WO2012086702A1 - 遺伝子導入方法 - Google Patents
遺伝子導入方法 Download PDFInfo
- Publication number
- WO2012086702A1 WO2012086702A1 PCT/JP2011/079672 JP2011079672W WO2012086702A1 WO 2012086702 A1 WO2012086702 A1 WO 2012086702A1 JP 2011079672 W JP2011079672 W JP 2011079672W WO 2012086702 A1 WO2012086702 A1 WO 2012086702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- cells
- gene
- vector
- ions
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/02—Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
Definitions
- the present invention relates to a method for introducing a gene into a target cell using a viral vector.
- gene transfer using a retroviral vector capable of stably incorporating a target foreign gene into the chromosomal DNA of a target cell is a preferable gene transfer means particularly for gene therapy in which long-term gene expression is desired. It has been reported that the efficiency of gene transfer using a retroviral vector is improved by the use of a cell adhesive substance that binds to a retrovirus such as fibronectin or fibronectin fragment CH-296 (RetroNectin (registered trademark)) ( For example, Patent Document 1).
- An object of the present invention is to provide a method for introducing a gene into a target cell using a viral vector with higher efficiency.
- the present invention [1] A method for introducing a gene into a target cell using a viral vector, the method comprising irradiating a container containing the viral vector and the target cell with ions, [2]
- the target cell is at least one selected from the group consisting of a cell population, a substance involved in cell growth stimulation, a substance involved in cell differentiation induction, and a substance involved in induction of cell dedifferentiation
- the method according to [1] which is a cell population obtained by the step of irradiating ions in a container accommodated.
- the method according to [2] wherein the target cell is a cell population obtained by irradiating a cell population containing a T cell and a CD3 ligand-containing container with ions.
- the method according to [1], wherein the viral vector is a retroviral vector [5] The method according to [1], wherein ions generated by corona discharge or plasma discharge are irradiated. [6] The method includes (a) a step of obtaining a container on which the virus vector is immobilized, and (b) a step of incubating under ion irradiation after putting the target cell into the container obtained in step (a).
- [1] to the method according to any one of [5], [7] (A) Contains at least one selected from the group consisting of (A) a cell population, a substance involved in cell proliferation stimulation, a substance involved in cell differentiation induction, and a substance involved in induction of cell dedifferentiation
- a method of introducing a gene into a target cell using a viral vector comprising the step of irradiating ions to the vessel, and (B) introducing the gene into the cell population obtained by the step (A) using a viral vector, [8] (A) a step of irradiating a cell population containing a T cell and a CD3 ligand with ions, and (B) a step of introducing a gene into the cell population obtained in step (A) using a viral vector.
- the present invention provides a simple and efficient gene transfer method.
- the gene transfer method of the present invention is characterized in that in the gene transfer method to a target cell using a viral vector, the gene transfer step and the preliminary stimulation step are performed under ion irradiation.
- a method for introducing a gene into a target cell using a viral vector which includes a step of irradiating ions in a container containing the viral vector and the target cell, is a preferred embodiment of the gene introduction method of the present invention.
- the gene introduction method of the present invention can introduce genes into target cells with significantly higher efficiency than gene introduction methods using known viral vectors.
- ion irradiation refers to irradiating an object with ions generated by discharge or the like by blowing air or an electrostatic field.
- the ions in the gene introduction method of the present invention include air ions generated by corona discharge or plasma discharge, and positive ions, negative ions, or both ions can be preferably used.
- an ion wind containing positive ions and negative ions, which are predominantly positive ions, or an ion wind containing positive ions and negative ions, which are predominantly negative ions may be used.
- ion irradiation by an ion wind containing positive ions and negative ions that are dominant in positive ions is referred to as “+ ion-dominant ion irradiation”, and ions including positive ions and negative ions that are dominant in negative ions.
- Ion irradiation by wind may be referred to as “-ion-dominated ion irradiation”.
- Ions can be generated and irradiated using, for example, a commercially available ion generator (ionizer) for static elimination.
- the ion irradiation amount and the ion irradiation time are not particularly limited as long as improvement in gene transfer efficiency by the gene transfer method of the present invention is observed.
- an easily charged material may be arranged on one or more surfaces around the container or around the container.
- a nylon plate is disposed under the container. be able to.
- a polytetrafluoroethylene plate can be disposed under the container.
- the container used in the present invention is not particularly limited.
- a container used for cell culture such as a cell culture bag, a cell culture plate, a cell culture petri dish, a cell culture test tube, and a cell culture flask.
- the container may be a closed type, an open type, or a semi-open type container.
- the material of the container is not particularly limited, and for example, a plastic or glass container can be used in the present invention.
- a cell culture bag particularly a gas permeable cell culture bag, is suitable for the present invention.
- a retrovirus vector As a viral vector in the gene introduction method of the present invention, a retrovirus vector, an adenovirus vector, and an adeno-associated virus vector are preferably exemplified, and among these, a retrovirus vector is more preferably exemplified.
- a retrovirus vector refers to a virus particle produced by genetic recombination technology based on an oncorretrovirus, a lentivirus, or the like belonging to a retrovirus.
- Examples of the oncoretrovirus vector include a vector based on Moloney murine leukemia virus (MMLV).
- Examples of lentiviral vectors include HIV-1 based vectors and SIV based vectors.
- a pseudotype vector refers to a recombinant retroviral vector having an Env protein whose origin is different from that of a Gag protein or a Pol protein.
- Pseudotype vectors have Env proteins such as vesicular stomatitis virus (VSV), gibbon leukemia virus (GaLV), feline endogenous virus RD114, murine leukemia virus (Ecotropic-env, amphotropic-env, 10A1-env, etc.) Examples include oncoretrovirus vectors and lentivirus vectors.
- a replication-deficient recombinant retrovirus vector is preferably used.
- the vector is non-pathogenic, deficient in replication so that it cannot replicate in infected cells.
- These vectors infect vertebrate cells, particularly host cells such as mammalian cells, and can stably incorporate foreign genes inserted into the vector into their chromosomal DNA.
- Any gene can be selected as the foreign gene to be introduced into the target cell.
- intracellular antibodies see, for example, WO94 / 02610 pamphlet
- growth factors see, for example, WO94 / 02610 pamphlet
- antisense RNA cause RNA interference
- RNA RNA interference
- ribozyme for example, see International Publication No. 90/13641 pamphlet
- false primer for example, see International Publication No. 90/13641 pamphlet
- a foreign gene to be introduced into a target cell can be used by being placed under the control of an appropriate promoter, for example, an LTR promoter present in a retrovirus vector or other foreign promoters.
- an appropriate promoter for example, an LTR promoter present in a retrovirus vector or other foreign promoters.
- other regulatory elements cooperating with the promoter and transcription initiation site such as enhancer sequences, terminator sequences, and intron sequences may be used.
- the gene to be introduced into the target cell may be a natural one or an artificially produced gene, and may be one obtained by binding DNA molecules having different origins by a known means such as ligation.
- the viral vector used in the present invention may contain an appropriate marker gene that enables selection of the transfected cell.
- marker genes include drug resistance genes that confer resistance to antibiotics on cells, reporter genes that can distinguish cells introduced by enzymatic activity and fluorescence, and cell surface marker genes that are localized on the cell surface. Is available.
- the neomycin phosphotransferase gene is used as a marker gene, the transfected cell can be confirmed using resistance to G418 as an index.
- a gene encoding the extracellular domain of Low Affinity Nerve Growth Factor Receptor (LNGFR) is used as a cell surface marker gene, the transfected cell can be isolated and purified by using an anti-LNGFR antibody. .
- LNGFR Low Affinity Nerve Growth Factor Receptor
- a retroviral vector for example, an MFG vector (ATCC No. 68754), an ⁇ -SGC vector (ATCC No. 68755), an LXSN vector [BioTechniques, 7, 980-990 (1989)], DON-5, DON-AI-2, MEI-5 retrovirus vectors manufactured by Takara Bio Inc., Retro-X Q vector series manufactured by Clontech, Lenti-X Vectors such as vector series can be used.
- these vectors include a retrovirus packaging cell in which a gene encoding a retrovirus structural protein such as a gag-pol gene or env gene has been integrated on the chromosome, for example, PG13 (a known packaging cell line).
- ATCC CRL-10686 PA317 (ATCC CRL-9078), GP + E-86 (ATCC CRL-9642), GP + envAm12 (ATCC CRL-9641), [Proceedings of the National Academy of Sciences of Science The United States of America (Proc. Natl. Acad. Sci. USA), Volume 85, Pages 6460-6464 (1988)]
- PG13 a known packaging cell line
- a packaging plasmid expressing a recombinant virus structural protein (gag-pol gene product, env gene product, etc.) and a transfer vector are transiently transferred to an appropriate cell, for example, 293T cell (ATCC CRL-11268). It can also be prepared by transfecting and collecting the culture supernatant.
- Known culture media such as Dulbecco's modified Eagle's medium and Iscob's modified Dulbecco's medium can be used for culturing virus-producing cells and target cells produced by introducing transfer vectors into packaging cells.
- Gibco can be obtained as a commercial product.
- Various components can be added to these media depending on the type of cells targeted for gene transfer and other purposes. For example, serum, various cytokines, and a reducing agent can be added and used for the purpose of promoting or suppressing the growth and differentiation of target cells.
- calf serum for example, calf serum (CS), fetal calf serum (FCS), human serum and the like can be used, and in place of these, serum replacement or purified serum albumin (for example, human serum) Albumin) can also be used.
- Cytokines include interleukins (IL-2, IL-3, IL-4, IL-6, etc.), colony stimulating factors (G-CSF, GM-CSF, etc.), stem cell factor (SCF), erythropoietin.
- G-CSF colony stimulating factors
- GM-CSF GM-CSF
- SCF stem cell factor
- erythropoietin erythropoietin
- the culture medium suitable for culture cultivation of a target cell at the time of virus collection
- the target cells are human lymphocytes
- GT-T503 medium, GT-T-RetroI medium (all manufactured by Takara Bio Inc.), X-VIVO15 medium (Lonza) or AIM-V suitable for lymphocyte culture A medium (Invitrogen) can be used.
- stem cells stem cells: hematopoietic stem cells, mesenchymal stem cells, embryonic stem cells, etc.), hematopoietic cells, mononuclear cells (peripheral blood mononuclear cells, umbilical cord blood mononuclear cells, etc.), embryonic cells, primal germ -Cells (primary germ cells), oocytes, oocytes, eggs, spermatocytes, sperm, erythroid progenitors, lymphocyte mother cells, mature blood cells, lymphocytes, B cells, T cells, fibroblasts, It is possible to use cells derived from mammals such as neuroblasts, neurons, endothelial cells, vascular endothelial cells, hepatocytes, myoblasts, skeletal muscle cells, smooth muscle cells, cancer cells, myeloma cells and leukemia cells.
- Hematopoietic cells obtained from blood or bone marrow are relatively easy to obtain, and since their culture and maintenance techniques have been established, they are suitable for utilizing the method of the present invention.
- pluripotent stem cells hematopoietic stem cells, mesenchymal stem cells, etc.
- progenitor cells are suitable as target cells.
- immune system cells such as CD4-positive T cells and their progenitor cells are suitable as target cells.
- the cell population is subjected to preliminary stimulation (also referred to as “initial stimulation” in the present specification) using a substance involved in cell growth stimulation, differentiation / dedifferentiation induction, etc., and this is applied to the gene transfer method of the present invention. It may be used as a target cell. It is known that the efficiency of gene transfer by retroviral vectors can be improved by carrying out preliminary stimulation [for example, Journal of Biochemistry, Vol. 149, No. 3, 285-292 (2011)].
- CD3 ligand such as anti-CD3 antibody, IL-2, anti-CD28 CD28 ligands such as antibodies, IL-3, IL-4, IL-6, IL-7, IL-18, CD2, CD355, glucocorticoid, glycosaminoglycan, ⁇ -galactosylceramide, zoledronic acid, stem cell factor, Flt3 Ligand, B cell receptor (BCR) ligand, lipopolysaccharide (LPS), propylene glycol monomethyl ether acetate (PMA), ionomycin, granulocyte monocyte colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF) ), Tumor necrosis factor such as TNF- ⁇ , prostaglandin E2 (PG 2), erythromasis factor such as TNF- ⁇ , prostaglandin E2 (PG 2), erythromasis factor, TNF- ⁇ , prostaglandin E2 (PG 2), ery
- bone formation promoting factors such as BMP-2, fibroblast growth factors such as FGF-2, and IGF-, which are known to be involved in stimulation of proliferation of various cells and induction of differentiation / dedifferentiation, Insulin-like growth factors such as 1 can be used for prestimulation of various cells.
- a CD3 ligand such as an anti-CD3 antibody
- a CD28 ligand such as an anti-CD28 antibody
- IL-2 IL
- IL IL-2
- IL IL
- at least one selected from the group consisting of ⁇ 6, IL-18, CD2, CD355, ⁇ -galactosylceramide, and zoledronic acid for the preliminary stimulation.
- CD3 ligand is preferably used for prestimulation. Table 1 shows preferred examples of combinations of various cells and substances used for preliminary stimulation.
- the above substances may be dissolved or suspended in a medium, or the above substances may be immobilized on a solid phase such as a container or a bead.
- a cell population obtained by culturing a cell population containing T cells in a container in which an anti-CD3 antibody and fibronectin fragment CH-296 are immobilized is suitable as a target cell in the method of the present invention.
- Pre-stimulation may be performed partly or entirely in the process under ion irradiation.
- the present inventors have found that the efficiency of gene transfer using a viral vector is further improved by performing preliminary stimulation under ion irradiation. That is, (A) at least one selected from the group consisting of a cell population, a substance involved in cell growth stimulation, a substance involved in induction of cell differentiation, and a substance involved in induction of cell dedifferentiation was accommodated.
- a method for introducing a gene into a target cell which includes the step of irradiating the container with ions and the step of (B) introducing the gene into the cell population obtained by the step (A) using a viral vector, is one of the preferred embodiments of the present invention.
- the ion irradiation time in the above step (A) is, for example, 10 minutes or more, preferably 30 minutes to 16 days, more preferably 1 hour to 8 days, for example 4 days. Etc. are exemplified.
- the subsequent gene introduction step may be performed under ion irradiation or without ion irradiation.
- gene therapy using CD4 positive T cells as target cells can be performed by the following operation.
- a material containing CD4-positive T cells such as bone marrow tissue, peripheral blood, umbilical cord blood, etc. is collected from a donor. These materials can be used as they are for the gene transfer operation, but usually the mononuclear cell fraction is prepared by a method such as density gradient centrifugation. Further, cell purification using CD4 molecule as an index, removal of CD8-positive T cells, and culture operation for expanding the number of CD4-positive T cells may be performed.
- These cell populations are subjected to appropriate pre-stimulation (for example, stimulation with CD3 ligand or IL-2) under ion irradiation (for example, under ion irradiation predominantly positive ions) as necessary, and then by the method of the present invention, Infect a recombinant retroviral vector into which the gene of interest has been inserted.
- the gene-transferred cells thus obtained can be transplanted into a recipient by intravenous administration, for example.
- the recipient is preferably the donor itself, but allogeneic transplants can also be performed.
- hematopoietic stem cells that complement genes that are defective or abnormal in patients, for example, gene therapy for ADA deficiency and Gaucher disease.
- a drug resistance gene may be introduced into hematopoietic stem cells in order to alleviate the damage of hematopoietic cells caused by chemotherapeutic agents used for the treatment of cancer and leukemia.
- the virus vector may be immobilized on the inner surface of the container. That is, (a) “a step of obtaining a container on which a viral vector is immobilized” and (b) “a step of placing target cells in the container obtained by step (a) and then incubating under ion irradiation”
- the method of inclusion is also an embodiment of the present invention.
- a suspension containing target cells is placed in the container, and then the gene is introduced by accelerating contact between the target cells and the viral vector by centrifugation. It is known to improve efficiency.
- gene introduction method of the present invention gene introduction can be performed with high efficiency even when compared with such a method by centrifugation.
- the retrovirus-binding substance is not particularly limited as long as it has a binding affinity for retrovirus.
- it is selected from fibronectin, fibroblast growth factor, type V collagen, polylysine, DEAE-dextran, and fragments thereof. Exemplified at least one kind of substance. It is also possible to enhance the binding property to the virus by chemically modifying these substances.
- Fibronectin and fragments thereof are substances having both retrovirus binding properties and cell binding properties, and can be suitably used in the present invention. Fibronectin and fragments thereof are described in, for example, Journal of Biochemistry, 256, 7277 (1981), Journal of Cell Biology, 102, 449. (1986), Journal of Cell Biology, 105, 489 (1987), can be produced in substantially pure form from naturally occurring materials. Moreover, it can also be produced using recombinant DNA technology by the method described in US Pat. No. 5,198,423.
- fibronectin fragments containing a heparin-II region that is a retrovirus binding site for example, recombinant polypeptides such as fibronectin fragments CH-296, H-271, H-296, and CH-271, and methods for obtaining them are described in detail in US Pat. No. 5,198,423.
- H-296 has a VLA-4 binding domain polypeptide
- CH-271 has a VLA-5 binding domain peptide
- CH-296 has both. [Nature Medicine, Vol. 2, pp. 876-882 (1996)].
- CH-296 is commercially available under the trade name of RetroNectin, RetroNectin.
- the present invention is not particularly limited, but examples of the material of the container include polystyrene, polyethylene, cycloolefin resin, and fluororesin.
- the method of immobilizing the retrovirus-binding substance on the container can be appropriately selected depending on the type of substance and the type of container used.
- the retrovirus-binding substance is a polypeptide
- it can be immobilized by physical adsorption on the surface of the container (for example, International Publication No. 95/26200 pamphlet).
- the retrovirus-binding substance may be immobilized on the container by covalent bonding using a crosslinking agent or the like.
- containers equipped with culture equipment (beads, hollow fibers, etc.) in which a retrovirus-binding substance is immobilized by the same operation can also be used in the present invention.
- the “step for obtaining a container on which a viral vector is immobilized” in the step (a) is, for example, when a retroviral vector is used as a viral vector, a container on which the retroviral binding substance prepared by the above operation is immobilized. It is possible to use a method in which a liquid containing a retroviral vector is placed in and incubated.
- the liquid containing the retroviral vector is not limited, and examples thereof include a culture supernatant of virus-producing cells containing the retroviral vector and a solution containing the purified viral vector.
- the retrovirus vector is supplemented with the retrovirus-binding substance and immobilized on the container.
- the gene may be introduced into the target cell after washing the container following this operation.
- step (b) “the target cell is placed in the container obtained in step (a) and then incubated under ion irradiation”, the target cell is infected with the retroviral vector, and the gene-introduced cell is efficiently Can get well.
- Incubation can be performed by conditions suitable for infection of the cells with the retroviral vector, eg, incubation at 15-37 ° C. in a medium suitable for the target cells. This condition and the incubation time can be appropriately changed according to the target cell and purpose. Further, incubation under ion irradiation may be accompanied by shaking.
- the ion irradiation may be continued while the target cell is in contact with the retroviral vector, or the ion irradiation may be performed only during a part of the contact time between the two.
- the ion irradiation time in the above step (b) is, for example, 1 minute or more, preferably 3 minutes to 2 hours, more preferably 5 minutes to 1 hour, for example 10 minutes. 20 minutes, 30 minutes, etc.
- cytokines such as interleukin-3, interleukin-6, stem cell factor and the like can be used for preliminary stimulation when gene transfer is performed on bone marrow cells or hematopoietic stem cells.
- a receptor present on the cell surface is involved in retrovirus infection of cells.
- basic amino acid transporters and phosphate transporters are known to function as receptors for ecotropic and amphotropic viruses, respectively [Proceedings of the National Academy of Sciences. Of the United States of America, 93, 11407-11413 (1996)].
- pretreatment of the target cells in a medium containing a reduced amount of basic amino acids or phosphates, salts or precursors thereof makes the cells into viruses. It can be in a state where it is easily infected.
- the measurement of gene transfer efficiency can be performed by a known method. For example, when a marker gene encoding a fluorescent protein such as ZsGreen is used as a foreign gene to be introduced into cells, gene introduction efficiency can be measured by measuring the number of cells into which the gene has been introduced with a flow cytometer. In addition, when a gene encoding a gene product expressed on the cell surface is used as a foreign gene, if a labeled antibody that specifically binds to the gene product is used, a gene using a flow cytometer as described above is used. The introduction efficiency can be measured. The gene transfer efficiency can be measured by a method using a selection marker other than the above, for example, a drug resistance gene, a method of measuring the copy number of the transgene in the cell population after the gene transfer operation, and the like.
- a selection marker other than the above, for example, a drug resistance gene, a method of measuring the copy number of the transgene in the cell population after the gene transfer operation, and the like.
- the gene introduction system of the present invention is an apparatus including a corona discharge ion generator or a plasma discharge ion generator, and can be used for the gene introduction method of the present invention.
- Examples of the ion generator in the gene introduction system of the present invention include those capable of irradiating positive ions, negative ions, or both ions.
- the ion generator may have a mechanism for irradiating an object with ions by a wind current or an electric field.
- the gene introduction system of the present invention may further include an incubator and a shaking device that can hold the container.
- the gene introduction system of the present invention may include a container for housing a retroviral vector and target cells and an installation part of the container.
- a material that is easily charged such as a nylon plate or a polytetrafluoroethylene plate, may be disposed in the container installation portion.
- DON-ZsGreen retroviral vector pZsGreen Vector (Clontech) was cleaved with restriction enzymes BamHI and EcoRI (Takara Bio), agarose gel electrophoresis was performed, and the sequence encoding green fluorescent protein ZsGreen was obtained. An approximately 0.7 kbp fragment was recovered. The recovered fragment was blunt-ended using DNA Blunting Kit (Takara Bio) and then inserted into pDON-AI DNA (Takara Bio) to obtain a recombinant retrovirus vector plasmid pDON-ZsGreen. Next, an ecotropic DON-ZsGreen virus was prepared using the plasmid and Retrovirus Packaging Kit Eco (manufactured by Takara Bio Inc.).
- GaLV retrovirus packaging cells PG13 This was then infected with GaLV retrovirus packaging cells PG13.
- a high-titer virus-producing cell was cloned from the infected cell to establish a retrovirus vector-producing cell line PG13 / DON-ZsGreen.
- a GaLV / DON-ZsGreen virus solution was obtained by a conventional method in a medium containing 5 mM sodium acetate (hereinafter referred to as a DON-ZsGreen retrovirus vector).
- Retronectin (2) Preparation of Retronectin / Anti-CD3 Antibody Immobilized Plate Fibronectin fragment CH-296 (RetroNectin (registered trademark), manufactured by Takara Bio Inc.), hereinafter referred to as Retronectin], 25 ⁇ g / mL, and anti-CD3 antibody (OKT3, Janssen) Pharma Co., Ltd.) was dissolved in ACD-A solution (manufactured by Terumo Corporation) so as to be 5 ⁇ g / mL. This lysate was added to a 6-well plate for cell culture (manufactured by BD Falcon) at a volume of 1 mL / well and left at 37 ° C. for 5 hours.
- ACD-A solution manufactured by Terumo Corporation
- virus-binding plate ACD-A manufactured by Terumo
- human serum albumin “Albminer” manufactured by CSL Behring
- a virus diluted solution obtained by diluting the virus solution obtained in Example 1 (1) 10 times was prepared by using what was added to physiological saline as a diluted solution.
- 0.5 mL of retronectin previously diluted with ACD-A to a final concentration of 20 ⁇ g / mL is added to each well of a 24-well non-treatment plate (manufactured by BD Falcon) and treated at 4 ° C. overnight. The retronectin solution was removed from the plate.
- ACD-A manufactured by Terumo
- removing it was performed twice.
- 1 mL of the virus dilution was added to each well of the plate and centrifuged (32 ° C., 2000 ⁇ g, 2 hours). After centrifugation, the virus dilution supernatant is removed from each well, and human serum albumin “Albuminer” (CSL Behring) is added to physiological saline to a concentration of 1.5%. Washed 3 times. The plate thus obtained was used as a virus-binding plate.
- PBMC Human peripheral blood mononuclear cells
- GT-T503 medium containing 0.6% autologous plasma, 720 IU / mL IL-2 (NOVRTIS), 0.2% human serum albumin “Albuminer” and 0.5 ⁇ g / mL fungizone (Bristol Myers)
- the suspension was suspended in a culture medium) and added to the retronectin / anti-CD3 antibody-immobilized plate prepared in Example 1 (2) so as to be 6.7 mL / well (start of PBMC stimulation).
- the plate was cultured in a CO 2 incubator at 37 ° C. for 4 days (until day 4 after the start of PBMC stimulation).
- Example 1 (5) Gene transfer operation To each well, 0.95 mL (0.5 ⁇ 10 5) of the cell suspension stimulated for 4 days in Example 1 (4) was added to three virus-binding plates prepared in Example 1 (3). 6 cells included) / well. After this, centrifugation (32 ° C., 1000 ⁇ g, 10 minutes), ⁇ ion-dominated ion irradiation (room temperature, 10 minutes), or + ion-dominance on the three virus-binding plates with the cell suspension added Ion irradiation (room temperature, 10 minutes).
- ion irradiation an ionizer (SJ-H036 manufactured by Keyence Corporation) was used, and irradiation was performed from a distance of about 5 cm above the virus-binding plate.
- a polytetrafluoroethylene plate was placed under the virus-binding plate in the case of negative ion irradiation, and a nylon plate was applied under the virus-binding plate in the case of positive ion irradiation. .
- each plate was further cultured for 4 hours in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%).
- Example 1 As a culture of non-gene-transfected cells (negative control), 0.95 mL of the cell suspension stimulated for 4 days in Example 1 (4) was added to each well of a 24-well non-treatment plate (BD Falcon). 0.5 ⁇ 10 6 cells included) / well, and cultured in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%) for 4 hours. For each of the above four plates after culture, 0.90 mL of the cell suspension in each well is seeded in each well of a 12-well plate for cell culture, and 3.6 mL of culture medium is added to each well. After 5-fold dilution, the cells were cultured in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%) for 3 days (from the start of PBMC stimulation until the seventh day).
- a CO 2 incubator 37 ° C., humidity 95%, CO 2 concentration 5%
- the precipitated cells were suspended in 950 ⁇ L of phosphate buffer (Gibco) containing 0.5% final concentration of BSA (fetal bovine serum albumin, Sigma) and centrifuged (4 ° C., 500 ° C.). The cells were precipitated again at xg for 5 minutes. After removing the supernatant again, the suspension was suspended in 400 ⁇ L of a phosphate buffer (Gibco) containing 0.5% final concentration BSA (Sigma). Three types of cell suspensions and negative control cell suspensions obtained in this manner, each with different treatments during gene introduction, were subjected to flow cytometry measurement.
- BSA fetal bovine serum albumin
- Flow cytometry analysis was performed according to the instrument instruction using a BD FACSCanto II flow cytometer (Becton Dickinson).
- the expression rate of ZsGreen (hereinafter sometimes referred to as gene transfer efficiency (GT%)) is first determined from a two-parameter histogram (x axis: FSC, y) of forward scattered light (FSC) and side scattered light (SSC).
- GT% gene transfer efficiency
- x axis FSC
- SSC side scattered light
- gate On the axis (SSC), gate the target cell population.
- the cell population in the gate is expressed on a histogram of GFP detection parameters (x axis: GFP fluorescence intensity, y axis: cell number), and first, ZsGreen is expressed using the measurement result of isotype control (negative control) as an index.
- the gate area of the cell population was set, and then the ratio (%) of the cells in the gate area of the subject cells was measured.
- MFI mean fluorescence intensity (Mean Fluorescence Intensity) of the ZsGreen-expressing cell population.
- Table 3 shows the measurement results of the cell proliferation rate.
- PBMC Human peripheral blood mononuclear cells
- GT-T503 medium containing 0.6% autologous plasma, 600 IU / mL IL-2 (manufactured by NOVARTIS), 0.2% human serum albumin “Albuminer”, 0.5 ⁇ g / mL fungizone (manufactured by Bristol Myers) (Hereinafter referred to as culture medium) and added to a retronectin / anti-CD3 antibody-immobilized plate prepared in the same manner as in Example 1 (2) at 6.7 mL / well (PBMC stimulation start) ). The plate was cultured in a CO 2 incubator at 37 ° C. for 4 days (until day 4 after the start of PBMC stimulation).
- ACD-A manufactured by Terumo
- human serum albumin “Albminer” manufactured by CSL Behring
- a virus diluted solution obtained by diluting the virus solution obtained in Example 1 (1) 5 times or 10 times was prepared by using as a diluent a solution added to physiological saline.
- 0.5 mL of retronectin previously diluted with ACD-A to a final concentration of 20 ⁇ g / mL is added to each well of a 24-well non-treatment plate (manufactured by BD Falcon) and treated at 4 ° C. overnight.
- the retronectin solution was removed from the plate. Further, a washing operation of adding 0.5 mL of ACD-A (manufactured by Terumo) to each well and removing it was performed twice. 1 mL of the virus dilution was added to each well of the plate and centrifuged (32 ° C., 2000 ⁇ g, 2 hours). After centrifugation, the virus dilution supernatant was removed from each well, and human serum albumin “Albuminer” (CSL Behring) was added to physiological saline to 1.5%, and each well was twice with 1 mL each. Washed. The plate thus obtained was used as a virus-binding plate.
- ACD-A manufactured by Terumo
- Example 2 (3) Gene transfer operation 1 mL (0.5 ⁇ 10 6 cells) of the cell suspension stimulated for 4 days in Example 2 (1) was added to each well on the virus-binding plate prepared in Example 2 (2). Were added) / well. Thereafter, the virus-binding plate to which the cell suspension has been added is centrifuged (32 ° C., 1000 ⁇ g, 10 minutes), ⁇ ion-dominated ion irradiation (room temperature, 10 minutes), + ion-dominated ion irradiation ( Room temperature, 10 minutes) or + ion-dominated ion irradiation (room temperature, 30 minutes).
- ion irradiation an ionizer (SJ-H036 manufactured by Keyence Corporation) was used, and irradiation was performed from a distance of about 10 cm below the virus-binding plate.
- a polytetrafluoroethylene plate was placed under the virus-binding plate in the case of negative ion irradiation, and a nylon plate was applied under the virus-binding plate in the case of positive ion irradiation. .
- each plate was further cultured for 4 hours in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%).
- Example 2 (1) As a non-gene-transfected cell culture (negative control), 1 mL (0. 0) of the cell suspension stimulated for 4 days in Example 2 (1) was added to each well of a 24-well non-treatment plate (BD Falcon). 5 ⁇ 10 6 cells included) / well, and cultured in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%) for 4 hours. With respect to the plate after the culture, 1 mL of the cell suspension in each well was seeded in each well of the 12-well plate for cell culture. Further, 4 mL of the culture medium was added to each well and diluted 5-fold, and then CO 2. Cultivation was carried out in an incubator (37 ° C., humidity 95%, CO 2 concentration 5%) for 3 days (from the start of PBMC stimulation until day 7).
- a CO 2 incubator 37 ° C., humidity 95%, CO 2 concentration 5%
- MFI mean fluorescence intensity of the ZsGreen-expressing cell population (Mean Fluorescence Intensity).
- gene introduction under ion-dominant ion irradiation or gene introduction under + ion-dominant ion irradiation is performed with any dilution ratio of virus solution. Therefore, even when compared with the case where the centrifugal treatment was performed, high introduction efficiency was exhibited.
- Table 5 shows the measurement results of the cell proliferation rate.
- Genomic DNA was extracted from cells 7 days after virus infection (11 days after the start of PBMC stimulation) using FastPure DNA Kit (manufactured by Takara Bio Inc.), and provided with the Provide Copy Number Detection Primer Set.
- Human manufactured by Takara Bio Inc.
- Cycle PCR Core Kit manufactured by Takara Bio Inc.
- the average number of introduced genes (number of introduced genes per number of cells) in the cells was increased by ion irradiation.
- Example 2 (1) Initial stimulation culture of human peripheral blood mononuclear cells for gene transfer The same as in Example 2 (1) except that culture is performed while irradiating ions predominating with + ions on the plate to which the cell suspension is added. According to the method, initial stimulation culture of human peripheral blood mononuclear cells was performed for 4 days. For ion irradiation, an ionizer (SJ-H036 manufactured by Keyence Co., Ltd.) was used, and ion irradiation was performed from a distance of about 10 cm below the virus-binding plate after a nylon plate was laid under the virus-binding plate. In addition, a cell suspension subjected to initial stimulation culture by the same method as in Example 2 (1) was also prepared.
- an ionizer SJ-H036 manufactured by Keyence Co., Ltd.
- virus-binding plate instead of washing each well twice with 0.5 mL each of human serum albumin “Albuminer” (CSL Behring) added to physiological saline to 1.5%
- a virus-binding plate was prepared in the same manner as in Example 1 (3) except that each well was washed twice with 1 mL of the same solution.
- Example 3 (1) 1 mL (0.5 ⁇ 10 6 cells) of the cell suspension stimulated for 4 days in Example 3 (1) was added to each well on the virus-binding plate prepared in Example 3 (2). After addition, the cells were cultured for 4 hours. For the plate after 4 hours of culture, 1 mL of cell suspension in each well was seeded in each well of a 12-well plate for cell culture, and further 4 mL of culture medium was added to each well and diluted 5-fold. The cells were cultured in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%) for 4 days (after the start of PBMC stimulation until the 8th day).
- a CO 2 incubator 37 ° C., humidity 95%, CO 2 concentration 5%
- Example 1 (6) Flow cytometry analysis The procedure similar to that in Example 1 (6) was used to examine the gene transfer efficiency by retrovirus for the cell suspension cultured from the 8th day to the 10th day after the start of PBMC stimulation. was used to examine the expression of fluorescent reporter protein (ZsGreen).
- Table 8 shows the measurement results of gene transfer efficiency. “MFI” shown in Table 8 indicates the mean fluorescence intensity (Mean Fluorescence Intensity) of the ZsGreen-expressing cell population.
- MS-MA24-siTCR retrovirus vector HEK293T cells were prepared using a codon-transformed TCR and siRNA co-expression retrovirus vector (MS-MA24-siTCR) described in International Publication No. 2008/153029. -11268) using Retrovirus Packaging Kit Eco (Takara Bio) according to the product protocol to obtain various ecotropic virus supernatants.
- the virus supernatant is filtered through a 0.45 ⁇ m filter (Milex HV, manufactured by Millipore), and the GaLV retrovirus packaging cell PG13 is infected by a method using polybrene, and the cells are cloned by a limiting dilution method. It was.
- a GaLV / MS-MA24-siTCR virus solution was obtained by a conventional method in a medium containing 5 mM sodium acetate (hereinafter referred to as MS-MA24-siTCR retrovirus vector).
- Example 2 Preparation of virus-binding plate Similar to Example 3 (2) except that the virus solution obtained in Example 4 (1) was used without dilution instead of the virus solution obtained in Example 1 (1).
- a virus binding plate was prepared by the method described above.
- the suspension was suspended in a mixed solution obtained by adding 8 ⁇ L of 0.5% BSA to 1 ⁇ L of MAGE-A4 tetramer-PE, and reacted at 4 ° C. for 30 min. Thereafter, 1 ⁇ L of Human CD8-FITC was added and reacted at 4 ° C. for 30 min. After the reaction, 950 ⁇ L of final concentration 0.5% BSA phosphate buffer was added, and the supernatant was removed twice by centrifugation (4 ° C., 500 ⁇ g, 5 minutes). The suspension was suspended in 5% BSA / PBS, and this suspension was subjected to flow cytometry measurement. The cell suspension and the negative control cell suspension obtained in this manner were subjected to flow cytometry measurement.
- Flow cytometry analysis was performed according to the instrument instruction using a BD FACSCanto II flow cytometer (Becton Dickinson).
- the expression rate of TCR (hereinafter sometimes referred to as gene transfer efficiency (GT%)) is first determined by a two-parameter histogram (x axis: FSC, y) of forward scattered light (FSC) and side scattered light (SSC).
- FSC forward scattered light
- SSC side scattered light
- GT% gene transfer efficiency
- the cell population in the gate is shown on the histogram of FITC and PE detection parameters (x-axis: FITC fluorescence intensity, y-axis: PE fluorescence intensity), with the measurement result of isotype control (negative control) as an index.
- the gate region of the cell population expressing FITC and PE was set, and then the percentage (%) of the cells in the gate region of the subject cells was measured.
- Table 9 shows the measurement results of gene transfer efficiency. “MFI” shown in Table 9 indicates the mean fluorescence intensity (Mean Fluorescence Intensity) related to the fluorescence derived from MAGE-A4 tetramer-PE of MAGE-A4-specific TCR-expressing CD8-positive cells.
- the present invention provides a simple and highly efficient gene transfer method.
- the present invention is particularly useful in fields such as medicine, cell engineering, genetic engineering, and developmental engineering.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
本発明は、効率が高い、レトロウイルスベクターによる標的細胞への遺伝子導入方法を提供する。本発明はまた、ウイルスベクター及び標的細胞を内部に収容した容器にイオンを照射する工程を包含するウイルスベクターによる標的細胞への遺伝子導入方法、イオン照射下での細胞集団の予備刺激の工程を包含するウイルスベクターによる標的細胞への遺伝子導入方法、及びコロナ放電式イオン発生器又はプラズマ放電式イオン発生器を含む遺伝子導入用システムを提供する。本発明の遺伝子導入方法及び本発明の遺伝子導入用システムは、特に医学、細胞工学、遺伝子工学、及び発生工学等の分野において有用である。
Description
本発明は、ウイルスベクターによる標的細胞への遺伝子導入方法に関する。
近年、重篤な遺伝子病や癌等の治療のための遺伝子治療法の開発が進められている。これまでにヒトでの臨床応用が研究されてきた遺伝子治療法の多くは、組換えウイルスベクターを用いた細胞への遺伝子導入によるものである。
なかでも、標的細胞の染色体DNA中に目的の外来遺伝子を安定に組み込むことが可能なレトロウイルスベクターによる遺伝子導入は、特に長期にわたる遺伝子発現が望まれる遺伝子治療にとって好ましい遺伝子導入手段である。レトロウイルスベクターを用いた遺伝子導入の効率は、フィブロネクチンやフィブロネクチンフラグメントCH-296〔RetroNectin(登録商標)〕のようなレトロウイルスに結合する細胞接着性物質の使用により向上することが報告されている(例えば特許文献1)。
本発明の目的は、より効率が高い、ウイルスベクターによる標的細胞への遺伝子導入方法を提供することにある。
すなわち本発明は、
[1]ウイルスベクターによる標的細胞への遺伝子導入方法であって、ウイルスベクター及び標的細胞を収容した容器にイオンを照射する工程を包含する方法、
[2]標的細胞が、細胞集団、並びに細胞の増殖刺激に関与する物質、細胞の分化誘導に関与する物質、及び細胞の脱分化の誘導に関与する物質からなる群より選択された少なくとも一種を収容した容器にイオンを照射する工程によって得られた細胞集団である、[1]に記載の方法。
[3]標的細胞が、T細胞を含む細胞集団及びCD3リガンドを収容した容器にイオンを照射する工程によって得られた細胞集団である、[2]に記載の方法。
[4]ウイルスベクターがレトロウイルスベクターである、[1]に記載の方法、
[5]コロナ放電又はプラズマ放電により生じたイオンを照射する[1]に記載の方法、
[6](a)ウイルスベクターが固定化された容器を得る工程、及び(b)工程(a)により得られた容器に標的細胞を入れた後、イオン照射下でインキュベートする工程、を包含する[1]~[5]のいずれかに記載の方法、
[7](A)細胞集団、並びに細胞の増殖刺激に関与する物質、細胞の分化誘導に関与する物質、及び細胞の脱分化の誘導に関与する物質からなる群より選択された少なくとも一種を収容した容器にイオンを照射する工程、及び(B)工程(A)により得られた細胞集団にウイルスベクターにより遺伝子を導入する工程を包含する、ウイルスベクターによる標的細胞への遺伝子導入方法、
[8](A)T細胞を含む細胞集団及びCD3リガンドを収容した容器にイオンを照射する工程、及び(B)工程(A)により得られた細胞集団にウイルスベクターにより遺伝子を導入する工程を包含する、[7]に記載の方法、
[9]ウイルスベクターがレトロウイルスベクターである、[7]に記載の方法、
[10]コロナ放電式イオン発生器又はプラズマ放電式イオン発生器を含む、遺伝子導入用システム、並びに
[11]さらに、インキュベーターを含む、[10]に記載のシステム、
に関する。
[1]ウイルスベクターによる標的細胞への遺伝子導入方法であって、ウイルスベクター及び標的細胞を収容した容器にイオンを照射する工程を包含する方法、
[2]標的細胞が、細胞集団、並びに細胞の増殖刺激に関与する物質、細胞の分化誘導に関与する物質、及び細胞の脱分化の誘導に関与する物質からなる群より選択された少なくとも一種を収容した容器にイオンを照射する工程によって得られた細胞集団である、[1]に記載の方法。
[3]標的細胞が、T細胞を含む細胞集団及びCD3リガンドを収容した容器にイオンを照射する工程によって得られた細胞集団である、[2]に記載の方法。
[4]ウイルスベクターがレトロウイルスベクターである、[1]に記載の方法、
[5]コロナ放電又はプラズマ放電により生じたイオンを照射する[1]に記載の方法、
[6](a)ウイルスベクターが固定化された容器を得る工程、及び(b)工程(a)により得られた容器に標的細胞を入れた後、イオン照射下でインキュベートする工程、を包含する[1]~[5]のいずれかに記載の方法、
[7](A)細胞集団、並びに細胞の増殖刺激に関与する物質、細胞の分化誘導に関与する物質、及び細胞の脱分化の誘導に関与する物質からなる群より選択された少なくとも一種を収容した容器にイオンを照射する工程、及び(B)工程(A)により得られた細胞集団にウイルスベクターにより遺伝子を導入する工程を包含する、ウイルスベクターによる標的細胞への遺伝子導入方法、
[8](A)T細胞を含む細胞集団及びCD3リガンドを収容した容器にイオンを照射する工程、及び(B)工程(A)により得られた細胞集団にウイルスベクターにより遺伝子を導入する工程を包含する、[7]に記載の方法、
[9]ウイルスベクターがレトロウイルスベクターである、[7]に記載の方法、
[10]コロナ放電式イオン発生器又はプラズマ放電式イオン発生器を含む、遺伝子導入用システム、並びに
[11]さらに、インキュベーターを含む、[10]に記載のシステム、
に関する。
本発明により、簡便でかつ効率が高い遺伝子導入方法が提供される。
本発明の遺伝子導入方法は、ウイルスベクターによる標的細胞への遺伝子導入方法において、遺伝子導入工程や予備刺激の工程をイオン照射下で行うことを特徴とする。ウイルスベクターによる標的細胞への遺伝子導入方法であって、ウイルスベクター及び標的細胞を収容した容器にイオンを照射する工程を含む方法は、本発明の遺伝子導入方法の好適な一態様である。本発明の遺伝子導入方法は、公知のウイルスベクターによる遺伝子導入方法と比較して著しく高い効率で標的細胞に遺伝子を導入することができる。
本発明においてイオンの照射とは、放電等によって生成したイオンを送風又は静電界によって対象物に照射することをいう。本発明の遺伝子導入方法におけるイオンとしては、例えばコロナ放電やプラズマ放電によって生じた空気イオンが例示され、プラスイオン、マイナスイオン、あるいはこれら両方のイオンを好適に使用することができる。本発明におけるイオンの照射には、プラスイオンが優位なプラスイオン及びマイナスイオンを含むイオン風やマイナスイオンが優位なプラスイオン及びマイナスイオンを含むイオン風を利用してもよい。なお、本願明細書においては、プラスイオンが優位なプラスイオン及びマイナスイオンを含むイオン風によるイオン照射のことを「+イオン優位のイオン照射」、マイナスイオンが優位なプラスイオン及びマイナスイオンを含むイオン風によるイオン照射のことを「-イオン優位のイオン照射」と記載することがある。イオンは、例えば市販の除電用イオン発生器(イオナイザ)を使用して生成させ、照射することができる。イオンの照射量やイオンの照射時間は、本発明の遺伝子導入方法による遺伝子導入効率の向上が認められる範囲であれば特に限定はない。
イオン照射の際には、電荷を帯びやすい素材を容器の周囲又は容器の周囲のいずれか1以上の面に配してもよい。特に本発明を限定するものではないが、例えばプラスイオンあるいはプラスイオンが優位なプラスイオン及びマイナスイオンを含むイオン風を容器の上方、又は下方から照射する場合、容器の下にナイロン板を配することができる。また、例えばマイナスイオンあるいはマイナスイオンが優位なプラスイオン及びマイナスイオンを含むイオン風を容器の上方、又は下方から照射する場合、容器の下にポリテトラフルオロエチレン板を配することができる。
本発明に使用される容器に特に限定はなく、例えば細胞培養用バッグ、細胞培養用プレート、細胞培養用シャーレ、細胞培養用試験管、及び細胞培養用フラスコ等の細胞培養に使用される容器が例示される。容器は、密閉型でも開放型でもよく、半開放型の容器であってもよい。容器の素材にも特に限定はなく、例えばプラスチック製又はガラス製の容器を本発明に使用できる。多量の細胞への遺伝子導入が望まれる場合には、細胞培養用バッグ、特にガス透過性の細胞培養用バッグが本発明に好適である。
本発明の遺伝子導入方法におけるウイルスベクターとしては、レトロウイルスベクター、アデノウイルスベクター、アデノ伴随ウイルスベクターが好適に例示され、このうちレトロウイルスベクターがより好適に例示される。
本明細書においてレトロウイルスベクターとは、レトロウイルスに属するオンコレトロウイルス、レンチウイルス等を基に遺伝子組み換え技術により作製されたウイルス粒子のことを指し、オンコレトロウイルスベクター、レンチウイルスベクター、シュードタイプベクターを含む。オンコレトロウイルスベクターとしては、例えばモロニーマウス白血病ウイルス(MMLV)に基づくベクター等が挙げられる。また、レンチウイルスベクターとしては、HIV-1に基づくベクターやSIVに基づくベクター等が挙げられる。シュードタイプベクターとは、Gagタンパク質やPolタンパク質とは由来を異にするEnvタンパク質を有する組換えレトロウイルスベクターのことを言う。シュードタイプベクターとしては、水泡性口内炎ウイルス(VSV)、テナガザル白血病ウイルス(GaLV)、ネコ内因性ウイルスRD114、マウス白血病ウイルス(Ecotropic-env、amphotropic-env、10A1-env等)等のEnvタンパク質を有するオンコレトロウイルスベクターやレンチウイルスベクターが例示される。本発明には、複製能欠損組換えレトロウイルスベクターが好適に使用される。該ベクターは、感染した細胞中で自己複製できないように複製能を欠損させてあり、非病原性である。これらのベクターは脊椎動物細胞、特に、哺乳類動物細胞のような宿主細胞に感染し、その染色体DNA中にベクターに挿入された外来遺伝子を安定に組み込むことができる。
標的細胞に導入する外来遺伝子としては、任意の遺伝子を選択できる。例えば、治療の対象となる疾患に関連している酵素やタンパク質をコードするものの他、細胞内抗体(例えば、国際公開第94/02610号パンフレット参照)、増殖因子、アンチセンスRNA、RNA干渉を起こすRNA、リボザイム、フォルスプライマー(例えば、国際公開第90/13641号パンフレット参照)等をコードするものを使用することができる。
また、標的細胞に導入する外来遺伝子は、適当なプロモーター、例えば、レトロウイルスベクター中に存在するLTRのプロモーターやその他の外来プロモーターの制御下に配置して使用することができる。効率のよい遺伝子の転写を達成するために、プロモーターや転写開始部位と共同する他の調節要素、例えば、エンハンサー配列やターミネーター配列、イントロン配列を利用してもよい。標的細胞内に導入される遺伝子は天然のものでも人工的に作製されたものでもよく、起源を異にするDNA分子がライゲーション等の公知の手段によって結合されたものであってもよい。
本発明に使用されるウイルスベクターは、遺伝子導入された細胞の選択を可能にする適当なマーカー遺伝子を含有していてもよい。マーカー遺伝子としては、例えば、細胞に抗生物質に対する耐性を付与する薬剤耐性遺伝子や、酵素活性や蛍光によって遺伝子導入された細胞を見分けることができるレポーター遺伝子、細胞表面に局在する細胞表面マーカー遺伝子等が利用できる。マーカー遺伝子としてネオマイシンホスホトランスフェラーゼ遺伝子を用いる場合、遺伝子導入された細胞はG418に対する耐性を指標として確認することができる。また、細胞表面マーカー遺伝子としてLow affinity Nerve Growth Factor Receptor(LNGFR)の細胞外ドメインをコードする遺伝子を用いる場合、抗LNGFR抗体を利用することにより遺伝子導入された細胞を単離、精製することができる。
本発明の遺伝子導入方法におけるウイルスベクターとしてレトロウイルスベクターを使用する場合、例えば、MFGベクター(ATCC No.68754)、α-SGCベクター(ATCC No.68755)、LXSNベクター[バイオテクニクス(BioTechniques)、第7巻、第980~990頁(1989年)]、タカラバイオ社製のDON-5、DON-AI-2、MEI-5レトロウイルスベクター、クロンテック社製のRetro-X Qベクターシリーズ、Lenti-Xベクターシリーズ等のベクターを利用することができる。
また、これらのベクターは、あらかじめgag-pol遺伝子、env遺伝子等のレトロウイルスの構造タンパク質をコードする遺伝子が染色体上に組み込まれたレトロウイルスパッケージング細胞、例えば公知のパッケージング細胞株であるPG13(ATCC CRL-10686)、PA317(ATCC CRL-9078)、GP+E-86(ATCC CRL-9642)やGP+envAm12(ATCC CRL-9641)、[プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシィス・オブ・ザ・ユナイテッド・ステイツ・オブ・アメリカ(Proc. Natl. Acad. Sci. USA)、第85巻、第6460~6464頁(1988年)]に記載のψCRIP等の細胞株にトランスファーベクターを導入することにより、調製できる。また、組換えウイルスの構造タンパク(gag-pol遺伝子産物、env遺伝子産物等)を発現するパッケージングプラスミドとトランスファーベクターとを適当な細胞、例えば293T細胞(ATCC CRL-11268)等に一過性にトランスフェクトし、その培養上清を回収することによっても調製できる。
パッケージング細胞にトランスファーベクターを導入して作製されたウイルス産生細胞や標的細胞の培養には、公知の培地、例えば、ダルベッコ改変イーグル培地、イスコブ改変ダルベッコ培地等が使用でき、これらは、例えば、ギブコ(Gibco)社から市販品として入手することができる。これらの培地には、遺伝子導入の標的となる細胞の種類やその他の目的に応じて種々の成分を添加して用いることができる。例えば、標的細胞の生育や分化を促進、あるいは抑制する目的で血清や各種のサイトカイン類、還元剤を添加して使用することができる。血清としては、例えば、仔牛血清(CS)や牛胎児血清(FCS)、ヒト血清等を使用することができ、これらに換えて血清代替物(serum replacement)や精製された血清アルブミン(例えばヒト血清アルブミン)を使用することもできる。また、サイトカインとしては、インターロイキン類(IL-2、IL-3、IL-4、IL-6等)、コロニー刺激因子類(G-CSF、GM-CSF等)、幹細胞因子(SCF)、エリスロポエチンや種々の細胞増殖因子等があり、その多くのものについてヒト由来のものが市販されている。これらのサイトカイン類を使用するにあたっては、目的に応じた作用を有するものを選択し、また必要に応じてこれらを組み合わせて使用すればよい。また、ウイルス回収時に標的細胞の培養に適した培地に置換しても良い。例えば、標的細胞がヒトリンパ球の場合、リンパ球の培養に好適なGT-T503培地、GT-T-RetroI培地(いずれもタカラバイオ社製)、X-VIVO15培地(ロンザ社製)やAIM-V培地(インビトロジェン社製)を用いることができる。
酪酸ナトリウムをレトロウイルス産生細胞の培養時に添加することにより、上清中に産生されるレトロウイルス粒子が増加することが知られているが[ヒューマン・ジーン・セラピー(Human Gene Therapy)、第6巻、第1195~1202頁(1995年)]、本発明の遺伝子導入方法には、こうして調製された高いタイターのウイルス上清も問題なく使用することができる。
本発明の遺伝子導入方法の標的となる細胞も特に制限はない。例えば、幹細胞(stem cells:造血幹細胞、間葉系幹細胞、胚性幹細胞等)、造血細胞、単核細胞(末梢血単核細胞、臍帯血単核細胞等)、胚細胞、プライモディアル・ジャーム・セル(primordial germ cell)、卵母細胞、卵原細胞、卵子、精母細胞、精子、赤血球系前駆細胞、リンパ球母細胞、成熟血球、リンパ球、B細胞、T細胞、線維芽細胞、神経芽細胞、神経細胞、内皮細胞、血管内皮細胞、肝細胞、筋芽細胞、骨格筋細胞、平滑筋細胞、ガン細胞、骨髄腫細胞及び白血病細胞等の哺乳動物由来の細胞を使用することができる。血液や骨髄より得られる造血系の細胞は入手が比較的容易であり、またその培養や維持の手法が確立されていることから、本発明の方法を利用するのに好適である。特に導入された遺伝子の生体内での長期にわたる発現が目的の場合には、多能性を有する幹細胞(造血幹細胞、間葉系幹細胞等)や種々の前駆細胞が標的細胞として適している。また、遺伝子治療法をAIDSの治療に適用する場合には、CD4陽性T細胞等の免疫系細胞やその前駆細胞が標的細胞として好適である。
細胞集団について、細胞の増殖刺激や分化・脱分化の誘導等に関与する物質を用いて予備刺激(本明細書において、「初期刺激」ともいう)を行い、これを本発明の遺伝子導入方法の標的細胞として用いてもよい。予備刺激を実施することにより、レトロウイルスベクターによる遺伝子導入の効率を向上させることができることが知られている[例えば、ジャーナル・オブ・バイオケミストリー(Journal of Biochemistry)、第149巻、第3号、第285~292頁(2011)]。例えば造血幹細胞、T細胞、B細胞、及び樹状細胞等の血球系細胞やそれらの前駆細胞に遺伝子導入を行う場合、フィブロネクチン又はそのフラグメント、抗CD3抗体等のCD3リガンド、IL-2、抗CD28抗体等のCD28リガンド、IL-3、IL-4、IL-6、IL-7、IL-18、CD2、CD355、グルココルチコイド、グリコサミノグリカン、α-ガラクトシルセラミド、ゾレドロン酸、幹細胞因子、Flt3リガンド、B細胞受容体(BCR)リガンド、リポ多糖(LPS)、プロピレングリコールモノメチルエーテルアセテート(PMA)、イオノマイシン、顆粒球単球コロニー刺激因子(GM-CSF)、顆粒球コロニー刺激因子(G-CSF)、TNF-α等の腫瘍壊死因子、プロスタグランジンE2(PGE2)、EPO-α等のエリスロポエチン、トロンボポエチン、及び樹状細胞からなる群より選択された少なくとも1種を、遺伝子導入の目的や標的細胞の種類に応じて予備刺激に利用することができる。また、様々な細胞の増殖の刺激や分化・脱分化の誘導に関与することが知られている、BMP-2等の骨形成促進因子、FGF-2等の線維芽細胞成長因子、及びIGF-1等のインスリン様成長因子等を各種細胞の予備刺激に用いることができる。本発明を特に限定するものではないが、T細胞又はその前駆体に遺伝子を導入する場合、フィブロネクチン又はそのフラグメント、抗CD3抗体等のCD3リガンド、抗CD28抗体等のCD28リガンド、IL-2、IL-6、IL-18、CD2、CD355、α-ガラクトシルセラミド、及びゾレドロン酸からなる群より選択された少なくとも1種を予備刺激に利用することが好ましい。例えば、T細胞を含む細胞集団を遺伝子導入に用いる場合、好ましくは、CD3リガンドを予備刺激に利用する。各種細胞と予備刺激に用いる物質との組合せの好適な例を表1に示す。
予備刺激には、上記の物質を培地中に溶解又は懸濁して用いてもよいし、上記の物質を容器やビーズ等の固相に固定化して用いてもよい。例えば、抗CD3抗体及びフィブロネクチンフラグメントCH-296が固定化された容器中でT細胞を含む細胞集団を培養して得られた細胞集団は、本発明の方法における標的細胞として好適である。
予備刺激は、その工程の一部又は全部をイオンの照射下で行ってもよい。驚くべきことに、本願発明者らは、予備刺激をイオン照射下で行うことにより、その後のウイルスベクターによる遺伝子導入の効率がさらに向上することを見出した。すなわち、(A)細胞集団、並びに細胞の増殖刺激に関与する物質、細胞の分化誘導に関与する物質、及び細胞の脱分化の誘導に関与する物質からなる群より選択された少なくとも一種を収容した容器にイオンを照射する工程、及び(B)工程(A)により得られた細胞集団にウイルスベクターにより遺伝子を導入する工程を含む標的細胞への遺伝子導入方法は、本発明の好適な態様の一つである。本発明を特に限定するものではないが、上記の工程(A)におけるイオン照射の時間としては、例えば10分以上、好ましくは30分~16日間、より好ましくは1時間~8日間、例えば4日間等が例示される。予備刺激をイオン照射下で行う場合、その後の遺伝子導入工程は、イオン照射下で行ってもよく、またはイオン照射しないで行ってもよい。
例えば、CD4陽性T細胞を標的細胞とした遺伝子治療は以下のような操作によって実施することができる。まず、ドナーよりCD4陽性T細胞を含有する材料、例えば、骨髄組織、末梢血液、臍帯血液等を採取する。これらの材料はそのまま遺伝子導入操作に用いることも可能であるが、通常は、密度勾配遠心分離等の方法により単核細胞画分を調製する。さらにCD4分子を指標とした細胞の精製やCD8陽性T細胞の除去、CD4陽性T細胞数を拡大する培養操作を行ってもよい。これらの細胞集団について、必要に応じてイオン照射下(例えばプラスイオン優位のイオン照射下)で適当な予備刺激(例えばCD3リガンドやIL-2による刺激)を行った後、本発明の方法により、目的とする遺伝子が挿入された組換えレトロウイルスベクターを感染させる。こうして得られた遺伝子導入された細胞は、例えば、静脈内投与によってレシピエントに移植することができる。レシピエントは、好ましくはドナー自身であるが、同種異系移植を行うことも可能である。
造血幹細胞を標的とした遺伝子治療としては、患者において欠損しているか、異常が見られる遺伝子を補完するものがあり、例えば、ADA欠損症やゴーシェ病の遺伝子治療がこれにあたる。この他、例えば、ガンや白血病の治療に使用される化学療法剤による造血細胞の障害を緩和するために、造血幹細胞への薬剤耐性遺伝子の導入が行われることがある。
また、癌の遺伝子治療法としては、腫瘍抗原を認識するT細胞レセプターをコードする遺伝子を導入することにより、リンパ球に当該抗原を発現する癌細胞に対する特異的な細胞傷害活性を付与する方法が研究されている[ジーン・セラピー(Gene Therapy)、第15巻、第695~699頁(2008年)]。さらに、AIDSを遺伝子治療法によって治療しようという試みも行われている。この場合には、AIDSの原因であるHIVが感染するCD4陽性T細胞等のT細胞に、HIVの複製や遺伝子発現を妨げるような核酸分子(一本鎖特異的エンドリボヌクレアーゼ、アンチセンス核酸、リボザイム等)をコードする遺伝子を導入することが考えられている(例えば、国際公開第2007/020873号)。
本発明の遺伝子導入方法において、ウイルスベクターは容器の内面に固定化されていてもよい。すなわち、(a)「ウイルスベクターが固定化された容器を得る工程」、及び(b)「工程(a)により得られた容器に標的細胞を入れた後、イオン照射下でインキュベートする工程」を包含する方法も、本発明の一態様である。ウイルスベクターが内面に固定化された容器を用いる遺伝子導入法においては、標的細胞を含む懸濁液を当該容器に入れた後、遠心処理により標的細胞とウイルスベクターとの接触を促すことにより遺伝子導入効率が向上することが知られている。本発明の遺伝子導入方法によれば、このような遠心処理による方法と比較しても、高い効率で遺伝子導入を行うことができる。
レトロウイルス結合性物質は、レトロウイルスに結合親和性を示す物質であれば特に限定はなく、例えば、フィブロネクチン、線維芽細胞増殖因子、V型コラーゲン、ポリリジン、DEAE-デキストラン、及びこれらのフラグメントから選択された少なくとも一種の物質が例示される。これらの物質を化学的に修飾することにより、そのウイルスへの結合性を増強することも可能である。
フィブロネクチンやそのフラグメントは、レトロウイルス結合性と細胞結合性とを併せ持つ物質であり、本発明に好適に使用できる。フィブロネクチンやそのフラグメントは、例えば、ジャーナル・オブ・バイオケミストリー、第256巻、第7277頁(1981年)、ジャーナル・オブ・セル・バイオロジー(J. Cell. Biol.)、第102巻、第449頁(1986年)、ジャーナル・オブ・セル・バイオロジー、第105巻、第489頁(1987年)に記載の方法によって、天然起源の材料から実質的に純粋な形態で製造することができる。また、米国特許第5,198,423号に記載の方法により、組換えDNA技術を利用して製造することもできる。特に、レトロウイルス結合部位であるヘパリン-II領域を含むフィブロネクチンフラグメント、例えば、フィブロネクチンフラグメントCH-296、H-271、H-296、及びCH-271等の組換えポリペプチド、ならびにこれらを取得する方法は、米国特許第5,198,423号に詳細に記載されている。なお、上記のフィブロネクチンフラグメントのうちH-296はVLA-4への結合領域ポリペプチドを、CH-271はVLA-5への結合領域ペプチドを、また、CH-296はその両方を有している[ネイチャー・メディシン(Nature Medicine)、第2巻、第876~882頁(1996年)]。CH-296はレトロネクチン、RetroNectinの登録商標名で市販されている。
レトロウイルス結合性物質を容器の内面に固定化する場合、本発明を特に限定するものではないが、容器の素材としては、ポリスチレン、ポリエチレン、シクロオレフィン樹脂、フッ素樹脂が例示される。レトロウイルス結合性物質の容器への固定化の方法は、物質の種類や使用する容器の種類によって適宜選択することができる。例えばレトロウイルス結合性物質がポリペプチドの場合は、容器表面への物理吸着により固定化することができる(例えば、国際公開第95/26200号パンフレット)。また、架橋剤等を使用した共有結合によって、レトロウイルス結合性物質を容器に固定化してもよい。さらに、同様の操作によってレトロウイルス結合性物質を固定化した培養器材(ビーズ、ホローファイバー等)を備えた容器も本発明に使用することができる。
前記工程(a)の「ウイルスベクターが固定化された容器を得る工程」は、例えばウイルスベクターとしてレトロウイルスベクターを用いる場合、上記の操作で作製されたレトロウイルス結合性物質が固定化された容器にレトロウイルスベクターを含有する液体を入れ、インキュベートする方法を利用することができる。この場合、レトロウイルスベクターを含有する液体に限定はなく、例えばレトロウイルスベクターを含有するウイルス産生細胞の培養液上清や精製されたウイルスベクターを含有する溶液が例示される。こうして、レトロウイルスベクターがレトロウイルス結合性物質に補足され、容器に固定化される。さらに、この操作に続いて容器を洗浄した後、標的細胞への遺伝子導入を実施してもよい。
工程(b)「工程(a)により得られた容器に標的細胞を入れた後、イオン照射下でインキュベートする工程」により、標的細胞にレトロウイルスベクターが感染し、遺伝子が導入された細胞を効率良く得ることができる。インキュベーションは、細胞へのレトロウイルスベクターの感染に適した条件、例えば、標的細胞に適した培地中、15~37℃でのインキュベーションによって行うことができる。この条件やインキュベーションの時間は標的細胞や目的に応じて適宜変更できる。また、イオン照射下でのインキュベーションは、振盪を伴うものであってもよい。イオンの照射は標的細胞とレトロウイルスベクターとが接触している間継続してもよく、両者の接触する時間のうちの一部の時間のみイオンの照射を行ってもよい。本発明を特に限定するものではないが、上記の工程(b)におけるイオン照射の時間としては、例えば1分以上、好ましくは3分~2時間、より好ましくは5分~1時間、例えば10分、20分、30分等が例示される。また、遠心処理により標的細胞とウイルスベクターとの接触を促す操作を組み合わせてもよい。
ウイルスベクターとしてオンコレトロウイルスに基づくベクターを用いる場合、G0期の細胞に対しては染色体DNAへの外来遺伝子の導入を行うことができない。従って、このような場合には、適当な標的細胞増殖因子によって標的細胞を細胞周期に誘導することが好ましい。例えば、骨髄細胞や造血幹細胞に遺伝子導入を行う場合の予備刺激には、各種のサイトカイン、例えばインターロイキン-3、インターロイキン-6や幹細胞因子等が使用できる。
細胞へのレトロウイルスの感染には、細胞表面に存在するレセプターが関与していることが知られている。例えば、塩基性アミノ酸トランスポーター、リン酸トランスポーターは、それぞれエコトロピックウイルス、アンフォトロピックウイルスのレセプターとして機能することが知られている[プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシィス・オブ・ザ・ユナイテッド・ステイツ・オブ・アメリカ、第93巻、第11407~11413頁(1996年)]。これらのトランスポーターの発現や代謝回転を活発にさせるために、塩基性アミノ酸又はリン酸やこれらの塩もしくは前駆体を低減させた培地中で標的細胞を前処理することによって、当該細胞をウイルスに感染し易い状態とすることができる。
遺伝子導入効率の測定は公知の方法で行うことができる。例えば細胞に導入する外来遺伝子としてZsGreen等の蛍光タンパク質をコードするマーカー遺伝子を使用した場合には、当該遺伝子が導入された細胞数をフローサイトメーターで計測することにより遺伝子導入効率を測定できる。また、外来遺伝子として細胞表面に発現される遺伝子産物をコードする遺伝子を用いる場合には、当該遺伝子産物に特異的に結合する標識抗体を利用すれば、上記と同様にフローサイトメーターを用いた遺伝子導入効率の計測を行うことができる。上記以外の選択マーカー、例えば薬剤耐性遺伝子を利用する方法、遺伝子導入操作後の細胞集団中の導入遺伝子のコピー数を測定する方法等によって遺伝子導入効率を測定することができる。
本発明の遺伝子導入用システムは、コロナ放電式イオン発生器又はプラズマ放電式イオン発生器を含む装置であり、本発明の遺伝子導入方法に使用できる。本発明の遺伝子導入用システムにおけるイオン発生器としては、プラスイオン、マイナスイオン、あるいはこれら両方のイオンを照射可能なものが例示される。イオン発生器は、風流又は電場によりイオンを対象物に照射する機構を有していてもよい。本発明の遺伝子導入用システムは、さらに容器を保持できるインキュベーターや振盪装置を含んでもよい。また、本発明の遺伝子導入用システムは、レトロウイルスベクター及び標的細胞を収容するための容器や当該容器の設置部を含んでもよい。さらに、容器の設置部には、ナイロン板やポリテトラフルオロエチレン板等の電荷を帯びやすい素材を配してもよい。
以下に実施例を挙げて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。
実施例1 イオン照射下での遺伝子導入
(1)DON-ZsGreenレトロウイルスベクターの調製
pZsGreen Vector (クロンテック社製)を制限酵素BamHIとEcoRI(タカラバイオ社製)で切断し、アガロースゲル電気泳動を行い、緑色蛍光タンパク質ZsGreenをコードする配列を含む約0.7kbpのフラグメントを回収した。回収したフラグメントをDNA Blunting Kit(タカラバイオ社製)を用いて末端平滑化後、pDON-AI DNA(タカラバイオ社製)に挿入し、組換えレトロウイルスベクタープラスミドpDON-ZsGreenを取得した。次に、当該プラスミドとRetrovirus Packaging Kit Eco(タカラバイオ社製)を用いてエコトロピックDON-ZsGreenウイルスを作製した。その後、これをGaLVレトロウイルスパッケージング細胞PG13に感染させた。感染細胞から高力価のウイルス産生細胞をクローニングしてレトロウイルスベクター産生細胞株PG13/DON-ZsGreenを樹立した。さらに当該産生細胞を用いて、5mM 酢酸ナトリウムを含有する培地で常法によりGaLV/DON-ZsGreenウイルス液を取得した(以下、DON-ZsGreenレトロウイルスベクターと称す)。
pZsGreen Vector (クロンテック社製)を制限酵素BamHIとEcoRI(タカラバイオ社製)で切断し、アガロースゲル電気泳動を行い、緑色蛍光タンパク質ZsGreenをコードする配列を含む約0.7kbpのフラグメントを回収した。回収したフラグメントをDNA Blunting Kit(タカラバイオ社製)を用いて末端平滑化後、pDON-AI DNA(タカラバイオ社製)に挿入し、組換えレトロウイルスベクタープラスミドpDON-ZsGreenを取得した。次に、当該プラスミドとRetrovirus Packaging Kit Eco(タカラバイオ社製)を用いてエコトロピックDON-ZsGreenウイルスを作製した。その後、これをGaLVレトロウイルスパッケージング細胞PG13に感染させた。感染細胞から高力価のウイルス産生細胞をクローニングしてレトロウイルスベクター産生細胞株PG13/DON-ZsGreenを樹立した。さらに当該産生細胞を用いて、5mM 酢酸ナトリウムを含有する培地で常法によりGaLV/DON-ZsGreenウイルス液を取得した(以下、DON-ZsGreenレトロウイルスベクターと称す)。
(2)レトロネクチン/抗CD3抗体固定化プレートの調製
フィブロネクチンフラグメントCH-296[RetroNectin(登録商標)、タカラバイオ社製)、以下レトロネクチンと記載する]を25μg/mL、及び抗CD3抗体(OKT3、ヤンセンファーマ株式会社)を5μg/mLとなるようにACD‐A液(テルモ社製)に溶解した。この溶解液を細胞培養用6ウェルプレート(BD Falcon社製)に1mL/ウェルの量で加え、37℃で5時間放置した。放置後、溶解液をとり除き、GT-T503培地(タカラバイオ社製)を用いて1mL/ウェルの量で各プレートを2回ずつ洗浄した。こうして得られたプレートをレトロネクチン/抗CD3抗体固定化プレートとした。
フィブロネクチンフラグメントCH-296[RetroNectin(登録商標)、タカラバイオ社製)、以下レトロネクチンと記載する]を25μg/mL、及び抗CD3抗体(OKT3、ヤンセンファーマ株式会社)を5μg/mLとなるようにACD‐A液(テルモ社製)に溶解した。この溶解液を細胞培養用6ウェルプレート(BD Falcon社製)に1mL/ウェルの量で加え、37℃で5時間放置した。放置後、溶解液をとり除き、GT-T503培地(タカラバイオ社製)を用いて1mL/ウェルの量で各プレートを2回ずつ洗浄した。こうして得られたプレートをレトロネクチン/抗CD3抗体固定化プレートとした。
(3)ウイルス結合プレートの作製
ACD-A(テルモ社製)及びヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を終濃度がそれぞれ5%(V/V)、2%(V/V)になるように生理食塩水に添加したものを希釈液として用いて、実施例1(1)で取得したウイルス液を10倍希釈したウイルス希釈液を調製した。次に、予めACD-Aで最終濃度20μg/mLになるように希釈したレトロネクチンを24穴ノントリートメントプレート(BD Falcon社製)の各ウェルに0.5mLずつ添加して4℃で一晩処理し、プレートからレトロネクチン溶液を取り除いた。さらに、ACD-A(テルモ社製)を各ウェルに0.5mL添加して取り除くという洗浄作業を2回行った。このプレートの各ウェルに、前記のウイルス希釈液を1mLずつ添加し、遠心処理(32℃、2000×g、2時間)した。遠心後、各ウェルよりウイルス希釈液上清を取り除き、ヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を1.5%になるように生理食塩水に添加したもの0.5mLずつで各ウェルを3回洗浄した。こうして得られたプレートをウイルス結合プレートとした。
ACD-A(テルモ社製)及びヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を終濃度がそれぞれ5%(V/V)、2%(V/V)になるように生理食塩水に添加したものを希釈液として用いて、実施例1(1)で取得したウイルス液を10倍希釈したウイルス希釈液を調製した。次に、予めACD-Aで最終濃度20μg/mLになるように希釈したレトロネクチンを24穴ノントリートメントプレート(BD Falcon社製)の各ウェルに0.5mLずつ添加して4℃で一晩処理し、プレートからレトロネクチン溶液を取り除いた。さらに、ACD-A(テルモ社製)を各ウェルに0.5mL添加して取り除くという洗浄作業を2回行った。このプレートの各ウェルに、前記のウイルス希釈液を1mLずつ添加し、遠心処理(32℃、2000×g、2時間)した。遠心後、各ウェルよりウイルス希釈液上清を取り除き、ヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を1.5%になるように生理食塩水に添加したもの0.5mLずつで各ウェルを3回洗浄した。こうして得られたプレートをウイルス結合プレートとした。
(4)遺伝子導入用ヒト末梢血単核細胞の初期刺激培養
インフォームドコンセントの得られた健常人から調製したヒト末梢血単核細胞(PBMC)を0.2×106cells/mLとなるように0.6%自己血漿、720IU/mL IL-2(NOVARTIS社製)、0.2%ヒト血清アルブミン「アルブミナー」、0.5μg/mLファンギゾン(ブリストルマイヤーズ社製)を含むGT-T503培地(以下、培養用培地と称す)に懸濁し、実施例1(2)で作製したレトロネクチン/抗CD3抗体固定化プレートに6.7mL/ウェルとなるように加えた(PBMCの刺激開始)。プレートはCO2インキュベーター中、37℃で4日間(PBMCの刺激開始後、第4日目まで)培養した。
インフォームドコンセントの得られた健常人から調製したヒト末梢血単核細胞(PBMC)を0.2×106cells/mLとなるように0.6%自己血漿、720IU/mL IL-2(NOVARTIS社製)、0.2%ヒト血清アルブミン「アルブミナー」、0.5μg/mLファンギゾン(ブリストルマイヤーズ社製)を含むGT-T503培地(以下、培養用培地と称す)に懸濁し、実施例1(2)で作製したレトロネクチン/抗CD3抗体固定化プレートに6.7mL/ウェルとなるように加えた(PBMCの刺激開始)。プレートはCO2インキュベーター中、37℃で4日間(PBMCの刺激開始後、第4日目まで)培養した。
(5)遺伝子導入操作
実施例1(3)で作製したウイルス結合プレート3枚に、実施例1(4)で4日間刺激した細胞懸濁液を各ウェルに0.95mL(0.5×106cellsの細胞を含む)/ウェルとなるように加えた。この後、細胞懸濁液を加えた3枚のウイルス結合プレートに対し、遠心処理(32℃、1000×g、10分)、-イオン優位のイオン照射(室温、10分)、又は+イオン優位のイオン照射(室温、10分)を行った。なお、イオン照射にはイオナイザ(キーエンス社製 SJ-H036)を用い、照射はウイルス結合プレートの上部約5cmの距離から行った。また、-イオン優位のイオン照射の際にはウイルス結合プレートの下にポリテトラフルオロエチレン板を、+イオン優位のイオン照射の際にはウイルス結合プレートの下にナイロン板を敷いて照射を行った。遠心又はイオン照射の後、各プレートについてさらにCO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4時間の培養を行った。また、非遺伝子導入細胞の培養(陰性対照)として、24穴ノントリートメントプレート(BD Falcon社製)の各ウェルに、実施例1(4)で4日間刺激した細胞懸濁液を0.95mL(0.5×106cellsの細胞を含む)/ウェルとなるように加え、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4時間の培養を行った。培養後の上記計4枚のプレートについて、各ウェルの細胞懸濁液0.90mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地3.6mLを各ウェルに加えて5倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて3日間(PBMCの刺激開始後、第7日目まで)培養を行った。
実施例1(3)で作製したウイルス結合プレート3枚に、実施例1(4)で4日間刺激した細胞懸濁液を各ウェルに0.95mL(0.5×106cellsの細胞を含む)/ウェルとなるように加えた。この後、細胞懸濁液を加えた3枚のウイルス結合プレートに対し、遠心処理(32℃、1000×g、10分)、-イオン優位のイオン照射(室温、10分)、又は+イオン優位のイオン照射(室温、10分)を行った。なお、イオン照射にはイオナイザ(キーエンス社製 SJ-H036)を用い、照射はウイルス結合プレートの上部約5cmの距離から行った。また、-イオン優位のイオン照射の際にはウイルス結合プレートの下にポリテトラフルオロエチレン板を、+イオン優位のイオン照射の際にはウイルス結合プレートの下にナイロン板を敷いて照射を行った。遠心又はイオン照射の後、各プレートについてさらにCO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4時間の培養を行った。また、非遺伝子導入細胞の培養(陰性対照)として、24穴ノントリートメントプレート(BD Falcon社製)の各ウェルに、実施例1(4)で4日間刺激した細胞懸濁液を0.95mL(0.5×106cellsの細胞を含む)/ウェルとなるように加え、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4時間の培養を行った。培養後の上記計4枚のプレートについて、各ウェルの細胞懸濁液0.90mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地3.6mLを各ウェルに加えて5倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて3日間(PBMCの刺激開始後、第7日目まで)培養を行った。
(6)フローサイトメトリー解析
3日間の培養後(PBMCの刺激開始後、第7日目)に培養用培地で各ウェルの細胞懸濁液を2倍希釈し、更に3日間(PBMCの刺激開始後、第10日目まで)培養した。なお、PBMCの刺激開始後第4、7、10日目には細胞増殖率を測定した。PBMCの刺激開始後第10日目まで培養した細胞懸濁液について、レトロウイルスによる遺伝子導入効率を調べるために、以下の手順により蛍光レポータータンパク質(ZsGreen)の発現を調べた。まず、0.5×106cells分の細胞懸濁液をエッペンチューブに移し、遠心処理(4℃、500×g、5分間)にて細胞を沈殿させた。上清を取り除いた後、沈殿した細胞は最終濃度0.5%BSA(ウシ胎児血清アルブミン、シグマ社製)を含むリン酸バッファー(ギブコ社製)950μLに懸濁し、遠心処理(4℃、500×g、5分間)にて再度細胞を沈殿させた。上清を再度取り除いた後、最終濃度0.5%BSA(シグマ社製)を含むリン酸バッファー(ギブコ社製)400μLに懸濁した。こうして得られた遺伝子導入時の処理がそれぞれ異なる3種類の細胞懸濁液と陰性対照の細胞懸濁液をフローサイトメトリー測定に供した。
3日間の培養後(PBMCの刺激開始後、第7日目)に培養用培地で各ウェルの細胞懸濁液を2倍希釈し、更に3日間(PBMCの刺激開始後、第10日目まで)培養した。なお、PBMCの刺激開始後第4、7、10日目には細胞増殖率を測定した。PBMCの刺激開始後第10日目まで培養した細胞懸濁液について、レトロウイルスによる遺伝子導入効率を調べるために、以下の手順により蛍光レポータータンパク質(ZsGreen)の発現を調べた。まず、0.5×106cells分の細胞懸濁液をエッペンチューブに移し、遠心処理(4℃、500×g、5分間)にて細胞を沈殿させた。上清を取り除いた後、沈殿した細胞は最終濃度0.5%BSA(ウシ胎児血清アルブミン、シグマ社製)を含むリン酸バッファー(ギブコ社製)950μLに懸濁し、遠心処理(4℃、500×g、5分間)にて再度細胞を沈殿させた。上清を再度取り除いた後、最終濃度0.5%BSA(シグマ社製)を含むリン酸バッファー(ギブコ社製)400μLに懸濁した。こうして得られた遺伝子導入時の処理がそれぞれ異なる3種類の細胞懸濁液と陰性対照の細胞懸濁液をフローサイトメトリー測定に供した。
フローサイトメトリー解析は、BD FACSCanto II フローサイトメーター(ベクトン ディッキンソン社)を用いて機器指示書に従い行った。ZsGreenの発現率〔以下、遺伝子導入効率(GT%)と記載することがある〕は、初めに前方散乱光(FSC)、側方散乱光(SSC)の2パラメータヒストグラム(x軸:FSC、y軸:SSC)上で、目的細胞集団をゲートでくくる。そのゲート中の細胞集団をGFP検出パラメーターのヒストグラム(x軸:GFPの蛍光強度、y軸:細胞数を示す)上で、まず、アイソタイプコントロール(陰性対照)の測定結果を指標にZsGreenを発現する細胞集団のゲート領域を設定し、次に被検体の細胞のうちゲート領域の細胞の割合(%)を測定することにより求めた。
遺伝子導入効率の測定結果を図1及び表2に示す。なお、表1に記載の「MFI」は、ZsGreen発現細胞集団の平均蛍光強度(Mean Fluorescence Intensity)を示す。
図1及び表2に示されるように、-イオン優位のイオン照射下での遺伝子導入や、+イオン優位のイオン照射下での遺伝子導入を行うことにより、遠心処理を行った場合と比べても、高い導入効率を示した。
細胞増殖率の測定結果を表3に示す。
表3に示されるように、遺伝子導入時の処理による細胞増殖率への影響は、認められなかった。
実施例2 イオン照射下での遺伝子導入2
(1)遺伝子導入用ヒト末梢血単核細胞の初期刺激培養
インフォームドコンセントの得られた健常人から調製したヒト末梢血単核細胞(PBMC)を0.2×106cells/mLとなるように0.6%自己血漿、600IU/mL IL-2(NOVARTIS社製)、0.2%ヒト血清アルブミン「アルブミナー」、0.5μg/mLファンギゾン(ブリストルマイヤーズ社製)を含むGT-T503培地(以下、培養用培地と称す)に懸濁し、実施例1(2)と同様の方法で作製したレトロネクチン/抗CD3抗体固定化プレートに6.7mL/ウェルとなるように加えた(PBMCの刺激開始)。プレートはCO2インキュベーター中、37℃で4日間(PBMCの刺激開始後、第4日目まで)培養した。
インフォームドコンセントの得られた健常人から調製したヒト末梢血単核細胞(PBMC)を0.2×106cells/mLとなるように0.6%自己血漿、600IU/mL IL-2(NOVARTIS社製)、0.2%ヒト血清アルブミン「アルブミナー」、0.5μg/mLファンギゾン(ブリストルマイヤーズ社製)を含むGT-T503培地(以下、培養用培地と称す)に懸濁し、実施例1(2)と同様の方法で作製したレトロネクチン/抗CD3抗体固定化プレートに6.7mL/ウェルとなるように加えた(PBMCの刺激開始)。プレートはCO2インキュベーター中、37℃で4日間(PBMCの刺激開始後、第4日目まで)培養した。
(2)ウイルス結合プレートの作製
ACD-A(テルモ社製)及びヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を終濃度がそれぞれ5%(V/V)、2%(V/V)になるように生理食塩水に添加したものを希釈液として用いて、実施例1(1)で取得したウイルス液を5倍、10倍希釈したウイルス希釈液を調製した。次に、予めACD-Aで最終濃度20μg/mLになるように希釈したレトロネクチンを24穴ノントリートメントプレート(BD Falcon社製)の各ウェルに0.5mLずつ添加して4℃で一晩処理し、プレートからレトロネクチン溶液を取り除いた。さらに、ACD-A(テルモ社製)を各ウェルに0.5mL添加して取り除くという洗浄作業を2回行った。このプレートの各ウェルに、前記のウイルス希釈液を1mLずつ添加し、遠心処理(32℃、2000×g、2時間)した。遠心後、各ウェルよりウイルス希釈液上清を取り除き、ヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を1.5%になるように生理食塩水に添加したもの1mLずつで各ウェルを2回洗浄した。こうして得られたプレートをウイルス結合プレートとした。
ACD-A(テルモ社製)及びヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を終濃度がそれぞれ5%(V/V)、2%(V/V)になるように生理食塩水に添加したものを希釈液として用いて、実施例1(1)で取得したウイルス液を5倍、10倍希釈したウイルス希釈液を調製した。次に、予めACD-Aで最終濃度20μg/mLになるように希釈したレトロネクチンを24穴ノントリートメントプレート(BD Falcon社製)の各ウェルに0.5mLずつ添加して4℃で一晩処理し、プレートからレトロネクチン溶液を取り除いた。さらに、ACD-A(テルモ社製)を各ウェルに0.5mL添加して取り除くという洗浄作業を2回行った。このプレートの各ウェルに、前記のウイルス希釈液を1mLずつ添加し、遠心処理(32℃、2000×g、2時間)した。遠心後、各ウェルよりウイルス希釈液上清を取り除き、ヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を1.5%になるように生理食塩水に添加したもの1mLずつで各ウェルを2回洗浄した。こうして得られたプレートをウイルス結合プレートとした。
(3)遺伝子導入操作
実施例2(2)で作製したウイルス結合プレートに、実施例2(1)で4日間刺激した細胞懸濁液を各ウェルに1mL(0.5×106cellsの細胞を含む)/ウェルとなるように加えた。この後、細胞懸濁液を加えたウイルス結合プレートに対し、遠心処理(32℃、1000×g、10分)、-イオン優位のイオン照射(室温、10分)、+イオン優位のイオン照射(室温、10分)又は、+イオン優位のイオン照射(室温、30分)を行った。なお、イオン照射にはイオナイザ(キーエンス社製 SJ-H036)を用い、照射はウイルス結合プレートの下部約10cmの距離から行った。また、-イオン優位のイオン照射の際にはウイルス結合プレートの下にポリテトラフルオロエチレン板を、+イオン優位のイオン照射の際にはウイルス結合プレートの下にナイロン板を敷いて照射を行った。遠心又はイオン照射の後、各プレートについてさらにCO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4時間の培養を行った。また、非遺伝子導入細胞の培養(陰性対照)として、24穴ノントリートメントプレート(BD Falcon社製)の各ウェルに、実施例2(1)で4日間刺激した細胞懸濁液を1mL(0.5×106cellsの細胞を含む)/ウェルとなるように加え、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4時間の培養を行った。培養後の上記プレートについて、各ウェルの細胞懸濁液1mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地4mLを各ウェルに加えて5倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて3日間(PBMCの刺激開始後、第7日目まで)培養を行った。
実施例2(2)で作製したウイルス結合プレートに、実施例2(1)で4日間刺激した細胞懸濁液を各ウェルに1mL(0.5×106cellsの細胞を含む)/ウェルとなるように加えた。この後、細胞懸濁液を加えたウイルス結合プレートに対し、遠心処理(32℃、1000×g、10分)、-イオン優位のイオン照射(室温、10分)、+イオン優位のイオン照射(室温、10分)又は、+イオン優位のイオン照射(室温、30分)を行った。なお、イオン照射にはイオナイザ(キーエンス社製 SJ-H036)を用い、照射はウイルス結合プレートの下部約10cmの距離から行った。また、-イオン優位のイオン照射の際にはウイルス結合プレートの下にポリテトラフルオロエチレン板を、+イオン優位のイオン照射の際にはウイルス結合プレートの下にナイロン板を敷いて照射を行った。遠心又はイオン照射の後、各プレートについてさらにCO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4時間の培養を行った。また、非遺伝子導入細胞の培養(陰性対照)として、24穴ノントリートメントプレート(BD Falcon社製)の各ウェルに、実施例2(1)で4日間刺激した細胞懸濁液を1mL(0.5×106cellsの細胞を含む)/ウェルとなるように加え、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4時間の培養を行った。培養後の上記プレートについて、各ウェルの細胞懸濁液1mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地4mLを各ウェルに加えて5倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて3日間(PBMCの刺激開始後、第7日目まで)培養を行った。
(4)フローサイトメトリー解析
3日間の培養後(PBMCの刺激開始後、第7日目)に各ウェルの細胞懸濁液2.5mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地2.5mLを各ウェルに加えて2倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4日間(PBMCの刺激開始後、第11日目まで)培養を行った。なお、PBMCの刺激開始後第4、7、11日目には細胞増殖率を測定した。PBMCの刺激開始後第11日目まで培養した細胞懸濁液について、レトロウイルスによる遺伝子導入効率を調べるために、実施例1(6)と同様の手順により蛍光レポータータンパク質(ZsGreen)の発現を調べた。
3日間の培養後(PBMCの刺激開始後、第7日目)に各ウェルの細胞懸濁液2.5mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地2.5mLを各ウェルに加えて2倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4日間(PBMCの刺激開始後、第11日目まで)培養を行った。なお、PBMCの刺激開始後第4、7、11日目には細胞増殖率を測定した。PBMCの刺激開始後第11日目まで培養した細胞懸濁液について、レトロウイルスによる遺伝子導入効率を調べるために、実施例1(6)と同様の手順により蛍光レポータータンパク質(ZsGreen)の発現を調べた。
遺伝子導入効率の測定結果を図2及び表4に示す。なお、表4に記載の「MFI」は、ZsGreen発現細胞集団の平均蛍光強度(Mean Fluorescence Intensity)を示す。
図2及び表4に示されるように、いずれの希釈倍率のウイルス液を用いた場合も-イオン優位のイオン照射下での遺伝子導入や、+イオン優位のイオン照射下での遺伝子導入を行うことにより、遠心処理を行った場合と比べても、高い導入効率を示した。
細胞増殖率の測定結果を表5に示す。
表5に示されるように、遺伝子導入時の処理による細胞増殖率への影響は、認められなかった。
(5)導入遺伝子数測定
ウイルス感染から7日後(PBMCの刺激開始後第11日目)の細胞よりFastPure DNA Kit(タカラバイオ社製)を用いてゲノムDNAを抽出し、Provirus Copy Number Detection Primer Set,Human(タカラバイオ社製)とCycleavePCR Core Kit(タカラバイオ社製)を用いて、ゲノムに組み込まれたウイルスコピー数の測定を行った。測定結果を図3及び表6に示す。
ウイルス感染から7日後(PBMCの刺激開始後第11日目)の細胞よりFastPure DNA Kit(タカラバイオ社製)を用いてゲノムDNAを抽出し、Provirus Copy Number Detection Primer Set,Human(タカラバイオ社製)とCycleavePCR Core Kit(タカラバイオ社製)を用いて、ゲノムに組み込まれたウイルスコピー数の測定を行った。測定結果を図3及び表6に示す。
図3及び表6に示されるように、イオン照射により細胞中の平均遺伝子導入数(細胞数あたりの導入遺伝子数)が増加した。
実施例3 イオン照射下での初期刺激培養1
(1)遺伝子導入用ヒト末梢血単核細胞の初期刺激培養
細胞懸濁液を加えたプレートに対して+イオン優位のイオン照射を行いながら培養を行う以外は実施例2(1)と同様の方法により、ヒト末梢血単核細胞の初期刺激培養を4日間行った。なお、イオン照射にはイオナイザ(キーエンス社製 SJ-H036)を用い、イオン照射はウイルス結合プレートの下にナイロン板を敷いたうえでウイルス結合プレートの下部約10cmの距離から行った。また、実施例2(1)と同様の方法により初期刺激培養を行った細胞懸濁液についても調製した。
細胞懸濁液を加えたプレートに対して+イオン優位のイオン照射を行いながら培養を行う以外は実施例2(1)と同様の方法により、ヒト末梢血単核細胞の初期刺激培養を4日間行った。なお、イオン照射にはイオナイザ(キーエンス社製 SJ-H036)を用い、イオン照射はウイルス結合プレートの下にナイロン板を敷いたうえでウイルス結合プレートの下部約10cmの距離から行った。また、実施例2(1)と同様の方法により初期刺激培養を行った細胞懸濁液についても調製した。
(2)ウイルス結合プレートの作製
ヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を1.5%になるように生理食塩水に添加したもの0.5mLずつで各ウェルを2回洗浄する代わりに、同様の溶液1mLずつで各ウェルを2回洗浄した以外は実施例1(3)と同様の方法でウイルス結合プレートを作製した。
ヒト血清アルブミン「アルブミナー」(CSLベーリング社製)を1.5%になるように生理食塩水に添加したもの0.5mLずつで各ウェルを2回洗浄する代わりに、同様の溶液1mLずつで各ウェルを2回洗浄した以外は実施例1(3)と同様の方法でウイルス結合プレートを作製した。
(3)遺伝子導入操作
実施例3(2)で作製したウイルス結合プレートに、実施例3(1)で4日間刺激した細胞懸濁液を各ウェルに1mL(0.5×106cellsの細胞を含む)/ウェルとなるように加えた後、4時間の培養を行った。4時間の培養後の上記プレートについて、各ウェルの細胞懸濁液1mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地4mLを各ウェルに加えて5倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4日間(PBMCの刺激開始後、第8日目まで)培養を行った。4日間の培養後(PBMCの刺激開始後、第8日目)に各ウェルの細胞懸濁液2.5mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地2.5mLを各ウェルに加えて2倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて2日間(PBMCの刺激開始後、第10日目まで)培養を行った。なお、PBMCの刺激開始後第4、8、10日目には細胞増殖率を測定した。測定結果を表7に示す。
実施例3(2)で作製したウイルス結合プレートに、実施例3(1)で4日間刺激した細胞懸濁液を各ウェルに1mL(0.5×106cellsの細胞を含む)/ウェルとなるように加えた後、4時間の培養を行った。4時間の培養後の上記プレートについて、各ウェルの細胞懸濁液1mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地4mLを各ウェルに加えて5倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて4日間(PBMCの刺激開始後、第8日目まで)培養を行った。4日間の培養後(PBMCの刺激開始後、第8日目)に各ウェルの細胞懸濁液2.5mLずつを細胞培養用12ウェルプレートの各ウェルにそれぞれ播種し、さらに培養用培地2.5mLを各ウェルに加えて2倍希釈した後、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて2日間(PBMCの刺激開始後、第10日目まで)培養を行った。なお、PBMCの刺激開始後第4、8、10日目には細胞増殖率を測定した。測定結果を表7に示す。
表7に示されるように、初期刺激培養時のイオン照射による細胞増殖率への影響は、認められなかった。
(4)フローサイトメトリー解析
PBMCの刺激開始後第8日目、10日目まで培養した細胞懸濁液について、レトロウイルスによる遺伝子導入効率を調べるために、実施例1(6)と同様の手順により蛍光レポータータンパク質(ZsGreen)の発現を調べた。
PBMCの刺激開始後第8日目、10日目まで培養した細胞懸濁液について、レトロウイルスによる遺伝子導入効率を調べるために、実施例1(6)と同様の手順により蛍光レポータータンパク質(ZsGreen)の発現を調べた。
遺伝子導入効率の測定結果を表8に示す。なお、表8に記載の「MFI」は、ZsGreen発現細胞集団の平均蛍光強度(Mean Fluorescence Intensity)を示す。
表8に示されるように、初期刺激を+イオン優位のイオン照射下で行うことにより、高い導入効率、及び発現効率を示した。
実施例4 イオン照射下での初期刺激培養2
(1)MS-MA24-siTCRレトロウイルスベクターの調製
国際公開第2008/153029号パンフレット記載のコドン変換型TCR及びsiRNA共発現レトロウイルスベクター(MS-MA24-siTCR)を用いて、HEK293T細胞(ATCC CRL-11268)に、Retorovirus Packaging Kit Eco(タカラバイオ社製)を用いて製品プロトコールに従いトランスフェクションし、各種エコトロピックウイルス上清液を獲得した。このウイルス上清液を0.45μmフィルター(Milex HV、ミリポア社製)にてろ過し、GaLVレトロウイルスパッケージング細胞PG13にポリブレンを使用する方法により感染させ、限界稀釈法により細胞のクローン化を行った。さらに当該産生細胞を用いて、5mM 酢酸ナトリウムを含有する培地で常法によりGaLV/MS-MA24-siTCRウイルス液を取得した(以下、MS-MA24-siTCRレトロウイルスベクターと称す)。
国際公開第2008/153029号パンフレット記載のコドン変換型TCR及びsiRNA共発現レトロウイルスベクター(MS-MA24-siTCR)を用いて、HEK293T細胞(ATCC CRL-11268)に、Retorovirus Packaging Kit Eco(タカラバイオ社製)を用いて製品プロトコールに従いトランスフェクションし、各種エコトロピックウイルス上清液を獲得した。このウイルス上清液を0.45μmフィルター(Milex HV、ミリポア社製)にてろ過し、GaLVレトロウイルスパッケージング細胞PG13にポリブレンを使用する方法により感染させ、限界稀釈法により細胞のクローン化を行った。さらに当該産生細胞を用いて、5mM 酢酸ナトリウムを含有する培地で常法によりGaLV/MS-MA24-siTCRウイルス液を取得した(以下、MS-MA24-siTCRレトロウイルスベクターと称す)。
(2)ウイルス結合プレートの作製
実施例1(1)で取得したウイルス液の代わりに実施例4(1)で取得したウイルス液を希釈せずに使用する以外は実施例3(2)と同様の方法で、ウイルス結合プレートを作製した。
実施例1(1)で取得したウイルス液の代わりに実施例4(1)で取得したウイルス液を希釈せずに使用する以外は実施例3(2)と同様の方法で、ウイルス結合プレートを作製した。
(3)遺伝子導入操作
実施例4(2)で作製したウイルス結合プレートに、実施例3(1)と同様の方法により4日間初期刺激培養を行った細胞懸濁液を各ウェルに1mL(0.5×106cellsの細胞を含む)/ウェルとなるように加え、実施例3(3)と同様の方法により遺伝子導入操作とその後の細胞培養を行った。
実施例4(2)で作製したウイルス結合プレートに、実施例3(1)と同様の方法により4日間初期刺激培養を行った細胞懸濁液を各ウェルに1mL(0.5×106cellsの細胞を含む)/ウェルとなるように加え、実施例3(3)と同様の方法により遺伝子導入操作とその後の細胞培養を行った。
(4)フローサイトメトリー解析
レトロウイルスによる遺伝子導入効率を調べるために、MAGE-A4テトラマー-PE(ルードヴィッヒ社製)、及びHuman CD8-FITC(ベクトン ディッキンソン社製)にて染色し、フローサイトメーターによりCD8陽性であって、かつテトラマー陽性である細胞の割合を測定した。具体的には、感染培養後の細胞0.5×106cellsをエッペンドルフチューブに移し、遠心処理(4℃、500×g、5分間)にて細胞を沈殿させた。上清を取り除いた後、沈殿した細胞は950μLの最終濃度0.5%BSAリン酸バッファーに懸濁し、遠心処理(4℃、500×g、5分間)にて再度細胞を沈殿させた。上清を再度取り除いた後、MAGE-A4テトラマー-PE1μLに0.5%BSAを8μL添加した混合液で懸濁し、30min、4℃反応させた。その後、Human CD8-FITCを1μL加え、30min、4℃反応させた。反応後、950μLの最終濃度0.5%BSAリン酸バッファーを添加し、遠心処理(4℃、500×g、5分間)にて上清を取り除く工程を2回行った後、400μLの0.5%BSA/PBSに懸濁し、この懸濁液をフローサイトメトリー測定に供した。こうして得られたイオン照射の処理がそれぞれ異なる細胞懸濁液と陰性対照の細胞懸濁液をフローサイトメトリー測定に供した。
レトロウイルスによる遺伝子導入効率を調べるために、MAGE-A4テトラマー-PE(ルードヴィッヒ社製)、及びHuman CD8-FITC(ベクトン ディッキンソン社製)にて染色し、フローサイトメーターによりCD8陽性であって、かつテトラマー陽性である細胞の割合を測定した。具体的には、感染培養後の細胞0.5×106cellsをエッペンドルフチューブに移し、遠心処理(4℃、500×g、5分間)にて細胞を沈殿させた。上清を取り除いた後、沈殿した細胞は950μLの最終濃度0.5%BSAリン酸バッファーに懸濁し、遠心処理(4℃、500×g、5分間)にて再度細胞を沈殿させた。上清を再度取り除いた後、MAGE-A4テトラマー-PE1μLに0.5%BSAを8μL添加した混合液で懸濁し、30min、4℃反応させた。その後、Human CD8-FITCを1μL加え、30min、4℃反応させた。反応後、950μLの最終濃度0.5%BSAリン酸バッファーを添加し、遠心処理(4℃、500×g、5分間)にて上清を取り除く工程を2回行った後、400μLの0.5%BSA/PBSに懸濁し、この懸濁液をフローサイトメトリー測定に供した。こうして得られたイオン照射の処理がそれぞれ異なる細胞懸濁液と陰性対照の細胞懸濁液をフローサイトメトリー測定に供した。
フローサイトメトリー解析は、BD FACSCanto II フローサイトメーター(ベクトン ディッキンソン社)を用いて機器指示書に従い行った。TCRの発現率〔以下、遺伝子導入効率(GT%)と記載することがある〕は、初めに前方散乱光(FSC)、側方散乱光(SSC)の2パラメータヒストグラム(x軸:FSC、y軸:SSC)上で、目的細胞集団をゲートでくくる。そのゲート中の細胞集団をFITC、PE検出パラメーターのヒストグラム(x軸:FITCの蛍光強度、y軸:PEの蛍光強度を示す)上で、まず、アイソタイプコントロール(陰性対照)の測定結果を指標にFITC、PEを発現する細胞集団のゲート領域を設定し、次に被検体の細胞のうちゲート領域の細胞の割合(%)を測定することにより求めた。
遺伝子導入効率の測定結果を表9に示す。表9に記載の「MFI」は、MAGE-A4特異的TCR発現CD8陽性細胞のMAGE-A4テトラマー-PE由来の蛍光に関する平均蛍光強度(Mean Fluorescence Intensity)を示す。
表9に示されるように、初期刺激培養を+イオン優位のイオン照射下で行うことにより、高い導入効率、及び発現効率を示した。
本発明により、簡便でかつ高効率な遺伝子導入方法が提供される。本発明は、特に医学、細胞工学、遺伝子工学、及び発生工学等の分野において有用である。
Claims (11)
- ウイルスベクターによる標的細胞への遺伝子導入方法であって、ウイルスベクター及び標的細胞を収容した容器にイオンを照射する工程を包含する方法。
- 標的細胞が、細胞集団、並びに細胞の増殖刺激に関与する物質、細胞の分化誘導に関与する物質、及び細胞の脱分化の誘導に関与する物質からなる群より選択された少なくとも一種を収容した容器にイオンを照射する工程によって得られた細胞集団である、請求項1に記載の方法。
- 標的細胞が、T細胞を含む細胞集団及びCD3リガンドを収容した容器にイオンを照射する工程によって得られた細胞集団である、請求項2に記載の方法。
- ウイルスベクターがレトロウイルスベクターである、請求項1に記載の方法。
- コロナ放電又はプラズマ放電により生じたイオンを照射する請求項1に記載の方法。
- 下記工程(a)及び(b)を包含する、請求項1~5のいずれか一項に記載の方法:
(a)ウイルスベクターが固定化された容器を得る工程;及び
(b)工程(a)により得られた容器に標的細胞を入れた後、イオン照射下でインキュベートする工程。 - 下記工程(A)及び(B)を包含する、ウイルスベクターによる標的細胞への遺伝子導入方法:
(A)細胞集団、並びに細胞の増殖刺激に関与する物質、細胞の分化誘導に関与する物質、及び細胞の脱分化の誘導に関与する物質からなる群より選択された少なくとも一種を収容した容器にイオンを照射する工程;及び
(B)工程(A)により得られた細胞集団にウイルスベクターにより遺伝子を導入する工程。 - 下記工程(A)及び(B)を包含する、請求項7に記載の方法:
(A)T細胞を含む細胞集団及びCD3リガンドを収容した容器にイオンを照射する工程;及び
(B)工程(A)により得られた細胞集団にウイルスベクターにより遺伝子を導入する工程。 - ウイルスベクターがレトロウイルスベクターである、請求項7に記載の方法。
- コロナ放電式イオン発生器又はプラズマ放電式イオン発生器を含む、遺伝子導入用システム。
- さらに、インキュベーターを含む、請求項10に記載のシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-287890 | 2010-12-24 | ||
JP2010287890 | 2010-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012086702A1 true WO2012086702A1 (ja) | 2012-06-28 |
Family
ID=46313970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079672 WO2012086702A1 (ja) | 2010-12-24 | 2011-12-21 | 遺伝子導入方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012086702A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014208425A1 (ja) * | 2013-06-26 | 2014-12-31 | 国立大学法人東北大学 | 遺伝子導入装置および遺伝子導入方法 |
CN109735566A (zh) * | 2018-12-13 | 2019-05-10 | 中国科学院广州生物医药与健康研究院 | 一种增强腺病毒载体生物制品感染靶细胞的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002064767A1 (fr) * | 2001-02-09 | 2002-08-22 | Fujisawa Pharmaceutical Co., Ltd. | Procede de transfert de molecules selectionnees |
WO2004015101A1 (ja) * | 2002-08-08 | 2004-02-19 | Fujisawa Pharmaceutical Co., Ltd. | 標的細胞への選定分子の導入方法、標的細胞の細胞融合方法およびそれらの方法に用いるプラズマ照射装置 |
WO2007022403A2 (en) * | 2005-08-15 | 2007-02-22 | The Board Of Trustees Of The Leland Stanford Junior University | Ocular gene therapy using avalanche-mediated transfection |
WO2007106136A2 (en) * | 2006-02-22 | 2007-09-20 | The Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for avalanche-mediated transfer of agents into cells |
-
2011
- 2011-12-21 WO PCT/JP2011/079672 patent/WO2012086702A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002064767A1 (fr) * | 2001-02-09 | 2002-08-22 | Fujisawa Pharmaceutical Co., Ltd. | Procede de transfert de molecules selectionnees |
WO2004015101A1 (ja) * | 2002-08-08 | 2004-02-19 | Fujisawa Pharmaceutical Co., Ltd. | 標的細胞への選定分子の導入方法、標的細胞の細胞融合方法およびそれらの方法に用いるプラズマ照射装置 |
WO2007022403A2 (en) * | 2005-08-15 | 2007-02-22 | The Board Of Trustees Of The Leland Stanford Junior University | Ocular gene therapy using avalanche-mediated transfection |
WO2007106136A2 (en) * | 2006-02-22 | 2007-09-20 | The Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for avalanche-mediated transfer of agents into cells |
Non-Patent Citations (4)
Title |
---|
CONNOLLY R.J. ET AL.: "Characterization of plasma mediated molecular delivery to cells in vitro", INT. J. PHARM., vol. 389, no. 1-2, April 2010 (2010-04-01), pages 53 - 57 * |
CONNOLLY R.J. ET AL.: "Plasma facilitated delivery of DNA to skin", BIOTECHNOL. BIOENG., vol. 104, no. 5, 2009, pages 1034 - 1040 * |
OGAWA Y. ET AL.: "An epoch-making application of discharge plasma phenomenon to gene-transfer", BIOTECHNOL. BIOENG., vol. 92, no. 7, 2005, pages 865 - 870 * |
RAMACHANDRAN, N. ET AL.: "Molecular delivery to cells facilitated by corona ion deposition", IEEE TRANS. NANOBIOSCIENCE, vol. 7, no. 3, 2008, pages 233 - 239 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014208425A1 (ja) * | 2013-06-26 | 2014-12-31 | 国立大学法人東北大学 | 遺伝子導入装置および遺伝子導入方法 |
JPWO2014208425A1 (ja) * | 2013-06-26 | 2017-02-23 | 国立大学法人東北大学 | 遺伝子導入装置および遺伝子導入方法 |
CN109735566A (zh) * | 2018-12-13 | 2019-05-10 | 中国科学院广州生物医药与健康研究院 | 一种增强腺病毒载体生物制品感染靶细胞的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021530985A (ja) | フソソームの組成物及びその使用 | |
JP5010760B2 (ja) | ウイルスベクターの製造方法 | |
JP2022507454A (ja) | Cns送達のためのフソソーム組成物 | |
JP3754090B2 (ja) | 無血清培地を用いた遺伝子導入方法 | |
JP2022507453A (ja) | T細胞送達のためのフソソーム組成物 | |
CN111566221B (zh) | 用于nk细胞转导的方法 | |
JP3807937B2 (ja) | 遺伝子導入方法 | |
JP5805089B2 (ja) | 細胞集団の製造方法 | |
US20240254168A1 (en) | LIPID PARTICLES CONTAINING A TRUNCATED BABOON ENDOGENOUS RETROVIRUS (BaEV) ENVELOPE GLYCOPROTEIN AND RELATED METHODS AND USES | |
CN116157116A (zh) | 用于产生病毒融合体的方法和组合物 | |
WO2012086702A1 (ja) | 遺伝子導入方法 | |
EP3912629A1 (en) | Method for delivering gene in cells | |
EP3822346A1 (en) | Use of engineered packaging cell lines for producing recombinant virus particles | |
Swainson et al. | Lentiviral transduction of immune cells | |
JP5778147B2 (ja) | 遺伝子導入方法 | |
CN113913458A (zh) | 非病毒方法制备稳定高表达嵌合受体的nk细胞 | |
US20190010467A1 (en) | Method for preparing cultured cells or tissues for transplantation | |
US9228206B2 (en) | Method for gene transfer | |
WO2013146480A1 (ja) | 遺伝子導入方法 | |
WO2024081820A1 (en) | Viral particles targeting hematopoietic stem cells | |
EP4430060A1 (en) | Koala retrovirus envelope glycoproteins and uses thereof | |
KR101043871B1 (ko) | 동종 제대혈 혈청 또는 혈장을 사용하는 유전자 도입 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11850175 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11850175 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |