ATRA all-trans-retinoic acid
  • it is preferably 1 nM to 10 ⁇ M, more preferably 5 nM to 200 nM, and particularly preferably 10 to 100 nM.
  • the “histone deacetylase inhibitor” is not limited as long as it has histone deacetylase inhibitory activity.
  • Aliphatic acids such as butyric acid, phenylbutyric acid, valpro
  • Hydroxamic acids such as trichostatin A, oxamflatin, suberoylilide, salts and derivatives thereof, (3) cyclic peptides such as trapoxin , Apicidin, FK228, salts and derivatives thereof, and (4) benzamide, salts and derivatives thereof can be used.
  • NaB sodium butyrate
  • TSA trichostatin A
  • the concentration of the histone deacetylase inhibitor used in the present invention in the medium may be a concentration that acts as an active ingredient, and is not particularly limited.
  • TSA for example, preferably 10 nM to 50 ⁇ M. More preferably, it is 20 nM to 10 ⁇ M, and particularly preferably 100 nM to 3 ⁇ M.
  • NaB for example, it is preferably 1 nM to 50 mM, more preferably 1 mM to 10 mM.
  • Lipids may be further added to the medium containing the retinoic acids and histone deacylase inhibitor of the present invention.
  • Lipids include fatty acids (arachidonic acid, linoleic acid, linolenic acid, myristic acid, oleic acid, palmitoyl acid, palmitic acid and their salts), steroids such as cholesterol and dexamethasone, tocopherol acetic acid, triglycerides, phospholipids (Glycerophospholipid, sphingophospholipid, inositol phospholipid, etc.) and the like can be used. You may add these components to a culture medium individually or in combination of multiple things. For example, a fatty acid concentrate that is commercially available as a medium additive for the purpose of substituting serum components may be contained as it is.
  • the concentration of lipids arbitrarily selected from the lipids used in the present invention in the medium may be any concentration that acts as an active ingredient, and is not particularly limited, but preferably the total amount of lipids 0.01 mg / L to 8.0 mg / L, more preferably 0.03 mg / L to 5.0 mg / L, and particularly preferably 0.1 mg / L to 4.0 mg / L.
  • the volume ratio is preferably 1 / 10,000 to 1/50 (V / V), more preferably 1 / 3,000 to 1/75 (V / V). Particularly preferred is 1/1000 to 1/100 (V / V).
  • the components of the basic medium include energy sources such as amino acids, sugars, and organic acids, vitamins, buffer components for adjusting pH, inorganic salts, and the like. Further, it may contain a pH indicator such as phenol red.
  • a basic medium a known medium containing no serum, for example, DMEM, IMDM, Ham F12 medium or the like may be used, and these can be obtained as commercial products from Invitrogen, Sigma, and the like.
  • Commercially available media such as Opti-ProSFM, VP-SFM, 293SFMII (all manufactured by Invitrogen), HyQ SFM4 MegaVir (manufactured by High Clone) can also be used.
  • serum-added medium may be used, use of a serum-free medium is preferable in order to prevent contamination with unknown viruses derived from serum.
  • serum albumin highly purified from human blood eg, a serum albumin preparation approved as a pharmaceutical product
  • highly purified serum albumin derived from animals e.g., highly purified serum albumin derived from animals, or recombinant serum albumin
  • a serum medium is preferably used (Japanese Patent Laid-Open No. 2007-105033).
  • virus-producing cells cultured in the medium of the present invention there is no particular limitation on the virus-producing cells cultured in the medium of the present invention, but for example, retrovirus-producing cells are suitable.
  • the present invention relates to a method for producing a viral vector characterized by using the above-mentioned medium.
  • the viral vector produced according to the present invention is not particularly limited.
  • retrovirus vectors including oncovirus vectors, lentivirus vectors and their modifications
  • adenovirus vectors including oncovirus vectors, lentivirus vectors and their modifications
  • adenovirus vectors adeno-associated virus vectors
  • simian virus vectors vaccinia virus vectors
  • Sendai virus vectors and the like can be mentioned.
  • a retroviral vector that is, a genetically modified retroviral vector is exemplified.
  • a replication-defective retrovirus vector in which unlimited infection and gene transfer are prevented is preferably used in the present invention.
  • Known replication-defective retrovirus vectors include MFG vector and ⁇ -SGC vector (International Publication No.
  • retroviral vectors such as LXIN (Clontech), DON-AI (Takara Bio), lentiviral vectors [human immunodeficiency virus (HIV) -derived vectors, simian immunodeficiency virus (SIV) -derived vectors, etc. Or a vector obtained by modifying these (for example, a pseudo-type vector).
  • Any foreign gene may be introduced into the virus vector.
  • the foreign gene to be introduced is not particularly limited, and any gene [such as an enzyme, cytokine, or receptor, etc., may be used depending on the use of the cell population transformed by the viral vector produced according to the present invention described below.
  • any gene such as an enzyme, cytokine, or receptor, etc.
  • Examples of these foreign genes include genes that express MazF, which is a sequence-specific RNase (for example, International Publication No. 2007/020873 pamphlet and International Publication No. 2008).
  • an appropriate marker gene such as an extracellular domain gene ( ⁇ LNGFR), a neomycin resistance gene, a fluorescent protein gene, or the like of Low affinity Nervous Factor Receptor may be simultaneously introduced.
  • the foreign gene can be used by inserting it into a viral vector so that it can be expressed, for example, under the control of an appropriate promoter.
  • an enhancer sequence, terminator sequence, or intron sequence may be present in the vector.
  • a virus vector is produced by culturing virus-producing cells produced by introducing the DNA encoding the virus vector into a virus packaging cell line in the medium of the present invention.
  • the packaging cell line is not particularly limited, and known packaging cell lines such as PG13 (ATCC CRL-10686), PA317 (ATCC CRL-9078), GP + E-86 and GP + envAm-12 (US Pat. No. 5, 278,056), Psi-Crip [Proceeding of the National Academy of Sciences of the USA (Proc. Natl. Acad. Sci. USA), Vol. 85, 6460-6464 (1988)], etc. can do.
  • a retrovirus-producing cell is introduced by introducing a packaging plasmid (retrovirus packaging kit: manufactured by Takara Bio Inc.) containing genes necessary for retrovirus particle production into 293 cells or 293T cells with high transfection efficiency. Can also be produced.
  • the method of the present invention can be used for both virus-producing cells prepared to produce recombinant virus vectors transiently and virus-producing cell lines capable of continuously producing viruses.
  • a cryopreserved product such as a master cell bank (MCB) or a working cell bank (WCB) of a virus-producing cell line by an appropriate means
  • the plant is directly planted in the medium, and culture is started.
  • the cells are grown to produce virus.
  • Virus-producing cells can be cultured under normal culture conditions. For example, culture at a humidity of 95% and a CO 2 concentration of 5% is exemplified, but the present invention is not limited to such conditions. Cultivation can be performed, for example, at 30 to 37 ° C., but may be performed at a temperature other than the above range as long as desired cell growth and viral vector production can be achieved.
  • a viral vector is obtained by collecting the supernatant from the culture solution thus obtained.
  • the virus vector is produced as a filtrate obtained by filtering the supernatant with the above-mentioned supernatant, a virus vector concentrated or purified by a known method, and frozen by an appropriate method, for example, Stored until use. By culturing virus-producing cells using the above-described medium of the present invention, a virus vector having a higher titer than the conventional culture method can be obtained.
  • the present invention also provides a method for producing a cell population containing transformed cells, characterized in that target cells are transformed with the viral vector produced by the method of the present invention.
  • the number of desired genes introduced into cells by the viral vector is not limited, and may be one gene or a plurality of genes. Transformation of target cells with a viral vector may be performed by a known method suitable for the viral vector.
  • a retroviral vector a substance that improves gene transfer efficiency such as retronectin (RetroNectin, registered trademark, manufactured by Takara Bio Inc.) can be used at the time of gene transfer.
  • retronectin Rostin, registered trademark, manufactured by Takara Bio Inc.
  • the present invention provides a cell population obtained by the above-described method for producing a cell population of the present invention, and uses of the cell population.
  • the cell population obtained by the method of the present invention can be used for various uses, for example, production of useful substances, and the cell population itself can also be used for treatment of diseases.
  • the method of the present invention it is possible to obtain a cell population containing cells carrying a therapeutically useful foreign gene.
  • the above cell population may have various diseases such as cancer, leukemia, malignant tumor, hepatitis, or infectious disease (for example, influenza, tuberculosis, HIV (Human Immunodefectivity Virus, human). It can be used for treatment of immunodeficiency virus) infection, AIDS, MRSA infection, VRE infection, or deep mycosis.
  • the cell population produced by the method of the present invention includes bone marrow transplantation, donor lymphocyte infusion for the purpose of preventing infection or remission of recurrent leukemia in an immunodeficient state such as after irradiation, anticancer drug treatment, It can be used in combination with conventional therapies such as radiation therapy, antibody therapy, thermotherapy, and other immunotherapy.
  • the cell population containing the transformed cells obtained in the present invention When the cell population containing the transformed cells obtained in the present invention is used for treatment or prevention of a disease, an effective amount of the cells is administered to a subject to be treated or prevented, that is, a human or non-human animal.
  • the administration method of the cell population may be selected appropriately depending on the disease, and examples thereof include intravenous, arterial, subcutaneous or intraperitoneal administration by injection or infusion.
  • the cell population obtained in the present invention can be a medicine, that is, a therapeutic or preventive agent for a disease, and the disease can be treated or prevented by administering the drug to a subject.
  • the medicine can be produced by formulating the cell population according to a method known in the pharmaceutical field.
  • the cell population produced by the method of the present invention is mixed with a known organic or inorganic carrier, excipient or stabilizer suitable for parenteral administration as an active ingredient, and prepared as an infusion or injection. be able to.
  • RetroI Trichostatin A-supplemented Medium GT-T-RetroI (manufactured by Takara Bio Inc., hereinafter referred to as RetroI), which is a serum-free medium for culturing virus-producing cells, was used as a basic medium A (medium A), and retinoic acid.
  • ATRA (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a final concentration of 10 nM or 100 nM
  • TSA trichostatin A
  • 1 and B-2 (hereinafter referred to as medium B group) were prepared.
  • fatty acid concentrate (Gibco, hereinafter referred to as lipid) is added to medium B-1 so that the solution ratio (V / V) is 1/100, 1/250, 1/1000, respectively.
  • Medium C-1, C-2 and C-3 (hereinafter referred to as medium C group) were prepared.
  • medium D in which only TSA was added to medium A final concentration 500 nM
  • medium E in which only ATRA was added final concentration 10 nM
  • Example 2 Culture of retrovirus-producing cells Working cell bank (WCB) of retrovirus-producing cells (PG13: ATCC CRL-10686: used as packaging cells) producing a mouse-derived recombinant retrovirus vector carrying a fluorescent reporter protein (ZsGreen) gene ) was thawed in a 37 ° C. water bath. The thawed cell solution is transferred to a 15 mL centrifuge tube, and 10 mL of complete medium [DMEM medium (10% FBS, manufactured by SFC Bioscience) containing 10% fetal bovine serum] is added and centrifuged (500 Xg for 5 minutes at 20 ° C.). After centrifugation, the supernatant was removed, suspended in 10 mL complete medium, and cell count was performed.
  • DMEM medium 10% FBS, manufactured by SFC Bioscience
  • a cell suspension is prepared to 78.5 ⁇ 10 4 cells / mL using complete medium, and 1 mL of the above cell suspension is added to a 100 mm dish (manufactured by Iwaki) for cell culture. 14.7 mL of the medium was added and cultured in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%). The passage was performed at a passage interval of 3 days, the seeding cell density at the first passage was 1 ⁇ 10 4 cells / cm 2 , and the liquid volume was 0.2 mL / cm 2 .
  • the seeded cell density is 0.9 ⁇ 10 4 cells / cm 2
  • the liquid volume is 0.2 mL / cm 2
  • 2 mL each for each well of a 6-well treatment plate for cell culture manufactured by BD Falcon.
  • the liquid volume was 0.1 mL / cm 2 ).
  • each medium was collected and replaced with a new same medium.
  • the culture was performed at 32 ° C., 95% humidity and 5% CO 2 concentration.
  • the medium was exchanged and collected four times in total for four consecutive days, and the fourth time was only the collection of the medium without adding the medium.
  • the collected culture supernatant (first time, second time, third time, fourth time) is filtered with a 0.22 ⁇ m pore size filter (Millipore), and after each aliquot is dispensed as a retrovirus supernatant. Stored at ⁇ 80 ° C.
  • RetroNectin registered trademark, manufactured by Takara Bio Inc.
  • ACD-A diluted with ACD-A to a final concentration of 20 ⁇ g / mL
  • the retronectin solution was removed from the plate
  • 0.5 mL of ACD-A was added to each well and removed, and the plate was used twice.
  • 1 mL of each virus dilution was added to each well of the plate and centrifuged (32 ° C., 2000 ⁇ g, 2 hours).
  • Flow cytometry analysis was performed according to the instrument instruction using a BD FACSCanto II flow cytometer (Becton Dickinson).
  • the expression rate of ZsGreen can be determined by gating the target cell population on a two-parameter histogram (x-axis: FSC, y-axis: SSC) of forward scattered light (FSC) and side scattered light (SSC).
  • the cell population in the gate is expanded with a histogram of GFP detection parameters (x axis: GFP fluorescence intensity, y axis: cell number), and cells with higher GFP fluorescence intensity compared to isotype control are defined as ZsGreen positive cells.
  • the ratio (%) of the number of ZsGreen positive cells to the total number of cells in the gate was used as a gene transfer efficiency (GT%), and the fluorescence intensity (MFI: Mean Fluorescence Intensity) was measured.
  • GT% gene transfer efficiency
  • MFI Mean Fluorescence Intensity
  • the measurement result of gene transfer efficiency is shown in FIG.
  • the virus supernatant liquid of each day obtained by the culture method of Example 2-2 was evaluated, and the average value of the virus supernatant liquid for 4 days was calculated.
  • the gene transfer efficiency of the retrovirus supernatants collected using the medium B group and the group C showed a gene transfer efficiency more than twice that of the medium A as the basic medium. That is, a virus with a titer higher than that of medium A was obtained, and the ZsGreen gene was introduced with high efficiency.
  • the culture medium groups B and C were compared with culture media D and E, the above effects were higher than those of TSA or ATRA alone.
  • “NGMC” means a non-transfected cell and represents a negative control.
  • FIGS the same meaning is used in FIGS.
  • the measurement results of the fluorescence intensity (hereinafter referred to as gene expression intensity) are shown in FIG.
  • the virus supernatant liquid of each day obtained by the culture method of Example 2-2 was evaluated, and the average value of the virus supernatant liquid for 4 days was calculated.
  • the fluorescence intensity of the retrovirus supernatant recovered using the medium B group and the group C showed a fluorescence intensity about twice as high as that of the medium A. That is, a virus with a titer higher than that of medium A was obtained, and the gene was introduced with high efficiency, whereby the fluorescent reporter protein (ZsGreen) was highly expressed.
  • ZsGreen fluorescent reporter protein
  • Example 3 Preparation of NaB-added medium To medium A described in Example 1, ATRA was added to a final concentration of 10 nM and 100 nM, and sodium butyrate (NaB) was added to a final concentration of 5 mM. Medium F-1 and F-2 were prepared. Furthermore, lipid was added to the medium F so that the solution ratio (V / V) would be 1/100, 1/250, 1/1000, thereby preparing media G-1, G-2, and G-3, respectively. . Further, medium H in which only NaB was added to medium A (final concentration 5 mM) and medium E in which only ATRA was added (final concentration 10 nM) were prepared. Table 2 shows the composition of these media.
  • Example 4 Culture of Retrovirus Producing Cells Virus supernatant was prepared using the retrovirus producing cells described in Example 2.
  • a virus supernatant was obtained in the same manner as in Example 2-1, using the media A, F group, G group, H and E of Example 3.
  • Gene transfer was performed in the same manner as in Example 2-2, and evaluation of gene transfer efficiency was performed in the same manner as in Example 2-3.
  • the measurement results of gene transfer efficiency are shown in FIG.
  • the gene transfer efficiency in the retrovirus supernatant collected using the medium F group and the group G was about twice as high as that of the medium A. That is, in the medium F group and the group G, a virus having a higher titer than that in the medium A was obtained, and the ZsGreen gene was introduced with high efficiency. Moreover, even when compared with the culture media H and E (NaB or ATRA alone), a high effect was obtained.
  • the measurement result of fluorescence intensity is shown in FIG.
  • the virus supernatant liquid of each day obtained by the culture method of Example 2-2 was evaluated, and the average value of the virus supernatant liquid for 4 days was calculated.
  • the transgenic cells obtained from the retrovirus supernatant collected using the medium F group and the group G showed a fluorescence intensity about twice as high as that when the medium A was used. . That is, a virus with a titer higher than that of medium A was obtained, and the gene was introduced with high efficiency, whereby the fluorescent reporter protein (ZsGreen) was highly expressed.
  • the fluorescence intensity of the cells was high as compared with the cases where the media H and E were used.
  • Example 5 Preparation of medium supplemented with VPA
  • retinoic acid ATRA
  • VPA valproic acid
  • medium I group medium I group
  • medium J group medium J group
  • medium H medium H in which only NaB was added to medium A
  • medium F-1 in which NaB (final concentration 5 mM) and ATRA final concentration 10 nM
  • Example 6 Culture of Retrovirus-Producing Cells Virus supernatants were prepared using the retrovirus-producing cells described in Example 2.
  • a virus supernatant was obtained by the method of Example 2-1 using the medium A, Group I, Group J, H, and F-1 of Example 5.
  • the number of days for virus recovery is 4 days in Example 2-1
  • the virus supernatant collected in 3 days is mixed and evaluated.
  • Gene transfer was carried out in the same manner as in Example 2-2 except that the virus dilution was 10 times, and the evaluation of gene transfer efficiency was carried out in the same manner as in Example 2-3.
  • the gene transfer efficiency in the retrovirus supernatant recovered using medium I group was about twice as high as that of medium A. That is, in the medium I group, a virus having a higher titer than that in the medium A was obtained, and the ZsGreen gene was introduced with high efficiency. In addition, even when compared with the medium J group (VPA alone), a high effect was obtained. As in the results of FIG. 2 of Example 4, the medium F-1 was highly effective even when compared with the medium H (NaB alone).
  • Example 7 Production of Retrovirus Producing Cells Using HEV293T cells (ATCC CRL-11268) with Retrocovirus Packaging using codon-transformed TCR and siRNA co-expression retrovirus vector (MS-MA24-siTCR) described in WO2008 / 153029 pamphlet Kit Eco (manufactured by Takara Bio Inc.) was used for transfection according to the product protocol to obtain various ecotropic retrovirus supernatants. This virus supernatant was filtered through a 0.45 ⁇ m filter (Milex HV, manufactured by Millipore), PG13 cells were infected by a method using polybrene, and cells were cloned by a limiting dilution method.
  • Milex HV manufactured by Millipore
  • the working cell bank (WCB) prepared from the clonal cells obtained in Example 7-1 was thawed in a 37 ° C. water bath.
  • the thawed cell solution is transferred to a 15 mL centrifuge tube, and 10 mL of complete medium [DMEM medium (10% FBS, manufactured by SFC Bioscience) containing 10% fetal bovine serum] is added and centrifuged (500 Xg for 5 minutes at 20 ° C.). After centrifugation, the supernatant was removed, suspended in 10 mL complete medium, and cell count was performed.
  • DMEM medium 10% FBS, manufactured by SFC Bioscience
  • a cell suspension is prepared to 78.5 ⁇ 10 4 cells / mL using complete medium, and 1 mL of the above cell suspension is added to a 100 mm dish (manufactured by Iwaki) for cell culture. 14.7 mL of the medium was added and cultured in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%). The passage was performed at a passage interval of 3 days, the seeding cell density at the first passage was 1 ⁇ 10 4 cells / cm 2 , and the liquid volume was 0.2 mL / cm 2 .
  • the seeded cell density is 1.0 ⁇ 10 4 cells / cm 2
  • the liquid volume is 0.2 mL / cm 2
  • 45.0 mL per CELLBIND-treated T225 flask manufactured by CORNING
  • the culture supernatant was removed and replaced with the mediums H, F-1, K, L, and B-1 shown in Table 4 (the liquid volume was 0.1 mL / cm 2 ).
  • Dexamethasone (DEX) manufactured by Nacalai Tesque was added to the culture media K and L to a final concentration of 100 nM.
  • each medium was collected and replaced with a new same medium.
  • the culture was performed at 32 ° C., 95% humidity and 5% CO 2 concentration.
  • the medium was exchanged and collected three times in total for three consecutive days, and the medium was not collected for the third time, and only the medium was collected.
  • the collected culture supernatants (first, second and third) are mixed, filtered through a 0.22 ⁇ m pore size filter (Millipore), and dispensed in small portions as a retrovirus supernatant at ⁇ 80 ° C. saved.
  • RetroIII Gene transfer evaluation of retrovirus supernatant The gene transfer efficiency of the retrovirus supernatant was measured. Retronectin was dissolved in PBS to a concentration of 25 ⁇ g / mL and anti-CD3 antibody (OKT3, Janssen Pharma Co., Ltd.) to a concentration of 5 ⁇ g / mL. 1 mL of each well was added to a 6-well plate treated with this solution and left at 37 ° C. for 5 hours. Thereafter, the solution was removed, and each well was washed twice with 1 mL each using GT-T-RetroIII (manufactured by Takara Bio Inc., hereinafter referred to as RetroIII).
  • GT-T-RetroIII manufactured by Takara Bio Inc.
  • IL-2 manufactured by NOVARTIS
  • Fungizone manufactured by Bristol-Myers Squibb
  • CM culture medium
  • PBMC Peripheral blood mononuclear cells
  • the gene transfer operation was performed as follows. A stock solution and a 5-fold diluted solution were prepared for each of the retrovirus supernatants collected using the media H, F-1, K, L, and B-1. At this time, ACD-A, 5% albumin solution and 2% albumin solution were used for dilution. A 24-well non-treatment plate was used as a container for gene introduction. For 24-well non-treatment plates, 0.5 mL of RetroNectin previously diluted with ACD-A to a final concentration of 20 ⁇ g / mL was added to each well and treated at 4 ° C. overnight, and the RetroNectin solution was removed from the plate.
  • the wells were washed twice with 0.5 mL each using ACD-A. 1 mL of each virus dilution was added to each well of the plate and centrifuged (32 ° C., 2000 ⁇ g, 2 hours). After centrifugation, the virus dilution supernatant was removed from each well, and each well was washed three times with 0.5 mL of a 1.5% albumin solution. The cultured cell suspension was collected and suspended in CM so as to be 0.145 ⁇ 10 6 cells / mL.
  • the cells were stained with MAGE-A4 tetramer-PE (Ludwig) and Human CD8-APCcy7 (Becton Dickinson) and flow cytometer was used to determine the percentage of cells that were CD8 positive and tetramer positive. Specifically, 0.3 ⁇ 10 6 cells after infection culture were transferred to an Eppendorf tube, and the cells were precipitated by centrifugation (4 ° C., 500 ⁇ g, 5 minutes).
  • the precipitated cells were suspended in 950 ⁇ L of 0.5% BSA / PBS, and the cells were precipitated again by centrifugation (4 ° C., 500 ⁇ g, 5 minutes). After removing the supernatant again, the suspension was suspended in a mixed solution obtained by adding 8 ⁇ L of 0.5% BSA to 1 ⁇ L of MAGE-A4 tetramer-PE, and reacted at 4 ° C. for 30 minutes. Thereafter, 1 ⁇ L of Human CD8-APCcy7 was added and reacted at 4 ° C. for 30 minutes.
  • Flow cytometry analysis was performed using a BD FACSCanto II flow cytometer according to the instrument instructions.
  • the abundance ratio of tetramer positive cells in CD8 positive cells can be determined by isotype control on a two-parameter histogram of APCcy7 and PE detection parameters (x axis: APCcy7 fluorescence intensity, y axis: PE fluorescence intensity).
  • x axis APCcy7 fluorescence intensity
  • PE fluorescence intensity fluorescence intensity region of non-expressing cells of APCcy7 (CD8) and PE (MAGE-A4 tetramer)
  • the region was divided into four regions, the fluorescence intensity region of APCcy7 and PE expressing cells was determined, and the ratio of the number of cells ( %).
  • GT% Gene Transduction efficiency
  • GT% CD8 and tetramer positive cell count / CD8 positive cell count
  • Fig. 6 shows the measurement results of gene transfer efficiency.
  • the introduction efficiency of the retrovirus supernatant recovered using F-1, K, L, and B-1 is higher than that of medium H in which NaB is added to medium A, which is a basic medium.
  • the gene transfer efficiency was remarkably high. That is, not only the fluorescent protein-expressing virus vectors described in Examples 2 and 4, but also high-titer viruses were obtained and the target gene was introduced with high efficiency even in a pilot scale higher than the experimental scale.
  • RNA copy number of retrovirus supernatant was measured.
  • the number of RNA copies was calculated using Retrovirus Titer Set (for Real TIME PCR) (manufactured by Takara Bio Inc.) according to the standard usage method in the instruction manual.
  • FIG. 7 similar to the results of the gene transfer efficiency of Example 7-4, NaB was added to medium A as the basic medium by combining one or both of ATRA and DEX with NaB.
  • RNA copy number hereinafter referred to as RNA COPY in the figure significantly higher than that of the prepared medium H.
  • Example 8 Preparation of TSA-supplemented medium 2
  • DEX dexamethasone
  • ATRA retinoic acid
  • TSA trichostatin A
  • TSA was added to medium A to a final concentration of 50 nM and 500 nM
  • medium D group mediums D-1 and D-2 (hereinafter referred to as medium D group)
  • NaB alone final concentration 5 mM
  • medium H medium H
  • Medium N was prepared by adding NaB (final concentration 5 mM), retinoic acid (ATRA) at a final concentration of 100 nM
  • DEX dexamethasone
  • Example 9 Culture of retrovirus-producing cells Virus supernatants were prepared using the retrovirus-producing cells described in Example 7-1. In this example, a virus supernatant was obtained by the method of Example 2-1 using the medium described in Example 8. However, although the number of days for virus recovery is 4 days in Example 2-1, in this example, the virus supernatant collected in 3 days is mixed and evaluated.
  • Fig. 8 shows the measurement results of gene transfer efficiency.
  • M-1 and D-1, M-2 and D-2, and H and N were compared, the retro collected using a medium containing NaB or TSA, ATRA and DEX in combination.
  • the introduction efficiency of the virus supernatant was significantly higher than that of Group D, which is a medium supplemented with NaB and TSA alone, and H.
  • TSA was effective from 50 nM to 500 nM.
  • RNA copy number of retrovirus supernatant was measured.
  • RNA copy number was calculated using Retrovirus Titer Set (for Real TIME PCR) according to the standard usage method of the instruction manual. As shown in FIG. 9, the results are similar to the results of the gene transfer efficiency of Example 9-2.
  • ATRA By combining both DEX and NaB or TSA, the RNA copy number was significantly higher than that of the medium supplemented with NaB or TSA alone.
  • TSA was effective from 50 nM to 500 nM.
  • Example 10 Preparation of TSA-added medium 3 A medium was prepared in the same manner as in Example 1 so that the final concentrations shown in Table 6 were obtained.
  • Example 11 Culture of Retrovirus-Producing Cells Virus supernatant was prepared using the retrovirus-producing cells described in Example 2. Using the medium described in Example 10, a virus supernatant was obtained by the method of Example 2-1. However, in this example, the virus supernatant liquid collected and mixed in 4 days and the virus supernatant liquid collected and mixed in 3 days are evaluated in this example. Gene transfer was carried out in the same manner as in Example 2-2 except that the virus dilution was 10 times, and gene transfer efficiency and fluorescence intensity were evaluated in the same manner as in Example 2-3.
  • the measurement result of gene transfer efficiency is shown in FIG. As shown in FIG. 10, the gene transfer efficiency in the retrovirus supernatant recovered using the medium O group was about 6 to 8 times higher than that of the medium A. In addition, the gene transfer efficiency was more effective than the control group for 4 days than for 3 days.
  • the measurement result of fluorescence intensity is shown in FIG. As shown in FIG. 11, the fluorescence intensity of the retrovirus supernatant collected using the medium O group was about 2 to 3.5 times higher than that of the medium A.
  • Example 12 Preparation of medium supplemented with 9-cis retinoic acid (9-cis) (manufactured by Nacalai Tesque), AM80 A medium was prepared in the same manner as in Example 1 so that the final concentrations shown in Table 7 were obtained. Here, Tamibarotene (manufactured by Sigma) was used for AM80.
  • Example 13 Culture of retrovirus-producing cells Using the retrovirus-producing cells described in Example 2, a virus supernatant was prepared. Using the medium described in Example 12, a virus supernatant was obtained by the method of Example 2-1. However, although the number of days for virus recovery is 4 days in Example 2-1, in this example, the virus supernatant collected in 3 days is mixed and evaluated. Gene transfer was carried out in the same manner as in Example 2-2 except that the virus dilution was 10 times, and the evaluation of gene transfer efficiency was carried out in the same manner as in Example 2-3.
  • the measurement result of gene transfer efficiency is shown in FIG. As shown in FIG. 12, the gene transfer efficiency in the retrovirus supernatant collected using the medium P group and the R group was about 1.5 to 2 times higher than that of the medium A. In addition, the gene transfer efficiency of the medium Q group and the S group of 9-cis and AM80 alone is the same as or lower than that of the medium A.
  • Example 14 Preparation of medium supplemented with suberoylanilide hydroxamic acid (SAHA) (manufactured by CAYMAN) A medium was prepared in the same manner as in Example 1 so that the final concentrations shown in Table 8 were obtained.
  • SAHA suberoylanilide hydroxamic acid
  • Example 15 Culture of Retrovirus-Producing Cells Virus supernatant was prepared using the retrovirus-producing cells described in Example 2. Using the medium described in Example 14, a virus supernatant was obtained by the method of Example 2-1. However, although the number of days for virus recovery is 4 days in Example 2-1, in this example, the virus supernatant collected in 3 days is mixed and evaluated. Gene transfer was carried out in the same manner as in Example 2-2 except that the virus dilution was 10 times, and the evaluation of gene transfer efficiency was carried out in the same manner as in Example 2-3.
  • the measurement result of gene transfer efficiency is shown in FIG. As shown in FIG. 13, the gene transfer efficiency in the retrovirus supernatant recovered using the medium T group was about 1.4 to 1.9 times higher than that of the medium A. Moreover, the SAHA concentration showed higher gene transfer efficiency than the corresponding U group medium.
  • Example 16 Preparation of NaB-added medium 2 As a basic medium (medium V) in which inactivated FBS was added to DMEM as a cell culture medium at a solution ratio (V / V) of 1/10, retinoic acid (ATRA) was added to a final concentration of 100 nM, and Medium B was prepared by adding sodium butyrate (NaB) to a final concentration of 5 mM. Furthermore, medium X in which only NaB was added to medium V (final concentration 5 mM) and medium Y in which only ATRA was added (final concentration 100 nM) were prepared. Table 9 shows the composition of each medium.
  • medium V basic medium
  • ATRA retinoic acid
  • NaB sodium butyrate
  • Table 9 shows the composition of each medium.
  • Example 17 Culture of Retrovirus Producing Cells A virus supernatant was prepared using the retrovirus producing cells described in Example 2. Using the medium described in Example 16, a virus supernatant was obtained by the method of Example 2-1. However, although the number of days for virus recovery is 4 days in Example 2-1, in this example, the virus supernatant collected in 3 days is mixed and evaluated. Gene transfer was carried out in the same manner as in Example 2-2 except that the virus dilution was 10 times, and the gene transfer efficiency and fluorescence intensity were evaluated in the same manner as in Example 2-3.
  • FIG. 14 The measurement results of gene transfer efficiency are shown in FIG. As shown in FIG. 14, the gene transfer efficiency in the retrovirus supernatant recovered using the medium W was about 1.2 times higher than that of the medium V.
  • the measurement result of fluorescence intensity is shown in FIG. As shown in FIG. 15, the fluorescence intensity of the retrovirus supernatant recovered using the medium W was about 1.5 times higher than that of the medium V.
  • a virus supernatant having a high virus titer can be easily obtained, so that a virus vector and a high titer composition containing the vector can be easily prepared.
  • the viral vector and the composition obtained using the culture medium of the present invention are very useful in the field of gene therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • AIDS & HIV (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、ウイルスベクターを産生する能力を有する細胞を、レチノイン酸類及びヒストン脱アセチル化酵素阻害物質を有効成分として含む培地で培養する工程を包含するウイルスベクターの製造方法、および有効成分として、レチノイン酸類及びヒストン脱アセチル化酵素阻害物質を含むことを特徴とするウイルスベクター製造用培地を提供する。

Description

ウイルスベクターの製造方法
 本発明は、ウイルスベクターの製造方法、及びウイルスベクター製造のための培地に関する。
 先天性遺伝子疾患の治療のほか癌や感染症の治療を目的としてウイルスベクターを用いた遺伝子治療が開発され、臨床的に多くの試験が実施されている。特に、レトロウイルスベクターやアデノウイルスベクターを利用した遺伝子治療について多くの試みがなされている。
 目的遺伝子を組み込むために使用される遺伝子組換えレトロウイルスベクター作製のために使用されるトランスファーベクターの例としては、野生型モロニー白血病ウイルス(MoMLV)のゲノムからウイルス粒子構造タンパク質遺伝子(gag、pol、env)が除去されたpLXSN(Genbank Accession M28248)やpMFG等がある。これらの他にさらに改変したベクターがヒトを対象とした臨床試験に使用されている。
 遺伝子組換えレトロウイルスベクターの製造は、目的遺伝子を挿入したDNAベクターのパッケージング細胞(Psi-Crip、GP+E86、GP+envAm12、PG13等)へのトランスフェクションにより誘導されたウイルス産生細胞を培養し、目的のウイルスベクターを含有する上清を採取することにより実施される。さらに、この上清を再度パッケージング細胞に感染させる等の方法で、感染細胞の中から目的遺伝子発現用のレトロウイルスベクターを安定に産生する産生細胞クローンを選択することも行われる。このような工程で、マスターセルバンク(MCB)、そしてワーキングセルバンク(WCB)が調製され、遺伝子治療用の遺伝子組換えレトロウイルスベクターが安定して製造される。
 レトロウイルス産生細胞が産生するウイルスの力価を向上させるためには、レトロウイルス産生細胞の培養は極めて重要である。つまり、高いウイルス力価(以下、ウイルスタイターと記載することもある)が得られる培養条件の検討が必要である。現在までに力価を上げる方法として、重複感染(例えば、非特許文献1)や、ヒストン脱アセチル化酵素阻害剤である、酪酸ナトリウム、又はトリコスタチンA(Trichostatin A)の添加(例えば、非特許文献2および3)がある。しかし、いずれもその顕著な効果は得られていない。
ジャーナル オブ ヒューマン ジーン セラピー(J Hum Gene Ther)、第6巻、第1195-1202頁(1995) ジーン セラピー(Gene Therapy)、第3巻、第756-760頁(1996) バイオテクニークス(BioTechniques)、第29巻、第884-890頁(2000)
 本発明の目的は、ウイルスベクターの製造に使用される培地、特に高いウイルスタイターを維持することを可能にするウイルス産生細胞の培養に使用される培地を開発し、当該培地を用いたウイルスベクターの製造方法、及び当該方法で製造されるウイルスベクターを用いた形質転換細胞集団の製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意努力した結果、有効成分として、レチノイン酸類及びヒストン脱アセチル化酵素(以下、ヒストンデアセチラーゼと記載する場合がある)阻害物質を含む培地を用い、ウイルス産生細胞を培養することで、長期間にわたって高いウイルス産生を継続することができ、驚くべきことに高いウイルス力価のウイルス上清が得られることを見出し、本発明を完成させた。
 本発明を概説すれば、本発明は、
[1]ウイルスベクターを産生する能力を有する細胞を、レチノイン酸類及びヒストン脱アセチル化酵素阻害物質を有効成分として含む培地で培養する工程を包含するウイルスベクターの製造方法、
[2]培地が、有効成分として、更に脂質類を含む[1]記載の製造方法、
[3]細胞が継続的にウイルスベクターを産生する能力がある細胞である[1]又は[2]に記載の製造方法、
[4]ウイルスベクターがレトロウイルスベクターである[1]~[3]いずれか記載の製造方法、
[5]ヒストン脱アセチル化酵素阻害物質がトリコスタチンA及び酪酸ナトリウムから成る群より選択される少なくとも1種の物質である[1]~[4]いずれか記載の製造方法、
[6][1]~[5]いずれか記載の方法で製造されたウイルスベクター、
[7][6]に記載のウイルスベクターを用いて細胞を形質転換することを特徴とする形質転換された細胞集団の製造方法、
[8][7]に記載の製造方法で得られた形質転換された細胞集団、
[9]医薬に使用するための[8]記載の細胞集団、
[10]医薬の製造に用いる[8]記載の細胞集団、
[11][8]記載の細胞集団を有効成分として含有する医薬、
[12]対象に有効量の[11]記載の医薬を投与する工程を含む疾病の治療方法又は予防方法、
[13]有効成分として、レチノイン酸類及びヒストン脱アセチル化酵素阻害物質を含むことを特徴とするウイルスベクター製造用培地、
に関する。
 本発明のウイルスベクターの製造方法によれば、従来法と比べて、長期間ウイルス産生を継続することでき、かつ高いウイルス力価が得ることができる。したがって、本発明の方法では、一回の培養調製でウイルス量を多く回収することができる。また、本発明の培地で培養したウイルス産生細胞から調製されたウイルスベクターは、高いウイルス力価を有するので、従来法より高い遺伝子導入効率を示す。
培地A、B群、C群等を使用して得られたレトロウイルスベクターでの、SUP-T1細胞への遺伝子導入効率を示す図である。 培地A、B群、C群等を使用して得られたレトロウイルスベクターでの、SUP-T1細胞へ導入した遺伝子発現強度を示す図である。 培地A、F群、G群等を使用して得られたレトロウイルスベクターでの、SUP-T1細胞への遺伝子導入効率を示す図である。 培地A、F群、G群等を使用して得られたレトロウイルスベクターでの、SUP-T1細胞へ導入した遺伝子発現強度を示す図である。 培地A、I群、J群等を使用して得られたレトロウイルスベクターでの、SUP-T1細胞への遺伝子導入効率を示す図である。 培地H、F-1、K、L、B-1を使用して得られたレトロウイルスベクターでの、PBMCへの遺伝子導入効率を示す図である。 培地H、F-1、K、L、B-1を使用して得られたレトロウイルスベクターの、RNAコピー数を示す図である。 培地M群、D群、H、Nを使用して得られたレトロウイルスベクターでの、PBMCへの遺伝子導入効率を示す図である。 培地M群、D群、H、Nを使用して得られたレトロウイルスベクターの、レトロウイルスベクターの、RNAコピー数を示す図である。 培地A、O群、D、E群、H、F-1を使用して得られたレトロウイルスベクターでの、SUP-T1細胞への遺伝子導入効率を示す図である。 培地A、O群、D、E群、H、F-1を使用して得られたレトロウイルスベクターでの、SUP-T1細胞へ導入した遺伝子発現強度を示す図である。 培地A、P群、Q群、R群、S群、E、H、F-1を使用して得られたレトロウイルスベクターでの、SUP-T1細胞への遺伝子導入効率を示す図である。 培地A、T群、U群、E-2、Hを使用して得られたレトロウイルスベクターでの、SUP-T1細胞への遺伝子導入効率を示す図である。 培地V、W、X、Yを使用して得られたレトロウイルスベクターでの、SUP-T1細胞への遺伝子導入効率を示す図である。 培地V、W、X、Yを使用して得られたレトロウイルスベクターでの、SUP-T1細胞へ導入した遺伝子発現強度を示す図である。
 以下に本発明について詳細に説明する。
 本発明は、ウイルスベクターを産生する細胞の培養に適した培地を開示する。前記の培地は、細胞の培養に必要な成分を混合して作製された基本培地に、有効成分して、レチノイン酸類及びヒストンデアセチラーゼ阻害物質が含有されてなるものである。当該培地には、更に脂質類が含まれてもよい。
 本発明において、「レチノイン酸」は、ビタミンA酸とも呼ばれ、鎖部の二重結合がすべてtransのall-trans-レチノイン酸又は9位がcis構造をとる9-cis-レチノイン酸のいずれでもよい。また、その他のレチノイン酸異性体、レチノイン酸誘導体、及び人為的に合成した合成レチノイドも本発明において使用することができる。前記のレチノイン酸、レチノイン酸異性体、レチノイン酸誘導体及び人為的に合成した合成レチノイド又はそれらの塩を、本明細書ではレチノイン酸類と総称する。更に、本発明において、使用するレチノイン酸類は1種類でもよく、複数種類を組み合わせて使用してもよい。
 本発明に使用されるレチノイン酸類の培地中の濃度としては、有効成分として作用する濃度を使用すればよく、特に限定はないが、all-trans-レチノイン酸(以下、ATRAと記載する)の場合、例えば、好適には1nM~10μM、より好適には5nM~200nMであり、特に好適には10~100nMである。
 本発明において、「ヒストン脱アセチル化酵素(ヒストンデアセチラーゼ)阻害物質」としては、ヒストンデアセチラーゼ阻害活性を有するものであれば良く、(1)脂肪族酸類、例えば酪酸、フェニル酪酸、バルプロ酸、これらの塩、誘導体等、(2)ヒドロキサム酸類、例えばトリコスタチン(Trichostatin)A、オキサムフラチン、スベロイルアニリド(suberoylanilide)、これらの塩、誘導体等、(3)環状ペプチド、例えばトラポキシン(trapoxin)、アピシヂン(apicidin)、FK228、これらの塩、誘導体等、(4)ベンズアミド、その塩、誘導体等、が使用できる。
 本発明を限定するものではないが、ヒストンデアセチラーゼ阻害物質として、酪酸ナトリウム(以下、NaBと記載する)又はヒストンデアセチラーゼのアイソフォーム阻害域の広いトリコスタチンA(以下、TSAと記載する)が好適に使用される。
 本発明に使用されるヒストンデアセチラーゼ阻害物質の培地中の濃度としては、有効成分として作用する濃度を使用すればよく、特に限定はないが、TSAの場合、例えば、好適には10nM~50μM、より好適には20nM~10μM、特に好適には100nM~3μMである。NaBの場合、例えば、好適には1nM~50mM、より好適には1mM~10mMである。
 本発明のレチノイン酸類及びヒストンデアシラーゼ阻害物質を含む培地に、更に脂質類を含有させても良い。脂質類としては、脂肪酸類(アラキドン酸、リノール酸、リノレン酸、ミリスチン酸、オレイン酸、パルミトイル酸、パルミチン酸やそれらの塩等)、コレステロール、デキサメタゾン等のステロイド類、トコフェロール酢酸、トリグリセリド、リン脂質類(グリセロリン脂質、スフィンゴリン脂質、イノシトールリン脂質等)等を使用することができる。これらの成分は単独でもしくは複数のものを組み合わせて培地に添加してもよい。例えば、血清成分を代替することを目的に培地添加剤として市販されている脂肪酸濃縮液をそのまま含有させても良い。
 本発明に使用される前記脂質類から任意に選択される脂質類の培地中の濃度としては、有効成分として作用する濃度を使用すればよく、特に限定はないが、好適には脂質類の総量として0.01mg/L~8.0mg/L、より好適には0.03mg/L~5.0mg/L、特に好適には0.1mg/L~4.0mg/Lである。例えば、脂肪酸濃縮液では容液比で、好適には1/10,000~1/50(V/V)、より好適には1/3,000~1/75(V/V)であり、特に好適には1/1,000~1/100(V/V)である。
 上記基本培地の成分としては、アミノ酸、糖類、有機酸のようなエネルギー源、ビタミン類、pH調整のための緩衝成分、無機塩類等があげられる。また、フェノールレッドのようなpH指示薬を含有していてもよい。このような基本培地として血清を含有しない公知の培地、例えば、DMEM、IMDM、ハムF12培地等を使用してもよく、これらはインビトロジェン社、シグマ社等から市販品として入手することができる。Opti-ProSFM、VP-SFM、293SFMII(いずれもインビトロジェン社製)、HyQ SFM4MegaVir(ハイクローン社製)等の市販の培地も使用することができる。血清添加培地を使用してもよいが、血清由来の未知のウイルスの混入を防ぐために、無血清培地の使用が好ましい。無血清培地を使用する場合は、ヒト血液より高度に精製された血清アルブミン(例えば医薬品として認可された血清アルブミン製剤)や動物由来の高度に精製された血清アルブミン、又は組み換え血清アルブミンを含有する無血清培地が好適に使用される(特開2007-105033号公報)。
 本発明の培地により培養されるウイルス産生細胞には特に限定はないが、例えばレトロウイルス産生細胞が好適である。
 本発明は、上記の培地を使用することを特徴とするウイルスベクターの製造方法に関する。
 本発明により製造されるウイルスベクターには特に限定はない。例えば、レトロウイルスベクター(オンコウイルスベクター、レンチウイルスベクターやそれらの改変体を包含する)、アデノウイルスベクター、アデノ随伴ウイルスベクター、シミアンウイルスベクター、ワクシニアウイルスベクター又はセンダイウイルスベクター等が挙げられる。好適にはレトロウイルスベクター、すなわち遺伝子組み換えレトロウイルスベクターが例示される。特に、無制限な感染、遺伝子導入を防止された複製能欠損レトロウイルスベクターが本発明に好適に使用される。公知の複製能欠損レトロウイルスベクターとしては、MFGベクターやα-SGCベクター(国際公開第92/07943号パンフレット)、pBabe[ヌクレイック アシドズ リサーチ(Nucleic Acids Research)、第18巻、第3587-3596頁(1990)]、LXIN(クロンテック社製)、DON-AI(タカラバイオ社製)等のレトロウイルスベクター、レンチウイルスベクター[ヒト免疫不全ウイルス(HIV)由来ベクター、サル免疫不全ウイルス(SIV)由来ベクター等]あるいはこれらを改変したベクター(例えばシュードタイプベクター)が例示される。
 前記のウイルスベクターには任意の外来遺伝子を導入してもよい。導入される外来遺伝子には特に限定はなく、下記記載の本発明により製造されたウイルスベクターにより形質転換される細胞集団の用途に応じて、任意の遺伝子[酵素、サイトカイン類、又はレセプター類等のタンパク質をコードするものの他、細胞内抗体、アンチセンス核酸やsiRNA(small interfering RNA)、リボザイムをコードするもの]が使用できる。これら外来遺伝子としては、例えば、細胞の医療への利用を目的とするものとして、配列特異的RNA分解酵素であるMazFを発現する遺伝子(例えば、国際公開第2007/020873号パンフレット及び国際公開第2008/133137号パンフレット)、腫瘍抗原やウイルス抗原を認識する抗体可変領域又はT細胞レセプターをコードする遺伝子、患者において欠失もしくは機能喪失している遺伝子等が挙げられる。また、Low affinity Nerve Growth Factor Receptorの細胞外ドメイン遺伝子(ΔLNGFR)、ネオマイシン耐性遺伝子、蛍光タンパク質遺伝子等の、遺伝子導入された細胞の選択を可能にする適当なマーカー遺伝子を同時に導入してもよい。
 前記外来遺伝子は、例えば、適当なプロモーターの制御下に発現されるようにウイルスベクターに挿入して使用することができる。また、エンハンサー配列、ターミネーター配列、又はイントロン配列がベクター内に存在していてもよい。
 本発明では、前記のウイルスベクターをコードするDNAをウイルスパッケージング細胞株に導入して作製されたウイルス産生細胞を本発明の培地中で培養することにより、ウイルスベクターの製造が実施される。
 前記のパッケージング細胞株には特に限定はなく、公知のパッケージング細胞株、例えばPG13(ATCC CRL-10686)、PA317(ATCC CRL-9078)、GP+E-86やGP+envAm-12(米国特許第5,278,056号)、Psi-Crip[プロシーディング オブ ザ ナショナル アカデミー オブ サイエンシーズ オブ ジ USA(Proc. Natl. Acad. Sci. USA)、第85巻、第6460-6464頁(1988)]等を使用することができる。また、トランスフェクション効率の高い293細胞や293T細胞にレトロウイルス粒子産生に必要な遺伝子が搭載されたパッケージングプラスミド(レトロウイルスパッケージングキット:タカラバイオ社製、等)を導入してレトロウイルス産生細胞を作製することもできる。
 本発明の方法は、一過性に組換えウイルスベクターを産生するよう作製されたウイルス産生細胞、継続的にウイルスを産生する能力を有するウイルス産生細胞株のいずれにも利用することができる。後者を使用する場合には、ウイルス産生細胞株のマスターセルバンク(MCB)やワーキングセルバンク(WCB)のような凍結保存物を適切な手段で解凍後、前記の培地に直接植えて培養を開始し、前記細胞を増殖させ、ウイルスを産生させる。組換えウイルスベクターの大量調製のためには、さらに前記の培地にウイルス産生細胞株を適応させる馴化の工程を加えることが好ましい。
 ウイルス産生細胞の培養は、通常の培養条件で行うことができる。例えば、湿度95%、CO濃度5%での培養が例示されるが、本発明はこのような条件に限定されるものではない。培養は、例えば30~37℃で実施できるが、所望の細胞の増殖、ウイルスベクターの産生が達成できる温度であれば前記の範囲以外の温度で実施してもよい。本発明では、こうして得られる培養液より上清を採取して、ウイルスベクターを得る。本発明において、ウイルスベクターは前記の上清のまま、上清をフィルターろ過して得られたろ液、公知の方法により濃縮もしくは精製されたウイルスベクターとして製造され、適切な方法により、例えば凍結して、使用するまで保存される。上記の本発明の培地を用いたウイルス産生細胞の培養によると、従来の培養方法より高い力価のウイルスベクターを得ることができる。
 また、本発明は、本発明の方法により製造されたウイルスベクターにより標的細胞を形質転換することを特徴とする、形質転換細胞を含有する細胞集団の製造方法も提供する。なお、前記ウイルスベクターにより細胞に導入される所望の遺伝子の数に限定はなく、1個の遺伝子であっても良く、複数の遺伝子であっても良い。ウイルスベクターによる標的細胞の形質転換は当該ウイルスベクターに適した公知の方法で行えばよい。例えばレトロウイルスベクターを使用する場合には、遺伝子導入の際にレトロネクチン(RetroNectin、登録商標、タカラバイオ社製)等の遺伝子導入効率を向上させる物質を用いることもできる。
 本発明では高いウイルス力価のウイルスベクターを得られることから、当該ベクターを使用することにより、所望の遺伝子を保持する細胞を高い比率で含む細胞集団を得ることができる。
 本発明は、前記の本発明の細胞集団の製造方法により得られる細胞集団、並びに当該細胞集団の用途を提供する。本発明の方法により得られる細胞集団は種々の用途、例えば有用物質の生産に使用することができ、また、当該細胞集団自体を疾患の治療に使用することもできる。
 本発明の方法により、治療上有用な外来遺伝子を保持する細胞を含有する細胞集団を得ることができる。前記の細胞集団は、保持する遺伝子により付与される形質に応じて種々の疾患、例えば、がん、白血病、悪性腫瘍、肝炎、又は感染症疾患(例えばインフルエンザ、結核、HIV(Human Immunodeficiency Virus、ヒト免疫不全ウイルス)感染症、AIDS、MRSA感染症、VRE感染症、もしくは深在性真菌症)等の治療に使用することができる。また、本発明の方法により製造される細胞集団は、骨髄移植、放射線照射後等の免疫不全状態での感染症予防又は再発白血病の寛解を目的としたドナーリンパ球輸注、抗がん剤治療、放射線治療、抗体治療、温熱治療、他の免疫療法等、従来の治療法と組み合わせて利用できる。
 本発明で得られる形質転換細胞を含有する細胞集団を疾病の治療又は予防に使用する場合には、当該細胞の有効量が治療又は予防の対象、すなわちヒト又は非ヒト動物に投与される。細胞集団の投与方法は疾病に応じて適切なものを選択すればよく、例えば注射又は点滴による静脈、動脈、皮下、又は腹腔内等への投与が例示される。
 本発明で得られる細胞集団は医薬、すなわち疾病の治療剤又は予防剤となすことができ、当該医薬を対象に投与することにより、疾病を治療又は予防することができる。当該医薬は製薬分野で公知の方法に従い、前記の細胞集団を製剤化して製造することができる。例えば、本発明の方法により製造された細胞集団を有効成分として、非経口投与に適した公知の有機又は無機の担体、賦形剤又は安定剤等と混合し、点滴剤又は注射剤として調製することができる。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1 トリコスタチンA添加培地の調製
 ウイルス産生細胞培養用無血清培地であるGT-T-RetroI(タカラバイオ社製、以下、RetroIと記載する)を基本培地A(培地A)として、レチノイン酸(ATRA)(和光純薬社製)を最終濃度10nM又は100nMとなるように添加し、さらにトリコスタチンA(TSA)(シグマ社製)をそれぞれ最終濃度500nMになるように添加した、培地B-1及びB-2(以下、培地B群と記載する)を作製した。さらに、培地B-1に脂肪酸濃縮液(ギブコ社製、以下lipidと記載する)を溶液比(V/V)で1/100、1/250、1/1000となるようにそれぞれ添加して、培地C-1、C-2、C-3(以下、培地C群と記載する)を作製した。さらに培地AにTSAのみ添加(終濃度500nM)した培地D、及びATRAのみ添加(終濃度10nM)した培地Eを作製した。各培地の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例2
1.レトロウイルス産生細胞の培養
 蛍光レポータータンパク質(ZsGreen)遺伝子を搭載したマウス由来組換えレトロウイルスベクターを産生するレトロウイルス産生細胞(PG13:ATCC CRL-10686:をパッケージング細胞とした)のワーキングセルバンク(WCB)を37℃のウォーターバスにて解凍した。解凍された細胞液を15mL遠心チューブに移し、完全培地[10%ウシ胎児血清(10%FBS、エスエーエフシー バイオサイエンス社製)を含むDMEM培地(ギブコ社製)]を10mL加え、遠心処理(500×g、5分間、20℃)を行った。遠心後、上清を除去し、10mLの完全培地に懸濁しセルカウントを行った。セルカウント後、完全培地を用いて、細胞懸濁液を78.5×10cells/mLに調製し、細胞培養用の100mmディッシュ(イワキ社製)に前記の細胞懸濁液1mL、及び完全培地14.7mLを添加し、COインキュベーター(37℃、湿度95%、CO濃度5%)にて培養を行った。継代間隔は3日とし、1継代目の播種細胞密度を1×10cells/cm、液量を0.2mL/cmとして継代操作を行った。2継代目は播種細胞密度を0.9×10cells/cm、液量を0.2mL/cmとして、細胞培養用の6穴トリートメントプレート(BD Falcon社製)の各ウェルに2mLずつ添加した。2継代目実施の3日後、培養上清液を取り除き、実施例1に記載の培地A、B-1、B-2、C-1、C-2、C-3、D、Eにそれぞれ置換した(液量は0.1mL/cm)。その翌日に、各培地を回収し、それぞれ新しい同じ培地に交換した。なお、2継代の3日後からは、32℃、湿度95%、CO濃度5%にて培養を行った。上記の培地の交換と回収を4日間連続で計4回行い、4回目は培地の添加を行わず培地の回収のみ行った。回収した培養上清液(1回目、2回目、3回目、4回目)は、0.22μmのポアサイズのフィルター(ミリポア社製)でろ過し、各回ごとにレトロウイルス上清液として小分け分注後-80℃保存した。
2.レトロウイルス上清液の遺伝子導入評価
 上記のように培地A~Eを用いて回収した各レトロウイルス上清液について遺伝子導入効率の測定を行った。培地A~Eを用いて回収したレトロウイルス上清液それぞれについて5倍希釈液を調製した。このとき希釈には、ACD-A(テルモ社製)及びヒト血清アルブミン「アルブミナー25%」(CSLベーリング社製)をそれぞれ5倍希釈、及び12.5倍希釈してアルブミンの終濃度がそれぞれ5%、2%になるように生理食塩水に添加したもの(以下、5%アルブミン溶液、及び2%アルブミン溶液と記載)を用いた。遺伝子導入用の容器は24穴ノントリートメントプレート(BD Falcon社製)を用いた。24穴ノントリートメントプレートは、予めACD-Aで最終濃度20μg/mLになるように希釈したRetroNectin(登録商標、タカラバイオ社製)を各ウェルに0.5mL添加して4℃で一晩処理し、プレートからレトロネクチン溶液を取り除いた後、ACD-Aを各ウェルに0.5mL添加して取り除くという洗浄作業を2回行ったものを使用した。このプレートの各ウェルに各ウイルス希釈液を1mL添加し、遠心処理(32℃、2000×g、2時間)した。遠心後、各ウェルよりウイルス希釈液上清を取り除き、ヒト血清アルブミン「アルブミナー25%」を16.67倍希釈してアルブミンの終濃度が1.5%になるように生理食塩水に添加したもの(以下、1.5%アルブミン溶液と記載)0.5mLずつで各ウェルを3回洗浄した。ヒトTリンパ球性白血病細胞SUP-T1(ATCC CRL-1942)を、SUP-T1用の培養用培地[10%ウシ胎児血清を含むRPMI1640培地(シグマ社製)]に、1×10cells/mLとなるように懸濁した。前記の洗浄後の24穴ノントリートメントプレートの各ウェルにこの懸濁液1mL(0.5×10cells/cm)を添加し、遠心処理(32℃、1000×g、10分)した。遠心後、COインキュベーター(37℃、湿度95%、CO濃度5%)にて1日間培養を行った。次の日、SUP-T1用の培養用培地を1mLそれぞれ添加し、更に1日間培養した。培養後、レトロウイルスによる遺伝子導入効率を調べるために、蛍光レポータータンパク質(ZsGreen)の発現を調べた。感染培養後の細胞0.5×10cellsをエッペンドルフチューブに移し、遠心処理(4℃、500×g、5分間)にて細胞を沈殿させた。上清を取り除いた後、沈殿した細胞は終濃度が0.5%となるようにBSA(ウシ胎児血清アルブミン、シグマ社製)を添加したリン酸バッファー(ギブコ社製)(以下、0.5%BSA/PBSと記載)950μLに懸濁し、遠心処理(4℃、500×g、5分間)にて再度細胞を沈殿させた。上清を再度取り除いた後、0.5%BSA(シグマ社製)を添加したリン酸バッファー(ギブコ社製)400μLの0.5%BSA/PBSに懸濁し、この懸濁液をフローサイトメトリー測定に供した。
3.フローサイトメトリー解析
 フローサイトメトリー解析はBD FACSCanto II フローサイトメーター(ベクトン ディッキンソン社)を用いて機器指示書に従い行った。ZsGreenの発現率の求め方は、前方散乱光(FSC)、側方散乱光(SSC)の2パラメータヒストグラム(x軸:FSC、y軸:SSC)上で、目的細胞集団をゲートでくくり、そのゲート中の細胞集団をGFP検出パラメーターのヒストグラム(x軸:GFPの蛍光強度、y軸:細胞数を示す)で展開し、アイソタイプコントロールと比較してGFP蛍光強度の高い細胞をZsGreen陽性細胞として定義し、前述のゲート中全細胞数に対するZsGreen陽性細胞数の比率(%)を遺伝子導入率(GT%:Gene Transduction efficiency)とし、及び蛍光強度(MFI:Mean Fluorescence Intensity)を測定した。
 遺伝子導入効率の測定結果を図1に示す。
 実施例2-2の培養方法により取得した各日のウイルス上清液を評価し、4日間のウイルス上清液の平均値を算出した。図1に示されるように、培地B群、C群を用いて回収したレトロウイルス上清液の遺伝子導入効率は、基本培地である培地Aよりも2倍以上の遺伝子導入効率を示した。すなわち、培地Aよりも高タイターのウイルスが得られ高効率にZsGreen遺伝子が導入された。また、培地B群、C群ともに培地D、Eと比較しても、TSA又はATRA単独よりも高い前記効果が得られた。
 なお、図中、「NGMC」は非遺伝子導入細胞を意味し、陰性対照を示す。以下図2~図15中も同様の意味である。
 蛍光強度(以下、遺伝子発現強度を意味する)の測定結果を図2に示す。
 実施例2-2の培養方法により取得した各日のウイルス上清液を評価し、4日間のウイルス上清液の平均値を算出した。図2に示されるように、培地B群、C群を用いて回収したレトロウイルス上清液の蛍光強度は、培地Aよりも2倍程度高い蛍光強度を示した。すなわち、培地Aよりも高タイターのウイルスが得られ高効率に遺伝子が導入されることにより蛍光レポータータンパク質(ZsGreen)が高発現された。また、培地D、Eと比較しても、TSA又はATRA単独よりも高い前記効果が得られた。
実施例3 NaB添加培地の調製
 実施例1記載の培地Aに、ATRAを最終濃度10nM、及び100nMとなるように添加し、さらに酪酸ナトリウム(NaB)を最終濃度5mMになるように添加して、培地F-1、F-2をそれぞれ作製した。更に、培地Fにlipidを溶液比(V/V)で1/100、1/250、1/1000となるように添加して、培地G-1、G-2、G-3をそれぞれ作製した。さらに培地AにNaBのみ添加(終濃度5mM)した培地H、及びATRAのみ添加(終濃度10nM)した培地Eを作製した。これらの培地組成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例4 レトロウイルス産生細胞の培養
 実施例2記載のレトロウイルス産生細胞を用いてウイルス上清液の調製を行った。本実施例では、実施例3の培地A、F群、G群、H及びEを用いて、実施例2-1と同様にしてウイルス上清液を取得した。遺伝子導入は実施例2-2と同様に行い、遺伝子導入効率の評価は、実施例2-3と同様に行った。
 遺伝子導入効率の測定結果を図3に示す。
 図3に示されるように、培地F群、G群を用いて回収したレトロウイルス上清液での遺伝子導入効率は、培地Aよりも2倍程度高い遺伝子導入効率を示した。すなわち、培地F群、G群では培地Aよりも高タイターのウイルスが得られ高効率にZsGreen遺伝子が導入された。また、培地H、E(NaB又はATRA単独)と比較しても、高い効果が得られた。
 蛍光強度の測定結果を図4に示す。
 実施例2-2の培養方法により取得した各日のウイルス上清液を評価し、4日間のウイルス上清液の平均値を算出した。図4に示されるように、培地F群、G群を用いて回収したレトロウイルス上清液で得られた遺伝子導入細胞は、培地Aを用いた場合よりも2倍程度高い蛍光強度を示した。すなわち、培地Aよりも高タイターのウイルスが得られ高効率に遺伝子が導入されることにより蛍光レポータータンパク質(ZsGreen)が高発現された。また、培地H、Eを用いた場合と比較しても細胞の蛍光強度は高かった。
実施例5 VPA添加培地の調製
 実施例1記載の培地Aに、レチノイン酸(ATRA)を最終濃度10nMとなるように添加し、さらにバルプロ酸(VPA)(和光純薬工業)を最終濃度500μM、1mM、2mMになるように添加した、培地I-1、I-2、及びI-3(以下、培地I群と記載する)を作製した。また、比較対照として、培地AにVPAを最終濃度500μM、1mM、2mMになるように添加した、培地J-1、J-2、及びJ-3(以下、培地J群と記載する)を作製した。さらに培地AにNaBのみ添加(終濃度5mM)した培地H、及びNaB(終濃度5mM)とATRA(終濃度10nM)を添加した培地F-1を作製した。これらの培地組成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
実施例6 レトロウイルス産生細胞の培養
 実施例2記載のレトロウイルス産生細胞を用いてウイルス上清液の調製を行った。本実施例では、実施例5の培地A、I群、J群、H、及びF-1を用いて、実施例2-1の方法でウイルス上清液を取得した。ただし、ウイルス回収日数を実施例2-1では4日間としているが、本実施例では3日間で回収したウイルス上清液を混合して評価している。遺伝子導入はウイルス希釈を10倍とした以外は実施例2-2と同様に行い、遺伝子導入効率の評価は、実施例2-3と同様に行った。
 遺伝子導入効率の測定結果を図5に示す。
 図5に示されるように、培地I群を用いて回収したレトロウイルス上清液での遺伝子導入効率は、培地Aよりも2倍程度高い遺伝子導入効率を示した。すなわち、培地I群では培地Aよりも高タイターのウイルスが得られ高効率にZsGreen遺伝子が導入された。また、培地J群(VPA単独)と比較しても、高い効果が得られた。なお、実施例4の図2の結果と同様、培地F-1は、培地H(NaB単独)と比較しても、高い効果が得られた。
実施例7 
1.レトロウイルス産生細胞の作製
 国際公開第2008/153029号パンフレット記載のコドン変換型TCR及びsiRNA共発現レトロウイルスベクター(MS-MA24-siTCR)を用いて、HEK293T細胞(ATCC CRL-11268)に、Retorovirus Packaging Kit Eco(タカラバイオ社製)を用いて製品プロトコールに従いトランスフェクションし、各種エコトロピックレトロウイルス上清液を獲得した。このウイルス上清液を0.45μmフィルター(Milex HV、ミリポア社製)にてろ過し、PG13細胞にポリブレンを使用する方法により感染させ、限界稀釈法により細胞のクローン化を行った。
2.レトロウイルス産生細胞のパイロットスケール培養
 実施例7-1で得られたクローン細胞から作製したワーキングセルバンク(WCB)を37℃のウォーターバスにて解凍した。解凍された細胞液を15mL遠心チューブに移し、完全培地[10%ウシ胎児血清(10%FBS、エスエーエフシー バイオサイエンス社製)を含むDMEM培地(ギブコ社製)]を10mL加え、遠心処理(500×g、5分間、20℃)を行った。遠心後、上清を除去し、10mLの完全培地に懸濁しセルカウントを行った。セルカウント後、完全培地を用いて、細胞懸濁液を78.5×10cells/mLに調製し、細胞培養用の100mmディッシュ(イワキ社製)に前記の細胞懸濁液1mL、及び完全培地14.7mLを添加し、COインキュベーター(37℃、湿度95%、CO濃度5%)にて培養を行った。継代間隔は3日とし、1継代目の播種細胞密度を1×10cells/cm、液量を0.2mL/cmとして継代操作を行った。2継代目は播種細胞密度を1.0×10cells/cm、液量を0.2mL/cmとして、細胞培養用のCELLBIND処理T225フラスコ(CORNING社製)1個あたりに45.0mLずつ添加した。2継代目実施の3日後、培養上清液を取り除き、表4記載の培地H、F-1、K、L、及びB-1にそれぞれ置換した(液量は0.1mL/cm)。なお、デキサメタゾン(DEX)(ナカライテスク社製)は、培地K、Lに最終濃度100nMとなるように添加した。培地置換の翌日に、各培地を回収し、それぞれ新しい同じ培地に交換した。なお、2継代の3日後からは、32℃、湿度95%、CO濃度5%にて培養を行った。上記の培地の交換と回収を3日間連続で計3回行い、3回目は培地の添加を行わず培地の回収のみ行った。回収した培養上清液(1回目、2回目、3回目)は、混合した後0.22μmのポアサイズのフィルター(ミリポア社製)でろ過し、レトロウイルス上清液として小分け分注後-80℃保存した。
Figure JPOXMLDOC01-appb-T000004
3.レトロウイルス上清液の遺伝子導入評価
 レトロウイルス上清液について遺伝子導入効率の測定を行った。
 レトロネクチンを25μg/mL、抗CD3抗体(OKT3、ヤンセンファーマ株式会社)を5μg/mLとなるようにPBSに溶解した。この溶液を表面処理した(tissue culture treated)6穴プレートに各ウェル1mLずつ添加し、37℃で5時間放置した。その後溶液を除き、GT-T-RetroIII(タカラバイオ社製、以下、RetroIIIと記載する)を用いて1mLずつ各ウェルを2回洗浄した。次に、RetroIIIにIL-2(NOVARTIS社製)を最終濃度600IU/mL、ファンギゾン(ブリストル・マイヤーズスクイブ社製)を最終濃度0.5μg/mL、自己血漿0.6%となるように調製した培養用培地(以下、CMと記載する)を1mLずつで各ウェルを洗浄し、レトロネクチン/抗CD3抗体固定化プレートを作製した。
ヒト末梢血より分離した末梢血単核球(PBMC)を、0.2×10個/mLとなるように、CMで調製し、この懸濁液6.7mLをフィブロネクチンフラグメント/抗CD3抗体固定化プレートに0.7mL/cmとなるように加え、培養を開始した。(0.14×10mL/cm
 培養開始より4日目に遺伝子導入操作を下記のように行った。培地H、F-1、K、L、及びB-1を用いて回収したレトロウイルス上清液それぞれについて原液、5倍希釈液を調製した。このとき希釈には、ACD-A、5%アルブミン溶液及び2%アルブミン溶液を用いた。遺伝子導入用の容器は24穴ノントリートメントプレートを用いた。24穴ノントリートメントプレートは、予めACD-Aで最終濃度20μg/mLになるように希釈したRetroNectinを各ウェルに0.5mL添加して4℃で一晩処理し、プレートからRetroNectin溶液を取り除いた後、ACD-Aを用いて0.5mLずつで各ウェルの洗浄を2回行ったものを使用した。このプレートの各ウェルに各ウイルス希釈液を1mL添加し、遠心処理(32℃、2000×g、2時間)した。遠心後、各ウェルよりウイルス希釈液上清を取り除き、1.5%アルブミン溶液0.5mLずつで各ウェルを3回洗浄した。培養細胞懸濁液を回収し、CMに、0.145×10cells/mLとなるように懸濁した。前記の洗浄後の24穴ノントリートメントプレートの各ウェルにこの懸濁液1mL(0.0725×10cells/cm)を添加し、遠心処理(32℃、1000×g、10分)した。遠心後、COインキュベーター(37℃、湿度95%、CO濃度5%)にて4時間培養を行った。その後、細胞懸濁液をCMで5倍希釈し、表面処理した(tissue culture treated)6ウェルプレートに添加し培養を継続した。培養開始から7日目に細胞懸濁液と等量のCMを加え、2倍希釈して培養を更に継続した。
 培養開始から10日目に、レトロウイルスによる遺伝子導入効率を調べるために、MAGE-A4テトラマー-PE(ルードヴィッヒ社製)、及びHuman CD8-APCcy7(ベクトン ディッキンソン社製)にて染色し、フローサイトメーターによりCD8陽性であって、かつテトラマー陽性である細胞の割合を測定した。具体的には、感染培養後の細胞0.3×10cellsをエッペンドルフチューブに移し、遠心処理(4℃、500×g、5分間)にて細胞を沈殿させた。上清を取り除いた後、沈殿した細胞は950μLの0.5%BSA/PBSに懸濁し、遠心処理(4℃、500×g、5分間)にて再度細胞を沈殿させた。上清を再度取り除いた後、MAGE-A4テトラマー-PE1μLに0.5%BSAを8μL添加した混合液で懸濁し、30分、4℃で反応させた。その後、Human CD8-APCcy7を1μL加え、30分、4℃で反応させた。反応後、950μLの0.5%BSA/PBSを添加し、遠心処理(4℃、500×g、5分間)にて上清を取り除く工程を2回行った後、400μLの0.5%BSA/PBSに懸濁し、この懸濁液をフローサイトメトリー測定に供した。
4.フローサイトメトリー解析
 フローサイトメトリー解析はBD FACSCanto II フローサイトメーターを用いて機器指示書に従い行った。CD8陽性細胞中のテトラマー陽性細胞の存在比率の求め方は、APCcy7、PE検出パラメーターの2パラメータヒストグラム(x軸:APCcy7の蛍光強度、y軸:PEの蛍光強度を示す)上で、アイソタイプコントロールによりAPCcy7(CD8)、PE(MAGE-A4テトラマー)非発現細胞の蛍光強度領域を確認後、その領域を境に4分割し、APCcy7、PE発現細胞の蛍光強度領域を定め、その細胞数の割合(%)を測定した。測定後、遺伝子導入効率(GT%:Gene Transduction efficiency)は、下記の式により求めた。
 GT% = CD8、及びテトラマー陽性細胞数 / CD8陽性細胞数
 遺伝子導入効率の測定結果を図6に示す。図6に示されるように、F-1、K、L、及びB-1を用いて回収したレトロウイルス上清液の導入効率は、基本培地である培地AにNaBを添加した培地Hよりも顕著に高い遺伝子導入効率を示した。すなわち、実施例2および4に記載の蛍光蛋白質発現ウイルスベクターに限らず、また、実験スケール以上のパイロットスケールにおいても、高タイターのウイルスが得られ高効率に目的遺伝子が導入された。
 5.レトロウイルス上清液のRNAコピー数評価
 レトロウイルス上清液についてRNAコピー数の測定を行った。
 測定は、Retrovirus Titer Set(for Real TIME PCR)(タカラバイオ社製)を用いて、取扱説明書の標準的な使用方法に従ってRNAコピー数を算出した。結果については、図7に示されるように実施例7-4の遺伝子導入効率の結果と同様、ATRA、DEXの片方、又は両方をNaBと組み合わせることにより、基本培地である培地AにNaBを添加した培地Hよりも顕著に高いRNAコピー数(以下、図中RNA COPYと記載)を示した。
実施例8 TSA添加培地の調製2
 培地Aにデキサメタゾン(DEX)を最終濃度100nM、レチノイン酸(ATRA)を最終濃度1μMとなるように添加し、さらにトリコスタチンA(TSA)をそれぞれ最終濃度50nM、500nMになるように添加した、培地M-1、及びM-2(以下、培地M群と記載する)を作製した。さらに培地AにTSAを終濃度50nM、500nMになるように添加した、培地D-1、及びD-2(以下、培地D群と記載する)NaBのみ添加(終濃度5mM)した培地H、及びNaB(終濃度5mM)、レチノイン酸(ATRA)を最終濃度100nM、デキサメタゾン(DEX)を最終濃度100nM添加した培地Nを作製した。各培地の組成を表5に示す。
Figure JPOXMLDOC01-appb-T000005
実施例9
1.レトロウイルス産生細胞の培養
 実施例7-1記載のレトロウイルス産生細胞を用いてウイルス上清液の調製を行った。本実施例では、実施例8記載の培地を用いて、実施例2-1の方法でウイルス上清液を取得した。ただし、ウイルス回収日数を実施例2-1では4日間としているが、本実施例では3日間で回収したウイルス上清液を混合して評価している。
2.レトロウイルス上清液の遺伝子導入評価
 遺伝子導入はCD8抗体をHuman CD8-FITC(ベクトン ディッキンソン社製)を用いて実施した以外は実施例7-3と同様に行った。遺伝子導入効率の評価は、実施例7-4と同様に行った。
 遺伝子導入効率の測定結果を図8に示す。図8に示されるように、M-1とD-1、M-2とD-2、及びHとNを比較すると、NaB又はTSAと、ATRA、DEXを併用した培地を用いて回収したレトロウイルス上清液の導入効率は、NaB、TSA単独添加培地であるD群、及びHよりも顕著に高い遺伝子導入効率を示した。また、TSAは50nMより500nMで効果があった。
3.レトロウイルス上清液のRNAコピー数評価
 レトロウイルス上清液についてRNAコピー数の測定を行った。
 測定は、Retrovirus Titer Set(for Real TIME PCR)を用いて、取扱説明書の標準的な使用方法に従ってRNAコピー数を算出した。結果については、図9に示されるように実施例9-2の遺伝子導入効率の結果と同様、M-1とD-1、M-2とD-2、及びHとNを比較すると、ATRA、DEXの両方をNaB、又はTSAと組み合わせることにより、NaB、又はTSA単独添加培地よりも顕著に高いRNAコピー数を示した。また、TSAは50nMより500nMで効果があった。
実施例10 TSA添加培地の調製3
 実施例1と同様の方法で表6記載の最終濃度となるように培地を調製した。
Figure JPOXMLDOC01-appb-T000006
実施例11 レトロウイルス産生細胞の培養
 実施例2記載のレトロウイルス産生細胞を用いてウイルス上清液の調製を行った。実施例10記載の培地を用いて、実施例2-1の方法でウイルス上清液を取得した。ただし、ウイルス回収日数を本実施例では4日間で回収して混合したウイルス上清液と、3日間で回収して混合したウイルス上清液を評価している。遺伝子導入はウイルス希釈を10倍とした以外は実施例2-2と同様に行い、遺伝子導入効率及び蛍光強度の評価は、実施例2-3と同様に行った。
 遺伝子導入効率の測定結果を図10に示す。
 図10に示されるように、培地O群を用いて回収したレトロウイルス上清液での遺伝子導入効率は、培地Aよりも6~8倍程度高い遺伝子導入効率を示した。また、遺伝子導入効率は、3日間より4日間の方が対照群からの上昇効果が大きかった。
 蛍光強度の測定結果を図11に示す。
 図11に示されるように、培地O群を用いて回収したレトロウイルス上清液での蛍光強度は、培地Aよりも2~3.5倍程度高い蛍光強度を示した。
 実施例12 9-cisレチノイン酸(9-cis)(ナカライテスク社製)、AM80添加培地の調製
 実施例1と同様の方法で表7記載の最終濃度となるように培地を調製した。ここで、AM80にタミバロテン(シグマ社製)を使用した。
Figure JPOXMLDOC01-appb-T000007
実施例13 レトロウイルス産生細胞の培養
 実施例2記載のレトロウイルス産生細胞を用いてウイルス上清液の調製を行った。実施例12記載の培地を用いて、実施例2-1の方法でウイルス上清液を取得した。ただし、ウイルス回収日数を実施例2-1では4日間としているが、本実施例では3日間で回収したウイルス上清液を混合して評価している。遺伝子導入はウイルス希釈を10倍とした以外は実施例2-2と同様に行い、遺伝子導入効率の評価は、実施例2-3と同様に行った。
 遺伝子導入効率の測定結果を図12に示す。
 図12に示されるように、培地P群、R群を用いて回収したレトロウイルス上清液での遺伝子導入効率は、培地Aよりも1.5~2倍程度高い遺伝子導入効率を示した。なお、9-cis、AM80単独の培地Q群、S群の遺伝子導入効率は培地Aと同程度か減少する。
実施例14 スベロイルアニリドヒドロキサム酸(SAHA)(CAYMAN社製)添加培地の調製
 実施例1と同様の方法で表8記載の最終濃度となるように培地を調製した。
Figure JPOXMLDOC01-appb-T000008
実施例15 レトロウイルス産生細胞の培養
 実施例2記載のレトロウイルス産生細胞を用いてウイルス上清液の調製を行った。実施例14記載の培地を用いて、実施例2-1の方法でウイルス上清液を取得した。ただし、ウイルス回収日数を実施例2-1では4日間としているが、本実施例では3日間で回収したウイルス上清液を混合して評価している。遺伝子導入はウイルス希釈を10倍とした以外は実施例2-2と同様に行い、遺伝子導入効率の評価は、実施例2-3と同様に行った。
 遺伝子導入効率の測定結果を図13に示す。
 図13に示されるように、培地T群を用いて回収したレトロウイルス上清液での遺伝子導入効率は、培地Aよりも1.4~1.9倍程度高い遺伝子導入効率を示した。また、SAHA濃度が対応するU群培地よりも高い遺伝子導入効率を示した。
実施例16 NaB添加培地の調製2
 細胞培養用培地であるDMEMに非働化FBSを溶液比(V/V)で1/10加えた基本培地(培地V)として、レチノイン酸(ATRA)を最終濃度100nMとなるように添加し、さらに酪酸ナトリウム(NaB)を最終濃度5mMになるように添加して、培地Wを作製した。さらに培地VにNaBのみ添加(終濃度5mM)した培地X、及びATRAのみ添加(終濃度100nM)した培地Yを作製した。各培地の組成を表9に示す。
Figure JPOXMLDOC01-appb-T000009
実施例17 レトロウイルス産生細胞の培養
 実施例2記載のレトロウイルス産生細胞を用いてウイルス上清液の調製を行った。実施例16記載の培地を用いて、実施例2-1の方法でウイルス上清液を取得した。ただし、ウイルス回収日数を実施例2-1では4日間としているが、本実施例では3日間で回収したウイルス上清液を混合して評価している。遺伝子導入はウイルス希釈を10倍とした以外は実施例2-2と同様に行い、遺伝子導入効率、蛍光強度の評価は、実施例2-3と同様に行った。
 遺伝子導入効率の測定結果を図14に示す。
 図14に示されるように、培地Wを用いて回収したレトロウイルス上清液での遺伝子導入効率は、培地Vよりも1.2倍程度高い遺伝子導入効率を示した。
 蛍光強度の測定結果を図15に示す。
 図15に示されるように、培地Wを用いて回収したレトロウイルス上清液での蛍光強度は、培地Vよりも1.5倍程度高い蛍光強度を示した。
 本発明の培地を用いることにより、高いウイルス力価のウイルス上清が容易に得られることから、ウイルスベクター及び当該ベクターを含有する高力価組成物を容易に調製することが可能となる。本発明の培地を用いて得られたウイルスベクターや前記組成物は遺伝子治療の分野で非常に有用である。

Claims (13)

  1.  ウイルスベクターを産生する能力を有する細胞を、レチノイン酸類及びヒストン脱アセチル化酵素阻害物質を有効成分として含む培地で培養する工程を包含するウイルスベクターの製造方法。
  2.  培地が、有効成分として、更に脂質類を含む請求項1記載の製造方法。
  3.  細胞が継続的にウイルスベクターを産生する能力がある細胞である請求項1又は2に記載の製造方法。
  4.  ウイルスベクターがレトロウイルスベクターである請求項1~3いずれか記載の製造方法。
  5.  ヒストン脱アセチル化酵素阻害物質がトリコスタチンA及び酪酸ナトリウムからなる群より選択される少なくとも1種の物質である請求項1~4いずれか記載の製造方法。
  6.  請求項1~5いずれか記載の方法で製造されたウイルスベクター。
  7.  請求項6記載のウイルスベクターを用いて細胞を形質転換することを特徴とする形質転換された細胞集団の製造方法。
  8.  請求項7に記載の製造方法で得られた形質転換された細胞集団。
  9.  医薬に使用するための請求項8記載の細胞集団。
  10.  医薬の製造に用いる請求項8記載の細胞集団。
  11.  請求項8記載の細胞集団を有効成分として含有する医薬。
  12.  対象に有効量の請求項11記載の医薬を投与する工程を含む疾病の治療方法又は予防方法。
  13.  有効成分として、レチノイン酸類及びヒストン脱アセチル化酵素阻害物質を含むことを特徴とするウイルスベクター製造用培地。
PCT/JP2011/072871 2010-10-05 2011-10-04 ウイルスベクターの製造方法 WO2012046727A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11830659.6A EP2612909B1 (en) 2010-10-05 2011-10-04 Method for producing virus vector
KR1020137009301A KR101362111B1 (ko) 2010-10-05 2011-10-04 바이러스 벡터의 제조방법
JP2011551335A JP5010760B2 (ja) 2010-10-05 2011-10-04 ウイルスベクターの製造方法
US13/823,805 US9102943B2 (en) 2010-10-05 2011-10-04 Method for producing virus vector
CN201180048256.4A CN103124787B (zh) 2010-10-05 2011-10-04 制造病毒载体的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-225545 2010-10-05
JP2010225545 2010-10-05

Publications (1)

Publication Number Publication Date
WO2012046727A1 true WO2012046727A1 (ja) 2012-04-12

Family

ID=45927722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072871 WO2012046727A1 (ja) 2010-10-05 2011-10-04 ウイルスベクターの製造方法

Country Status (6)

Country Link
US (1) US9102943B2 (ja)
EP (1) EP2612909B1 (ja)
JP (1) JP5010760B2 (ja)
KR (1) KR101362111B1 (ja)
CN (1) CN103124787B (ja)
WO (1) WO2012046727A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141133A1 (ja) * 2012-03-22 2013-09-26 タカラバイオ株式会社 ウイルスベクターの製造方法
JP2014200182A (ja) * 2013-04-03 2014-10-27 国立大学法人 東京大学 培地及び細胞の培養方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015191508A1 (en) 2014-06-09 2015-12-17 Voyager Therapeutics, Inc. Chimeric capsids
JP6401871B2 (ja) 2014-11-05 2018-10-10 ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. パーキンソン病の治療のためのaadcポリヌクレオチド
KR102584655B1 (ko) 2014-11-14 2023-10-06 보이저 테라퓨틱스, 인크. 조절성 폴리뉴클레오티드
KR20230169197A (ko) 2014-11-14 2023-12-15 보이저 테라퓨틱스, 인크. 근위축성 측삭 경화증(als)을 치료하는 조성물 및 방법
US11697825B2 (en) 2014-12-12 2023-07-11 Voyager Therapeutics, Inc. Compositions and methods for the production of scAAV
WO2017189959A1 (en) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions for the treatment of disease
WO2017189964A2 (en) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions for the treatment of disease
WO2017201258A1 (en) 2016-05-18 2017-11-23 Voyager Therapeutics, Inc. Compositions and methods of treating huntington's disease
SG11201809699XA (en) 2016-05-18 2018-12-28 Voyager Therapeutics Inc Modulatory polynucleotides
CN110650673B (zh) 2016-08-30 2024-04-09 加利福尼亚大学董事会 用于生物医学靶向和递送的方法以及用于实践该方法的装置和系统
WO2018194438A1 (ko) 2017-04-21 2018-10-25 (주)지뉴인텍 비복제 아데노 바이러스 생산 세포주 및 이의 제조방법
AU2018261790A1 (en) 2017-05-05 2019-11-28 Voyager Therapeutics, Inc. Compositions and methods of treating amyotrophic lateral sclerosis (ALS)
EP3619308A4 (en) 2017-05-05 2021-01-27 Voyager Therapeutics, Inc. COMPOSITIONS AND METHODS OF TREATMENT FOR HUNTINGTON'S MORBUS
JOP20190269A1 (ar) 2017-06-15 2019-11-20 Voyager Therapeutics Inc بولي نوكليوتيدات aadc لعلاج مرض باركنسون
CN111132626B (zh) 2017-07-17 2024-01-30 沃雅戈治疗公司 轨迹阵列引导系统
TWI832036B (zh) 2017-08-03 2024-02-11 美商航海家醫療公司 用於aav之遞送之組合物及方法
US11434502B2 (en) 2017-10-16 2022-09-06 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (ALS)
US20200237799A1 (en) 2017-10-16 2020-07-30 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
CN111197060A (zh) * 2018-11-16 2020-05-26 上海恒润达生生物科技有限公司 靶向治疗血液病恶性肿瘤的研究方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007943A1 (en) 1990-10-31 1992-05-14 Somatix Therapy Corporation Retroviral vectors useful for gene therapy
US5278056A (en) 1988-02-05 1994-01-11 The Trustees Of Columbia University In The City Of New York Retroviral packaging cell lines and process of using same
WO2000001836A1 (fr) * 1998-07-01 2000-01-13 Takara Shuzo Co., Ltd. Procedes de transfert de genes
WO2007020873A1 (ja) 2005-08-16 2007-02-22 Takara Bio Inc. 免疫不全ウイルス感染症の治療または予防のための核酸
JP2007105033A (ja) 2005-09-13 2007-04-26 Takara Bio Inc レトロウィルス産生用無血清培地
WO2008133137A1 (ja) 2007-04-20 2008-11-06 Takara Bio Inc. 遺伝子治療のためのベクター
WO2008153029A1 (ja) 2007-06-11 2008-12-18 Takara Bio Inc. 特異的遺伝子発現方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470726A (en) * 1991-02-22 1995-11-28 Fred Hutchinson Cancer Research Center Retrovirus packaging and producer cell lines based on gibbon ape leukemia virus
US20030064949A1 (en) * 1998-02-17 2003-04-03 Loretta Nielsen Combined tumor suppressor gene therapy and chemotherapy in the treatment of neoplasms
JP2002527101A (ja) 1998-10-16 2002-08-27 ノバルティス アクチエンゲゼルシャフト ヒストンデアセチラーゼ阻害剤による造血幹細胞への遺伝子形質導入の改良及び自己再生の促進
WO2001096532A2 (en) 2000-06-15 2001-12-20 Tanja Dominko Method of generating pluripotent mammalian cells by fusion of a cytoplast fragment with a karyoplast
US20020183388A1 (en) * 2001-02-01 2002-12-05 Gudas Lorraine J. Use of retinoids plus histone deacetylase inhibitors to inhibit the growth of solid tumors
WO2003004627A2 (fr) 2001-07-06 2003-01-16 Institut National De La Sante Et De La Recherche Medicale (I.N.S.E.R.M.) Lignees d'hepatomes humains leurs optentions et leurs applications
CA2478692A1 (en) 2002-03-12 2003-09-25 Ark Therapeutics Ltd. Engineered baculoviruses and their use
ATE552334T1 (de) 2005-09-13 2012-04-15 Takara Bio Inc Serumfreies medium zur herstellung von retroviralen vektoren
WO2009048024A1 (ja) 2007-10-09 2009-04-16 Hiroshima University 目的遺伝子を染色体外で高度に増幅させるためのベクターおよびその利用
CN102282250A (zh) 2008-05-22 2011-12-14 维斯塔治疗公司 使哺乳动物祖细胞分化为产生胰岛素的胰岛细胞的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278056A (en) 1988-02-05 1994-01-11 The Trustees Of Columbia University In The City Of New York Retroviral packaging cell lines and process of using same
WO1992007943A1 (en) 1990-10-31 1992-05-14 Somatix Therapy Corporation Retroviral vectors useful for gene therapy
WO2000001836A1 (fr) * 1998-07-01 2000-01-13 Takara Shuzo Co., Ltd. Procedes de transfert de genes
WO2007020873A1 (ja) 2005-08-16 2007-02-22 Takara Bio Inc. 免疫不全ウイルス感染症の治療または予防のための核酸
JP2007105033A (ja) 2005-09-13 2007-04-26 Takara Bio Inc レトロウィルス産生用無血清培地
WO2008133137A1 (ja) 2007-04-20 2008-11-06 Takara Bio Inc. 遺伝子治療のためのベクター
WO2008153029A1 (ja) 2007-06-11 2008-12-18 Takara Bio Inc. 特異的遺伝子発現方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
BIOTECHNIQUES, vol. 29, 2000, pages 884 - 890
CASELLI, E. ET AL.: "Retinoic acid analogues inhibit human herpesvirus 8 replication", ANTIVIRAL THERAPY, vol. 13, 2008, pages 199 - 209, XP008162430 *
FALUHELYI, Z. ET AL.: "All-trans retinoic acid (ATRA) suppresses transcription of human papillomavirus type 16 (HPV16) in a dose- dependent manner", ANTICANCER RESEARCH, vol. 24, 2004, pages 807 - 809., XP008162422 *
GENE THERAPY, vol. 3, 1996, pages 756 - 760
J. HUM. GENE THER., vol. 6, 1995, pages 1195 - 1202
JAALOUK, D. E. ET AL.: "Inhibition of histone deacetylation in 293GPG packaging cell line improves the production of self-inactivating MLV-derived retroviral vectors", VIROLOGY JOURNAL, vol. 3, no. 27, 2006, XP021019331 *
KIEFER, H. L. B. ET AL.: "Retinoic acid inhibition of chromatin remodeling at the human immunodeficiency virus type 1 promoter", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 279, no. 42, 2004, pages 43604 - 43613, XP008162424 *
MEIER, J. L.: "Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal NTera2 cells: role of trichostatin A, retinoic acid, and deletion of the 21-base-pair repeats and modulator", JOURNAL OF VIROLOGY, vol. 75, no. 4, February 2001 (2001-02-01), pages 1581 - 1593, XP008162421 *
NAKASHIMA, H.: "Inhibitory effect of retinoic acid on human immunodeficiency virus (HIV) infection and replication in vitro", VITAMINS, vol. 60, no. 11, 1986, pages 527 - 535, XP008162427 *
NUCLEIC ACIDS RESEARCH, vol. 18, no. 12, 1990, pages 3587 - 3596
PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 6460 - 6464
See also references of EP2612909A4 *
TOBIAS, C. A. ET AL.: "Improved recombinant retroviral titers utilizing trichostatin A", BIOTECHNIQUES, vol. 29, no. 4, October 2000 (2000-10-01), pages 884 - 890, XP001526507 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141133A1 (ja) * 2012-03-22 2013-09-26 タカラバイオ株式会社 ウイルスベクターの製造方法
US9399780B2 (en) 2012-03-22 2016-07-26 Takara Bio Inc. Method for producing viral vector
JP2014200182A (ja) * 2013-04-03 2014-10-27 国立大学法人 東京大学 培地及び細胞の培養方法

Also Published As

Publication number Publication date
EP2612909A1 (en) 2013-07-10
CN103124787B (zh) 2015-04-29
JP5010760B2 (ja) 2012-08-29
EP2612909A4 (en) 2013-07-10
US20130183719A1 (en) 2013-07-18
KR101362111B1 (ko) 2014-02-12
EP2612909B1 (en) 2015-02-25
JPWO2012046727A1 (ja) 2014-02-24
KR20130069796A (ko) 2013-06-26
US9102943B2 (en) 2015-08-11
CN103124787A (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
JP5010760B2 (ja) ウイルスベクターの製造方法
JP2021530985A (ja) フソソームの組成物及びその使用
JP2022507454A (ja) Cns送達のためのフソソーム組成物
JP2022507453A (ja) T細胞送達のためのフソソーム組成物
JP5805089B2 (ja) 細胞集団の製造方法
JP7262465B2 (ja) Nk細胞形質導入のための方法
CN106795500A (zh) 载体生产
KR20160075676A (ko) 방법
JP2023521663A (ja) 標的化脂質粒子及び組成物ならびにその使用
JP2023534924A (ja) ウイルスフソソームを産生するための方法及び組成物
JP2024521811A (ja) 短縮型ヒヒ内在性レトロウイルス(BaEV)エンベロープ糖タンパク質を含む脂質粒子、ならびに関連する方法及び使用
WO2016104486A1 (ja) T細胞集団の改変方法
US7485448B2 (en) Serum-free medium for producing retroviruses
JP6014119B2 (ja) ウイルスベクターの製造方法
JP4921083B2 (ja) レトロウィルス産生用無血清培地
US20200318068A1 (en) Use of retinoic acid in t-cell manufacturing
WO2012086702A1 (ja) 遺伝子導入方法
Ansorge et al. Towards continuous bioprocessing of lentiviral vectors
JP6855579B2 (ja) T細胞を得る方法及び使用
WO2013146480A1 (ja) 遺伝子導入方法
JPWO2012002452A1 (ja) 遺伝子導入方法
KR101043871B1 (ko) 동종 제대혈 혈청 또는 혈장을 사용하는 유전자 도입 방법
Park Optimizing Growth and Productivity of Mammalian Cells for Immunotherapeutic Applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048256.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011551335

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011830659

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137009301

Country of ref document: KR

Kind code of ref document: A