WO2012046695A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2012046695A1
WO2012046695A1 PCT/JP2011/072786 JP2011072786W WO2012046695A1 WO 2012046695 A1 WO2012046695 A1 WO 2012046695A1 JP 2011072786 W JP2011072786 W JP 2011072786W WO 2012046695 A1 WO2012046695 A1 WO 2012046695A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin paste
resin
semiconductor
die bonding
coating film
Prior art date
Application number
PCT/JP2011/072786
Other languages
English (en)
French (fr)
Inventor
良史 杉浦
真二郎 藤井
修一 森
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Publication of WO2012046695A1 publication Critical patent/WO2012046695A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92147Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01084Polonium [Po]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more specifically, a semiconductor chip such as an IC or LSI (hereinafter sometimes referred to as a chip), a lead frame for mounting the chip, an insulating support substrate, or the like (hereinafter referred to as a chip). And a semiconductor support member of a semiconductor substrate).
  • the present invention relates to a method of manufacturing a semiconductor device bonded with a bonding material (hereinafter also referred to as a die bonding material).
  • Au-Si eutectic alloy, solder, silver paste, and the like are conventionally known as bonding materials between semiconductor chips such as IC and LSI and semiconductor support members such as lead frames and insulating support substrates, so-called die bonding materials. .
  • An Au—Si eutectic alloy has high heat resistance and moisture resistance, but has a large elastic modulus, and therefore tends to be easily cracked when applied to a large chip. Further, the Au—Si eutectic alloy has a drawback that it is expensive. On the other hand, although solder is inexpensive, it is inferior in heat resistance, and its elastic modulus is as high as that of an Au—Si eutectic alloy, making it difficult to apply to a large chip. In contrast, silver paste is inexpensive, has high moisture resistance, has a lower elastic modulus than Au—Si eutectic alloy and solder, and has heat resistance applicable to a thermocompression bonding wire bonder at 350 ° C. ( For example, see Patent Document 1).
  • silver paste has been widely used among the above die bonding materials.
  • IC and LSI become more highly integrated and the chips become larger, it is difficult to spread and apply silver paste over the entire surface of the chip, and joining with silver paste is efficient. I can't say that.
  • an adhesive film using a specific polyimide resin As a die bonding material that can cope with an increase in the size of a chip, an adhesive film using a specific polyimide resin, an adhesive film for die bonding in which a conductive filler or an inorganic filler is blended with a specific polyimide resin, and the like are known (for example, And see Patent Documents 2 to 4).
  • these adhesive films tend to be inferior in low-temperature adhesion.
  • a sticking device for cutting or punching the adhesive film into a chip size in advance and further sticking it is necessary. When the adhesive film is punched and used, waste is generated.
  • the support substrate since most of the support substrate has an inner layer wiring formed inside the substrate, when an adhesive film is pasted on a surface with many irregularities, voids are likely to occur, and reliability may be impaired.
  • a die bonding resin paste prepared by dissolving or dispersing an adhesive composition in a solvent is known as a die bonding material other than an adhesive film (see, for example, Patent Documents 5 and 6).
  • a resin paste it is possible to select an adhesive composition having excellent low-temperature adhesiveness.
  • the resin paste has an advantage that it can be applied only to a necessary portion on the support substrate by a printing method such as screen printing.
  • the coating film of the resin paste is B-staged by heat drying, and is heat-cured after mounting the semiconductor chip.
  • JP 2002-179769 A Japanese Patent Application Laid-Open No. 07-228697 Japanese Patent Laid-Open No. 06-145639 Japanese Patent Laid-Open No. 06-264035 JP 2006-342300 A JP 2007-246875 A
  • a resin paste for die bonding is applied on an insulating support substrate by a screen printing method.
  • this is heated and dried in an oven, whereby solvent evaporation and semi-curing of the resin paste for die bonding are performed, and the applied resin paste is made into a B-stage.
  • the Si chip is pressure-bonded onto the insulating support substrate with the B-stage resin paste in between, and the die-bonding resin paste is completely cured by heating in an oven.
  • Solvent is added to adjust the viscosity and thixotropy index of the resin paste for die bonding, and is added on the premise that it is volatilized after printing the paste. If the solvent is not sufficiently volatilized, defects such as voids and chip contamination may occur. Therefore, a process for volatilizing the solvent is required in the assembly process of the semiconductor device using the resin paste for die bonding.
  • the solvent is volatilized from the coating film by heating in the B-stage as described above. At this time, in order to prevent voids and cracks from being generated in the coating film due to rapid heating, it is desirable to raise the heating temperature slowly and to make it as low as possible.
  • a substrate on which a plurality of resin pastes are applied is arranged for each batch.
  • the temperature distribution in the oven varies, there may be insufficient curing or excessive curing depending on the position in the oven, which may cause problems in later assembly of the semiconductor device.
  • the B-stage temperature generally, it may vary by about ⁇ 10 ° C. with respect to the set temperature.
  • the B-staging time may vary, which may cause problems in later assembly of the semiconductor device.
  • the B stage time generally, it may vary by about ⁇ 5 minutes with respect to the set time.
  • the present invention has been made in view of the above circumstances, and can reduce the tact time when a semiconductor chip is bonded by applying a die bonding material on a semiconductor support member by a printing method, and
  • An object of the present invention is to provide a method of manufacturing a semiconductor device that can sufficiently prevent an assembly failure due to insufficient curing or excessive curing in B-stage and can manufacture a highly reliable semiconductor device with high productivity. .
  • the present invention can also reduce the tact time when a semiconductor chip is bonded by applying a die bonding material on a semiconductor support member by a screen printing method, and insufficient curing or excessive curing in B-stage.
  • a die bonding resin paste and a method of manufacturing a semiconductor device using the same which can sufficiently prevent an assembly failure caused by a remaining solvent and enable a highly reliable semiconductor device to be manufactured with high productivity. With the goal.
  • the present invention provides a resin for die bonding, which includes a photocurable component and a thermosetting component on a semiconductor support member for mounting a semiconductor chip, and has a solvent content of 5% by mass or less.
  • a first step of applying a paste by a printing method to provide a resin paste coating a second step of photocuring a photocurable component by irradiating the coating with light, a semiconductor support member and a semiconductor chip, And a third step of bonding by pressure-bonding the irradiated coating film, and a method for manufacturing a first semiconductor device.
  • the coating film can be made into a B-stage without variation in the degree of curing by light irradiation by using the specific resin paste for die bonding.
  • the tact time in the B-stage it is possible to sufficiently prevent assembly failure due to insufficient curing or excessive curing due to variations in heating temperature and heating time, and to provide a highly reliable semiconductor device. It becomes possible to manufacture with high productivity.
  • the viscosity and thixotropy index of a resin paste for die bonding has been adjusted by adding a solvent.
  • the solvent used at this time is added on the premise that it is almost or completely volatilized at the stage of B-stage, so it does not easily volatilize at room temperature and atmospheric pressure. A possible solvent is selected.
  • the solvent volatilizes in the subsequent processes such as die attach, after cure, wire bonding, molding, sealing material curing, and reflow. As a result, voids may be formed, resulting in an assembly failure.
  • the solvent which volatilizes easily is used, the storage stability of the resin paste is deteriorated.
  • the resin paste containing the specific component used in the first production method of the present invention can be satisfactorily applied by the printing method even if the solvent content is 5% by mass or less. And the above problem can be prevented.
  • the first method for manufacturing a semiconductor device of the present invention it is possible to reduce the thermal energy at the time of forming the B stage.
  • the exposure dose of light irradiation in the second step is preferably 1 mJ / cm 2 or more.
  • the photocurable component may not be sufficiently cured, and in that case, it tends to be outgas when the thermosetting component is thermally cured after the third step. . Further, if the photocurable component cannot be cured sufficiently, the tackiness becomes too large, and problems are likely to occur during assembly.
  • the light irradiation in the second step is performed in a nitrogen atmosphere.
  • the photocurable component cannot be sufficiently cured, and when the thermosetting component is thermally cured after the third step. It becomes easy to become outgas.
  • the tackiness becomes too large, and problems are likely to occur during assembly.
  • the semiconductor support member can be heated at 60 to 180 ° C. for 60 minutes or less before the third step.
  • the pre-baking step when time passes after the second step and moisture adheres to the coating film surface of the resin paste, the moisture can be removed before the third step is performed. If the assembly process after the third process is performed in a state where a lot of moisture adheres to the coating film of the resin paste, it causes voids, cracks and the like.
  • the pre-baking step is preferably performed immediately before the third step.
  • the manufacturing method of the first semiconductor device of the present invention further includes a step of heating the semiconductor support member bonded to the semiconductor chip at 60 to 200 ° C. for 5 to 300 minutes after the third step from the viewpoint of reliability. It is preferable. By providing such a process, the curing reaction of the resin paste can be further advanced. If the die shear strength is sufficiently secured at the time after the third step, the above-mentioned after cure can be omitted.
  • the manufacturing method of the first semiconductor device of the present invention further includes a step of electrically connecting the semiconductor chip and the semiconductor support member after the above steps by wire bonding, and then sealing the semiconductor chip with a resin. Can do.
  • the present invention also includes a photopolymerizable compound having a viscosity at 25 ° C. of 100 Pa ⁇ s or less, a thermosetting compound, and a thermoplastic elastomer, and a solvent content of 5% by mass or less.
  • a resin paste for die bonding is provided.
  • the resin paste for die bonding of the present invention having the above-described configuration, a coating film is formed on a semiconductor support member by a screen printing method, and a die bonding layer formed into a B stage by light irradiation is formed. Is possible. As a result, it is possible to sufficiently prevent an increase in tact time due to the process for volatilizing the solvent, an insufficient curing or excessive curing in the B-stage, an assembly failure due to the remaining solvent, and the like. According to the resin paste for die bonding of the present invention, a semiconductor device having excellent reliability can be manufactured with high productivity.
  • the resin bonding for die bonding it is desirable that the solvent content is reduced and the resin paste is used as effectively as possible after the B-stage. That is, in the case of a conventional resin paste, a coating film having a predetermined thickness is formed by volatilization of the solvent after printing. Therefore, as the ratio of the solvent increases, the resin paste becomes a component that becomes unnecessary after the B-stage. Will be included.
  • the resin paste for die bonding of the present invention can have a small content ratio of the above unnecessary components.
  • the resin paste for die bonding of the present invention can further contain a photopolymerization initiator. Thereby, a photopolymerizable compound can be selectively B-staged in a short time.
  • the resin paste for die bonding of the present invention can further contain a curing accelerator. Thereby, it can be heat-cured at a lower temperature or in a shorter time.
  • the resin paste for die bonding of the present invention can further contain a filler. Thereby, it is possible to impart thixotropy or improve reliability.
  • the resin paste for die bonding of the present invention can further contain one or more additives selected from the group consisting of a defoaming agent, a defoaming agent and a defoaming agent. Thereby, printability can be improved.
  • the resin paste for die bonding of the present invention preferably has a viscosity at 25 ° C. of 5 to 1000 Pa ⁇ s from the viewpoint of printability.
  • the resin bonding paste for die bonding of the present invention is a coating film having a thickness of 100 ⁇ m, which is irradiated with light having a wavelength of 365 nm at 25 ° C. in a nitrogen atmosphere having an oxygen concentration of 1 ppm or less.
  • the melt viscosity at 100 ° C. of the irradiated film becomes 100 to 100,000 Pa ⁇ s, and the irradiated film is further subjected to nitrogen at an oxygen concentration of 1 ppm or less at 140 ° C. for 5 hours.
  • the Young's modulus at 25 ° C. of the heated coating film is preferably 1 to 3000 MPa.
  • melt viscosity is less than 100 Pa ⁇ s
  • the printed shape tends to be difficult to maintain after printing, and it becomes difficult to adjust the wetness depending on the load accuracy of the die bonder.
  • melt viscosity exceeds 100,000 Pa ⁇ s
  • the chip does not get wet enough with the resin paste during die attachment, and the chip tends to peel off in the process after die attachment, and the void may be sufficiently filled during die attachment or sealing. There is a tendency for reliability to decline.
  • the Young elastic modulus When the Young elastic modulus is less than 1 MPa, the printed shape tends to be difficult to hold after printing, and depending on the load accuracy of the die bonder, the wet condition tends to be difficult to adjust, and when it exceeds 3000 MPa, There is a tendency that the substrate and the chip are easily warped.
  • the present invention also provides a first step in which a resin paste for die bonding of the present invention is applied by screen printing on a semiconductor support member for mounting a semiconductor chip, and a coating film of the resin paste is applied, and the coating film is irradiated with light.
  • a second method for manufacturing a semiconductor device comprising: a second step of: a third step of pressing a semiconductor support member and a semiconductor chip with a light-irradiated coating film interposed therebetween.
  • the second method for manufacturing a semiconductor device of the present invention by using the resin bonding paste for die bonding of the present invention, a B-staged die bonding layer is formed by film formation by screen printing and light irradiation. Therefore, it is possible to sufficiently prevent an increase in tact time due to the process for volatilizing the solvent, insufficient curing or excessive curing in the B-stage formation, assembly failure due to the remaining solvent, and the like. According to the second method for manufacturing a semiconductor device of the present invention, a highly reliable semiconductor device can be manufactured with high productivity.
  • the viscosity and thixotropy index of a resin paste for die bonding have been adjusted by adding a solvent.
  • the solvent used at this time is added on the premise that it is almost or completely volatilized at the stage of B-stage, so it does not easily volatilize at room temperature and atmospheric pressure. A possible solvent is selected.
  • the solvent volatilizes in the subsequent processes such as die attach, after cure, wire bonding, molding, sealing material curing, and reflow. As a result, voids may be formed, resulting in an assembly failure.
  • the solvent which volatilizes easily is used, the storage stability of the resin paste is deteriorated.
  • the resin paste containing the specific component used in the second production method of the present invention can be satisfactorily applied by the printing method even when the solvent content is 5% by mass or less. And the above problem can be prevented.
  • the present invention also provides a semiconductor device obtained by the second semiconductor device manufacturing method of the present invention.
  • the present invention it is possible to reduce the tact time when a semiconductor chip is bonded by applying a die bonding material on a semiconductor support member by a printing method, and also due to insufficient curing or excessive curing in the B stage. It is possible to provide a first method for manufacturing a semiconductor device that can sufficiently prevent an assembly failure and can manufacture a highly reliable semiconductor device with high productivity.
  • B-stage can be formed at a lower temperature than conventional B-stage by heating, and substrate warpage, outgas, and environmental load are suppressed. be able to.
  • the first method for manufacturing a semiconductor device of the present invention it is possible to sufficiently suppress defects such as voids caused by the residual solvent in the process after the B-stage.
  • the present invention it is possible to reduce tact time when a semiconductor chip is bonded by applying a die bonding material on a semiconductor support member by a screen printing method, and in addition, insufficient curing or excessive curing in the B stage.
  • Die bonding resin paste that can sufficiently prevent assembly failure caused by residual solvent and can manufacture semiconductor device with high reliability and high productivity, and manufacture of second semiconductor device using the same A method can be provided.
  • the B stage can be formed at a lower temperature than the B stage by the conventional heating. It is possible to suppress the burden on outgas and further on the environment.
  • defects such as voids caused by the remaining of the solvent in the process after the B-stage are sufficiently obtained. Can be suppressed.
  • FIG. 1 and 2 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing a semiconductor device of the present invention.
  • the semiconductor device manufacturing method of the present embodiment includes a photocurable component and a thermosetting component on a semiconductor support member for mounting a semiconductor chip.
  • a first step (see (a) of FIG. 1) of applying a resin paste for die bonding having a solvent content of 5% by mass or less by a printing method to provide a coating film of the resin paste;
  • a second step (see FIG. 1B) of photocuring the photocurable component by light irradiation, and bonding the semiconductor support member and the semiconductor chip by pressure bonding with the light-irradiated coating film interposed therebetween.
  • a third step (see FIG. 1C).
  • the semiconductor device manufacturing method of the present embodiment further includes a step of electrically connecting the semiconductor chip and the semiconductor support member after these steps through wire bonding, and then sealing the semiconductor chip with a resin ((FIG. 2 ( a) and (b)).
  • the insulating support substrate 10 provided with the electrodes 12 is used as the semiconductor support member.
  • the semiconductor support member for example, a lead frame such as a 42 alloy lead frame or a copper lead frame; polyimide resin Plastic film such as epoxy resin, polyimide resin, etc .; base material such as glass nonwoven fabric impregnated and cured with plastic such as polyimide resin, epoxy resin, polyimide resin; insulating support substrate made of ceramics such as alumina And a lower semiconductor chip in the case of a stack package; a glass substrate in the case of a display and the like.
  • Examples of printing methods include screen printing.
  • a mask 20 having an opening is disposed on the insulating support substrate 10, and a resin paste for die bonding is embedded in the opening by moving the squeegee 40 to apply the resin paste.
  • a film 30 is formed.
  • FIG. 3 is a schematic cross-sectional view for explaining a printing factor in screen printing.
  • the moving speed of the squeegee 40 (arrow A in FIG. 3) is preferably 1 to 200 mm / sec.
  • the printing pressure is preferably 0 to 30N.
  • the printing pressure refers to the pressure applied by the squeegee 40 in the direction perpendicular to the mask 20, and when the printing pressure is 0 N, the squeegee 40 and the mask 20 are not in contact with each other.
  • the squeegee angle (B in FIG. 3) is preferably 10 to 90 °.
  • the plate separation speed is preferably 0.1 to 10 mm / s.
  • the plate separation speed refers to a speed (arrow C in FIG. 3) at which the semiconductor support member 10 and the mask 20 are separated after the mask opening is filled with the resin paste.
  • the clearance (D in FIG. 3) is preferably 0 to 10 mm. When the clearance is 0 mm, the semiconductor support member 10 and the mask 20 are in contact with each other.
  • the thickness of the mask 20 by adjusting the thickness of the mask 20, the film thickness after the resin paste is applied, that is, the thickness of the coating film 30 can be adjusted.
  • a metal mask or the like can be used as the mask.
  • the mask can be selected depending on the application, and a mask having a mesh opening may be used.
  • the thickness of the coating film 30 is preferably 500 ⁇ m or less, more preferably 30 to 200 ⁇ m, from the viewpoint of cost reduction. When the thickness of the coating film 30 is less than 30 ⁇ m, the reliability tends to decrease.
  • the resin paste for die bonding used in this embodiment will be described later.
  • Examples of the light irradiation in the second step include ultraviolet irradiation using an exposure apparatus such as a high-pressure mercury lamp.
  • Examples of other light sources include a low-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, and an LED-UV lamp.
  • the wavelength of light used for light irradiation is appropriately set depending on the type and blending ratio of the photopolymerization initiator, but is preferably 10 to 400 nm, which is a general photopolymerization initiator absorption region.
  • the light irradiation is preferably 1 mJ / cm 2 or more from the viewpoint of outgas suppression and tack reduction, and more preferably 1 to 4000 mJ / cm 2 from the viewpoint of tack reduction and tact time. Even more preferably, it is 1000 to 3000 mJ / cm 2 .
  • tact time is time to B-stage formation, means the exposure time in the case of light irradiation, and means the time which heat is added in the case of heat drying. In the case of thermal drying, the time during which heat is applied means, for example, the total time of those steps when going through the steps of temperature rise, constant temperature (maintenance), and temperature drop, and in the case of only constant temperature, It means process time.
  • the photocurable component may not be sufficiently cured, and in that case, it tends to be outgas when performing thermosetting of the thermosetting compound after the third step. . Further, if the photopolymerizable compound cannot be cured sufficiently, the tackiness becomes too large, and problems are likely to occur during assembly.
  • the light irradiation is preferably performed at room temperature (about 10 to 25 ° C.) for about 1 second to 5 minutes. Furthermore, light irradiation can be performed in an atmosphere such as vacuum, nitrogen, air, etc., but in order to reduce oxygen inhibition, a film such as a PET film or polypropylene film that has been subjected to a release treatment is applied on the coating film. It is preferable to be carried out in a laminated state or in a nitrogen atmosphere, and more preferably in a nitrogen atmosphere with an oxygen concentration of 1 ppm or less.
  • exposure can be performed through a patterned mask as necessary.
  • a semiconductor chip 50 is mounted on the light-irradiated coating film 32 of the semiconductor support member 10 by using a die bonding apparatus, and the semiconductor support member 10 on which the semiconductor chip 50 is mounted is shown in FIG.
  • the heat block 51 can be used, for example, by heating and pressurizing at 1 to 200 N, 20 to 200 ° C. for about 0.01 to 90 seconds.
  • the thermosetting component in the coating film 32 is thermoset, the coating film 32 becomes a die bonding layer, and the semiconductor support member and the semiconductor chip are bonded (die-bonded).
  • the heating temperature, pressure, pressure bonding time, and pressure bonding speed at the time of die bonding can be appropriately changed according to the B-stage conditions and the resin paste composition.
  • the third step is preferably performed at a pressure of 100 N or less. Further, the third step is preferably performed at a temperature of 175 ° C. or less from the viewpoint of heat resistance of the chip or the support member, and is preferably performed at a temperature of 60 to 170 ° C. from the viewpoint of reliability. From the viewpoint of tact time, the third step is preferably performed in a time of 10 seconds or less.
  • Examples of the semiconductor chip 50 include an IC and an LSI.
  • a pre-baking step of heating the semiconductor support member at 60 to 180 ° C. for 60 minutes or less can be provided before the third step.
  • moisture content can be removed before a 3rd process is performed. If the assembly process after the third process is performed in a state where a lot of moisture adheres to the coating film of the resin paste, it causes voids, cracks and the like. The longer the time between the pre-baking step and the third step, the more easily the resin paste absorbs moisture. Therefore, the pre-baking step is preferably performed immediately before the third step.
  • the above-described pre-baking step can be performed using an oven, and may be performed using a heat treatment furnace or a hot plate.
  • the main purpose of the pre-baking process is to remove moisture on the surface of the resin paste, and not to advance the curing of the resin paste. Therefore, from the viewpoint of not proceeding the curing reaction of the resin paste, it is preferably performed at a low temperature of 60 to 150 ° C., and more preferably at a low temperature of 60 to 120 ° C. About time, 30 minutes or less are preferable and 15 minutes or less are more preferable. From the viewpoint of reducing outgas and preventing the warpage of the substrate, it is preferable to perform the pre-bake process at a lower temperature for a shorter time, and it is preferable to perform the process in a shorter time from the viewpoint of tact time.
  • after-cure can be performed after the third step.
  • the after-cure process can be performed using an oven, and may be performed using a heat treatment furnace or a hot plate.
  • a curing reaction is gently started by incorporating a temperature rising step from room temperature into the program, and outgassing can be suppressed.
  • the after-cure temperature may be 80 ° C. to 200 ° C., but it is preferably 175 ° C. or less from the viewpoint of outgas and substrate resistance.
  • the temperature is as low as possible. After cure at low temperature (preferably 130 ° C. or less) by blending a curing accelerator having a low active region temperature or a low temperature reactive thermosetting compound with the resin paste for die bonding used (C stage) ).
  • the electrode of the semiconductor chip 10 bonded by the die bonding layer 34 and the electrode 12 of the semiconductor support member are electrically connected by wire bonding 52.
  • the semiconductor chip 50 is encapsulated with an encapsulating resin 60, and the solder balls 54 are mounted as necessary to obtain the semiconductor device (semiconductor package) 100. Can do.
  • the die bonding layer may be C-staged when post-curing the sealing material.
  • the problem in the mounting assembly process is that the chip is vibrated at the time of wire bonding due to insufficient fixation between the semiconductor chip and the semiconductor support member, resulting in a problem of wire bonding.
  • the chip is peeled off by the flow of the sealing material on the side surface of the chip during resin sealing.
  • the C-stage formation is a process in which the curing is further advanced (C stage) from the curing state of the resin paste immediately after the B-stage formation.
  • the C-stage resin paste is a B-stage resin paste. Tg and elastic modulus are higher than those.
  • the resin paste for die bonding includes a photocurable component and a thermosetting component and a solvent content of 5% by mass or less. From the viewpoint of reliability, it is preferable that the resin paste for die bonding does not substantially contain a solvent.
  • the solvent refers to a solvent used for diluting a resin composition in order to adjust the viscosity or thixotropy index of a conventional resin paste for die bonding, and includes, for example, a photoreactive group and a thermosetting group.
  • a solvent used for diluting a resin composition in order to adjust the viscosity or thixotropy index of a conventional resin paste for die bonding, and includes, for example, a photoreactive group and a thermosetting group.
  • a photoreactive group such as an organic compound having a molecular weight of 500 or less and being liquid at 25 ° C.
  • the nonvolatile content of the resin paste for die bonding is measured according to the following method. If the nonvolatile content is 95% by mass or more, it can be determined that the solvent content is 5% by mass or less. .
  • the resin paste for die bonding is formed into a coating film having a thickness of 200 ⁇ m or less, and light having a wavelength of 365 nm is exposed to this coating film at an exposure amount of 1000 mJ / cm 2 , and then heated in an oven from room temperature to 140 ° C. over 30 minutes. , Hold at 140 ° C. for 1 hour. By passing through such a process, reactive compounds, such as a photocurable component and a thermosetting component, will react sufficiently and will not volatilize at about 200 degreeC. Then, the nonvolatile content is measured at 200 ° C./2 hours.
  • the resin paste for die bonding according to the present embodiment includes a photopolymerizable compound and a photopolymerization initiator as a photocurable component, and a thermosetting resin as the thermosetting component, and a curing accelerator and a thermal polymerization initiator as necessary.
  • a photopolymerizable compound and a photopolymerization initiator as a photocurable component
  • a thermosetting resin as the thermosetting component
  • a curing accelerator and a thermal polymerization initiator as necessary. The thing containing is mentioned.
  • the resin paste for die bonding according to the present embodiment preferably further contains a thermoplastic resin from the viewpoint of imparting an appropriate elastic modulus and wettability, imparting thixotropy, improving reliability, and heat dissipation. From such a viewpoint, it is preferable to further contain a filler.
  • Preferred examples of the photopolymerizable compound include compounds having an ethylenically unsaturated group.
  • the ethylenically unsaturated group include vinyl group, allyl group, propargyl group, butenyl group, ethynyl group, phenylethynyl group, maleimide group, nadiimide group, (meth) acryl group and the like.
  • a (meth) acryl group is preferred.
  • Examples of such a compound containing a (meth) acryl group (CH ⁇ CR—CO—; R is H or CH 3 ) include monofunctional (meth) acrylate compounds and polyfunctional (meth) acrylate compounds.
  • monofunctional and polyfunctional refers to an ethylenically unsaturated group.
  • a polyfunctional (meth) acrylate compound, especially a bifunctional (meth) acrylate compound are included. These are used singly or in combination of two or more.
  • the bifunctional or higher (meth) acrylate is not particularly limited, but diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene Glycol diacrylate, polyethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,4-butanediol dimethacrylate, 1, Bifunctional (meth) acrylate such as 6-hexanediol dimethacrylate, trimethylolpropane Trifunctional or higher (meth) acrylate such as reacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol
  • R 19 and R 20 each independently represent a hydrogen atom or a methyl group, and g and h each independently represent an integer of 1 to 20.
  • Monofunctional (meth) acrylates include phenol EO-modified (meth) acrylate (EO; ethylene oxide), phenol PO-modified (meth) acrylate (PO; propylene oxide), nonylphenol EO-modified (meth) acrylate, and nonylphenol PO-modified (meta).
  • monofunctional (meth) acrylate When monofunctional (meth) acrylate is used, at least one selected from a urethane group, an isocyanuric group, an imide group and a hydroxyl group from the viewpoints of adhesion to an adherend after B-stage formation, adhesion after curing, and heat resistance. It preferably has a kind of functional group. In particular, a monofunctional (meth) acrylate having an imide group is preferable.
  • vinyl groups such as styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, methylenebisacrylamide, N, N-dimethylacrylamide, N-methylolacrylamide, A compound having a (meth) acrylamide group can also be used.
  • the content ratio of the bifunctional (meth) acrylate compound in the photopolymerizable compound is preferably 5 to 90% by mass from the viewpoint of viscosity adjustment.
  • the die bonding resin paste according to this embodiment preferably contains a compound having both photocuring and thermosetting functions as a photocurable component from the viewpoint of wettability and adhesiveness.
  • a (meth) acrylate compound having a (meth) acryl group as a photocurable group and an epoxy group as a thermosetting group can be preferably used.
  • the 5% weight reduction temperature of the (meth) acrylate having an epoxy group is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, from the viewpoints of storage stability, adhesiveness, low outgas resistance, heat resistance and moisture resistance reliability, Preferably it is 200 degreeC or more.
  • the 5% weight loss temperature of the monofunctional (meth) acrylate having an epoxy group is preferably 150 ° C. or higher in terms of suppressing volatilization or segregation on the surface due to heat drying during film formation, and outgas during thermosetting. It is more preferably 180 ° C. or higher, more preferably 200 ° C.
  • the temperature is 260 ° C. or higher.
  • the monofunctional (meth) acrylate having such an epoxy group preferably has an aromatic ring.
  • the (meth) acrylate compound having an epoxy group is not particularly limited, but in addition to glycidyl methacrylate, glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, 4-hydroxybutyl methacrylate glycidyl ether, functional groups that react with epoxy groups and Examples thereof include compounds obtained by reacting a compound having an ethylenically unsaturated group with a polyfunctional epoxy resin.
  • An isocyanate group a carboxyl group, a phenolic hydroxyl group, a hydroxyl group, an acid anhydride, an amino group, a thiol group, an amide group etc. are mentioned. These compounds can be used individually by 1 type or in combination of 2 or more types.
  • the (meth) acrylate compound having an epoxy group is, for example, in the presence of triphenylphosphine or tetrabutylammonium bromide, a polyfunctional epoxy resin having at least two epoxy groups in one molecule, and 1 equivalent of the epoxy group. It is obtained by reacting with 0.1 to 0.9 equivalent of (meth) acrylic acid. Also, by reacting a polyfunctional isocyanate compound with a hydroxy group-containing (meth) acrylate and a hydroxy group-containing epoxy compound in the presence of dibutyltin dilaurate, or reacting a polyfunctional epoxy resin with an isocyanate group-containing (meth) acrylate. And glycidyl group-containing urethane (meth) acrylate and the like.
  • the (meth) acrylate compound having an epoxy group should be a high-purity product in which alkali metal ions, alkaline earth metal ions, halogen ions, particularly chlorine ions and hydrolyzable chlorine are reduced to 1000 ppm or less as impurity ions.
  • the impurity ion concentration can be satisfied by using a polyfunctional epoxy resin with reduced alkali metal ions, alkaline earth metal ions, halogen ions, and the like as a raw material.
  • the total chlorine content can be measured according to JIS K7243-3.
  • the (meth) acrylate compound having an epoxy group satisfying the above heat resistance and purity is not particularly limited, but bisphenol A type (or AD type, S type, F type) glycidyl ether, water-added bisphenol A type glycidyl.
  • Ether ethylene oxide adduct bisphenol A and / or F type glycidyl ether, propylene oxide adduct bisphenol A and / or F type glycidyl ether, phenol novolac resin glycidyl ether, cresol novolac resin glycidyl ether, bisphenol A novolac resin Glycidyl ether, glycidyl ether of naphthalene resin, trifunctional (or tetrafunctional) glycidyl ether, glycidyl ether of dicyclopentadiene phenol resin, glycidyl of dimer acid Ester, 3 glycidylamine functional type (or tetrafunctional) include those glycidyl amines of naphthalene resins as a raw material.
  • the number of epoxy groups and ethylenically unsaturated groups is preferably 3 or less, respectively, and in particular, the number of ethylenically unsaturated groups is 2. It is preferable that it is one or less.
  • a compound is not particularly limited, but a compound represented by the following general formula (A-2), (A-3), (A-4), (A-5) or (A-6), etc. Is preferably used.
  • R 12 and R 16 represent a hydrogen atom or a methyl group
  • R 10 , R 11 , R 13 and R 14 represent a divalent organic group
  • R 15 is an organic group having an epoxy group
  • R 17 and R 18 are each an organic group having an ethylenically unsaturated group
  • the rest are organic groups having an epoxy group.
  • f in (A-5) represents an integer of 0 to 3.
  • the 5% weight reduction temperature of the photopolymerizable compound is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and 150 ° C. or higher. Is still more preferable, and it is still more preferable that it is 180 degreeC or more.
  • the 5% mass reduction temperature here is a temperature difference of 10 ° C./min with a nitrogen flow (using a differential thermothermal gravimetric simultaneous measurement apparatus (manufactured by SII Nanotechnology: TG / DTA6300) for the photopolymerizable compound. 400 ml / min).
  • both a photopolymerizable compound and a photopolymerization initiator are used as the photocurable component, and the reaction of the photocurable component is almost completed by B-stage formation by light irradiation.
  • a compound that generates a radical, an acid, a base, or the like by light irradiation can be used.
  • a compound that generates radicals and / or bases by light irradiation it is preferable to use a compound that generates radicals and / or bases by light irradiation, and generates radicals from the point that heat treatment after exposure is unnecessary and high sensitivity.
  • a compound is more preferably used.
  • a compound that generates an acid or a base by light irradiation exhibits a function of promoting the polymerization and / or reaction of the epoxy resin.
  • Examples of compounds that generate radicals upon irradiation with light include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,2-dimethoxy-1,2-diphenylethane-1- ON, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropanone-1, 2,4-diethylthioxanthone, 2-ethylanthraquinone, phenanthrenequinone, etc.
  • Aromatic ketones such as benzyldimethyl ketal; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) Imidazole dimer, 2- (o-fluorophenyl) -4,5-phenylimidazo Dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p 2,4,5-triarylimidazole dimers such as -methoxyphenyl) -5-phenylimidazole dimer and 2- (2,4-dimethoxyphenyl) -4,5-diphenylimidazole dimer; 9- Acridine derivatives such as phenylacridine and 1,7-bis (9,9'
  • 2,2-dimethoxy-1,2-diphenylethane-1-one and 2-benzyl-2 are preferable in terms of solubility in an adhesive composition containing no solvent.
  • -Dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4- (methylthio) phenyl) -2 -Morpholinopropan-1-one is preferably used.
  • 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,2-dimethoxy-1,2 can be formed into a B-stage by exposure even in an air atmosphere.
  • -Diphenylethane-1-one and 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one are preferably used.
  • the high-temperature adhesiveness and moisture resistance of the resin paste to the adherend are further improved.
  • Can do This is because the base generated from the photobase generator acts as a curing catalyst for the epoxy resin efficiently, so that the crosslinking density can be further increased, and the generated curing catalyst corrodes the substrate and the like. This is thought to be because there are few.
  • the crosslink density can be improved, and the outgas during standing at high temperature can be further reduced.
  • the curing process temperature can be lowered and shortened.
  • the photobase generator can be used without particular limitation as long as it is a compound that generates a base upon irradiation with radiation (light).
  • a strongly basic compound is preferable in terms of reactivity and curing speed.
  • the pKa value in the aqueous solution of the base generated by the photobase generator is preferably 7 or more, and more preferably 8 or more.
  • pKa is generally the logarithm of the acid dissociation constant as a basic indicator.
  • Examples of the base generated by irradiation include imidazole derivatives such as imidazole, 2,4-dimethylimidazole and 1-methylimidazole, piperazine derivatives such as piperazine and 2,5-dimethylpiperazine, piperidine and 1,2-dimethylpiperidine.
  • Piperidine derivatives such as trimethylamine derivatives such as trimethylamine, triethylamine and triethanolamine, pyridine derivatives substituted with an amino group or alkylamino group at the 4-position such as 4-methylaminopyridine and 4-dimethylaminopyridine, pyrrolidine, n -Pyrrolidine derivatives such as methylpyrrolidine, alicyclic amine derivatives such as 1,8-diazabiscyclo (5,4,0) undecene-1 (DBU), benzylmethylamine, benzyldimethylamine and benzyl Benzylamine derivatives ethylamine, proline derivatives, triethylenediamine, morpholine derivatives, primary alkyl amines.
  • trimethylamine derivatives such as trimethylamine, triethylamine and triethanolamine
  • pyridine derivatives substituted with an amino group or alkylamino group at the 4-position such as 4-methylaminopyridine and 4-dimethylaminopyridine
  • photopolymerization initiators include oxime derivatives that generate primary amino groups upon irradiation with actinic rays (light), and 2-methyl-1- (4- (methylthio) phenyl) that is commercially available as a photoradical generator.
  • thermosetting resin examples include a compound having an epoxy group, a phenol resin, an imide compound having at least two thermosetting imide groups in one molecule, and the like. These are used singly or in combination of two or more.
  • thermosetting component contained in the resin bonding paste for die bonding according to the present embodiment does not react in the B-stage by light irradiation, but reacts in the subsequent heating and further in the C-stage. It is preferable to use one that does not react in the presence of a photocuring initiator.
  • glycidyl ether type epoxy compounds such as ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, glycerin triglycidyl ether
  • Glycidyl ester type epoxy compound made from polycarboxylic acid such as dimer acid and its anhydride as raw material
  • aliphatic epoxy compound such as glycidyl amine type epoxy compound made from aliphatic amine as raw material, hydroquinone, methyl hydroquinone, dimethyl hydroquinone, Trimethylhydroquinone, resorcinol, methylresorcinol, catechol, methylcatechol, biphenol, tetramethylbiphe , Dihydroxynaphthalene, dihydroxymethylnaphthalene, dihydroxydimethylnaphthalene, bis (4
  • a phenol glycidyl ether type epoxy resin can be used.
  • resins include bisphenol A, bisphenol AD, bisphenol S, bisphenol F, or a condensate of halogenated bisphenol A and epichlorohydrin, glycidyl ether of phenol novolac resin, glycidyl ether of cresol novolac resin, and bisphenol A novolac resin.
  • a glycidyl ether etc. are mentioned. These can be used alone or in combination of two or more.
  • the blending amount is preferably 10 to 80% by mass based on the total amount of the resin paste from the viewpoint of heat resistance and adhesiveness.
  • the phenol resin has at least two phenolic hydroxyl groups in the molecule, and examples thereof include phenol novolac resin, cresol novolac resin, bisphenol A type novolak resin, poly-p-vinylphenol, phenol aralkyl resin and the like. . These are used singly or in combination of two or more.
  • the blending amount may be adjusted so that the functional group equivalent of phenol is equal to or less than the functional group equivalent of epoxy in consideration of the reliability of the package. preferable.
  • the blending amounts of the epoxy resin and the phenol resin are preferably 10 to 80% by mass and 10 to 80% by mass, respectively, based on the total amount of the resin paste.
  • imide compounds having at least two thermosetting imide groups in one molecule include orthobismaleimide benzene, metabismaleimide benzene, parabismaleimide benzene, and 1,4-bis (p-maleimidocumyl) benzene. 1,4-bis (m-maleimidocumyl) benzene and the like. These are used singly or in combination of two or more.
  • X and Y represent O, CH 2 , CF 2 , SO 2 , S, CO, C (CH 3 ) 2 or C (CF 3 ) 2 ;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent hydrogen, a lower alkyl group, a lower alkoxy group, fluorine, chlorine or bromine;
  • D represents a dicarboxylic acid residue having an ethylenically unsaturated double bond
  • M represents an integer of 0-4.
  • Examples of the imide compound of the formula (C-1) include 4,4-bismaleimide diphenyl ether, 4,4-bismaleimide diphenylmethane, 4,4-bismaleimide-3,3′-dimethyl-diphenylmethane, 4,4- Bismaleimide diphenyl sulfone, 4,4-bismaleimide diphenyl sulfide, 4,4-bismaleimide diphenyl ketone, 2,2′-bis (4-maleimidophenyl) propane, 4,4-bismaleimide diphenylfluoromethane, 1,1 1,3,3,3-hexafluoro-2,2-bis (4-maleimidophenyl) propane and the like.
  • Examples of the imide compound of the formula (C-2) include bis [4- (4-maleimidophenoxy) phenyl] ether, bis [4- (4-maleimidophenoxy) phenyl] methane, and bis [4- (4-maleimide).
  • Phenoxy) phenyl] fluoromethane bis [4- (4-maleimidophenoxy) phenyl] sulfone, bis [4- (3-maleimidophenoxy) phenyl] sulfone, bis [4- (4-maleimidophenoxy) phenyl] sulfide, bis [4- (4-maleimidophenoxy) phenyl] ketone, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 1,1,1,3,3,3-hexafluoro-2,2- And bis [4- (4-maleimidophenoxy) phenyl] propane.
  • Curing accelerators include imidazoles, imidazolidines, dicyandiamide derivatives, dicarboxylic acid dihydrazides, organic phosphines (triphenylphosphine and derivatives thereof, phosphine oxides, diphosphines, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4- Phosphine-boron compounds such as methylimidazole-tetraphenylborate, 1,8-diazabicyclo (5,4,0) undecene-7-tetraphenylborate), tin compounds, boron compounds and the like.
  • organic phosphines triphenylphosphine and derivatives thereof, phosphine oxides, diphosphines, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4- Phosphine-boron compounds such as methylimidazole-tetraphenyl
  • thermal polymerization initiator examples include organic peroxides.
  • the resin paste for die bonding according to the present embodiment preferably contains a thermoplastic resin in terms of improving low stress, adhesion to an adherend, and thermocompression bonding.
  • Thermoplastic resins include (meth) acrylic resins, butadiene resins, polybutadiene acrylonitrile copolymers, polyester resins, polyether resins, polyimide resins, polyamide resins, polyamideimide resins, polyetherimide resins, polyurethane resins, polyurethaneimides Resin, polyurethane amide imide resin, siloxane polyimide resin, polyester imide resin, copolymers thereof, precursors thereof (polyamide acid, etc.), polybenzoxazole resin, phenoxy resin, polysulfone resin, polyether sulfone resin, polyphenylene sulfide resin , Polycarbonate resin, polyether ketone resin, novolac resin, phenol resin and the like.
  • (meth) acrylic resins, butadiene resins, polybutadiene acrylonitrile copolymers and the like are preferable, polybutadiene acrylonitrile copolymers and butadiene resins are more preferable, and polybutadiene acrylonitrile copolymers are particularly preferable.
  • a copolymer having a carboxyl group is particularly preferable.
  • the copolymer examples include those having a main chain of a copolymer of butadiene, acrylonitrile and another polymerizable compound as required, and having a carboxyl group at least at one end thereof. From the viewpoints of printability, adhesive strength, and workability, the copolymer preferably has a number average molecular weight of 500 to 10,000, and more preferably 1,000 to 7,000. Furthermore, a butadiene-acrylonitrile copolymer having a carboxyl group represented by the following general formula (1) is more preferable.
  • x / y is 95/5 to 50/50
  • n is an integer of 5 to 50.
  • the compound represented by the general formula (1) can also be obtained as a commercial product.
  • Hycar CTBN-2009 ⁇ 162, CTBN-1300 ⁇ 31, CTBN-1300 ⁇ 8, CTBN-1300 ⁇ 13, CTBNX-1300 ⁇ 9 are commercially available.
  • NISSO-PB-C-2000 (trade name, manufactured by Nippon Soda Co., Ltd., product name) which is a low molecular weight liquid polybutadiene having a carboxyl group. Etc.
  • the Tg of the thermoplastic resin is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, even more preferably 100 ° C. or lower, and most preferably 80 ° C. or lower.
  • the Tg exceeds 150 ° C., the viscosity of the resin paste tends to increase.
  • a high temperature of 150 ° C. or higher is required when thermocompression bonding to an adherend.
  • Tg means a main dispersion peak temperature when a thermoplastic resin is formed into a film, and using a viscoelasticity analyzer “RSA-2” (trade name) manufactured by Rheometrics, a film thickness of 100 ⁇ m, The tan ⁇ peak temperature in the vicinity of Tg when measured under the conditions of a temperature rising rate of 5 ° C./min, a frequency of 1 Hz, and a measurement temperature of ⁇ 150 to 300 ° C. is defined as a main dispersion peak temperature.
  • RSA-2 viscoelasticity analyzer
  • the weight average molecular weight of the thermoplastic resin is preferably controlled within the range of 1,000 to 500,000, and more preferably 1,000 to 300,000 from the viewpoint that the thermocompression bonding property and the high temperature adhesiveness can be highly compatible.
  • the “weight average molecular weight” means a weight average molecular weight when measured in terms of polystyrene using high performance liquid chromatography “C-R4A” (trade name) manufactured by Shimadzu Corporation.
  • the viscosity (25 ° C.) of the resin paste is preferably 5 to 1000 Pa ⁇ s, more preferably 20 to 500, and particularly preferably 50 to 200 Pa ⁇ s.
  • the viscosity of the resin paste is preferably 5 to 1000 Pa ⁇ s from the viewpoint of printing workability.
  • the viscosity of the resin paste is the printing speed in screen printing, descent offset (printing pressure), plate separation speed, squeegee angle, distance between metal mask and semiconductor support member (clearance), shape of metal mask opening, side of metal mask opening It is preferable to adjust appropriately according to the printing factors such as the surface treatment of the surface.
  • the range is preferably 100 Pa ⁇ s.
  • it is preferably adjusted to a range of 20 to 500 Pa ⁇ s.
  • the viscosity is preferably adjusted to 150 Pa ⁇ s or less.
  • the thixotropy index of the resin paste is preferably 1.5 to 10.0, more preferably 2.0 to 7.0, and particularly preferably 2.0 to 5.0.
  • the thixotropy index of the resin paste is 1.5 or more, it is preferable from the viewpoint of suppressing the occurrence of sagging or the like in the paste supplied / applied by the screen printing method and maintaining a good printed shape.
  • the thixotropy index is preferably 10.0 or less from the viewpoint of suppressing the occurrence of “chips” and / or scum in the paste supplied and applied by the screen printing method.
  • the above viscosity is a value measured at 25 ° C. and a rotation speed of 0.5 rpm using an E-type viscometer.
  • the manufacturing method of the semiconductor device it is possible to reduce the tact time when the semiconductor chip is bonded by applying the die bonding material on the semiconductor support member by the printing method, and the B stage. As a result, it is possible to sufficiently prevent an assembly failure due to insufficient curing or excessive curing in the manufacturing process, and it is possible to manufacture a highly reliable semiconductor device with high productivity.
  • the B-stage can be formed at a lower temperature than the conventional B-stage by heating, and the substrate warpage, outgas, and environmental load can be suppressed. Further, it is possible to sufficiently suppress defects such as voids caused by the solvent remaining in the process after the B stage.
  • FIG. 4A is a view of the mask 20 disposed on the substrate on which screen printing is performed as viewed from above.
  • the resin paste is supplied onto the mask 20 disposed on the substrate, and the resin paste is embedded in the opening 22 by moving the squeegee in the direction of the arrow a (printing direction).
  • the coating film of the resin paste corresponding to the shape of the opening 22 is formed.
  • a cross section cross section taken along line III-III in FIG. 4A
  • FIG. 2 the end of the coating film was raised (hereinafter referred to as “dog year”).
  • a 1 indicates the printing direction
  • b indicates the climax.
  • the conventional resin paste contains a solvent
  • the solvent is volatilized and the film thickness becomes thin as shown in FIG.
  • the height of the dog ear may not change much before and after the B-stage conversion.
  • the ratio of the dog ear height H2 to the film thickness H1 in the coating film before the B-stage conversion H2 / H1.
  • the ratio (H4 / H3) of the dog ear height H4 to the film thickness H3 (H4 / H3) hereinafter also referred to as the dog ear ratio
  • Such an increase in dog ears can cause assembly problems such as voids during die attach and chip mounting with tilt.
  • the method for manufacturing a semiconductor device of this embodiment by providing the above steps, it is possible to manufacture a semiconductor device having excellent reliability by preventing the occurrence of the above-described assembly defects and having high reliability.
  • the present inventors believe that the increase in the dog-ear ratio caused by the solvent volatilization described above could be suppressed by allowing the coating film to be B-staged by light irradiation.
  • the viscosity of the resin paste or the thixotropy index is preferably reduced by adjusting the printing factor.
  • dog and dog ear the printed coating film, which occurs when viewed cross section along the screen-printing the printing direction a 1 of, as shown in FIG. 4 (b), at the last printed portion This means a protrusion b shaped like an ear. If the height of the dog ear is large when mounting a semiconductor chip, the mounted chip may not be mounted in parallel to the substrate, voids may be involved, or the semiconductor package may not adhere sufficiently. Reliability decreases.
  • an increase in the dog-ear ratio after the B-stage can be sufficiently suppressed, and the above problem can be effectively prevented. Can do.
  • the dog-ear ratio is shown in FIGS. 4B and 4C by measuring the shape of the coating film surface using a non-contact type shape measuring device (such as KS-1100 series manufactured by KEYENCE Inc.). Thus, it can be obtained by visualizing the shape of the cross section.
  • FIG. 4B shows the cross-sectional shape of the coating film before the B-stage, and the dog-ear ratio is H2 / H1.
  • FIG.4 (c) shows the cross-sectional shape of the coating film after B-stage conversion, and a dog ear ratio is H4 / H3.
  • the printing factor and the resin paste viscosity or the thixotropy index are preferable to adjust the printing factor and the resin paste viscosity or the thixotropy index, using as an index the dog-ear ratio when the coating film formed under the following conditions is B-staged by light irradiation.
  • Substrate (resist) MCL-E-679F (AUS-308)
  • Mask Metal mask with a thickness of 100 microns
  • Printing shape 3 mm x 10 mm x 100 ⁇ m
  • Thickness printing machine Minami Co., Ltd., MK-838SV
  • the dog-ear ratio of the coating film formed under the above conditions and B-staged by light irradiation is 50% or less.
  • the resin paste for die bonding contains a photopolymerizable compound having a viscosity at 25 ° C. of 100 Pa ⁇ s or less, a thermosetting compound, and a thermoplastic elastomer, and the solvent content is 5% by mass or less. .
  • the viscosity of the photopolymerizable compound refers to the viscosity when measured under conditions of a diameter of 28 mm, 3 ° cone, 100 rpm, 25 ° C. using an E-type viscometer (VISCONIC ELD) manufactured by Toki Sangyo Co., Ltd.
  • the solvent refers to a solvent used for diluting a resin composition in order to adjust the viscosity or thixotropy index of a conventional resin paste for die bonding, and includes, for example, a photoreactive group and a thermosetting group.
  • a solvent used for diluting a resin composition in order to adjust the viscosity or thixotropy index of a conventional resin paste for die bonding, and includes, for example, a photoreactive group and a thermosetting group.
  • a photoreactive group such as an organic compound having a molecular weight of 500 or less and being liquid at 25 ° C.
  • the die bonding resin paste is exposed to ultraviolet light with an exposure amount of 1000 mJ / cm 2 in a nitrogen atmosphere with an oxygen concentration of 1 pp or less using a high-pressure mercury lamp, and then placed in an oven, from 40 ° C.
  • the temperature is raised to 140 ° C. over 30 minutes, maintained at that temperature for 30 minutes, then lowered to 40 ° C. over 30 minutes, and then heated at 200 ° C. for 2 hours in an oven before exposure and heating.
  • the ratio of the mass of the resin paste after exposure and heating with respect to the mass of the resin paste is determined. If this ratio is 95% or more, it can be determined that the content of the solvent is 5% by mass or less.
  • the resin paste for die bonding preferably has a solvent content of 5% by mass or less, and more preferably contains substantially no solvent.
  • photopolymerizable compound those having a viscosity at 25 ° C. of 100 Pa ⁇ s or less among the photopolymerizable compounds in the first embodiment can be suitably used.
  • a photopolymerizable compound having a viscosity at 25 ° C. of more than 100 Pa ⁇ s and a viscosity at 25 ° C. of 100 Pa ⁇ s or less is within a range not impairing the effects of the present invention. You may use together with a compound.
  • the blending amount of the photopolymerizable compound is preferably 10 to 80% by mass based on the total amount of the resin paste from the viewpoint of adjusting the viscosity of the resin paste.
  • a photopolymerizable compound and a photopolymerization initiator are used together, and the reaction of the photocurable component is almost completed by B-stage formation by light irradiation.
  • the same compound as the photopolymerization initiator in the first embodiment can be used.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 5% by mass based on the total amount of the resin paste from the viewpoint of reaction sensitivity and stability of the resin paste.
  • thermosetting compound the same compound as the thermosetting resin in the first embodiment can be used. It is assumed that the thermosetting compound contained in the die bonding resin paste according to the second embodiment does not react in the B stage by light irradiation, but reacts in the subsequent heating and further in the C stage. Therefore, it is preferable that the viscosity does not increase by 5% or more of the original viscosity even when irradiated with light in the presence of the photocuring initiator, that is, a system in which only the photocuring initiator and the thermosetting compound are present.
  • the blending amount is preferably 10 to 70% by mass based on the total amount of the resin paste from the viewpoint of heat resistance and adhesiveness.
  • the blending amount is preferably 1 to 20% by mass based on the total amount of the resin paste in consideration of the reliability of the package.
  • the blending amounts of the epoxy resin and the phenol resin are preferably 10 to 70% by mass and 1 to 20% by mass, respectively, based on the total amount of the resin paste.
  • the blending amount is preferably 5 to 20% by mass based on the total amount of the resin paste in consideration of the storage stability of the paste.
  • the resin paste for die bonding according to the second embodiment preferably further contains a curing accelerator from the viewpoint of C-stage formation at a lower temperature or in a shorter time.
  • a curing accelerator the same compound as the curing accelerator in the first embodiment can be used.
  • the blending amount of the curing accelerator is preferably 0.1 to 5% by mass based on the total amount of the resin paste from the viewpoint of reaction sensitivity and stability of the resin paste.
  • thermoplastic elastomer examples include polystyrene resins, polyethylene resins, polypropylene resins, polyester resins, butadiene resins, and polybutadiene acrylonitrile copolymers. Among these, a copolymer having a carboxyl group is preferable.
  • the Tg of the thermoplastic elastomer is preferably 40 ° C. or less, more preferably 20 ° C. or less, even more preferably 0 ° C. or less, and most preferably ⁇ 20 ° C. or less.
  • Tg exceeds 40 ° C., the viscosity of the resin paste tends to increase.
  • a high temperature of 150 ° C. or higher is required when thermocompression bonding to an adherend.
  • Tg of the thermoplastic elastomer refers to a value measured by DSC (Q200) manufactured by TA Instrument.
  • the resin paste for die bonding according to the second embodiment further includes a thermoplastic resin other than the thermoplastic elastomer from the viewpoint of imparting an appropriate elastic modulus and wettability.
  • the blending amount of the thermoplastic elastomer is preferably 10 to 85% by mass based on the total amount of the resin paste from the viewpoint of lowering the elasticity of the cured resin paste.
  • thermoplastic resin other than the thermoplastic elastomer in the second embodiment (meth) acrylic resin, polyester resin, polyether resin, polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, polyurethane resin, Polyurethaneimide resin, polyurethaneamideimide resin, siloxane polyimide resin, polyesterimide resin, copolymers thereof, precursors thereof (polyamide acid, etc.), polybenzoxazole resin, phenoxy resin, polysulfone resin, polyethersulfone resin, polyphenylene Examples thereof include a sulfide resin, a polycarbonate resin, a polyether ketone resin, and a novolac resin.
  • the Tg of the thermoplastic resin is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, even more preferably 100 ° C. or lower, and most preferably 80 ° C. or lower.
  • the Tg exceeds 150 ° C., the viscosity of the resin paste tends to increase.
  • a high temperature of 150 ° C. or higher is required when thermocompression bonding to an adherend.
  • the weight average molecular weight of the thermoplastic resin is preferably controlled within the range of 1,000 to 500,000, and more preferably 1,000 to 300,000 from the viewpoint that the thermocompression bonding property and the high temperature adhesiveness can be highly compatible.
  • the blending amount of the thermoplastic resin is preferably 10 to 80% by mass based on the total amount of the resin paste from the viewpoint of the elastic modulus of the cured paste or the reliability.
  • the resin paste for die bonding of the second embodiment preferably further contains a filler from the viewpoints of reliability, thixotropy, heat dissipation and the like.
  • the filler examples include conductive (metal) fillers such as silver powder, gold powder, and copper powder; inorganic fillers such as silica, alumina, titania, glass, iron oxide, and ceramic.
  • conductive (metal) fillers such as silver powder, gold powder, and copper powder can be added for the purpose of imparting conductivity, heat conductivity, or thixotropy to the adhesive.
  • inorganic fillers such as silica, alumina, titania, glass, iron oxide, and ceramic can be added for the purpose of imparting low thermal expansion, low moisture absorption, and thixotropy to the adhesive. These can be used alone or in combination of two or more.
  • the blending amount of the filler can be 5 to 70% by mass based on the total amount of the resin paste.
  • the resin paste for die bonding of 2nd Embodiment is 1 or more types of addition selected from the group which consists of a defoamer, a foam breaker, and a foam suppressor from a viewpoint of suppressing generation
  • the additive include a silane coupling agent, a titanium coupling agent, a nonionic surfactant, a fluorine surfactant, and a silicone additive. These can be used alone or in combination of two or more.
  • the blending amount of the additive can be 0.01 to 10% by mass based on the total amount of the resin paste.
  • the viscosity (25 ° C.) and the thixotropy index of the resin paste for die bonding according to the second embodiment obtained in this way are the same ranges as the viscosity and the thixotropy index of the resin paste in the first embodiment, respectively. It is preferable.
  • the second semiconductor device manufacturing method is preferably used when a resin paste coating is provided by screen printing in the first step of the first semiconductor manufacturing method.
  • a resin paste for die bonding according to the second embodiment is applied by screen printing on a semiconductor support member for mounting a semiconductor chip, and a coating film of the resin paste is formed.
  • the semiconductor support member can be the same as that in the first manufacturing method, and the application by screen printing can be performed in the same manner as in the first manufacturing method.
  • the resin paste can be irradiated with light in the same manner as in the first manufacturing method.
  • the semiconductor support member and the semiconductor chip are mounted on the light-irradiated coating film 32 of the semiconductor support member 10 using, for example, a die bonding apparatus, as in the first manufacturing method.
  • the semiconductor support member on which the semiconductor chip 50 is mounted can be heated and pressurized.
  • Examples of the semiconductor chip 50 include a Si chip, a Ge chip, and a chip using an organic compound, ZnSe, CdS, ZnO, GaAs, InP, GaN, SiC, SiGe, CuInSe 2 or the like as a chip material.
  • a pre-baking step can be provided before the third step, and after-curing can be performed after the third step, as in the first manufacturing method.
  • it is preferably performed at a low temperature of 60 to 150 ° C., and more preferably at a low temperature of 60 to 140 ° C., from the viewpoint of not proceeding the curing reaction of the resin paste.
  • About time, 30 minutes or less are preferable and 15 minutes or less are more preferable.
  • the electrode of the semiconductor chip bonded by the die bonding layer and the electrode of the semiconductor support member can be electrically connected. Furthermore, the semiconductor chip can be sealed with a sealing resin, and a solder ball can be mounted as necessary to obtain a semiconductor device (semiconductor package).
  • the tact time when the semiconductor chip is bonded by applying the die bonding material on the semiconductor support member by the screen printing method is reduced.
  • the B-stage can be formed at a lower temperature than the conventional B-stage by heating, and the substrate warpage, outgas, and environmental load can be suppressed. Further, it is possible to sufficiently suppress defects such as voids caused by the solvent remaining in the process after the B stage.
  • the assembly failure based on the dog ear described in the first embodiment can be prevented and reliable. It becomes possible to manufacture a semiconductor device having excellent productivity with high productivity.
  • the present inventors believe that the increase in the dog-ear ratio caused by the solvent volatilization described above could be suppressed by allowing the coating film to be B-staged by light irradiation.
  • the viscosity of the resin paste or the thixotropy index it is preferable to appropriately adjust the viscosity of the resin paste or the thixotropy index to maintain the printed shape of the coating film by screen printing.
  • the ratio of the dog ear to the film thickness after coating is preferably reduced by adjusting the printing factor.
  • the dog-ear ratio of the coating film formed under the above conditions and B-staged by light irradiation is 50% or less.
  • Resin paste A1 and A2 were prepared by mixing the materials shown in Table 1 in proportions (parts by mass) shown in the same table.
  • each symbol in Table 1 means the following material.
  • FA-125M Neopentyl glycol dimethacrylate (trade name, manufactured by Hitachi Chemical Co., Ltd.).
  • EPICRON 830 manufactured by DIC Corporation, trade name, diglycidyl etherified knitted product with epichlorohydrin of phenol formaldehyde polycondensate.
  • IRGACURE-819 trade name, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF JAPAN Co., Ltd. 2P4MHZ-PW: Shikoku Kasei Kogyo Co., Ltd., trade name, 2-phenyl-4-methyl-5-hydroxymethylimidazole perbutyl D: NOF Corporation trade name, di-t-butyl peroxide.
  • CTBN 1300 ⁇ 8 Product name, butadiene-acrylonitrile copolymer, manufactured by PTI Japan.
  • Aerosil 50 manufactured by Nippon Aerosil Co., Ltd., trade name, SiO 2 .
  • the viscosities of the resin pastes A1 and A2 were measured using an E-type rotational viscometer at 25 ° C. and a rotational speed of 0.5 rpm.
  • the printing conditions were a squeegee speed of 30 mm / second, a squeegee angle of 60 °, a squeegee offset of -0.1 mm, a clearance of 0 mm, and a plate separation speed of 2 mm / second.
  • ⁇ B stage> (Assembly example A1)
  • An exposure machine (Mikasa Co., Ltd., aligner ML-210FM, illuminance of 13 mW / cm 2 or more (365 nm conversion), light source: high-pressure mercury lamp) is used for the coating film on which the resin paste A1 is printed, and the oxygen concentration is 1 ppm or less.
  • the takt time for this B stage was 0.15 minutes.
  • Weight reduction rate after after cure 100 ⁇ [ ⁇ (W4) ⁇ (W1) ⁇ / (W2)] ⁇ 100
  • a glass chip (10.0 mm ⁇ 12.0 mm ⁇ 50 ⁇ m thickness) is bonded onto the bonding layer formed by making the B-stage of each of the above assembly examples, using a pressure bonding machine (CM-110), on a hot plate at 140 ° C., A 50N load was applied for 1 second to obtain a wettability evaluation semiconductor device.
  • CM-110 pressure bonding machine
  • the resin paste for die bonding according to the present invention can be easily supplied and applied by screen printing on a substrate to which a semiconductor chip is attached, and can be attached at a relatively low temperature by forming a B stage by light irradiation. In addition, generation of outgas can be suppressed. As a result, it is possible to reduce the tact time when the die bonding material is applied onto the semiconductor support member by the printing method to join the semiconductor chips, and the assembly failure due to insufficient curing or excessive curing in the B-stage. A semiconductor device which can be sufficiently prevented and has excellent reliability can be manufactured with high productivity.
  • Resin pastes B1 to B5 were prepared by mixing the materials shown in Table 5 in the proportions (parts by mass) shown in the same table.
  • each symbol in Table 1 means the following material.
  • FA-220M Polyethylene glycol # 200 dimethacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name, viscosity at 25 ° C .: 9 to 15 mPa ⁇ s).
  • BAH-1000Y manufactured by Shin-Nakamura Chemical Co., Ltd., trade name, reaction product of Bis A type epoxy resin and 2-propenoic acid (mixed product of diepoxy, half epoxy acrylate, diacrylic, custom-made product, viscosity at 40 ° C : 62500 mPa ⁇ s).
  • Epototo YDF-8170C a product manufactured by Tohto Kasei Co., Ltd., trade name, a diglycidyl etherification modified product of phenol formaldehyde polycondensate with epichlorohydrin.
  • IRGACURE-651 manufactured by BASF JAPAN, trade name, 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • TPPK Tokyo Chemical Industry Co., Ltd., trade name, tetraphenylphosphonium tetraphenylborate.
  • 2P4MHZ-PW trade name, 2-phenyl-4-methyl-5-hydroxymethylimidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd. Park Mill D: NOF Corporation, trade name, peroxide.
  • CTBNX-1009SP trade name, butadiene-acrylonitrile copolymer, manufactured by PTI JAPAN.
  • Aerosil 50 manufactured by Nippon Aerosil Co., Ltd., trade name, SiO 2 .
  • Aerosil 380 Nippon Aerosil Co., Ltd., trade name, SiO 2 .
  • Carbitol acetate Wako Pure Chemical Industries, Ltd., 2- (2-ethoxyethoxy) ethyl acetate.
  • the viscosity at 25 ° C., the nonvolatile content (NV) ratio, and the dog-ear ratio (%) before and after the B-stage were determined according to the following methods.
  • the Young's elastic modulus (MPa) at 25 ° C. of the cured product was determined. The results are shown in Table 5.
  • NV rate The non-volatile content (NV) ratio of the resin paste was determined by the following procedure.
  • Resin pastes B1, B3 to B5 About 1.5 g of resin paste is placed on the inside of the bottom surface of a cylindrical metal petri dish (mass: W1 (g)) having a diameter of about 60 mm and a height of about 14 mm so that the film thickness is as uniform as possible. Thus, a measurement sample was obtained. Thereafter, the mass (W2 (g)) of the placed resin paste was accurately measured. Next, these measurement samples were irradiated with ultraviolet rays having an exposure amount of 1000 mJ / cm 2 in a nitrogen atmosphere having an oxygen concentration of 1 ppm or less using a high-pressure mercury lamp.
  • NV ratio [ ⁇ (W3) ⁇ (W1) ⁇ / (W2)] ⁇ 100
  • Resin paste B2 For measurement by placing about 1.5 g of resin paste on the inside of the bottom surface of a cylindrical metal petri dish (mass: W1 (g)) having a diameter of about 60 mm and a height of about 14 mm so that the film thickness is as uniform as possible. A sample was used. Thereafter, the mass (W2 (g)) of the placed resin paste was accurately measured. Next, the measurement sample was put in an oven, and the temperature was raised from 40 ° C. to 140 ° C. over 30 minutes, the temperature was maintained for 30 minutes, and then the temperature was lowered to 40 ° C. over 30 minutes. Thereafter, heating was performed in an oven at 200 ° C. for 2 hours. The mass (W3 (g)) of the whole measurement sample after heating was measured. Using these values, the NV ratio (%) was obtained from the above formula.
  • a non-contact type shape measuring device manufactured by KEYENCE Inc., KS-1100 for the coating film before B-stage formation formed under the following screen printing conditions and the coating film B-staged under the following conditions: The shape of the coating film surface was measured using a series etc., and the dog-ear ratio was determined by visualizing the cross-sectional shape.
  • Resin pastes B1, B3 to B5 Using an exposure machine (Mikasa Co., Ltd., aligner ML-210FM, illuminance of 13 mW / cm 2 or more (365 nm conversion), light source: high-pressure mercury lamp), exposure condition of 1000 mJ / cm 2 And irradiate with ultraviolet rays.
  • Resin paste B2 The temperature was raised from 40 ° C. to 140 ° C. in an oven for 30 minutes, the temperature was maintained for 30 minutes, and then the temperature was lowered to 40 ° C. over 30 minutes.
  • the Young's elastic modulus in 25 degreeC was measured on the following conditions using the following tester.
  • Tester RSA-III, manufactured by TA instruments, Inc.
  • Test mode Tensile test temperature: -100 to 300 ° C Temperature increase rate: 5 ° C./min
  • Test frequency 1.0 Hz
  • Temperature adjustment LN2 Distance between chucks: about 20mm (initial) DeltaL limit: 10 mm.
  • a glass chip (10.0 mm ⁇ 12.0 mm ⁇ 50 ⁇ m thickness) is bonded onto the bonding layer on a 90 ° C. hot plate using a pressure bonding machine (CM-110) for 1 second under a load of 50 N.
  • CM-110 pressure bonding machine
  • the shape of the coating film surface was measured using a non-contact type shape measuring device (manufactured by KEYENCE, KS-1100 series), and the cross section (coating film) The warpage was measured by visualizing the shape of the surface cut in the thickness direction.
  • a glass chip (10.0 mm ⁇ 12.0 mm ⁇ 50 ⁇ m thickness) is bonded onto the bonding layer on a 90 ° C. hot plate using a pressure bonding machine (CM-110) for 1 second under a load of 50 N.
  • CM-110 pressure bonding machine
  • the conditions of the B-stage temperature of 135 ° C. in the assembly example B4 and the B-stage temperature of 145 ° C. in the assembly example B6 are assumed to be a low temperature part and a high temperature part when the temperature distribution in the oven varies. It is a thing.
  • semiconductor devices were manufactured under various assembly conditions using the resin pastes B1 to B5 obtained above, and die shear strength and outgas were evaluated according to the following methods.
  • an exposure machine (Mikasa Co., Ltd., aligner ML-210FM, illuminance of 13 mW / cm 2 or more (365 nm conversion), light source: high-pressure mercury lamp) was used, and the exposure amount was 1000 mJ. Under the condition of / cm 2 , ultraviolet rays were irradiated to form B-staged bonding layers, respectively.
  • a silicon chip (5 mm ⁇ 5 mm ⁇ 0.5 mm thickness) was bonded onto the bonding layer on a 90 ° C. hot plate using a pressure bonding machine (CM-110) for 1 second under a load of 50 N.
  • CM-1 pressure bonding machine
  • the temperature was raised from 40 ° C. to 130 ° C. in an oven for 30 minutes, and the temperature was maintained for 60 minutes. Thereafter, the temperature was lowered to 40 ° C. over 30 minutes, and after-curing was performed to obtain an evaluation semiconductor device.
  • Assembly example B10 An evaluation semiconductor device was obtained in the same manner as in Assembly Example B7, except that the C-stage temperature 130 ° C. in Assembly Example B7 was changed to 175 ° C.
  • a non-contact type shape measuring device manufactured by KEYENCE, KS-1100 series
  • the shape of the substrate was measured, and the warpage was measured by visualizing the shape of the cross section of the substrate.
  • the resin paste for die bonding according to the present invention can be easily supplied and applied by screen printing on a substrate to which a semiconductor chip is to be attached, and is attached to a semiconductor chip at a relatively low temperature by forming a B stage by light irradiation. Can do. Furthermore, the dog-ear ratio can be made smaller than before, and outgassing can be suppressed. Moreover, the resin paste for die bonding according to the present invention can sufficiently have low stress, adhesiveness, and heat resistance while exhibiting the above effects.
  • the resin paste for die bonding according to the present invention can be suitably used for an insulating support substrate such as an organic substrate and a copper lead frame, and can also be suitably used for a 42 alloy lead frame. Package reliability can be improved by using the resin paste for die bonding according to the present invention and the semiconductor device according to the present invention.
  • SYMBOLS 10 ... Semiconductor support member, 12 ... Electrode, 20 ... Mask, 30 ... Coating film of resin paste, 32 ... Coating film irradiated with light, 34 ... Die bonding layer, 40 ... Squeegee, 50 ... Semiconductor chip, 52 ... Wire bonding 54 ... Solder balls, 100 ... Semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

 本発明の半導体装置の製造方法は、半導体チップを搭載するための半導体支持部材10上に、光硬化性成分及び熱硬化性成分を含み溶剤の含有量が5質量%以下であるダイボンディング用樹脂ペーストを印刷法により塗布して樹脂ペーストの塗膜30を設ける第1工程と、塗膜30への光照射により光硬化性成分を光硬化する第2工程と、半導体支持部材10と半導体チップ50とを、光照射された塗膜32を挟んで圧着して接合する第3工程とを備えることを特徴とする。また、本発明のダイボンディング用樹脂ペーストは、25℃における粘度が100Pa・s以下である光重合性化合物、熱硬化性化合物、及び熱可塑性エラストマーを含有し、溶剤の含有量が5質量%以下であることを特徴とする。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関し、より詳しくは、IC、LSI等の半導体チップ(以下、チップという場合もある。)と、チップを搭載するためのリードフレームや絶縁性支持基板等(以下、基板という場合もある。)の半導体支持部材とが、接合材料(以下、ダイボンディング材という場合もある。)により接合された半導体装置を製造する方法に関する。
 IC、LSI等の半導体チップとリードフレームや絶縁性支持基板等の半導体支持部材との接合材料、いわゆるダイボンディング材として、Au-Si共晶合金、半田、銀ペースト等が従来から知られている。
 Au-Si共晶合金は、耐熱性及び耐湿性は高いが、弾性率が大きいために、大型チップに適用した場合に割れやすい傾向がある。また、Au-Si共晶合金は、高価であるという難点もある。一方、半田は、安価であるものの、耐熱性に劣り、その弾性率はAu-Si共晶合金と同様に高く、大型チップへの適用は難しい。これに対し、銀ペーストは、安価で、耐湿性が高く、Au-Si共晶合金及び半田と比較して弾性率が低く、さらに350℃の熱圧着型ワイヤボンダーに適用できる耐熱性を有する(例えば、特許文献1を参照)。そのため、上記のダイボンディング材の中でも銀ペーストが広く用いられてきた。しかし、ICやLSIの高集積化が進み、それに伴ってチップが大型化してくると、銀ペーストをチップ全面に広げて塗布することは困難であり、銀ペーストによる接合は効率的であるとはいえない。
 チップの大型化に対応できるダイボンディング材として、特定のポリイミド樹脂を用いた接着フィルムや、特定のポリイミド樹脂に導電性フィラーや無機フィラーを配合したダイボンディング用接着フィルム等が知られている(例えば、特許文献2~4を参照)。しかし、これらの接着フィルムは低温接着性に劣る傾向がある。また、支持基板に接着フィルムを貼り付ける場合、予め接着フィルムをチップサイズに切り出すか又は打ち抜くことを行い、更にそれを貼り付けるための貼付装置が必要になる。接着フィルムを打ち抜いて用いる場合には無駄も生じてしまう。また、支持基板の大部分は基板内部に内層配線が形成されているため、表面に凹凸が多いところに接着フィルムを貼り付ける場合、空隙が生じやすく、信頼性が損なわれることがある。
 接着フィルム以外のダイボンディング材としては、溶剤に接着剤組成物を溶解或いは分散させて調製されるダイボンディング用樹脂ペーストが知られている(例えば、特許文献5及び6を参照)。このような樹脂ペーストは、低温接着性に優れた接着剤組成物を選択することが可能である。また、樹脂ペーストはスクリーン印刷などの印刷法によって支持基板上の必要な部分にのみ塗布することができるという利点を有している。樹脂ペーストの塗膜は、加熱乾燥によりBステージ化され、半導体チップを搭載した後加熱硬化される。
特開2002-179769号公報 特開平07-228697号公報 特開平06-145639号公報 特開平06-264035号公報 特開2006-342300号公報 特開2007-246875号公報
 近年、有機基板等の絶縁性支持基板上にチップが搭載されたBOC(Board On Chip)型の半導体装置が多用されている。この半導体装置は大量生産されることが多く、タクトタイムの減少が求められている。
 BOCなどの組み立て工程では、従来以下のような工程が行われている。まず、絶縁性支持基板上に、スクリーン印刷法でダイボンディング用樹脂ペーストを塗布する。次に、これをオーブン中で加熱乾燥させることでダイボンディング用樹脂ペーストの溶剤揮発及び半硬化を行い、塗布した樹脂ペーストをBステージ化する。その後、Bステージ化された樹脂ペーストを挟んで絶縁性支持基板上にSiチップを圧着させ、オーブン中で加熱させることでダイボンディング用樹脂ペーストを完全硬化させる。
 溶剤は、ダイボンディング用樹脂ペーストの粘度、チキソトロピー指数を調整するために加えられており、ペーストの印刷後に揮発させることを前提に加えられている。溶剤を十分揮発させないと、ボイド、チップ汚染などの不具合を生じることがあるため、ダイボンディング用樹脂ペーストを用いた半導体装置の組み立て工程では、溶剤を揮発させる工程が必要となる。一般的には、上記のようにBステージ化での加熱により塗膜から溶剤を揮発させている。このとき、急激な加熱により塗膜にボイドやクラックが生じるのを防ぐために、加熱温度はゆっくりと上昇させ、なるべく低温にすることが望ましい。
 しかしながら、上述の従来の加熱乾燥によるBステージ化を経るプロセスでは、通常60分以上の乾燥時間が必要であり、大きなタクトタイムのロスとなっていた。Bステージ化のタクトタイムを減少させるために、オーブン中で加熱する時間を短くすると、溶剤が十分に揮発せずBステージ化以降の工程での加熱時に揮発して、ボイド、チップ汚染などの不具合を生じることがある。
 更に、オーブン等のBステージ化装置には、1バッチ毎に複数枚の樹脂ペーストが塗布された基板が配置される。オーブン内の温度分布にバラつきがあると、オーブン内での位置によっては硬化不足や過度の硬化が起こり、後の半導体装置の組立において不具合が発生する場合がある。Bステージ化温度のバラつきとしては、一般的には設定温度に対して±10℃程度バラつくことがある。また、Bステージ化の装置等のバラつきによって、Bステージ化時間にバラつきが生じ、後の半導体装置の組立において不具合が発生する場合もある。Bステージ化時間のバラつきとしては、一般的には設定時間に対して±5分程度バラつくことがある。他方、Bステージ化のタクトタイム削減のため、加熱温度を高くして短時間で加熱乾燥させた場合は、樹脂ペーストの反応制御が難しくなり、硬化不足や過度の硬化がより起こりやすくなる。絶縁性支持基板等の耐熱性の観点からも、Bステージ化の際はなるべく高温でないプロセスが求められているため、タクトタイムの削減が難しかった。
 本発明は、上記のような事情に鑑みてなされたものであり、半導体支持部材上にダイボンディング材を印刷法により塗布して半導体チップを接合するときのタクトタイムを削減することができ、なおかつBステージ化での硬化不足や過度の硬化による組立不具合を十分防止できて、信頼性に優れる半導体装置を生産性よく製造することを可能とする半導体装置の製造方法を提供することを目的とする。
 本発明はまた、半導体支持部材上にダイボンディング材をスクリーン印刷法により塗布して半導体チップを接合するときのタクトタイムを削減することができ、なおかつBステージ化での硬化不足や過度の硬化、残留した溶剤に起因する組立不具合を十分防止できて、信頼性に優れる半導体装置を生産性よく製造することを可能とするダイボンディング用樹脂ペースト及びそれを用いた半導体装置の製造方法を提供することを目的とする。
 上記課題を解決するために本発明は、半導体チップを搭載するための半導体支持部材上に、光硬化性成分及び熱硬化性成分を含み溶剤の含有量が5質量%以下であるダイボンディング用樹脂ペーストを印刷法により塗布して樹脂ペーストの塗膜を設ける第1工程と、塗膜への光照射により光硬化性成分を光硬化する第2工程と、半導体支持部材と半導体チップとを、光照射された塗膜を挟んで圧着することにより接合する第3工程と、を備える第1の半導体装置の製造方法を提供する。
 本発明の第1の半導体装置の製造方法によれば、上記特定のダイボンディング用樹脂ペーストを用いることにより、光照射によって硬化度合のバラつきなく塗膜をBステージ化することができる。これにより、Bステージ化におけるタクトタイムを削減することができ、なおかつ、加熱温度や加熱時間のバラつきに起因する硬化不足や過度の硬化による組立不具合を十分防止できて、信頼性に優れる半導体装置を生産性よく製造することが可能となる。
 従来、ダイボンディング用樹脂ペーストは溶剤を加えることで粘度やチキソトロピー指数が調整されていた。このときに用いられる溶剤は、Bステージ化のときにほとんど若しくは完全に揮発させることを前提に加えられているため、室温、大気圧中では容易に揮発せず、Bステージ化での条件で揮発できる溶剤が選択される。しかし、Bステージ化が終了した時点でも溶剤がペースト内部に残留してしまうと、後の工程であるダイアタッチやアフターキュア、ワイヤーボンディング、モールド、封止材硬化、リフロー等の工程で溶剤が揮発してボイドが形成され、組立不具合になることがある。なお、揮発し易い溶剤を用いた場合は、樹脂ペーストの保管安定性が悪くなる。また、溶剤は有害なものが多く、加熱時には爆発の危険性を有するものもある。これに対して、本発明の第1の製造方法で用いられる上記特定の成分を含有する樹脂ペーストは、溶剤の含有量が5質量%以下であっても良好に印刷法による塗布を行うことができ、上記の問題を防止することができる。
 最近は、組立時間の短時間化のみならず、エネルギーの節約も一層望まれている。本発明の第1の半導体装置の製造方法によれば、Bステージ化の際の熱エネルギーを低減することができる。
 更に、本発明の第1の半導体装置の製造方法によれば、以下の従来技術が有する問題を防止することが可能となる。
 半導体装置の複雑化、小型化、さらには基板厚の薄化に伴って、チップやリードフレーム、基板は熱に対して繊細になっている。従来のスクリーン印刷用のダイボンディング用樹脂ペーストを用いた場合、チップを貼り付ける前の接着性向上のための半硬化(Bステージ化)は140℃以上で行われる。半導体チップと圧着される前の半導体支持部材に高温が加わると、有機基板等では反りが発生して半導体チップとの接合不具合が発生することがある。特に、μ-BGA向けの基板では、半導体装置の小型化に伴い薄厚化が進んでおり、基板反りが発生しやすくなっている。本発明の第1の方法によれば、上記特定の樹脂ペーストを用いることにより、低温でのBステージ化が可能となり上記の問題を防止することができる。
 本発明の第1の半導体装置の製造方法においては、アウトガスの抑制、タック性低減の観点から、上記第2工程における光照射の露光量が1mJ/cm以上であることが好ましい。
 露光量が1mJ/cm未満であると、光硬化性成分が十分に硬化しきれなくなるおそれがあり、その場合、第3工程以後に熱硬化性成分の熱硬化を行うときにアウトガスとなりやすくなる。また、光硬化性成分が十分に硬化しきれないと、タック性が大きくなりすぎて組立時に不具合が生じやすくなる。
 また、アウトガスの抑制、タック性低減の観点から、上記第2工程における光照射が窒素雰囲気下で行われることが好ましい。空気中で光照射が行われると、空気中の酸素が光硬化反応を阻害して、光硬化性成分が十分に硬化しきれず、第3工程以後に熱硬化性成分の熱硬化を行うときにアウトガスになりやすくなる。また、タック性が大きくなりすぎて組立時に不具合が生じやすくなる。
 本発明の第1の半導体装置の製造方法においては、第3工程の前に、半導体支持部材を60~180℃で60分以下の間加熱することができる。このようなプリベーク工程を設けることにより、第2工程後に時間が経過して樹脂ペーストの塗膜表面に水分が付着した場合に、第3工程が行われる前にその水分を除去することができる。樹脂ペーストの塗膜に水分が多く付着した状態で第3工程以降の組立工程を行うと、ボイド、ひび割れ等の原因となる。上記のプリベーク工程は、第3工程の直前に行うことが好ましい。
 本発明の第1の半導体装置の製造方法は、信頼性の観点から、第3工程の後に、半導体チップと接合された半導体支持部材を60~200℃で5~300分間加熱する工程を更に備えることが好ましい。このような工程を備えることにより、樹脂ペーストの硬化反応を更に進めることができる。なお、第3工程後の時点でダイシェア強度が十分確保されていれば、上記のアフターキュアを省略することができる。
 本発明の第1の半導体装置の製造方法は、上記各工程を経た後の半導体チップと半導体支持部材とをワイヤーボンディングにより電気的に接続し、その後半導体チップを樹脂封止する工程を更に備えることができる。
 上記課題を解決するために本発明はまた、25℃における粘度が100Pa・s以下である光重合性化合物、熱硬化性化合物、及び熱可塑性エラストマーを含有し、溶剤の含有量が5質量%以下であるダイボンディング用樹脂ペーストを提供する。
 本発明のダイボンディング用樹脂ペーストによれば、上記構成を有することにより、半導体支持部材上にスクリーン印刷法により塗布して塗膜を形成し、光照射によってBステージ化されたダイボンディング層を形成することが可能である。これにより、溶剤を揮発させるための工程に起因するタクトタイムの増加、Bステージ化における硬化不足や過度の硬化、残留した溶剤などに起因する組立不具合を十分防止することができる。本発明のダイボンディング用樹脂ペーストによれば、信頼性に優れる半導体装置を生産性よく製造することができる。
 ところで、最近、化学製品の生産から廃棄までの全ライフサイクルにおいて生態系に与える影響を最小限にし、且つ経済的効率性を向上させようとする動きが活発なってきている。ダイボンディング用樹脂ペーストにおいては、溶剤の含有量を少なくして、樹脂ペーストがBステージ化後もなるべく有効に使われることが望ましい。すなわち、従来の樹脂ペーストの場合、印刷後に溶剤が揮発することで所定の厚さの塗膜が形成されるため、溶剤の割合が多くなればなるほど樹脂ペーストにはBステージ化後に不要になる成分が多く含まれることになる。これに対して、本発明のダイボンディング用樹脂ペーストは、上記の不要になる成分の含有割合が小さいものになり得る。
 本発明のダイボンディング用樹脂ペーストは、光重合開始剤を更に含むことができる。これにより、光重合性化合物を選択的に短時間でBステージ化することができる。
 本発明のダイボンディング用樹脂ペーストは、硬化促進剤を更に含むことができる。これにより、より低温若しくはより短時間で加熱硬化することができる。
 本発明のダイボンディング用樹脂ペーストは、フィラーを更に含むことができる。これにより、チキソトロピー性の付与若しくは信頼性の向上が可能になる。
 本発明のダイボンディング用樹脂ペーストは、脱泡剤、破泡剤及び抑泡剤からなる群より選択される1種以上の添加剤を更に含むことができる。これにより、印刷性を向上させることができる。
 本発明のダイボンディング用樹脂ペーストは、印刷性の観点から、25℃における粘度が5~1000Pa・sであることが好ましい。
 本発明のダイボンディング用樹脂ペーストは、ダイボンディング用樹脂ペーストを厚さ100μmの塗膜にし、この塗膜に酸素濃度1ppm以下の窒素雰囲気下、25℃で、波長が365nmの光を露光量1000mJ/cmで照射したときに、光照射された塗膜の100℃における溶融粘度が100~100000Pa・sとなり、光照射された上記塗膜を更に140℃、5時間、酸素濃度1ppm以下の窒素雰囲気下で加熱したときに、加熱された塗膜の25℃におけるYoung弾性率が1~3000MPaとなるものであることが好ましい。
 上記溶融粘度が100Pa・s未満であると、印刷後に印刷形状が保持しにくくなる傾向にあり、またダイボンダの荷重精度によっては濡れ具合を調整するのが難しくなる。溶融粘度が100000Pa・sを超えると、ダイアタッチ時に樹脂ペーストでチップが十分に濡れず、ダイアタッチ以降の工程でチップが剥がれ落ちやすくなる傾向や、ダイアタッチや封止時にボイドを十分埋めることができずに信頼性が低下する傾向がある。
 上記Young弾性率が、1MPa未満であると、印刷後に印刷形状が保持しにくくなる傾向にあり、またダイボンダの荷重精度によっては濡れ具合を調整するのが難しくなる傾向があり、3000MPaを超えると、基板やチップが反りやすくなる傾向がある。
 本発明はまた、半導体チップを搭載するための半導体支持部材上に、本発明のダイボンディング用樹脂ペーストをスクリーン印刷により塗布して樹脂ペーストの塗膜を設ける第1工程と、塗膜に光照射する第2工程と、半導体支持部材と半導体チップとを、光照射された塗膜を挟んで圧着する第3工程と、を備える第2の半導体装置の製造方法を提供する。
 本発明の第2の半導体装置の製造方法によれば、本発明のダイボンディング用樹脂ペーストを用いることにより、スクリーン印刷法による塗膜形成及び光照射によってBステージ化されたダイボンディング層を形成することができ、溶剤を揮発させるための工程に起因するタクトタイムの増加、Bステージ化における硬化不足や過度の硬化、残留した溶剤などに起因する組立不具合を十分防止することができる。本発明の第2の半導体装置の製造方法によれば、信頼性に優れる半導体装置を生産性よく製造することができる。
 上述したように、従来、ダイボンディング用樹脂ペーストは溶剤を加えることで粘度やチキソトロピー指数が調整されていた。このときに用いられる溶剤は、Bステージ化のときにほとんど若しくは完全に揮発させることを前提に加えられているため、室温、大気圧中では容易に揮発せず、Bステージ化での条件で揮発できる溶剤が選択される。しかし、Bステージ化が終了した時点でも溶剤がペースト内部に残留してしまうと、後の工程であるダイアタッチやアフターキュア、ワイヤーボンディング、モールド、封止材硬化、リフロー等の工程で溶剤が揮発してボイドが形成され、組立不具合になることがある。なお、揮発し易い溶剤を用いた場合は、樹脂ペーストの保管安定性が悪くなる。また、溶剤は有害なものが多く、加熱時には爆発の危険性を有するものもある。これに対して、本発明の第2の製造方法で用いられる上記特定の成分を含有する樹脂ペーストは、溶剤の含有量が5質量%以下であっても良好に印刷法による塗布を行うことができ、上記の問題を防止することができる。
 本発明はまた、本発明の第2の半導体装置の製造方法により得られる半導体装置を提供する。
 本発明によれば、半導体支持部材上にダイボンディング材を印刷法により塗布して半導体チップを接合するときのタクトタイムを削減することができ、なおかつBステージ化での硬化不足や過度の硬化による組立不具合を十分防止できて、信頼性に優れる半導体装置を生産性よく製造することを可能とする第1の半導体装置の製造方法を提供することができる。
 また、本発明の第1の半導体装置の製造方法によれば、従来の加熱によるBステージ化よりも低温でのBステージ化が可能であり、基板反りやアウトガス、さらには環境に対する負荷を抑制することができる。
 また、本発明の第1の半導体装置の製造方法によれば、Bステージ化後の工程で溶剤が残留することに起因して生じるボイドなどの不具合を十分抑制することができる。
 本発明によれば、半導体支持部材上にダイボンディング材をスクリーン印刷法により塗布して半導体チップを接合するときのタクトタイムを削減することができ、なおかつBステージ化での硬化不足や過度の硬化、残留した溶剤に起因する組立不具合を十分防止できて、信頼性に優れる半導体装置を生産性よく製造することを可能とするダイボンディング用樹脂ペースト、及びそれを用いた第2の半導体装置の製造方法を提供することができる。
 また、本発明のダイボンディング用樹脂ペースト及びそれを用いた第2の半導体装置の製造方法によれば、従来の加熱によるBステージ化よりも低温でのBステージ化が可能であり、基板反りやアウトガス、さらには環境に対する負荷を抑制することができる。
 また、本発明のダイボンディング用樹脂ペースト及びそれを用いた第2の半導体装置の製造方法によれば、Bステージ化後の工程で溶剤が残留することに起因して生じるボイドなどの不具合を十分抑制することができる。
本発明に半導体装置の製造方法の一実施形態を説明するための模式断面図である。 本発明に半導体装置の製造方法の一実施形態を説明するための模式断面図である。 スクリーン印刷における印刷ファクターを説明するための模式断面図である。 スクリーン印刷された塗膜について説明するための図である。
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとし、図面の寸法比率は図示の比率に限られるものではない。
 図1及び図2は、本発明の半導体装置の製造方法の一実施形態を説明するための模式断面図である。
[第1の実施形態]
 本実施形態の半導体装置の製造方法(以下、第1の(半導体の)製造方法という場合がある)は、半導体チップを搭載するための半導体支持部材上に、光硬化性成分及び熱硬化性成分を含み溶剤の含有量が5質量%以下であるダイボンディング用樹脂ペーストを印刷法により塗布して樹脂ペーストの塗膜を設ける第1工程(図1の(a)を参照)と、塗膜への光照射により光硬化性成分を光硬化する第2工程(図1の(b)を参照)と、半導体支持部材と半導体チップとを、光照射された塗膜を挟んで圧着して接合する第3工程(図1の(c)を参照)と、を備える。本実施形態の半導体装置の製造方法は、さらにこれら各工程を経た後の半導体チップと半導体支持部材とをワイヤーボンディングにより電気的に接続し、その後半導体チップを樹脂封止する工程(図2の(a)及び(b)を参照)とを備えていることが好ましい。
 本実施形態においては、半導体支持部材として電極12が設けられた絶縁性支持基板10を用いているが、半導体支持部材としては、例えば、42アロイリードフレームや銅リードフレーム等のリードフレーム;ポリイミド樹脂、エポキシ樹脂、ポリイミド系樹脂等のプラスチックフィルム;ガラス不織布等の基材にポリイミド樹脂、エポキシ樹脂、ポリイミド系樹脂等のプラスチックを含浸・硬化させたもの;アルミナ等のセラミックス製等の絶縁性支持基板、スタックパッケージの場合の下部半導体チップ;ディスプレイ等の場合のガラス基板などが挙げられる。
 印刷法としては、スクリーン印刷法などが挙げられる。
 本実施形態に係るスクリーン印刷においては、絶縁性支持基板10上に、開口部が設けられたマスク20を配置し、スキージ40の移動によりダイボンディング用樹脂ペーストを開口部に埋め込んで樹脂ペーストの塗膜30を形成する。
 なお、スクリーン印刷は印刷機を用いて行うことができる。印刷機は、印刷速度、印刷圧、スキージ角度、版離れ速度、被印刷物である半導体支持部材とマスクとの距離(クリアランス)などの印刷ファクターを選択できるものが好ましい。図3は、スクリーン印刷における印刷ファクターを説明するための模式断面図である。スキージ40の移動速度(図3の矢印A)は1~200mm/秒が好ましい。また、印刷圧は0~30Nが好ましい。なお、印刷圧とは、マスク20に対して垂直方向のスキージ40による圧力を指し、印刷圧が0Nのときはスキージ40とマスク20が接していない状態を指す。また、スキージ角度(図3のB)は10~90°が好ましい。また、版離れ速度は0.1~10mm/sが好ましい。版離れ速度とは、マスク開口部が樹脂ペーストで満たされた後に半導体支持部材10とマスク20とが離れるときの速度(図3の矢印C)を指す。クリアランス(図3のD)は0~10mmが好ましい。なおクリアランスが0mmのときは半導体支持部材10とマスク20が接していることを指す。
 本実施形態においては、マスク20の厚みを調節することによって、樹脂ペーストを塗布した後の膜厚、すなわち塗膜30の厚み調整することができる。マスクとしては、メタルマスクなどを用いることができる。また、マスクは用途によって選択でき、マスクの開口部がメッシュ状になっているものを用いてもよい。
 塗膜30の厚みは、コスト低減の観点から、500μm以下が好ましく、30~200μmがより好ましい。塗膜30の厚みが30μm未満であると、信頼性が低下しやすくなる傾向にある。
 本実施形態で用いられるダイボンディング用樹脂ペーストについては後述する。
 上記第2工程における光照射としては、高圧水銀灯等の露光装置を用いた紫外線の照射が挙げられる。他の光源としては、例えば、低圧水銀灯、超高圧水銀灯、メタルハライドランプ、LED-UVランプ等が挙げられる。
 光照射に用いられる光の波長は、光重合開始剤の種類、配合比率によって適宜設定されるが、一般的な光重合開始剤の吸収領域である10~400nmが好ましい。
 光照射は、アウトガスの抑制、タック低減の観点から、塗膜に対する露光量が1mJ/cm以上であることが好ましく、タック低減及びタクトタイムの観点から、1~4000mJ/cmがより好ましく、1000~3000mJ/cmであることが更により好ましい。なお、本願においてタクトタイムとは、Bステージ化までの時間であり、光照射の場合には露光時間を意味し、熱乾燥の場合には熱を加えている時間を意味する。熱乾燥の場合における熱を加えている時間とは、例えば、昇温、恒温(維持)、降温の工程を経る場合にはそれらの工程の合計の時間を意味し、恒温のみの場合にはその工程の時間を意味する。露光量が1mJ/cm未満であると、光硬化性成分が十分に硬化しきれなくなるおそれがあり、その場合、第3工程以後に熱硬化性化合物の熱硬化を行うときにアウトガスとなりやすくなる。また、光重合性化合物が十分に硬化しきれないと、タック性が大きくなりすぎて組立時に不具合が生じやすくなる。
 光照射は、室温(10~25℃程度)で1秒~5分程度照射することが好ましい。更に、光照射は、真空下、窒素下、空気下などの雰囲気下で行なうことができるが、酸素阻害を低減するために、離形処理されたPETフィルムやポリプロピレンフィルムなどのフィルムを塗膜上に積層した状態や、窒素雰囲気下で行われることが好ましく、特に酸素濃度1ppm以下の窒素雰囲気下で行われることがより好ましい。空気中で光照射が行われると、空気中の酸素が光硬化反応を阻害して、光硬化性成分が十分に硬化しきれず、第3工程以後に熱硬化性成分の熱硬化を行うときにアウトガスになりやすくなる。また、タック性が大きくなりすぎて組立時に不具合が生じやすくなる場合がある。
 本実施形態においては、必要に応じて、パターニングされたマスクを介して露光を行うこともできる。
 上記第3工程は、例えば、ダイボンド装置を用いて、半導体支持部材10の光照射された塗膜32に半導体チップ50を搭載し、この半導体チップ50が搭載された半導体支持部材10を、図1(c)に示されるように、例えばヒートブロック51を用いて、例えば、1~200N、20~200℃で0.01~90秒程度加熱、加圧することにより行うことができる。これにより、塗膜32中の熱硬化性成分が熱硬化して、塗膜32はダイボンディング層となり、半導体支持部材と半導体チップとが接合(ダイボンド)される。なお、ダイボンド時の加熱温度、圧力、圧着時間、圧着速度は、Bステージ化の条件や樹脂ペーストの組成に応じて適宜変更が可能である。半導体チップや半導体支持部材の耐圧性の観点から、第3工程は100N以下の圧力で行われることが好ましい。また、チップや支持部材の耐熱性の観点から、第3工程は175℃以下の温度で行われることが好ましく、信頼性の観点から、60~170℃の温度で行われることが好ましい。また、タクトタイムの観点から、第3工程は10秒以下の時間で行われることが好ましい。
 半導体チップ50としては、例えば、IC、LSI等が挙げられる。
 本実施形態においては、上記第3工程の前に、半導体支持部材を60~180℃で60分以下の間加熱するプリベーク工程を設けることができる。これにより、第2工程後に時間が経過して樹脂ペーストの塗膜表面に水分が付着した場合に、第3工程が行われる前にその水分を除去することができる。樹脂ペーストの塗膜に水分が多く付着した状態で第3工程以降の組立工程を行うと、ボイド、ひび割れ等の原因となる。プリベーク工程と第3工程との間が長く経過するほど樹脂ペーストが水分を吸湿しやすいため、上記のプリベーク工程は、第3工程の直前に行うことが好ましい。
 上記のプリベーク工程はオーブンを用いて行うことができ、熱処理炉やホットプレートを用いて行ってもよい。
 プレベーク工程は、樹脂ペースト表面の水分を取り除くことが主な目的であり、樹脂ペーストの硬化を進行させることを目的とはしていない。そのため、樹脂ペーストの硬化反応を進めない観点から、60~150℃の低温で行われることが好ましく、60~120℃の低温で行われることがより好ましい。時間については、30分以下が好ましく、15分以下がより好ましい。アウトガスの低減、基板反りの防止の観点からも、より短時間、より低温でプリベーク工程を行うことが好ましく、タクトタイムの観点からもより短時間で行うことが好ましい。
 本実施形態においては、上記第3工程の後に、アフターキュアを行うことができる。アフターキュア工程は、オーブンを用いて行うことができ、熱処理炉やホットプレートを用いて行ってもよい。オーブンを用いてアフターキュアを行う場合、室温からの昇温工程をプログラムに取り入れることによって穏やかに硬化反応が開始され、アウトガスを抑制することが可能となる。ダイボンディング層のクラックを防ぐ観点からは、室温からの昇温、及び室温への降温工程を10分以上かけ徐々に加熱、降温することが好ましい。アフターキュアの温度としては、80℃~200℃が挙げられるが、アウトガス、基板耐性の観点から、175℃以下であることが望ましい。基板反りを抑制する観点からは、できるだけ温度が低いほうが望ましい。用いるダイボンディング用樹脂ペーストに活性領域の温度が低い硬化促進剤を配合、若しくは、低温反応性の熱硬化性化合物を配合することにより、低温(好ましくは130℃以下)でのアフターキュア(Cステージ化)が可能となる。
 なお、上記第3工程によって、w-BGAのワイヤボンドやμ-BGAの配線の際に半導体チップが動かないようにチップが十分固定されていれば、アフターキュアを省略することも可能である。
 その後、図2の(a)に示すように、ダイボンディング層34によって接合された半導体チップ10の電極と半導体支持部材の電極12とをワイヤーボンディング52により電気的に接続する。その後、図2の(b)に示すように、半導体チップ50を封止樹脂60によって樹脂封止し、更に必要に応じてはんだボール54の搭載を行って半導体装置(半導体パッケージ)100を得ることができる。
 ダイボンディング層のCステージ化は、実装組立工程での問題がない場合、封止材を後硬化するときに併せて行ってもよい。なお、ここでいう実装組立工程での問題とは、半導体チップと半導体支持部材との固定が不十分であることに起因して、ワイヤーボンディング時にチップが振動してしまいワイヤーボンディングの不具合が生じることや、樹脂封止時にチップ側面での封止材の流れによってチップが剥がれてしまうことをいう。また、ここでいうCステージ化とは、Bステージ化直後の樹脂ペーストの硬化状態よりさらに硬化が進んでいる状態(Cステージ)にする工程であり、通常、Cステージの樹脂ペーストはBステージのものよりTgや弾性率が高くなる。
 次に、本実施形態において用いられるダイボンディング用樹脂ペーストについて説明する。
 ダイボンディング用樹脂ペーストは、光硬化性成分と熱硬化性成分を含み、溶剤の含有量が5質量%以下であるものが用いられる。信頼性の観点から、ダイボンディング用樹脂ペーストは実質的に溶剤を含まないことが好ましい。
 本明細書において溶剤とは、従来のダイボンディング用樹脂ペーストの粘度やチキソトロピー指数を調整するために樹脂組成物の希釈に用いられるものを指し、例えば、光反応性基及び熱硬反応性基を有さず、分子量が500以下且つ25℃において液状である有機化合物などである。
 本実施形態においては、以下の方法に従ってダイボンディング用樹脂ペーストの不揮発分を測定し、この不揮発分が95質量%以上であれば溶剤の含有量が5質量%以下であると判断することができる。まず、ダイボンディング用樹脂ペーストを200μm以下の塗膜にし、この塗膜に波長365nmの光を露光量1000mJ/cmで露光し、次いでオーブンで室温からの140℃まで30分間かけて昇温し、140℃を1時間保持する。このような工程を経ることで、光硬化性成分及び熱硬化性成分などの反応性の化合物は十分反応して200℃程度では揮発しにくくなる。そして、200℃/2時間の条件で不揮発分を測定する。
 本実施形態に係るダイボンディング用樹脂ペーストは、光硬化性成分として、光重合性化合物及び光重合開始剤を含み、熱硬化成分として、熱硬化性樹脂、必要により硬化促進剤や熱重合開始剤を含むものが挙げられる。
 また、本実施形態に係るダイボンディング用樹脂ペーストは、適度な弾性率とぬれ性を付与する観点から、熱可塑性樹脂を更に含有することが好ましく、チキソ性の付与、信頼性の向上、放熱性等の観点から、フィラーを更に含有することが好ましい。
 光重合性化合物としては、エチレン性不飽和基を有する化合物が好ましいものとして挙げられる。エチレン性不飽和基としては、ビニル基、アリル基、プロパギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリル基などが挙げられる。反応性の観点から、(メタ)アクリル基が好ましい。このような(メタ)アクリル基(CH=CR-CO-;RはH又はCH)を含む化合物としては、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物が挙げられる。なお、ここでの単官能、多官能とはエチレン性不飽和基についていうものである。本発明においては、多官能(メタ)アクリレート化合物、特に2官能(メタ)アクリレート化合物を含むことが好ましい。これらは、1種を単独で又は2種以上を組み合わせて用いられる。
 2官能以上の(メタ)アクリレートとしては、特に制限はしないが、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート等の2官能(メタ)アクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート等の3官能以上の(メタ)アクリレート、下記一般式(A-1)で表される化合物、1,3-アクリロイルオキシ-2-ヒドロキシプロパン、1,2-メタクリロイルオキシ-2-ヒドロキシプロパン、トリス(β-ヒドロキシエチル)イソシアヌレートのトリアクリレート、多官能ウレタンアクリレート若しくはウレタンメタクリレート、多官能尿素アクリレート若しくは尿素メタクリレートなどが挙げられる。
Figure JPOXMLDOC01-appb-C000001
上記一般式(A-1)中、R19及びR20は各々独立に、水素原子又はメチル基を示し、g及びhは各々独立に、1~20の整数を示す。
 単官能(メタ)アクリレートとしては、フェノールEO変性(メタ)アクリレート(EO;エチレンオキサイド)、フェノールPO変性(メタ)アクリレート(PO;プロピレンオキサイド)、ノニルフェノールEO変性(メタ)アクリレート、ノニルフェノールPO変性(メタ)アクリレート、フェノール性水酸基含有(メタ)アクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等の水酸基含有(メタ)アクリレート、フェニルフェノールグリシジルエーテル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香族系(メタ)アクリレート、イミド基含有(メタ)アクリレート、カルボキシル基含有(メタ)アクリレート、イソボロニル(メタ)アクリレートなどのイソボロニル基含有(メタ)アクリレート、ジシクロペンタジエニル基含有(メタ)アクリレート、などが挙げられる。
 単官能(メタ)アクリレートを用いる場合、Bステージ化後の被着体との密着性、硬化後の接着性、耐熱性の観点から、ウレタン基、イソシアヌル基、イミド基及び水酸基から選ばれる少なくとも1種の官能基を有することが好ましい。特に、イミド基を有する単官能(メタ)アクリレートが好ましい。
 さらに、光重合性化合物として、スチレン、ジビニルベンゼン、4-ビニルトルエン、4-ビニルピリジン、N-ビニルピロリドン、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド等の、ビニル基や(メタ)アクリルアミド基を有する化合物を使用することもできる。
 2官能(メタ)アクリレート化合物を用いる場合、光重合性化合物における2官能(メタ)アクリレート化合物の含有割合が5~90質量%であることが粘度調整の観点から好ましい。
 また、本実施形態に係るダイボンディング用樹脂ペーストは、ぬれ性や接着性の観点から、光硬化性成分として、光硬化性と熱硬化性の両方の機能を有する化合物を含有することが好ましい。
 このような化合物としては、光硬化性の基として(メタ)アクリル基を有し、熱硬化性の基としてエポキシ基を有する(メタ)アクリレート化合物を好ましく用いることができる。
 エポキシ基を有する(メタ)アクリレートの5%重量減少温度は、保存安定性、接着性、低アウトガス性、耐熱・耐湿信頼性の観点から、好ましくは150℃以上、より好ましくは180℃以上、更に好ましくは200℃以上である。エポキシ基を有する単官能(メタ)アクリレートの5%重量減少温度は、フィルム形成時の加熱乾燥による揮発もしくは表面への偏析を抑制できる点で150℃以上であることが好ましく、熱硬化時のアウトガスによるボイド及びはく離や接着性低下を抑制できる点で180℃以上であることが更に好ましく、200℃以上であることが更により好ましく、リフロー時に未反応成分が揮発することによるボイド及びはく離を抑制できる点で260℃以上であることが最も好ましい。このようなエポキシ基を有する単官能(メタ)アクリレートは、芳香環を有すものが好ましい。5%重量減少温度が150℃以上の多官能エポキシ樹脂を単官能(メタ)アクリレートの原料として用いることにより、高い耐熱性が得られる。
 エポキシ基を有する(メタ)アクリレート化合物としては、特に限定はしないが、グリシジルメタクリレート、グリシジルアクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、4-ヒドロキシブチルメタクリレートグリシジルエーテルの他、エポキシ基と反応する官能基及びエチレン性不飽和基を有する化合物と多官能エポキシ樹脂とを反応させて得られる化合物等が挙げられる。上記エポキシ基と反応する官能基としては、特に限定はしないが、イソシアネート基、カルボキシル基、フェノール性水酸基、水酸基、酸無水物、アミノ基、チオール基、アミド基などが挙げられる。これらの化合物は、1種を単独で又は2種類以上を組み合わせて使用することができる。
 エポキシ基を有する(メタ)アクリレート化合物は、例えば、トリフェニルホスフィンやテトラブチルアンモニウムブロミドの存在下、1分子中に少なくとも2つ以上のエポキシ基を有する多官能エポキシ樹脂と、エポキシ基1当量に対し0.1~0.9当量の(メタ)アクリル酸とを反応させることによって得られる。また、ジブチルスズジラウレートの存在下、多官能イソシアネート化合物とヒドロキシ基含有(メタ)アクリレート及びヒドロキシ基含有エポキシ化合物とを反応させ、又は多官能エポキシ樹脂とイソシアネート基含有(メタ)アクリレートとを反応させることにより、グリシジル基含有ウレタン(メタ)アクリレート等が得られる。
 エポキシ基を有する(メタ)アクリレート化合物は、不純物イオンであるアルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン、特には塩素イオンや加水分解性塩素等を1000ppm以下に低減した高純度品を用いることが、エレクトロマイグレーション防止や金属導体回路の腐食防止の観点から好ましい。例えば、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン等を低減した多官能エポキシ樹脂を原料として用いることで上記不純物イオン濃度を満足することができる。全塩素含量はJIS K7243-3に準じて測定できる。
 上記耐熱性と純度を満たすエポキシ基を有する(メタ)アクリレート化合物としては、特に限定はしないが、ビスフェノールA型(又はAD型、S型、F型)のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA及び/又はF型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA及び/又はF型のグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型(又は4官能型)のグリシジルエーテル、ジシクロペンタジエンフェノール樹脂のグリシジルエーテル、ダイマー酸のグリシジルエステル、3官能型(又は4官能型)のグリシジルアミン、ナフタレン樹脂のグリシジルアミン等を原料としたものが挙げられる。
 特に、熱圧着性、低応力性及び接着性を改善するためには、エポキシ基及びエチレン性不飽和基の数がそれぞれ3つ以下であることが好ましく、特にエチレン性不飽和基の数は2つ以下であることが好ましい。このような化合物としては特に限定はしないが、下記一般式(A-2)、(A-3)、(A-4)、(A-5)又は(A-6)で表される化合物等が好ましく用いられる。下記一般式(A-2)~(A-6)において、R12及びR16は水素原子又はメチル基を示し、R10、R11、R13及びR14は2価の有機基を示し、また、R15は、エポキシ基を有する有機基であり、R17及びR18はそれぞれ、1つがエチレン性不飽和基を有する有機基であり、残りがエポキシ基を有する有機基である。更に、(A-5)中のfは、0~3の整数を示す。
Figure JPOXMLDOC01-appb-C000002
 本実施形態において、光重合性化合物(例えば、(メタ)アクリレート化合物)の5%重量減少温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることが更により好ましく、180℃以上であることがより一層好ましい。ここでの5%質量減少温度は、光重合性化合物に関して、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー製:TG/DTA6300)を用いて、昇温速度10℃/min、窒素フロー(400ml/min)の条件で測定される。例えば、5%重量減少温度が高い単官能(メタ)アクリレートを用いた場合、露光によってBステージ化した後に残存した未反応単官能(メタ)アクリレートが熱圧着又は熱硬化時に揮発することを抑制できる。
 本実施形態においては、光硬化性成分として光重合性化合物と光重合開始剤が共に用いられ、光照射によるBステージ化で光硬化性成分の反応をほぼ終了させることが好ましい。
 光重合開始剤としては、光照射によってラジカル、酸又は塩基などを生成する化合物を用いることができる。中でもマイグレーションなどの耐腐食性の観点から、光照射によりラジカル及び/又は塩基を生成する化合物を用いることが好ましく、露光後の加熱処理が不要となる点や高感度である点でラジカルを生成する化合物がより好ましく用いられる。光照射によって酸又は塩基を生成する化合物は、エポキシ樹脂の重合及び/又は反応を促進する機能を発現する。
 光照射によりラジカルを生成する化合物としては、例えば、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパノン-1、2,4-ジエチルチオキサントン、2-エチルアントラキノン及びフェナントレンキノン等の芳香族ケトン;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-フェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体及び2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン及び1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド及びビス(2,4,6,-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド;オキシムエステル系化合物;マレイミド化合物が挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。
 上記光照射によりラジカルを生成する化合物の中でも、溶剤を含有しない接着剤組成物での溶解性の点で、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパン-1-オンが好ましく用いられる。また、空気雰囲気下中でも露光によって、Bステージ化が可能となる点では、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパン-1-オンが好ましく用いられる。
 本実施形態に係るダイボンディング用樹脂ペーストに、露光によって塩基を生成する化合物(光塩基発生剤)を配合することにより、樹脂ペーストの被着体への高温接着性及び耐湿性を更に向上させることができる。この理由としては、光塩基発生剤から生成した塩基がエポキシ樹脂の硬化触媒として効率よく作用することにより、架橋密度をより一層高めることができるため、また生成した硬化触媒が基板などを腐食することが少ないためと考えられる。また、接着剤組成物に光塩基発生剤を含有させることにより、架橋密度を向上させることができ、高温放置時のアウトガスをより低減させることができる。さらに、硬化プロセス温度を低温化、短時間化させることができると考えられる。
 光塩基発生剤は、放射線(光)照射により塩基を発生する化合物であれば特に制限は受けず用いることができる。発生する塩基としては、反応性、硬化速度の点から強塩基性化合物が好ましい。より具体的には、光塩基発生剤によって発生する塩基の水溶液中でのpKa値は、7以上であることが好ましく、8以上であることがより好ましい。pKaは、一般的に、塩基性の指標として酸解離定数の対数である。
 放射線照射により発生する塩基としては、例えば、イミダゾール、2,4-ジメチルイミダゾール、1-メチルイミダゾール等のイミダゾール誘導体、ピペラジン及び2,5-ジメチルピペラジン等のピペラジン誘導体、ピペリジン及び1,2-ジメチルピペリジン等のピペリジン誘導体、トリメチルアミン、トリエチルアミン及びトリエタノールアミン等のトリアルキルアミン誘導体、4-メチルアミノピリジン及び4-ジメチルアミノピリジン等の4位にアミノ基またはアルキルアミノ基が置換したピリジン誘導体、ピロリジン、n-メチルピロリジン等のピロリジン誘導体、1,8-ジアザビスシクロ(5,4,0)ウンデセン-1(DBU)等の脂環式アミン誘導体、ベンジルメチルアミン、ベンジルジメチルアミン及びベンジルジエチルアミン等のベンジルアミン誘導体、プロリン誘導体、トリエチレンジアミン、モルホリン誘導体、1級アルキルアミンが挙げられる。
 上記以外の光重合開始剤として、活性光線(光)の照射により1級アミノ基を発生するオキシム誘導体、光ラジカル発生剤として市販されている2-メチル-1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパン-1-オン(チバ スペシャリティ ケミカルズ社製、イルガキュア907)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(チバ スペシャリティ ケミカルズ社製、イルガキュア369)、3,6-ビス-(2メチル-2モルホリノ-プロピオニル)-9-N-オクチルカルバゾール(ADEKA社製、オプトマーN―1414)、ヘキサアリールビスイミダゾール誘導体(ハロゲン、アルコキシ基、ニトロ基、シアノ基等の置換基がフェニル基に置換されていてもよい)、ベンゾイソオキサゾロン誘導体、カルバメート誘導体等を用いることができる。
 熱硬化性樹脂としては、エポキシ基を有する化合物、フェノール樹脂、1分子中に少なくとも2個の熱硬化性イミド基を有するイミド化合物等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いられる。
 なお、本実施形態に係るダイボンディング用樹脂ペーストに含まれる熱硬化性成分は、光照射によるBステージ化では反応せず、その後の加熱、さらにはCステージ化で反応させること想定しているため、光硬化開始剤存在下で反応しないものを用いることが好ましい。
 エポキシ基を有する化合物としては、特に限定されないが、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテルなどのグリシジルエーテル型エポキシ化合物;ダイマー酸などの多価カルボン酸とその無水物を原料とするグリシジルエステル型エポキシ化合物;脂肪族アミンを原料とするグリシジルアミン型エポキシ化合物等の脂肪族エポキシ化合物、ハイドロキノン、メチルハイドロキノン、ジメチルハイドロキノン、トリメチルハイドロキノン、レゾルシノール、メチルレゾルシノール、カテコール、メチルカテコール、ビフェノール、テトラメチルビフェノール、ジヒドロキシナフタレン、ジヒドロキシメチルナフタレン、ジヒドロキシジメチルナフタレン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ケトン、ビス(4-ヒドロキシ-3,5-ジクロロフェニル)ケトン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)スルホン、ビス(4-ヒドロキシ-3,5-ジクロロフェニル)スルホン、ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ヘキサフルオロプロパン、ビス(4-ヒドロキシ-3,5-ジクロロフェニル)ヘキサフルオロプロパン、ビス(4-ヒドロキシフェニル)ジメチルシラン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ジメチルシラン、ビス(4-ヒドロキシ-3,5-ジクロロフェニル)ジメチルシラン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3,5-ジクロロフェニル)メタン、ビス(4-ヒドロキシ-3,5-ジブロモフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)エーテル、ビス(4-ヒドロキシ-3,5-ジクロロフェニル)エーテル、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-クロロフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-ブロモフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フルオロフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メトキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)フルオレンなどの1種以上とエピハロヒドリンとの縮合により得られるジグリシジル化物等の芳香環を有するエポキシ化合物などの1分子内に2個のエポキシ基を有する化合物が挙げられる。
 また、フェノールのグリシジルエーテル型のエポキシ樹脂を用いることもできる。このような樹脂としては、ビスフェノールA、ビスフェノールAD、ビスフェノールS、ビスフェノールF、または、ハロゲン化ビスフェノールAとエピクロルヒドリンの縮合物、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル等が挙げられる。これらは単独で、または2種以上を組み合わせて用いることができる。
 熱硬化性樹脂としてエポキシ樹脂を配合する場合、その配合量は、耐熱性及び接着性の観点から、樹脂ペースト全量を基準として10~80質量%であることが好ましい。
 フェノール樹脂は、分子中に少なくとも2個のフェノール性水酸基を有するものであり、たとえば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、ポリ-p-ビニルフェノール、フェノールアラルキル樹脂等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いられる。
 熱硬化性樹脂としてフェノール樹脂とエポキシ樹脂とを配合する場合、その配合量は、パッケージの信頼性を考慮して、フェノールの官能基当量がエポキシの官能基当量以下になるように調整することが好ましい。
 パッケージ信頼性を向上できる観点からは、エポキシ樹脂とフェノール樹脂を併用することが好ましい。この場合、エポキシ樹脂及びフェノール樹脂の配合量はそれぞれ樹脂ペースト全量を基準として10~80質量%及び10~80質量%であることが好ましい。
 1分子中に少なくとも2個の熱硬化性イミド基を有するイミド化合物としては、例えば、オルトビスマレイミドベンゼン、メタビスマレイミドベンゼン、パラビスマレイミドベンゼン、1,4-ビス(p-マレイミドクミル)ベンゼン、1,4-ビス(m-マレイミドクミル)ベンゼン等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 また、下記の式(C-1)~(C-3)で表されるイミド化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
式中、XおよびYは、O、CH、CF、SO、S、CO、C(CHまたはC(CFを示し;R、R、R、R、R、R、RおよびRは、それぞれ独立に水素、低級アルキル基、低級アルコキシ基、フッ素、塩素または臭素を示し;Dはエチレン性不飽和二重結合を有するジカルボン酸残基を示し;mは0~4の整数を示す。
 式(C-1)のイミド化合物としては、例えば、4,4-ビスマレイミドジフェニルエーテル、4,4-ビスマレイミドジフェニルメタン、4,4-ビスマレイミド-3,3’-ジメチル-ジフェニルメタン、4,4-ビスマレイミドジフェニルスルホン、4,4-ビスマレイミドジフェニルスルフィド、4,4-ビスマレイミドジフェニルケトン、2,2’-ビス(4-マレイミドフェニル)プロパン、4,4-ビスマレイミドジフェニルフルオロメタン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(4-マレイミドフェニル)プロパン等が挙げられる。
 式(C-2)のイミド化合物としては、例えば、ビス〔4-(4-マレイミドフェノキシ)フェニル〕エーテル、ビス〔4-(4-マレイミドフェノキシ)フェニル〕メタン、ビス〔4-(4-マレイミドフェノキシ)フェニル〕フルオロメタン、ビス〔4-(4-マレイミドフェノキシ)フェニル〕スルホン、ビス〔4-(3-マレイミドフェノキシ)フェニル〕スルホン、ビス〔4-(4-マレイミドフェノキシ)フェニル〕スルフィド、ビス〔4-(4-マレイミドフェノキシ)フェニル〕ケトン、2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン等が挙げられる。
 硬化促進剤としては、イミダゾール類、イミダゾリジン類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、有機ホスフィン(トリフェニルホスフィンやその誘導体、ホスフィンオキサイド類、ジホスフィン類、テトラフェニルホスホニウムテトラフェニルボレート、2-エチル-4-メチルイミダゾール-テトラフェニルボレート、1,8-ジアザビシクロ(5,4,0)ウンデセン-7-テトラフェニルボレート等のホスフィン-ホウ素化合物)、スズ化合物、ホウ素化合物等が挙げられる。
 熱重合開始剤としては、有機過酸化物などが挙げられる。
 本実施形態に係るダイボンディング用樹脂ペーストは、低応力性、被着体との密着性、熱圧着性を向上させる点で、熱可塑性樹脂を含有することが好ましい。
 熱可塑性樹脂としては、(メタ)アクリル系樹脂、ブタジエン系樹脂、ポリブタジエンアクリロニトリル共重合体、ポリエステル樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、ポリウレタンイミド樹脂、ポリウレタンアミドイミド樹脂、シロキサンポリイミド樹脂、ポリエステルイミド樹脂、これらの共重合体、これらの前駆体(ポリアミド酸等)、ポリベンゾオキサゾール樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、ノボラック樹脂、フェノール樹脂などが挙げられる。
 これらの中で、(メタ)アクリル系樹脂、ブタジエン系樹脂、ポリブタジエンアクリロニトリル共重合体等が好ましく、ポリブタジエンアクリロニトリル共重合体及びブタジエン系樹脂がより好ましく、ポリブタジエンアクリロニトリル共重合体が特に好ましい。その中でも、カルボキシル基を有する共重合体が特に好ましい。
 上記の共重合体として具体的には、ブタジエンとアクリロニトリルと必要に応じて他の重合性化合物とのコポリマーを主鎖とし、その末端の少なくとも一方にカルボキシル基を有するものが挙げられる。印刷性、接着強度及び作業性の観点からは、この共重合体の数平均分子量は500~10000であることが好ましく、1000~7000であることがより好ましい。更に、下記一般式(1)で表されるカルボキシル基を有するブタジエン-アクリロニトリル共重合体がより好ましい。
Figure JPOXMLDOC01-appb-C000004
一般式(1)中、x/yは95/5~50/50であり、nは5~50の整数である。
 上記一般式(1)で表される化合物は、市販品として入手することも可能である。例えば、Hycar CTBN-2009×162、CTBN-1300×31、CTBN-1300×8、CTBN-1300×13、CTBNX-1300×9(いずれもPTI JAPAN株式会社製)が市販品として入手可能である。
 また、カルボキシル基を有するブタジエン系樹脂として、カルボキシル基を有する低分子量液状ポリブタジエンである、NISSO-PB-C-2000(日本曹達株式会社製、商品名)(日本曹達(株)製、商品名)等が挙げられる。
 これらは単独で、または2種以上を組み合わせて用いることができる。
 熱可塑性樹脂のTgは150℃以下であることが好ましく、120℃以下であることがより好ましく、100℃以下であることがさらにより好ましく、80℃以下であることが最も好ましい。このTgが150℃を超える場合、樹脂ペーストの粘度が上昇する傾向がある。また、被着体に熱圧着する際に150℃以上の高温を要する傾向がある。ここで、「Tg」とは、熱可塑性樹脂をフィルム化したときの主分散ピーク温度を意味し、レオメトリックス社製粘弾性アナライザー「RSA-2」(商品名)を用いて、フィルム厚100μm、昇温速度5℃/min、周波数1Hz、測定温度-150~300℃の条件で測定したときのTg付近のtanδピーク温度を主分散ピーク温度とする。
 熱可塑性樹脂の重量平均分子量は、1000~500000の範囲内で制御されていることが好ましく、熱圧着性と高温接着性とを高度に両立できる点で1000~300000であることがより好ましい。ここで、「重量平均分子量」とは、島津製作所社製高速液体クロマトグラフィー「C-R4A」(商品名)を用いて、ポリスチレン換算で測定したときの重量平均分子量を意味する。
 樹脂ペーストの粘度(25℃)は、5~1000Pa・sであることが好ましく、20~500であることがより好ましく、50~200Pa・sであることが特に好ましい。樹脂ペーストの粘度が5~1000Pa・sであると、印刷作業性の観点から好ましい。樹脂ペーストの粘度は、スクリーン印刷における印刷速度、下降オフセット(印刷圧)、版離れ速度、スキージ角度、メタルマスクと半導体支持部材の距離(クリアランス)、メタルマスク開口部の形状、メタルマスク開口部側面の表面処理、などの印刷ファクター応じて適宜調整することが好ましく、たとえば、スクリーンメッシュ版等のようにマスク開口部にメッシュ等が張ってある場合は、メッシュ部の抜け性を考慮して5~100Pa・sの範囲であることが好ましく、ステンシル版等の場合は20~500Pa・sの範囲に調整されていることが好ましい。また、Bステージ化後のダイボンディング層に残存するボイドが多く見られる場合は、150Pa・s以下の粘度に調整することが好ましい。
 樹脂ペーストのチキソトロピー指数は、1.5~10.0であることが好ましく、2.0~7.0であることがより好ましく、2.0~5.0であることが特に好ましい。樹脂ペーストのチキソトロピー指数が1.5以上であると、スクリーン印刷法によって供給・塗布されたペーストにおけるダレ等の発生を抑制して、印刷形状を良好に保つとの観点から好ましい。さらに、このチキソトロピー指数が10.0以下であると、スクリーン印刷法によって供給・塗布されたペーストにおける「欠け」やカスレ等の発生抑制の観点から好ましい。
 上記粘度は、E型回転粘度計を用いて、25℃で、回転数0.5rpmで測定したときの値とする。チキソトロピー指数は、E型回転粘度計で、25℃で、回転数0.5rpmで測定したときの値と、回転数5rpmで測定したときの値との比(チキソトロピー指数=[0.5rpmでの粘度]/[5rpmでの粘度])で定義される。
 上述した本実施形態に係る半導体装置の製造方法によれば、半導体支持部材上にダイボンディング材を印刷法により塗布して半導体チップを接合するときのタクトタイムを削減することができ、なおかつBステージ化での硬化不足や過度の硬化による組立不具合を十分防止できて、信頼性に優れる半導体装置を生産性よく製造することが可能となる。また、従来の加熱によるBステージ化よりも低温でのBステージ化が可能であり、基板反りやアウトガス、さらには環境に対する負荷を抑制することができる。更に、Bステージ化後の工程で溶剤が残留することに起因して生じるボイドなどの不具合を十分抑制することができる。
 本発明によれば、上記の効果の他に以下に説明するドッグイヤーの問題を解消することが可能である。
 図4の(a)は、スクリーン印刷が施される基板上に配置されたマスク20を上方から見た図である。スクリーン印刷では、基板上に配置されたマスク20上に樹脂ペーストが供給され、スキージが矢印aの方向(印刷方向)に移動することにより開口部22に樹脂ペーストが埋め込まれる。これにより、開口部22の形状に対応した樹脂ペーストの塗膜が形成される。このスクリーン印刷により形成された塗膜について、その印刷方向aに沿って切断してできる断面(図4(a)におけるIII-III線に沿った断面)を観察したところ、図4の(b)に示すように塗膜の端部に盛り上がり(以下、これをドッグイヤーという。)が生じていた。図4(b)中、aが印刷方向を示し、bが盛り上がりを示す。そして、従来の樹脂ペーストは溶剤を含んでいるため、加熱乾燥によりBステージ化されると溶剤が揮発して、図4の(c)に示すように膜厚が薄くなる。しかし、このBステージ化の前後でドッグイヤーの高さはあまり変化しないことがあり、その場合、Bステージ化前の塗膜における膜厚H1に対するドッグイヤーの高さH2の比率(H2/H1)よりも、Bステージ化後の塗膜における膜厚H3に対するドッグイヤーの高さH4の比率(H4/H3)(以下、これをドッグイヤー比率という場合もある。)は著しく増大することになる。このようなドッグイヤーの増大は、ダイアタッチ時にボイドが発生したりチップが傾いて搭載されたりするなど、組立不具合の要因になり得る。
 本実施形態の半導体装置の製造方法によれば、上記各工程を備えることにより、上記の組立不具合の発生を防止して信頼性に優れる半導体装置を生産性よく製造することが可能となる。この理由を本発明者らは、光照射によって塗膜をBステージ化できることにより、上述した溶剤の揮発に起因するドッグイヤー比率の増大を抑制することができたためと考えている。
 本実施形態においては、樹脂ペーストの粘度、もしくはチキソトロピー指数を適宜調整して、スクリーン印刷による塗膜の印刷形状を保持することが好ましい。塗布後の膜厚に対するドッグイヤーの比率は、印刷ファクターを調整することによって低減しておくことが好ましい。なお、ドッグイヤーとは、印刷された塗膜について、図4(b)に示されるようにスクリーン印刷の印刷方向aに沿った断面を見たときに、印刷部分の最後のところに生じる犬の耳のような形状の突起bを意味する。このドッグイヤーの高さが、半導体チップを搭載するときに大きいと、搭載されたチップが基板に対して平行に搭載されなかったり、ボイドを巻き込んだり、充分に接着されないなどの現象により、半導体パッケージの信頼性が低下する。なお、本実施形態においては、上記本発明に係るダイボンディング用樹脂ペーストを用いることにより、Bステージ化後のドッグイヤー比率の増大を十分抑制することができ、上記の問題を有効に防止することができる。
 ドッグイヤー比率は、非接触型の形状測定装置((株)KEYENCE製、KS-1100シリーズなど)を用いて、塗膜表面の形状を測定し、図4(b)及び(c)に示されるように断面の形状をビジュアル化することにより求めることができる。図4(b)はBステージ化前における塗膜の断面形状を示し、ドッグイヤー比率はH2/H1である。また、図4(c)はBステージ化後における塗膜の断面形状を示し、ドッグイヤー比率はH4/H3である。
 本実施形態においては、下記の条件で形成される塗膜を光照射によりBステージ化したときのドッグイヤー比率を指標として、印刷ファクター及び樹脂ペースト粘度若しくはチキソトロピー指数を調整することが好ましい。
基板(レジスト):MCL-E-679F(AUS-308)
マスク:厚さ100ミクロンのメタルマスク
印刷形状:3mm×10mm×100μm厚
印刷機:ミナミ(株)製、MK-838SV
 本実施形態においては、上記の条件で形成し、光照射によりBステージ化した塗膜のドッグイヤー比率が、50%以下となることが好ましい。
[第2の実施形態]
 次に本発明に係るダイボンディング用樹脂ペーストの別の実施形態について説明する。ダイボンディング用樹脂ペーストは、25℃における粘度が100Pa・s以下である光重合性化合物、熱硬化性化合物、及び熱可塑性エラストマーを含有し、溶剤の含有量が5質量%以下であるものである。
 光重合性化合物の粘度は、東機産業株式会社製E型粘度計(VISCONIC ELD)を用い、直径28mm、3°コーン、100rpm、25℃の条件で測定したときの粘度を指す。
 本明細書において溶剤とは、従来のダイボンディング用樹脂ペーストの粘度やチキソトロピー指数を調整するために樹脂組成物の希釈に用いられるものを指し、例えば、光反応性基及び熱硬反応性基を有さず、分子量が500以下且つ25℃において液状である有機化合物などである。
 第2の実施形態においては、ダイボンディング用樹脂ペーストに、高圧水銀灯を用い、酸素濃度1pp以下の窒素雰囲気下、露光量1000mJ/cmの紫外線の露光を行い、次いでオーブンに入れ、40℃から140℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させ、その後、オーブンで200℃、2時間の加熱をしたときの、露光及び加熱前の樹脂ペーストの質量に対する露光及び加熱後の樹脂ペーストの質量の割合を求め、この割合が95%以上であれば溶剤の含有量が5質量%以下であると判断することができる。
 信頼性の観点から、ダイボンディング用樹脂ペーストは、溶剤の含有量が5質量%以下であることが好ましく、実質的に溶剤を含まないことがより好ましい。
 光重合性化合物としては、上記第1の実施形態における光重合性化合物のうちの25℃における粘度が100Pa・s以下であるものを好適に用いることができる。なお、第2の実施形態においては、本発明の効果を損なわない範囲で、25℃における粘度が100Pa・sを超える光重合性化合物を、25℃における粘度が100Pa・s以下である光重合性化合物と併用してもよい。
 光重合性化合物の配合量としては、樹脂ペーストの粘度調整の観点から、樹脂ペースト全量を基準として10~80質量%であることが好ましい。
 第2の実施形態において、光重合性化合物と光重合開始剤とが共に用いられ、光照射によるBステージ化で光硬化性成分の反応をほぼ終了させることが好ましい。
 光重合開始剤としては、上記第1の実施形態における光重合開始剤と同様の化合物を用いることができる。光重合開始剤の配合量としては、樹脂ペーストの反応感度や安定性の観点から、樹脂ペースト全量を基準として0.01~5質量%であることが好ましい。
 熱硬化性化合物としては、上記第1の実施形態における熱硬化性樹脂と同様の化合物を用いることができる。なお、第2の実施形態に係るダイボンディング用樹脂ペーストに含まれる熱硬化性化合物は、光照射によるBステージ化では、反応せず、その後の加熱、さらにはCステージ化で反応させること想定しているため、光硬化開始剤存在下、すなわち光硬化開始剤と熱硬化性化合物のみ存在する系で、光を照射しても粘度が元の粘度の5%以上上昇しないことが好ましい。
 熱硬化性化合物としてエポキシ樹脂を配合する場合、その配合量は、耐熱性及び接着性の観点から、樹脂ペースト全量を基準として10~70質量%であることが好ましい。
 熱硬化性化合物としてフェノール樹脂を配合する場合、その配合量は、パッケージの信頼性を考慮して、樹脂ペースト全量を基準として1~20質量%であることが好ましい。
 パッケージ信頼性を向上できる観点からは、エポキシ樹脂とフェノール樹脂を併用することが好ましい。この場合、エポキシ樹脂及びフェノール樹脂の配合量はそれぞれ樹脂ペースト全量を基準として10~70質量%及び1~20質量%であることが好ましい。
 熱硬化性化合物としてイミド化合物を配合する場合、その配合量は、ペーストの保管安定性を考慮して、樹脂ペースト全量を基準として5~20質量%であることが好ましい。
 第2の実施形態のダイボンディング用樹脂ペーストは、より低温若しくはより短時間でCステージ化する観点から、硬化促進剤を更に含有することが好ましい。硬化促進剤としては、上記第1の実施形態における硬化促進剤と同様の化合物を用いることができる。
 硬化促進剤の配合量としては、樹脂ペーストの反応感度や安定性の観点から、樹脂ペースト全量を基準として0.1~5質量%であることが好ましい。
 熱可塑性エラストマーとしては、例えば、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ブタジエン系樹脂、ポリブタジエンアクリロニトリル共重合体が挙げられる。その中でも、カルボキシル基を有する共重合体が好ましい。
 熱可塑性エラストマーのTgは40℃以下であることが好ましく、20℃以下であることがより好ましく、0℃以下であることがさらにより好ましく、-20℃以下であることが最も好ましい。このTgが40℃を超える場合、樹脂ペーストの粘度が上昇する傾向がある。また、被着体に熱圧着する際に150℃以上の高温を要する傾向がある。ここで、熱可塑性エラストマーのTgは、TA Instrument社製DSC(Q200)によって測定される値を指す。
 第2の実施形態に係るダイボンディング用樹脂ペーストは、適度な弾性率とぬれ性を付与する観点から、熱可塑性エラストマー以外の熱可塑性樹脂を更に含有することが好ましい。
 熱可塑性エラストマーの配合量としては、樹脂ペースト硬化物の低弾性化の観点から、樹脂ペースト全量を基準として10~85質量%であることが好ましい。
 第2の実施形態における上記熱可塑性エラストマー以外の熱可塑性樹脂としては、(メタ)アクリル系樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、ポリウレタンイミド樹脂、ポリウレタンアミドイミド樹脂、シロキサンポリイミド樹脂、ポリエステルイミド樹脂、これらの共重合体、これらの前駆体(ポリアミド酸等)、ポリベンゾオキサゾール樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、ノボラック樹脂などが挙げられる。
 これらは単独で、または2種以上を組み合わせて用いることができる。
 熱可塑性樹脂のTgは150℃以下であることが好ましく、120℃以下であることがより好ましく、100℃以下であることがさらにより好ましく、80℃以下であることが最も好ましい。このTgが150℃を超える場合、樹脂ペーストの粘度が上昇する傾向がある。また、被着体に熱圧着する際に150℃以上の高温を要する傾向がある。
 熱可塑性樹脂の重量平均分子量は、1000~500000の範囲内で制御されていることが好ましく、熱圧着性と高温接着性とを高度に両立できる点で1000~300000であることがより好ましい。
 熱可塑性樹脂の配合量としては、ペースト硬化物の弾性率、若しくは信頼性の観点から、樹脂ペースト全量を基準として10~80質量%であることが好ましい。
 第2の実施形態のダイボンディング用樹脂ペーストは、信頼性、チキソ性、放熱性等の観点から、フィラーを更に含有することが好ましい。
 フィラーとしては、例えば、銀粉、金粉、銅粉等の導電性(金属)フィラー;シリカ、アルミナ、チタニア、ガラス、酸化鉄、セラミック等の無機物質フィラー;等が挙げられる。これらのうち、銀粉、金粉、銅粉等の導電性(金属)フィラーは、接着剤に導電性、伝熱性またはチキソトロピー性を付与する目的で添加することができる。また、シリカ、アルミナ、チタニア、ガラス、酸化鉄、セラミック等の無機物質フィラーは、接着剤に低熱膨張性、低吸湿率、チキソトロピー性を付与する目的で添加することができる。これらは単独で、または2種以上を組み合わせて用いることができる。
 フィラーの配合量は、樹脂ペースト全量を基準として5~70質量%とすることができる。
 第2の実施形態のダイボンディング用樹脂ペーストは、印刷中に泡、ボイドの発生を抑制する観点から、脱泡剤、破泡剤及び抑泡剤からなる群より選択される1種以上の添加剤を更に含有することが好ましい。
 上記添加剤の具体例としては、シランカップリング剤、チタン系カップリング剤、ノニオン系界面活性剤、フッ素系界面活性剤、シリコーン系添加剤が挙げられる。これらは、1種を単独で又は2種以上組み合わせて用いることができる。
 上記添加剤の配合量は、樹脂ペースト全量を基準として0.01~10質量%とすることができる。
 このようにして得られる第2の実施形態に係るダイボンディング用樹脂ペーストの粘度(25℃)及びチキソトロピー指数はそれぞれ、上記第1の実施形態における樹脂ペーストの粘度及びチキソトロピー指数と同様の範囲であることが好ましい。
 次に、本発明に係る第2の半導体装置の製造方法について説明する。第2の半導体装置の製造方法は、上記半導体の第1の製造方法における第1工程で樹脂ペーストの塗膜をスクリーン印刷法により設ける場合に好適に用いられる。
 第2の半導体装置の製造方法は、半導体チップを搭載するための半導体支持部材上に、上記第2の実施形態に係るダイボンディング用樹脂ペーストをスクリーン印刷により塗布して上記樹脂ペーストの塗膜を設ける第1工程と、上記塗膜に光照射する第2工程と、上記半導体支持部材と半導体チップとを、光照射された上記塗膜を挟んで圧着する第3工程と、を備える。なお、第2の半導体装置の製造方法においても、第1工程では図1の(a)を、第2工程では図1の(b)を、第3工程では図1の(c)をそれぞれ参照できる。
 第1工程において、半導体支持部材には上記第1の製造方法と同様のものを用いることができ、スクリーン印刷による塗布は上記第1の製造方法と同様に行うことができる。
 第2工程において、樹脂ペーストの塗膜への光照射は上記第1の製造方法と同様に行うことができる。
 第3工程において、半導体支持部材と半導体チップとは上記第1の製造方法と同様に、例えば、ダイボンド装置を用いて、半導体支持部材10の光照射された塗膜32に半導体チップ50を搭載し、この半導体チップ50が搭載された半導体支持部材を、加熱、加圧することにより行うことができる。
 半導体チップ50としては、例えば、Siチップ、Geチップ、チップ材料として有機化合物、ZnSe、CdS、ZnO、GaAs、InP、GaN、SiC、SiGe、CuInSe等を用いたチップが挙げられる。
 第2の半導体装置の製造方法では、上記第1の製造方法と同様に、第3工程の前にプリベーク工程を設けることができ、また第3工程の後にアフターキュアを行うことができる。ただし、第2の半導体装置の製造方法では、樹脂ペーストの硬化反応を進めない観点から、60~150℃の低温で行われることが好ましく、60~140℃の低温で行われることがより好ましい。時間については、30分以下が好ましく、15分以下がより好ましい。
 その後、第1の製造方法と同様に、ダイボンディング層によって接合された半導体チップの電極と半導体支持部材の電極とを電気的に接続することができる。さらに、半導体チップを封止樹脂によって樹脂封止し、更に必要に応じてはんだボールの搭載を行って半導体装置(半導体パッケージ)を得ることができる。
 上述した第2の実施形態に係る第2の半導体装置の製造方法によれば、半導体支持部材上にダイボンディング材をスクリーン印刷法により塗布して半導体チップを接合するときのタクトタイムを削減することができ、なおかつBステージ化での硬化不足や過度の硬化、残留した溶剤に起因する組立不具合を十分防止できて、信頼性に優れる半導体装置を生産性よく製造することが可能となる。また、従来の加熱によるBステージ化よりも低温でのBステージ化が可能であり、基板反りやアウトガス、さらには環境に対する負荷を抑制することができる。更に、Bステージ化後の工程で溶剤が残留することに起因して生じるボイドなどの不具合を十分抑制することができる。
 上記第2の実施形態によれば、上記の効果の他にドッグイヤーの問題を解消することが可能である。
 上記第2の実施形態に係るダイボンディング用樹脂ペースト及びそれを用いる第2の半導体装置の製造方法によれば、第1の実施形態でも説明したドッグイヤーに基づく組立不具合の発生を防止して信頼性に優れる半導体装置を生産性よく製造することを可能となる。この理由を本発明者らは、光照射によって塗膜をBステージ化できることにより、上述した溶剤の揮発に起因するドッグイヤー比率の増大を抑制することができたためと考えている。
 第2の実施形態においては、樹脂ペーストの粘度、もしくはチキソトロピー指数を適宜調整して、スクリーン印刷による塗膜の印刷形状を保持することが好ましい。塗布後の膜厚に対するドッグイヤーの比率は、印刷ファクターを調整することによって低減しておくことが好ましい。
 上記の条件で形成し、光照射によりBステージ化した塗膜のドッグイヤー比率が、50%以下となることが好ましい。
 以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
-第1の実施例-
<樹脂ペーストの調製>
(樹脂ペーストA1及びA2)
 表1に示す各材料を同表に示す割合(質量部)で混合して、樹脂ペーストA1及びA2をそれぞれ調製した。なお、表1における各記号は下記の材料を意味する。
FA-125M:ネオペンチルグリコールジメタクリレート(日立化成工業社製、商品名)。
EPICRON 830:DIC(株)製、商品名、フェノールホルムアルデヒド重縮合物のエピクロロヒドリンによるジグリシジルエーテル化編成物。
IRGACURE-819:BASF JAPAN(株)製、商品名、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)。
2P4MHZ-PW:四国化成工業社製、商品名、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール
パーブチルD:日油(株)製、商品名、ジ-t-ブチルパーオキシド。
CTBN1300×8:ピイ・ティ・アイ・ジャパン(株)製、商品名、ブタジエン-アクリロニトリル共重合体。
アエロジル50:日本アエロジル(株)製、商品名、SiO
 樹脂ペーストA1及びA2の粘度は、E型回転粘度計を用いて、25℃で、回転数0.5rpmで測定した。
Figure JPOXMLDOC01-appb-T000005
 上記で得られた樹脂ペーストA1及びA2を用いて種々の組立条件にてBステージ化を行ない、タクトタイム、基板の反り、Bステージ化後の重量減少率、アフターキュア後の重量減少率について評価した。
<樹脂ペーストの印刷>
(組立例A1~A5)
 ソルダーレジスト(商品名:AUS-308、太陽インキ製造(株)製)が塗布された絶縁性支持基板(商品名:MCL-E-679F、日立化成工業株式会社製)に、印刷機(ミナミ(株)製、MK-838SV)と厚さ100μmのメタルマスクを用いて、樹脂ペーストA1又はA2をスクリーン印刷して塗膜を形成した。なお、印刷された塗膜の形状は3mm×10mm×100μm厚であった。印刷条件は、スキージ速度を30mm/秒、スキージ角を60°、スキージオフセットを-0.1mm、クリアランスを0mm、版離れ速度を2mm/秒とした。
<Bステージ化>
(組立例A1)
 樹脂ペーストA1を印刷した塗膜に対して、露光機(ミカサ(株)社製、アライナーML-210FM、照度13mW/cm以上(365nm換算)、光源:高圧水銀灯)を用い、酸素濃度1ppm以下の窒素雰囲気下、露光量100mJ/cmの条件で紫外線を照射した。このBステージ化のタクトタイムは0.15分であった。
(組立例A2)
 露光量を1000mJ/cmに変えたこと以外は組立例A1と同様にして、Bステージ化を行った。このBステージ化のタクトタイムは1.5分であった。
(組立例A3)
 樹脂ペーストA2が印刷された基板を乾燥機に入れ、40℃から130℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させた。このBステージ化のタクトタイムは90分であった。
(組立例A4)
 樹脂ペーストA2が印刷された基板を乾燥機に入れ、40℃から150℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させた。このBステージ化のタクトタイムは90分であった。
(組立例A5)
 樹脂ペーストA2が印刷された基板を乾燥機に入れ、40℃から150℃まで30分間で昇温させ、その温度を10分間維持し、その後40℃まで30分間かけて降温させた。このBステージ化のタクトタイムは70分であった。
[基板の反り]
 上記でBステージ化された塗膜を有する絶縁性支持基板について、非接触型の形状測定装置((株)KEYENCE製、KS-1100シリーズ)を用い、塗膜表面の形状を測定し、断面(塗膜の厚み方向に切断した面)の形状をビジュアル化することにより反りを測定した。
[Bステージ化後の重量減少率及びアフターキュア後の重量減少率]
 直径約60mm高さ約14mmの円柱状の金属シャーレ(質量:W1(g))の底面内側に、各樹脂ペースト約1.5gをなるべく均一な膜厚になるようにのせて、測定用試料とした。その後、のせた樹脂ペーストの質量(W2(g))を求めた。次に、これらの測定用試料に対して上記のBステージ化の条件でBステージ化を行った後、測定用試料全体の質量(W3(g))を測定した。これらの値を用い下記式からBステージ化後の重量減少率(質量%)を求めた。
Bステージ化後の重量減少率(質量%)=100-[{(W3)-(W1)}/(W2)]×100
 Bステージ化後の各測定用試料を乾燥機に入れ、200℃で2時間、加熱した。加熱後の測定用試料の質量(W4(g))を測定した。この値を用い下記式からアフターキュア後の重量減少率(質量%)を求めた。
アフターキュア後の重量減少率(質量%)=100-[{(W4)-(W1)}/(W2)]×100
Figure JPOXMLDOC01-appb-T000006
<樹脂ペーストの印刷>
(組立例A6~A11)
 上記組立例A1~A5と同じ条件で印刷を行った。
<Bステージ化>
(組立例A6)
 露光量を900mJ/cmに変え、即ち、露光時間を表3のように変えたこと以外は組立例A1と同様にして、Bステージ化を行った。
(組立例A7)
 露光量を1100mJ/cmに変え、即ち、露光時間を表3のように変えたこと以外は組立例A1と同様にして、Bステージ化を行った。
(組立例A8)
 樹脂ペーストA2が印刷された基板を乾燥機に入れ、40℃から140℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させた。
(組立例A9)
 樹脂ペーストA2が印刷された基板を乾燥機に入れ、40℃から150℃まで30分間で昇温させ、その温度を25分間維持し、その後40℃まで30分間かけて降温させた。
(組立例A10)
 樹脂ペーストA2が印刷された基板を乾燥機に入れ、40℃から150℃まで30分間で昇温させ、その温度を35分間維持し、その後40℃まで30分間かけて降温させた。
(組立例A11)
 樹脂ペーストA2が印刷された基板を乾燥機に入れ、40℃から160℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させた。
<ダイアタッチ>
(組立例A2、A4、A6~A11)
 上記各組立例のBステージ化によって形成されたボンディング層上にガラスチップ(10.0mm×12.0mm×50μm厚)を、圧着機(CM-110)を用い、140℃の熱盤上で、50Nの荷重を掛けて1秒間圧着して、濡れ性評価用半導体装置をそれぞれ得た。
[濡れ性の評価]
 上記で得られた評価用半導体装置について、ガラスチップ圧着後の樹脂ペーストの広がりをガラスチップ上面から目視にて確認し、以下の判定基準により評価した。結果を表3及び表4に示す。
a:気泡及び空隙の総面積が印刷形状の5%以上である(濡れ性不足)
b:メタルマスクの開口部の面積が印刷形状の±5%未満である(適度な濡れ性)
c:ダイアタッチ後の濡れ面積がダイアタッチ前の濡れ面積の105%以上である(濡れ性過剰)。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明に係るダイボンディング用樹脂ペーストは、半導体チップを貼り付ける基板上にスクリーン印刷によって容易に供給・塗布でき、光照射によってBステージ化することにより比較的低い温度で半導体チップを貼り付けることができ、さらにはアウトガスの発生を抑制することができる。これにより、半導体支持部材上にダイボンディング材を印刷法により塗布して半導体チップを接合するときのタクトタイムを削減することができ、なおかつBステージ化での硬化不足や過度の硬化による組立不具合を十分防止できて、信頼性に優れる半導体装置を生産性よく製造することが可能となる。
-第2の実施例-
<樹脂ペーストの調製>
(樹脂ペーストB1~B5)
 表5に示す各材料を同表に示す割合(質量部)で混合して、樹脂ペーストB1~B5をそれぞれ調製した。
 なお、表1における各記号は下記の材料を意味する。
FA-220M:ポリエチレングリコール#200ジメタクリレート(日立化成工業社製、商品名、25℃での粘度:9~15mPa・s)。
BAH-1000Y:新中村化学工業(株)製、商品名、Bis A型エポキシ樹脂と2-プロペン酸の反応物(ジエポキシ、ハーフエポキシアクリレート、ジアクリルの混合品、オーダーメイド品、40℃での粘度:62500mPa・s)。
エポトート YDF-8170C:東都化成(株)製、商品名、フェノールホルムアルデヒド重縮合物のエピクロロヒドリンによるジグリシジエーテル化変性物。
JER 1032-H60:三菱化学(株)製、商品名、α-2,3-エポキシプロポキシフェニル-ω-ヒドロポリ(n=1~7){2-(2,3-エポキシプロポキシ)ベンジリデン-2,3-エポキシプロポキシフェニレン}。
IRGACURE-651:BASF JAPAN(株)製、商品名、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン。
TPPK:東京化成工業(株)、商品名、テトラフェニルホスホニウムテトラフェニルボラート。
2P4MHZ-PW:四国化成工業(株)社製、商品名、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール。
パークミルD:日油(株)製、商品名、過酸化物。
CTBNX-1009SP:PTI JAPAN(株)製、商品名、ブタジエン-アクリロニトリル共重合体。
アエロジル50:日本アエロジル(株)製、商品名、SiO
アエロジル380:日本アエロジル(株)製、商品名、SiO
カルビトールアセテート:和光純薬(株)製、酢酸2-(2-エトキシエトキシ)エチル。
Figure JPOXMLDOC01-appb-T000009
 上記で得られた樹脂ペーストB1~B5について、以下の方法にしたがって、25℃での粘度、不揮発分(NV)率、及びBステージ化前後のドッグイヤー比率(%)を求めた。また、樹脂ペーストB1及びB5については、硬化物の25℃でのYoung弾性率(MPa)を求めた。結果を表5に示す。
[粘度]
 樹脂ペーストの粘度は、東機産業株式会社製E型粘度計(VISCONIC ELD)を用い、直径19.4mm、3°コーン、0.5rpm、25℃の条件で測定した。
[NV率]
 以下の手順で樹脂ペーストの不揮発分(NV)率を求めた。
樹脂ペーストB1、B3~B5:直径約60mm高さ約14mmの円柱状の金属シャーレ(質量:W1(g))の底面内側に樹脂ペースト約1.5gをなるべく均一な膜厚になるようにのせて、測定用試料とした。その後、のせた樹脂ペーストの質量(W2(g))を正確に測定した。次に、これらの測定用試料に対して、高圧水銀灯を用い、酸素濃度1ppm以下の窒素雰囲気下、露光量1000mJ/cmの紫外線を照射した。次に、紫外線照射した測定用試料をオーブンに入れ、40℃から140℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させた。その後、オーブンで200℃、2時間の加熱を行った。加熱後の測定用試料全体の質量(W3(g))を測定した。これらの値を用い、下記の式からNV率(%)を求めた。
NV(%)=[{(W3)-(W1)}/(W2)]×100
樹脂ペーストB2:直径約60mm高さ約14mmの円柱状の金属シャーレ(質量:W1(g))の底面内側に樹脂ペースト約1.5gをなるべく均一な膜厚になるようにのせて、測定用試料とした。その後、のせた樹脂ペーストの質量(W2(g))を正確に測定した。次に、測定用試料をオーブンに入れ、40℃から140℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させた。その後、オーブンで200℃、2時間の加熱を行った。加熱後の測定用試料全体の質量(W3(g))を測定した。これらの値を用い、上記の式からNV率(%)を求めた。
[ドッグイヤー比率]
 下記のスクリーン印刷の条件で形成されるBステージ化前における塗膜、及び、下記の条件でBステージ化された塗膜について、非接触型の形状測定装置((株)KEYENCE製、KS-1100シリーズなど)を用いて塗膜表面の形状を測定し、断面の形状をビジュアル化することによりドッグイヤー比率を求めた。
(スクリーン印刷)
基板(レジスト):MCL-E-679F(AUS-308)
マスク:厚さ120ミクロンのメタルマスク
印刷形状:3mm×10mm×100μm厚
印刷機:ミナミ(株)製、MK-838SV
スキージ速度:30mm/秒
スキージオフセット:-0.1mm
版離れ速度:2mm/秒
スキージ角:60°
クリアランス:0mm(コンタクト)
(Bステージ化)
樹脂ペーストB1、B3~B5:露光機(ミカサ(株)社製、アライナーML-210FM、照度13mW/cm以上(365nm換算)、光源:高圧水銀灯)を用い、露光量1000mJ/cmの条件で、紫外線を照射。
樹脂ペーストB2:オーブンで40℃から140℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させた。
[Young弾性率]
 テフロン(登録商標)シート上に膜厚100μmとなるよう各樹脂ペーストを塗布して塗膜を形成し、25℃の温度条件下、露光機(ミカサ(株)社製、アライナーML-210FM、照度13mW/cm以上(365nm換算)、光源:高圧水銀灯)を用い、露光量1000mJ/cmの条件で、紫外線を照射し、その後、オーブンで、140℃、5時間、酸素濃度1pp以下の窒素雰囲気下の条件で熱硬化を行い、硬化物を得た。得られた硬化物について、下記の試験器を用いて下記の条件で25℃におけるYoung弾性率を測定した。
試験器:RSA-III、TA instruments社製
試験モード:引張り
試験温度:-100~300℃
昇温速度:5℃/分
試験周波数:1.0Hz
温度調整:LN2
チャック間距離:約20mm(初期)
DeltaLリミット:10mm。
 上記で得られた樹脂ペーストB1~B5を用いて種々の組立条件にて半導体装置の製造を行い、下記の方法にしたがって、基板の反り、濡れ性、アウトガスを評価した。
(組立例B1~B3)
 ソルダーレジスト(商品名:AUS-308、太陽インキ製造(株)社製)が塗布された有機基板(MCL-E-679F、日立化成工業株式会社製)上に、印刷機とメタルマスク(マスク形状:10.0mm×3.0mm×120μmの開口部が2箇所)を用い、樹脂ペーストB1をスクリーン印刷して塗膜を形成した。次に、形成した塗膜に対して、露光機(ミカサ(株)社製、アライナーML-210FM、照度13mW/cm以上(365nm換算)、光源:高圧水銀灯)を用い、露光量100、1000、又は5000mJ/cmの条件で、紫外線を照射し、Bステージ化されたボンディング層をそれぞれ形成した。
 90℃の熱盤上で、上記ボンディング層上にガラスチップ(10.0mm×12.0mm×50μm厚)を、圧着機(CM-110)を用い、50Nの荷重を掛けて1秒間圧着して、評価用半導体装置を得た。
[基板の反り]
 上記でBステージ化されたボンディング層を有する有機基板について、非接触型の形状測定装置((株)KEYENCE製、KS-1100シリーズ)を用い、塗膜表面の形状を測定し、断面(塗膜の厚み方向に切断した面)の形状をビジュアル化することにより反りを測定した。
[濡れ性の評価]
 上記で得られた評価用半導体装置について、ガラスチップ圧着後の樹脂ペーストの広がりをガラスチップ上面から目視にて確認し、以下の判定基準により評価した。結果を表6に示す。
a:気泡及び空隙の総面積が印刷形状の5%以上である(濡れ性不足)。
b:メタルマスクの開口部の面積が印刷形状の±5%未満である(適度な濡れ性)。
c:ダイアタッチ後の濡れ面積がダイアタッチ前の濡れ面積の105%以上である(濡れ性過剰)。
[アウトガス]
 Bステージ化した後のボンディング層について、180℃で加熱した時の重量減少率を測定し、95%以上のものをA、95%未満のものをCとした。結果を表6に示す。なお、アウトガスの測定については、精度の観点から、10cm×10cm×100μm厚に印刷した塗膜をBステージ化したボンディング層を用いた。
(組立例B4~B6)
 ソルダーレジスト(商品名:AUS-308、太陽インキ製造(株)社製)が塗布された有機基板上に、印刷機とメタルマスク(マスク形状:10.0mm×3.0mm×100μmの開口部が2箇所)を用い、樹脂ペーストB2をスクリーン印刷して塗膜を形成した。次に、形成した塗膜に対して、オーブンで40℃から135℃、140℃又は145℃まで30分間で昇温させ、その温度を30分間維持し、その後40℃まで30分間かけて降温させて、Bステージ化されたボンディング層をそれぞれ形成した。
 90℃の熱盤上で、上記ボンディング層上にガラスチップ(10.0mm×12.0mm×50μm厚)を、圧着機(CM-110)を用い、50Nの荷重を掛けて1秒間圧着して、評価用半導体装置を得た。
 なお、組立例B4におけるBステージ化の温度135℃、及び組立例B6におけるBステージ化の温度145℃の条件はそれぞれ、オーブン内の温度分布にバラつきが発生したときの低温部及び高温部を想定したものである。
 組立例B1~B3と同様にして、基板の反り、濡れ性、アウトガスを評価した。結果を表6に示す。
 また、上記で得られた樹脂ペーストB1~B5を用いて種々の組立条件にて半導体装置の製造を行い、下記の方法にしたがって、ダイシェア強度、アウトガスを評価した。
(組立例B7~B9)
 ソルダーレジスト(商品名:AUS-308、太陽インキ製造(株)社製)が塗布された有機基板上に、印刷機とメタルマスク(マスク形状:3mm×10mm×100μm厚)を用い、樹脂ペーストB1、B3又はB4をそれぞれスクリーン印刷して塗膜を形成した。
 次に、形成したそれぞれの塗膜に対して、露光機(ミカサ(株)社製、アライナーML-210FM、照度13mW/cm以上(365nm換算)、光源:高圧水銀灯)を用い、露光量1000mJ/cmの条件で、紫外線を照射し、Bステージ化されたボンディング層をそれぞれ形成した。
 90℃の熱盤上で、上記ボンディング層上にシリコンチップ(5mm×5mm×0.5mm厚)を、圧着機(CM-110)を用い、50Nの荷重を掛けて1秒間圧着した。
 次に、オーブンで40℃から130℃まで30分間で昇温させ、その温度を60分間維持し、その後40℃まで30分間かけて降温させてアフターキュアを行い、評価用半導体装置を得た。
[ダイシェア強度の測定]
 上記で得られた評価用半導体装置について、自動接着力試験機(商品名:serie-4000、デイジ社製)を用い、180℃におけるせん断強さ(kgf/チップ)を測定した。結果を表7に示す。
[アウトガス]
 Bステージ化した後のボンディング層について、180℃で加熱した時の重量減少率を測定し、95%以上のものをA、95%未満のものをCとした。結果を表7に示す。
(組立例B10)
 組立例B7におけるCステージ化の温度130℃を175℃に変更した以外は組立例B7と同様にして評価用半導体装置を得た。
[基板の反り]
 得られた評価用半導体装置について、以下の方法により基板の反りを測定した。結果を、組立例B7の評価用半導体装置の結果と合わせて表8に示す。
 非接触型の形状測定装置((株)KEYENCE製、KS-1100シリーズ)を用い、基板の形状を測定し、基板断面の形状をビジュアル化することにより反りを測定した。
(組立例B11)
 組立例B7における樹脂ペーストB1を樹脂ペーストB5に変更した以外は組立例B7と同様にして評価用半導体装置を得た。得られた評価用半導体装置について、上記方法により基板の反りを測定した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本発明に係るダイボンディング用樹脂ペーストは、半導体チップを貼り付ける基板上にスクリーン印刷によって容易に供給・塗布でき、光照射によってBステージ化することにより、比較的低い温度で半導体チップを貼り付けることができる。さらには、ドッグイヤー比率を従来よりも小さくすることができ、アウトガスの発生を抑制することができる。また本発明に係るダイボンディング用樹脂ペーストは、上記の効果を奏しつつ、低応力性、接着性、耐熱性を十分に併せ持つことができる。本発明に係るダイボンディング用樹脂ペーストは、有機基板などの絶縁性支持基板や銅リードフレームに好適に使用でき、また、42アロイリードフレームにも好適に使用できる。本発明に係るダイボンディング用樹脂ペーストを用い本発明に係る半導体装置を用いることにより、パッケージ信頼性を高めることができる。
 10…半導体支持部材、12…電極、20…マスク、30…樹脂ペーストの塗膜、32…光照射された塗膜、34…ダイボンディング層、40…スキージ、50…半導体チップ、52…ワイヤーボンディング、54…はんだボール、100…半導体装置。

Claims (15)

  1.  半導体チップを搭載するための半導体支持部材上に、光硬化性成分及び熱硬化性成分を含み溶剤の含有量が5質量%以下であるダイボンディング用樹脂ペーストを印刷法により塗布して前記樹脂ペーストの塗膜を設ける第1工程と、
     前記塗膜への光照射により前記光硬化性成分を光硬化する第2工程と、
     前記半導体支持部材と半導体チップとを、光照射された前記塗膜を挟んで圧着することにより接合する第3工程と、を備える、半導体装置の製造方法。
  2.  前記第2工程における光照射の露光量が1mJ/cm以上である、請求項1に記載の半導体装置の製造方法。
  3.  前記第2工程における光照射が窒素雰囲気下で行われる、請求項1又は2に記載の半導体装置の製造方法。
  4.  前記第3工程の前に、前記半導体支持部材を60~180℃で60分以下の間加熱する、請求項1~3のいずれか一項に記載の半導体装置の製造方法。
  5.  前記第3工程の後に、前記半導体チップと接合された前記半導体支持部材を60~200℃で5~300分間加熱する工程、を更に備える、請求項1~4のいずれか一項に記載の半導体装置の製造方法。
  6.  前記各工程を経た後の前記半導体チップと前記半導体支持部材とをワイヤーボンディングにより電気的に接続し、その後前記半導体チップを樹脂封止する工程、を更に備える、請求項1~5のいずれか一項に記載の半導体装置の製造方法。
  7.  25℃における粘度が100Pa・s以下である光重合性化合物、熱硬化性化合物、及び熱可塑性エラストマーを含有し、溶剤の含有量が5質量%以下である、ダイボンディング用樹脂ペースト。
  8.  光重合開始剤を更に含む、請求項7に記載のダイボンディング用樹脂ペースト。
  9.  硬化促進剤を更に含む、請求項7又は8に記載のダイボンディング用樹脂ペースト。
  10.  フィラーを更に含む、請求項7~9のいずれか一項に記載のダイボンディング用樹脂ペースト。
  11.  脱泡剤、破泡剤及び抑泡剤からなる群より選択される1種以上の添加剤を更に含む、請求項7~10のいずれか一項に記載のダイボンディング用樹脂ペースト。
  12.  25℃における粘度が5~1000Pa・sである、請求項7~11のいずれか一項に記載のダイボンディング用樹脂ペースト。
  13.  前記ダイボンディング用樹脂ペーストを厚さ100μmの塗膜にし、この塗膜に酸素濃度1ppm以下の窒素雰囲気下、25℃で、波長が365nmの光を露光量1000mJ/cmで照射したときに、光照射された塗膜の100℃における溶融粘度が100~100000Pa・sとなり、光照射された前記塗膜を更に140℃、5時間、酸素濃度1ppm以下の窒素雰囲気下で加熱したときに、加熱された前記塗膜の25℃におけるYoung弾性率が1~3000MPaとなる、請求項7又は8に記載のダイボンディング用樹脂ペースト。
  14.  半導体チップを搭載するための半導体支持部材上に、請求項7~13のいずれか一項に記載のダイボンディング用樹脂ペーストをスクリーン印刷により塗布して前記樹脂ペーストの塗膜を設ける第1工程と、
     前記塗膜に光照射する第2工程と、
     前記半導体支持部材と半導体チップとを、光照射された前記塗膜を挟んで圧着する第3工程と、を備える、半導体装置の製造方法。
  15.  請求項14に記載の半導体装置の製造方法により得られる、半導体装置。
PCT/JP2011/072786 2010-10-04 2011-10-03 半導体装置の製造方法 WO2012046695A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-225008 2010-10-04
JP2010225008 2010-10-04
JP2010225005 2010-10-04
JP2010-225005 2010-10-04

Publications (1)

Publication Number Publication Date
WO2012046695A1 true WO2012046695A1 (ja) 2012-04-12

Family

ID=45927691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072786 WO2012046695A1 (ja) 2010-10-04 2011-10-03 半導体装置の製造方法

Country Status (3)

Country Link
JP (2) JP2012099798A (ja)
TW (1) TW201224097A (ja)
WO (1) WO2012046695A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143658B2 (ja) * 2013-11-29 2017-06-07 チェイル インダストリーズ インコーポレイテッド 接着剤層用塗布組成物、半導体用接着フィルムおよびその製造方法、ならびに、これを用いた半導体装置の製造方法
JP6129107B2 (ja) * 2014-03-27 2017-05-17 三菱電機株式会社 電力用半導体装置、および電力用半導体装置の製造方法
KR102012788B1 (ko) * 2015-09-23 2019-08-21 주식회사 엘지화학 접착 필름, 반도체 장치의 제조 방법 및 반도체 장치
JP2017145382A (ja) * 2016-02-15 2017-08-24 太陽インキ製造株式会社 導電性接着剤とその製造方法、硬化物および電子部品
TW201714227A (zh) * 2015-10-12 2017-04-16 Yu-Mian Zhuang 電子封裝結構之處理方法
CN107924912B (zh) * 2016-03-31 2020-09-11 株式会社Lg化学 半导体器件及其制造方法
JP2017011998A (ja) * 2016-10-20 2017-01-12 アピックヤマダ株式会社 マグネットの製造方法及びモータコアの樹脂モールド方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258425A (ja) * 2006-03-23 2007-10-04 Sumitomo Bakelite Co Ltd 半導体用接着剤、これを用いた半導体装置および半導体装置の製造方法
JP2007258508A (ja) * 2006-03-24 2007-10-04 Sumitomo Bakelite Co Ltd 半導体用接着剤、これを用いた半導体装置および半導体装置の製造方法
JP2007270130A (ja) * 2006-03-08 2007-10-18 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト、それを用いた半導体装置の製造方法及び半導体装置
JP2008277803A (ja) * 2007-04-04 2008-11-13 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト組成物、それを用いた半導体装置の製造方法及び半導体装置
JP2010177244A (ja) * 2009-01-27 2010-08-12 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト、該樹脂ペーストを用いた半導体装置の製造方法、および該製造方法により得られる半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270130A (ja) * 2006-03-08 2007-10-18 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト、それを用いた半導体装置の製造方法及び半導体装置
JP2007258425A (ja) * 2006-03-23 2007-10-04 Sumitomo Bakelite Co Ltd 半導体用接着剤、これを用いた半導体装置および半導体装置の製造方法
JP2007258508A (ja) * 2006-03-24 2007-10-04 Sumitomo Bakelite Co Ltd 半導体用接着剤、これを用いた半導体装置および半導体装置の製造方法
JP2008277803A (ja) * 2007-04-04 2008-11-13 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト組成物、それを用いた半導体装置の製造方法及び半導体装置
JP2010177244A (ja) * 2009-01-27 2010-08-12 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト、該樹脂ペーストを用いた半導体装置の製造方法、および該製造方法により得られる半導体装置

Also Published As

Publication number Publication date
JP2012099798A (ja) 2012-05-24
TW201224097A (en) 2012-06-16
JP2012099799A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
WO2012046695A1 (ja) 半導体装置の製造方法
JP5549671B2 (ja) 感光性接着剤、並びにそれを用いたフィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ及び半導体装置
JP5732815B2 (ja) 感光性接着剤組成物、並びにそれを用いたフィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ、接着剤層付透明基板、及び半導体装置。
JP5360124B2 (ja) ダイボンディング用樹脂ペーストおよびその用途
JP5737185B2 (ja) 半導体装置、半導体装置の製造方法及び接着剤層付き半導体ウェハ
JP6436081B2 (ja) 感光性樹脂組成物、フィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ及び半導体装置
KR100831153B1 (ko) 반도체 조립용 접착 필름 조성물, 이에 의한 접착 필름 및이를 포함하는 다이싱 다이본드 필름
JP6136101B2 (ja) 感光性樹脂組成物、フィルム状樹脂、樹脂シート、樹脂パターン、樹脂層付半導体ウェハ、樹脂層付透明基板、半導体装置及び半導体装置の製造方法
JP4466397B2 (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JP4816876B2 (ja) ダイボンディング用樹脂ペーストおよび半導体装置の製造方法
JP2013179272A (ja) 太陽電池モジュールの製造方法、及び樹脂組成物
JPWO2011058998A1 (ja) 液状半導体用接着剤組成物、半導体装置及び半導体装置の製造方法
JP5157938B2 (ja) ダイボンディング用樹脂ペースト、該樹脂ペーストを用いた半導体装置の製造方法、および該製造方法により得られる半導体装置
WO2010110069A1 (ja) ダイボンディング用樹脂ペースト、それを用いた半導体装置の製造方法、及び半導体装置
JP5477389B2 (ja) 半導体用接着剤組成物、半導体装置及び半導体装置の製造方法
JP5668413B2 (ja) 半導体装置の製造方法
JP5630334B2 (ja) 半導体用接着剤組成物、半導体装置及び半導体装置の製造方法
JP2013004813A (ja) 半導体用積層シート、接着剤層付き半導体チップの製造方法及び半導体装置の製造方法
JP2014215440A (ja) 感光性樹脂組成物、フィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ、及び半導体装置
JP2008004751A (ja) 半導体装置の製造方法
JP2007246875A (ja) ダイボンディング用樹脂ペースト、該樹脂ペーストを用いた半導体装置の製造方法、および該製造方法により得られる半導体装置
JP5994266B2 (ja) 感光性樹脂組成物、フィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ、及び半導体装置
JP2008277803A (ja) ダイボンディング用樹脂ペースト組成物、それを用いた半導体装置の製造方法及び半導体装置
WO2012017955A1 (ja) 接着剤層付き半導体ウェハの製造方法、感光性接着剤及び半導体装置
JP6113401B2 (ja) 接着フィルム付き半導体チップの製造方法及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830627

Country of ref document: EP

Kind code of ref document: A1