WO2012045772A1 - Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung - Google Patents
Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung Download PDFInfo
- Publication number
- WO2012045772A1 WO2012045772A1 PCT/EP2011/067381 EP2011067381W WO2012045772A1 WO 2012045772 A1 WO2012045772 A1 WO 2012045772A1 EP 2011067381 W EP2011067381 W EP 2011067381W WO 2012045772 A1 WO2012045772 A1 WO 2012045772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- substrate
- phosphor
- optoelectronic semiconductor
- ceramic
- Prior art date
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 26
- 239000004065 semiconductor Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000011521 glass Substances 0.000 claims abstract description 117
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 238000006243 chemical reaction Methods 0.000 claims abstract description 42
- 239000000919 ceramic Substances 0.000 claims abstract description 30
- 239000011159 matrix material Substances 0.000 claims abstract description 29
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 68
- 239000002241 glass-ceramic Substances 0.000 claims description 19
- 239000000853 adhesive Substances 0.000 claims description 13
- 230000001070 adhesive effect Effects 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 230000005855 radiation Effects 0.000 claims description 11
- 239000006060 molten glass Substances 0.000 claims description 6
- 238000007650 screen-printing Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 3
- 230000008595 infiltration Effects 0.000 claims description 3
- 238000001764 infiltration Methods 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 34
- 239000010408 film Substances 0.000 description 18
- 239000002245 particle Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 5
- 239000005385 borate glass Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 239000003513 alkali Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000005365 phosphate glass Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 229910003564 SiAlON Inorganic materials 0.000 description 2
- -1 YAG: Ce Chemical compound 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 241000905957 Channa melasoma Species 0.000 description 1
- 101100346656 Drosophila melanogaster strat gene Proteins 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- KAMGYJQEWVDJBD-UHFFFAOYSA-N bismuth zinc borate Chemical compound B([O-])([O-])[O-].[Zn+2].[Bi+3] KAMGYJQEWVDJBD-UHFFFAOYSA-N 0.000 description 1
- YISOXLVRWFDIKD-UHFFFAOYSA-N bismuth;borate Chemical compound [Bi+3].[O-]B([O-])[O-] YISOXLVRWFDIKD-UHFFFAOYSA-N 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- ZPPSOOVFTBGHBI-UHFFFAOYSA-N lead(2+);oxido(oxo)borane Chemical compound [Pb+2].[O-]B=O.[O-]B=O ZPPSOOVFTBGHBI-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052605 nesosilicate Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000004762 orthosilicates Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/641—Heat extraction or cooling elements characterized by the materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/644—Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
Definitions
- the invention is based on an optoelectronic semiconductor component according to the preamble of claim 1, in particular a conversion LED. It also describes an associated manufacturing process.
- WO 2006/122524 describes a luminescence conversion LED which uses a phosphor which is embedded in glass.
- An object of the present invention is, in an optoelectronic semiconductor device according to the preamble of claim 1 an improved solution for the Problem of heat dissipation at the conversion element to ⁇ admit. Another object is to provide for a producible information model.
- the present invention solves the following problem: improved efficiency and lifetime of the LED by increased heat dissipation of the conversion element by replacement of the organic material (plastic) by glass and ceramic or glass ceramic, which have better thermal conductivity and UV resistance.
- a modified approach of a separate conversion element which is structured is used: use of a thin transparent or translucent ceramic or glass-ceramic foil as substrate or carrier material.
- the thickness of the carrier film is in the range> 1 ⁇ to ⁇ 100 ⁇ , preferably ⁇ 3 ⁇ to ⁇ 50 ⁇ , in particular ⁇ 5 ⁇ to ⁇ 20 ⁇ .
- This film can, for. B. produced by doctor Blade method and then thermally sintered. Subsequently, a thin compact and relatively low-bubble glass layer is laminated to the film. The importance of a low-bubble layer lies in its reduced scattering effect.
- low-bubble means, in particular, that the proportion of bubbles in the glass layer is at most 10% by volume, preferably at most 5% by volume, particularly preferably at most 1% by volume. Due to the temperature control at the manu This parameter can be set specifically for the glass matrix. The higher the temperature, the less bubbles the glass layer becomes. The sinking of the phosphor is carried out by comparison, at significantly lower temperatures to damage the phosphor to avoid mög ⁇ lichst.
- the thickness of the glass layer is ⁇ 200 ⁇ , preferably ⁇ 100 ⁇ , in particular ⁇ 50 microns, but at least as high as the largest phosphor particles.
- This layer can, for. B. by screen printing of glass powder with subsequent glazing or by applying molten glass are applied directly to the film.
- Al 2 O 3 , YAG, AlN, A10N, SiAlON or a glass ceramic is preferably suitable as the material for the substrate.
- a material for the glass layer is preferably a low-melting glass, preferably lead-free or lead poor, with a He ⁇ softening temperature ⁇ 500 ° C, preferably 350 to 480 ° C, as described for example in DE 10 2010 009 456.0.
- this system forms a laminate.
- the laminate coated with phosphor is then heated to such an extent (in particular, the temperature is at most at the so-called hemisphere point of the glass, in particular special of the Gla ⁇ ses) that the glass only slightly softened at least the softening temperature of at least Tg of the glass, especially before ⁇ Trains t and the light ⁇ material sinks into the glass layer and surrounded it.
- the advantage of sinking is that only low temperatures are required and thus the phosphor is not damaged. In the case of the glass from DE 10 2010 009 456.0 this is a temperature of at most 350 ° C.
- Suitable luminescent materials are in principle all known phosphors suitable for LED conversion or mixtures of phosphors, in particular garnets, nitridosilicates, orthosilicates, sions, sialones, calsines, etc.
- the substrate As a further alternative, it is possible to choose the substrate as a very thin film of ceramic or glass ceramic and then to infiltrate with glass. Compared to the two aforementioned examples, the substrate must be only lightly sintered into the sem ⁇ case, this is the Reduced sintering temperature compared to a "more compact" sintering or shortening the sintering time, ie only so high that the particles of the ceramic are fixed together and many pores remain, so a porous body is formed.
- the porosity is in the range between 30-70% by volume
- a thin glass layer thicker than at least 1 ⁇ m and at most 200 ⁇ m thick is applied directly and then heated to a temperature which corresponds at least to the pour point of the glass, preferably at most to the refining temperature of the glass that the glass is very thin liquid and is drawn by capillary action into the porous film which constitutes the substrate.
- the glass is preferably a low-melting glass, before ⁇ preferably lead-free or bleiarm, with a Softening ⁇ temperature of at most 500 ° C as described for example in DE 10 2010 009 456.0
- the temperatures for infiltration in this case are at least 400 ° C., preferably at least 500 ° C.
- the then applied to the substrate phosphor is allowed at relatively low temperatures of at least 50 ° C, preferably at higher temperatures, ie at a temperature which corresponds at most to the hemisphere point of the glass in the substrate, more precisely in the glass contained in the pores, sink.
- temperatures of at least 50 ° C, preferably at higher temperatures, ie at a temperature which corresponds at most to the hemisphere point of the glass in the substrate, more precisely in the glass contained in the pores, sink.
- this is a temperature of at most 350 ° C.
- a thin glass layer, in which the phosphor sinks remains on the surface of the film in a first exemplary embodiment. In this case, the adhesion is much more robust than with a laminate.
- a glass ⁇ shot at the film surface is not given, the phosphor blend of the substrate is lowered into the surface structure of the glass-ceramic.
- the conversion element can be attached to the chip either with an inorganic adhesive such as a low melting glass or an inorganic sol-gel as well as with organic adhesive such as silicone or also an organic sol-gel. It can also be used as a "remote phosphor", ie away from the chip.
- an inorganic adhesive such as a low melting glass or an inorganic sol-gel as well as with organic adhesive such as silicone or also an organic sol-gel. It can also be used as a "remote phosphor", ie away from the chip.
- the glass of the substrate used, in particular of the laminate, low ⁇ melting and simultaneously serves as an inorganic Kle ⁇ over between the conversion element and chip.
- Such glass is, for example, in DE 10 2010 009 456.0 ⁇ be written and allows sinking of the phosphor and a bonding chip and conversion element at temperatures ⁇ 350 ° C.
- the glass in this case faces the chip.
- the film may be coated on both sides with glass and possibly with phosphor on one or both sides. The application of the glass ge ⁇ z. B. by immersion, so-called. Dipping, the film in the molten glass. Subsequently, the phosphor coating and the sinking of the phosphor into the glass at low temperatures, possibly in two steps.
- the substrate, in particular laminate can also be a sand ⁇ more, that is, the glass layer with the sunken phosphor is located between two sheets, which consist of the same or of different materials, and one or both sides are coated with glass.
- the glass material can be chosen differently.
- the glass a high refractive index (preferably n> 1.8), in particular the refractive index of the glass is similar to the refractive index of the embedded phosphor ⁇ component or components and the phosphor chosen to be similar to the ceramic / glass-ceramic.
- the ceramic or glass ceramic foil may be facing or facing away from the chip. In the latter case, the ceramic also has a light-scattering effect.
- the latter depends inter alia on the particle size of the particles contained in the ceramic or glass ceramic and can sometimes be influenced by the temperature treatment ⁇ ment.
- the particle size is typically ⁇ 60 ⁇ , preferably ⁇ 40 ⁇ , particularly preferably be ⁇ 30 ⁇ . They should be at least 1 nm, more preferably we ⁇ ssens 5 nm, more preferably be at least 10 nm, for many applications is a minimum value of 100 nm suffi ⁇ accordingly.
- a set of conversion elements, and in particular laminate base produced as a larger part in ei ⁇ nem operation and then cut into smaller pieces, the actual conversion elements.
- the thickness of the glass layer with the sunken Leucht ⁇ material should preferably be ⁇ 200 ⁇ , preferably ⁇ 100 ⁇ , in particular ⁇ 50 ⁇ .
- the thickness of the glass layer is at least as high as the largest luminous material particles of the phosphor powder used, and in particular ⁇ sondere at least twice as thick.
- Suitable glass matrix are, for example, phosphate glasses and borate glasses, in particular alkali phosphate glasses, aluminum phosphate glasses, zinc phosphate glasses, phosphotellurite glasses, bismuth borate glasses, zinc borate glasses and zinc bismuth borate glasses.
- ZnO-Bi 2 03 B-2 03 also in conjunction with Si0 2 and / or alkali and / or alkaline earth oxide and / or Al 2 03 such as ZnO-Bi 2 0 3 -B 2 0 3 -Si0 2 or ZnO Bi 2 O 3 -B 2 O 3 -BaO-SrO-SiO 2 ; ZnO-B 2 0 3i also in conjunction with Si0 2 and / or alkali and / or alkaline earth metal oxide and / or A1 2 0 3 such as ZnO-B 2 0 3 - Si0 2 ;
- Bi 2 03-B 2 03 also in conjunction with Si0 2 and / or Alkakl and / or alkaline earth oxide and / or Al 2 O 3 such as Bi 2 03-B 2 0 Si0 2 .
- the carrier film may consist of a ceramic such as Al 2 O 3 , YAG, AlN, A10N, SiAlON, etc. or a glass ceramic.
- the thickness of the carrier film is preferably in the range of ⁇ 100 ⁇ , preferably ⁇ 50 ⁇ , in particular ⁇ 20 ⁇ . But it should be at least 1 ⁇ , better 3 ⁇ , preferably min ⁇ least 5 ⁇ thick.
- the crystals contained in the glass ceramic can be excited to fluorescence even by exciting the primary emission of the chip and thus contributing to the conversion.
- a well-known example is YAG: Ce.
- the ceramic film contains a phosphor such.
- B. YAG: Ce or it consists partially or completely of this.
- a thin, low-bubble glass layer is laminated to the ceramic film, whereupon a separate phosphor is applied. This sinks by a subsequent slight warming in the glass.
- the applied separate phosphor can usually be another phosphor whose emission lies in a different spectral range than that of the yellow-emitting YAG: Ce.
- the separate phosphor is a red emitting phosphor, which produces warm white light with a blue emitting chip and the yellow emitting ceramic. By selecting the proportion of white ⁇ further phosphor, the color of the LED can be controlled.
- an identical or similar phosphor as the phosphor already introduced in the ceramic of the substrate additionally in the glass layer is brought to compensate, for example, a chip-based Farbort ⁇ fluctuation (drift).
- a chip-based Farbort ⁇ fluctuation drift
- oxidic particles such as, for example, Al 2 O 3 , TiO 2 , ZrC> 2 may also be added to the phosphor as a scattering agent.
- two ceramics which already contain the phosphor are thinly coated with glass.
- the glassy layer ei ⁇ nes of the two ceramic plates is then coated with phosphor, which sinks into this after a temperature treatment.
- Following the glassy surfaces of the two ceramic plates are placed on each other and glued together in a further temperature step.
- the color location of the two ceramic plates differs from that of the sunken phosphor.
- only one ceramic plate is thinly coated with glass and then glued at a temperature treatment with the other ceramic plate.
- the ceramic film As a substrate with glass on both sides, so that it is also possible to apply phosphor on both sides with the same or different emission.
- a glass ceramic as a substrate.
- the conversion element consists of a combination of glass and substrate, namely ceramic or glass ceramic, wherein a phosphor is embedded in glass.
- the glass matrix can u. U. simultaneously serve as an adhesive for the composite of chip and conversion element.
- the glass used should be compact, ie melted and low in bubbles.
- the substrate, whether ceramic or glass ceramic can also serve as a light-scattering element and is at least translucent.
- the substrate, whether ceramic or glass ceramic can also contain or consist of phosphor itself.
- the optoelectronic semiconductor component may be an LED or else a laser.
- An optoelectronic semiconductor device with a light source, a housing and electrical An circuits ⁇ , wherein the light source comprises a chip on ⁇ , the primary radiation in the UV or blue emitted whose peak wavelength is 300 to 490 nm, in particular in the area, where the primary radiation partially or is completely converted by a front thereof ⁇ mounted conversion element in radiation of a different wavelength, characterized in ⁇ net that the conversion element has a translucent or transparent substrate is made of Kera ⁇ mik or glass-ceramic, wherein the sub ⁇ strat applied to a glass matrix is, in which a phosphor is embedded.
- the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the Glasmat ⁇ rix is applied as a layer on the substrate.
- the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the substrate has pores into which the glass matrix is at least partially introduced.
- the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the substrate and the glass matrix form a laminate.
- the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the Glasmat ⁇ rix simultaneously serves as an adhesive for a composite of chip and conversion element or for a combination of two conversion elements.
- the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the Glasmat ⁇ rix free of bubbles or substantially free of bubbles.
- the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the substrate itself is partly or fully fluorescent.
- the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the substrate is acted upon on both sides with a glass matrix.
- a method according to claim 10 characterized in that in the second step, a glass layer is laminated, in particular either by Siebdru ⁇ ck glassy powder with subsequent glazing or by mounting molten glass directly onto the substrate.
- a glass layer is laminated, which is already provided with phosphor, in particular by screen printing of glassy powder which has been previously mixed with phosphor powder, followed by glazing.
- Figure 1 shows a conversion LED according to the prior art
- FIG. 2 shows an LED with a novel converter element
- Figure 8 shows a substrate with pores and contained therein
- FIG. 1 shows as a semiconductor component a conversion LED 1 which uses a chip 2 of the type InGaN as the primary radiation source. It has a housing 3 with a boar ⁇ rd 4, on which the chip is seated, and a reflector 5. The chip is preceded by a conversion element 6, which partly konver ⁇ the blue radiation by means of a phosphor, such as YAG: Ce, in longer wavelength radiation ⁇ advantage.
- the conversion element 6 is platelet-shaped according to the prior art and has a silicone bed in which phosphor powder is dispersed. The electrical connections are not shown, they correspond übli ⁇ cher technology.
- FIG. 2 shows a first exemplary embodiment according to the invention.
- the conversion element 6 used is a substrate 7 made of Al 2 O 3, which is translucent and is shaped as a foil in the manner of a platelet.
- a thin glass layer 8 is applied, in the sense of a matrix. In this phosphor particles are distributed, which are sunk into the glass matrix and are completely covered by this.
- Glass layer 8 and substrate 7 form a laminate, wherein the side of the substrate on which the glass matrix is applied, the chip 2 faces, or is also facing away.
- the conversion element is attached by means of known ⁇ adhesive on the chip (not provided DAR).
- FIG. 3 shows an embodiment of an LED 1, in which the film of ceramic or glass ceramic, which acts as a substrate 7, is sintered only briefly at low temperature. That's why she has many open pores. The glass matrix fills these pores. By using an excess of glass, a thin layer 11 of glass also remains on the surface of the substrate. The phosphor is dispersed in the glass matrix both in the region of the thin layer 11 and in the region of the pores.
- FIG. 8 shows a similar configuration in detail without layer 11. There, the substrate 7 with open pores 12 is shown. Into the pores, the glass matrix 10 is sucked in. Phosphor grains 13 are dispersed in the glass matrix.
- FIG. 4 schematically shows an exemplary embodiment of an LED 1, in which the substrate 7 is connected via a conventional adhesive layer (not shown separately) to the InGaN chip 2, which emits blue (peak at approximately 440 to 450 nm).
- the glass matrix 8 with the phosphor immersed therein is fastened on the side of the substrate 7 facing away from the chip.
- the Kle ⁇ be Mrs conventional is usually silicone. It is used when re ⁇ tively temperature-sensitive chips are used. For less temperature sensitive chips, an adhesive layer of high refractive index glass is more advantageous. Because then the heat dissipation is better and the Lichtauskopp ⁇ ment is higher. This increases efficiency.
- FIG. 5 schematically shows an exemplary embodiment of an LED 1 in which a double structure of the conversion element 6, 16 is used.
- a first layer 8 with glass matrix and first phosphor preferably a red-emitting phosphor such as a nitridosilicate M2Si5N8: Eu
- first substrate 7 which in turn is connected to a second glass matrix 8
- second Substrate 7 is connected.
- the glass matrix 8 acts in each case as an adhesive.
- Particularly suitable phosphors are YAG: Ce or another garnet, orthosilicate or sione, nitridosilicate, sialon, calsine, etc.
- FIG. 6 shows an embodiment of an LED 1, which is a conversion element 6 spaced upstream of the chip 2 before ⁇ connected.
- the side wall 5 of the hous ⁇ ses which acts as a reflector, for example by the inner wall is suitably coated, at its end the conversion element 6.
- the glass matrix 8 acts as an adhesive to the side wall, the substrate 7 is remote from the chip.
- the conversion element 6 closes the opening of the reflector.
- FIG. 7 shows an exemplary embodiment of an LED 1 in which a conversion element 6 has a sandwich structure. It uses a UV emitting chip 2 with about 380 nm peak wavelength.
- a first glass matrix 8 adheres directly to the chip 2, in which a first phosphor is dispersed, for example a red, UV-excitable light source.
- Embodiments of a converter for the conversion of the UV component into blue light are z.
- An embodiment of a Kon ⁇ converter for the conversion of the UV component in yellow light is z , B. (Sri- x - y Ce x Li y ) 2 Si 5 N 8 .
- x and y are each in the range of 0.1 to 0.01.
- Exemplary embodiments of a converter for the conversion of the UV component into red light are z.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180048562.8A CN103155187B (zh) | 2010-10-08 | 2011-10-05 | 光电子半导体器件及其制造方法 |
JP2013532182A JP2013539238A (ja) | 2010-10-08 | 2011-10-05 | オプトエレクトロニクス半導体コンポーネント及びその製造方法 |
KR1020137011927A KR101845840B1 (ko) | 2010-10-08 | 2011-10-05 | 광전자 반도체 컴포넌트 및 광전자 반도체 컴포넌트를 생산하기 위한 방법 |
US13/878,249 US20130207151A1 (en) | 2010-10-08 | 2011-10-05 | Optoelectronic Semiconductor Component And Method For Producing Same |
EP11766989.5A EP2625724B1 (de) | 2010-10-08 | 2011-10-05 | Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010042217.7 | 2010-10-08 | ||
DE102010042217A DE102010042217A1 (de) | 2010-10-08 | 2010-10-08 | Optoelektronisches Halbleiterbauelement und Verfahren zu seiner Herstellung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012045772A1 true WO2012045772A1 (de) | 2012-04-12 |
Family
ID=44764153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/067381 WO2012045772A1 (de) | 2010-10-08 | 2011-10-05 | Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130207151A1 (de) |
EP (1) | EP2625724B1 (de) |
JP (2) | JP2013539238A (de) |
KR (1) | KR101845840B1 (de) |
CN (1) | CN103155187B (de) |
DE (1) | DE102010042217A1 (de) |
WO (1) | WO2012045772A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012107290A1 (de) * | 2012-08-08 | 2014-02-13 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauteil, Konversionsmittelplättchen und Verfahren zur Herstellung eines Konversionsmittelplättchens |
JP2015004071A (ja) * | 2012-04-24 | 2015-01-08 | 株式会社光波 | 蛍光体及び発光装置 |
CN104365181A (zh) * | 2012-06-15 | 2015-02-18 | 欧司朗股份有限公司 | 光电子半导体器件 |
CN104428588A (zh) * | 2012-07-02 | 2015-03-18 | Lg伊诺特有限公司 | 照明装置 |
KR20160032147A (ko) * | 2013-07-08 | 2016-03-23 | 코닌클리케 필립스 엔.브이. | 파장 변환 반도체 발광 디바이스 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012107797A1 (de) * | 2012-08-23 | 2014-02-27 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Licht emittierenden Halbleiterbauelements und Licht emittierendes Halbleiterbauelement |
DE102012108160A1 (de) * | 2012-09-03 | 2014-03-06 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements |
DE102012110668A1 (de) * | 2012-11-07 | 2014-05-08 | Osram Opto Semiconductors Gmbh | Konvertermaterial, Verfahren zur Herstellung eines Konvertermaterials und optoelektronisches Bauelement |
DE102012220980A1 (de) | 2012-11-16 | 2014-05-22 | Osram Gmbh | Optoelektronisches halbleiterbauelement |
CN103489857B (zh) * | 2013-09-06 | 2017-06-06 | 中山市天健照明电器有限公司 | 一种白光led发光装置 |
CN110010746A (zh) * | 2014-01-07 | 2019-07-12 | 亮锐控股有限公司 | 具有磷光体转换器的无胶发光器件 |
JP2015142046A (ja) * | 2014-01-29 | 2015-08-03 | シャープ株式会社 | 波長変換部材、発光装置、および波長変換部材の製造方法 |
JP6252982B2 (ja) * | 2014-02-06 | 2017-12-27 | 日本電気硝子株式会社 | ガラス部材及びその製造方法 |
JP6575923B2 (ja) * | 2014-09-26 | 2019-09-18 | 日本電気硝子株式会社 | 波長変換部材及びそれを用いた発光装置 |
JP2017188592A (ja) | 2016-04-06 | 2017-10-12 | 日亜化学工業株式会社 | 発光装置 |
DE102017104134A1 (de) * | 2017-02-28 | 2018-08-30 | Osram Gmbh | Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements |
KR102462030B1 (ko) * | 2018-06-14 | 2022-11-01 | 인테벡, 인코포레이티드 | 멀티 칼라 절연 코팅 및 uv 잉크젯 프린팅 |
US10475968B1 (en) * | 2018-07-19 | 2019-11-12 | Osram Opto Semiconductors Gmbh | Optoelectronic component and a method for producing an optoelectronic component |
EP3608959B1 (de) * | 2018-08-06 | 2023-11-15 | Nichia Corporation | Lichtemittierende vorrichtung und verfahren zu deren herstellung |
JP6963720B2 (ja) * | 2018-08-30 | 2021-11-10 | 日亜化学工業株式会社 | 発光装置 |
WO2023072867A1 (en) * | 2021-10-29 | 2023-05-04 | Ams-Osram International Gmbh | Optoelectronic semiconductor chip, optoelectronic component and method for producing an optoelectronic semiconductor chip |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998925A (en) | 1996-07-29 | 1999-12-07 | Nichia Kagaku Kogyo Kabushiki Kaisha | Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material |
DE102004019802A1 (de) * | 2004-03-11 | 2005-11-17 | Schott Ag | Lumineszierendes Glas und Kaltlichtquelle mit einem solchen Glas |
WO2006122524A1 (de) | 2005-05-19 | 2006-11-23 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Lumineszenzkonversions-led |
DE102007055170A1 (de) * | 2006-11-28 | 2008-06-12 | Cree, Inc. | Optische Vorformen für Festkörper-Lichtemissionswürfel und Verfahren und Systeme zu deren Herstellung und Zusammenbau |
US20090001390A1 (en) * | 2007-06-29 | 2009-01-01 | Ledengin, Inc. | Matrix material including an embedded dispersion of beads for a light-emitting device |
DE102007057812A1 (de) * | 2007-11-30 | 2009-06-25 | Schott Ag | Lichtemittierende Vorrichtung und Verfahren zu deren Herstellung sowie Lichtkonverter und dessen Verwendung |
DE102008021666A1 (de) * | 2008-04-30 | 2009-11-05 | Ledon Lighting Jennersdorf Gmbh | Lichtemittierende Vorrichtung und Verfahren zur Herstellung einer lichtemittierenden Vorrichtung |
DE102010009456A1 (de) | 2010-02-26 | 2011-09-01 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes Bauelement mit einem Halbleiterchip und einem Konversionselement und Verfahren zu dessen Herstellung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030102473A1 (en) * | 2001-08-15 | 2003-06-05 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate |
US7553683B2 (en) * | 2004-06-09 | 2009-06-30 | Philips Lumiled Lighting Co., Llc | Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices |
US8134292B2 (en) * | 2004-10-29 | 2012-03-13 | Ledengin, Inc. | Light emitting device with a thermal insulating and refractive index matching material |
JP4765525B2 (ja) * | 2005-06-29 | 2011-09-07 | 日本電気硝子株式会社 | 発光色変換部材 |
JP2007048864A (ja) * | 2005-08-09 | 2007-02-22 | Nippon Electric Glass Co Ltd | 蛍光体複合材料 |
JP2007191702A (ja) * | 2005-12-22 | 2007-08-02 | Nippon Electric Glass Co Ltd | 発光色変換材料 |
JP4969119B2 (ja) * | 2006-03-20 | 2012-07-04 | 日本碍子株式会社 | 発光ダイオード装置 |
US8481977B2 (en) * | 2006-03-24 | 2013-07-09 | Goldeneye, Inc. | LED light source with thermally conductive luminescent matrix |
JP4978886B2 (ja) * | 2006-06-14 | 2012-07-18 | 日本電気硝子株式会社 | 蛍光体複合材料及び蛍光体複合部材 |
US8158247B2 (en) * | 2008-01-30 | 2012-04-17 | Los Alamos National Security, Llc | Porous light-emitting compositions |
-
2010
- 2010-10-08 DE DE102010042217A patent/DE102010042217A1/de not_active Withdrawn
-
2011
- 2011-10-05 JP JP2013532182A patent/JP2013539238A/ja active Pending
- 2011-10-05 US US13/878,249 patent/US20130207151A1/en not_active Abandoned
- 2011-10-05 KR KR1020137011927A patent/KR101845840B1/ko active IP Right Grant
- 2011-10-05 WO PCT/EP2011/067381 patent/WO2012045772A1/de active Application Filing
- 2011-10-05 CN CN201180048562.8A patent/CN103155187B/zh active Active
- 2011-10-05 EP EP11766989.5A patent/EP2625724B1/de active Active
-
2015
- 2015-03-10 JP JP2015047523A patent/JP6009020B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998925A (en) | 1996-07-29 | 1999-12-07 | Nichia Kagaku Kogyo Kabushiki Kaisha | Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material |
DE102004019802A1 (de) * | 2004-03-11 | 2005-11-17 | Schott Ag | Lumineszierendes Glas und Kaltlichtquelle mit einem solchen Glas |
WO2006122524A1 (de) | 2005-05-19 | 2006-11-23 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Lumineszenzkonversions-led |
DE102007055170A1 (de) * | 2006-11-28 | 2008-06-12 | Cree, Inc. | Optische Vorformen für Festkörper-Lichtemissionswürfel und Verfahren und Systeme zu deren Herstellung und Zusammenbau |
US20090001390A1 (en) * | 2007-06-29 | 2009-01-01 | Ledengin, Inc. | Matrix material including an embedded dispersion of beads for a light-emitting device |
DE102007057812A1 (de) * | 2007-11-30 | 2009-06-25 | Schott Ag | Lichtemittierende Vorrichtung und Verfahren zu deren Herstellung sowie Lichtkonverter und dessen Verwendung |
DE102008021666A1 (de) * | 2008-04-30 | 2009-11-05 | Ledon Lighting Jennersdorf Gmbh | Lichtemittierende Vorrichtung und Verfahren zur Herstellung einer lichtemittierenden Vorrichtung |
DE102010009456A1 (de) | 2010-02-26 | 2011-09-01 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes Bauelement mit einem Halbleiterchip und einem Konversionselement und Verfahren zu dessen Herstellung |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10836961B2 (en) | 2012-04-24 | 2020-11-17 | Koha Co., Ltd. | Phosphor, method for manufacturing same, and light-emitting device |
JP2015004071A (ja) * | 2012-04-24 | 2015-01-08 | 株式会社光波 | 蛍光体及び発光装置 |
JP2015521791A (ja) * | 2012-06-15 | 2015-07-30 | オスラム ゲーエムベーハーOSRAM GmbH | オプトエレクトロニクス半導体素子 |
CN104365181A (zh) * | 2012-06-15 | 2015-02-18 | 欧司朗股份有限公司 | 光电子半导体器件 |
DE112013002930B4 (de) | 2012-06-15 | 2023-03-23 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronisches Halbleiterbauelement |
US10297729B2 (en) | 2012-06-15 | 2019-05-21 | Osram Opto Semiconductors Gmbh | Optoelectronics semiconductor component |
EP2848861A4 (de) * | 2012-07-02 | 2015-11-04 | Lg Innotek Co Ltd | Beleuchtungsvorrichtung |
CN104428588A (zh) * | 2012-07-02 | 2015-03-18 | Lg伊诺特有限公司 | 照明装置 |
US9406847B2 (en) | 2012-08-08 | 2016-08-02 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor component, conversion-medium lamina and method for producing a conversion-medium lamina |
DE112013003979B4 (de) | 2012-08-08 | 2021-12-09 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronisches Halbleiterbauteil, Konversionsmittelplättchen und Verfahren zur Herstellung eines Konversionsmittelplättchens |
DE102012107290A1 (de) * | 2012-08-08 | 2014-02-13 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauteil, Konversionsmittelplättchen und Verfahren zur Herstellung eines Konversionsmittelplättchens |
KR20160032147A (ko) * | 2013-07-08 | 2016-03-23 | 코닌클리케 필립스 엔.브이. | 파장 변환 반도체 발광 디바이스 |
JP2016524344A (ja) * | 2013-07-08 | 2016-08-12 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 波長変換式半導体発光デバイス |
JP2020074419A (ja) * | 2013-07-08 | 2020-05-14 | ルミレッズ ホールディング ベーフェー | 波長変換式半導体発光デバイス |
US10790417B2 (en) | 2013-07-08 | 2020-09-29 | Lumileds Llc | Wavelength converted semiconductor light emitting device |
KR102180388B1 (ko) * | 2013-07-08 | 2020-11-19 | 루미리즈 홀딩 비.브이. | 파장 변환 반도체 발광 디바이스 |
JP7068771B2 (ja) | 2013-07-08 | 2022-05-17 | ルミレッズ ホールディング ベーフェー | 波長変換式半導体発光デバイス |
JP7316947B2 (ja) | 2013-07-08 | 2023-07-28 | ルミレッズ ホールディング ベーフェー | 波長変換式半導体発光デバイス |
Also Published As
Publication number | Publication date |
---|---|
KR101845840B1 (ko) | 2018-04-06 |
EP2625724B1 (de) | 2016-11-30 |
US20130207151A1 (en) | 2013-08-15 |
CN103155187B (zh) | 2016-12-07 |
JP2013539238A (ja) | 2013-10-17 |
KR20130114671A (ko) | 2013-10-17 |
JP6009020B2 (ja) | 2016-10-19 |
CN103155187A (zh) | 2013-06-12 |
JP2015109483A (ja) | 2015-06-11 |
DE102010042217A1 (de) | 2012-04-12 |
EP2625724A1 (de) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2625724B1 (de) | Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung | |
DE112013002930B4 (de) | Optoelektronisches Halbleiterbauelement | |
DE10349038B4 (de) | Lichtquelle mit einer LED und einem Lumineszenzkonversionskörper und Verfahren zum Herstellen des Lumineszenzkonversionskörpers | |
EP1897152B1 (de) | Wellenlängenkonvertierendes konvertermaterial, lichtabstrahlendes optisches bauelement und verfahren zu dessen herstellung | |
DE102013013296B4 (de) | Konverter-Kühlkörperverbund mit metallischer Lotverbindung und Verfahren zu dessen Herstellung | |
WO2011104364A1 (de) | Strahlungsemittierendes bauelement mit einem halbleiterchip und einem konversionselement und verfahren zu dessen herstellung | |
DE102015113692A1 (de) | Wellenlängen-Umwandlungs-Element, Licht-emittierende Vorrichtung, Projektor und Verfahren zur Herstellung eines Wellenlängen-Umwandlungs-Elements | |
DE112015001180T5 (de) | Wellenlängenkonversionselement, lichtemittierende Halbleiterkomponente, die ein Wellenlängenkonversionselement umfasst, Verfahren zum Herstellen eines Wellenlängenkonversionselements und Verfahren zum Herstellen einer lichtemittierenden Halbleiterkomponente, die ein Wellenlängenkonversionselement umfasst | |
DE112014005897B4 (de) | Konversionselement, Bauelement und Verfahren zur Herstellung eines Bauelements | |
DE102013207308B4 (de) | Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe | |
DE102011078689A1 (de) | Verfahren zur Herstellung eines Konversionselements und Konversionselement | |
EP2729426A1 (de) | Verfahren zur herstellung eines konversionselements und konversionselement | |
DE102012220980A1 (de) | Optoelektronisches halbleiterbauelement | |
WO2012104141A1 (de) | Keramisches konversionselement, halbleiterchip mit einem keramischen konversionselement und verfahren zur herstellung eines keramischen konversionselements | |
WO2011012371A1 (de) | Verfahren zur herstellung eines bauteils mit mindestens einem organischen material und bauteil mit mindestens einem organischen material | |
DE102018106655A1 (de) | Licht-emittierende Vorrichtung und Verfahren zu ihrer Herstellung | |
DE102013206133B4 (de) | Verfahren zum Herstellen eines Konversionselements und Konversionselement | |
DE102009010468A1 (de) | Strahlungsemittierendes Funktionsmaterial mit darauf angeordneten Lichtkonversionsstoff-Partikeln, Verfahren zu dessen Herstellung und optoelektronisches Bauelement, enthaltend ein derartiges Funktionsmaterial | |
DE102005012953B9 (de) | Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement | |
WO2011009737A1 (de) | Leuchtdiode mit einer keramischen abdeckung und verfahren zur herstellung dieser leuchtdiode | |
DE102022132657A1 (de) | Lichtemittierende vorrichtung | |
DE102013105533A1 (de) | Anorganisches optisches Element und Verfahren zur Herstellung eines anorganischen optischen Elements | |
WO2012152652A1 (de) | Konversionselement für leuchtdioden und herstellungsverfahren | |
DE102018128536A1 (de) | Konversionselemente umfassend eine Infiltrationsmatrix | |
DE102018130526B4 (de) | Bauteil mit einem reflektierenden Gehäuse und Herstellungsverfahren für ein solches Bauteil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180048562.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11766989 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011766989 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011766989 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013532182 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13878249 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137011927 Country of ref document: KR Kind code of ref document: A |