WO2012044138A2 - 워터젯을 이용한 굴착 시스템 및 이를 이용한 굴착 방법 - Google Patents

워터젯을 이용한 굴착 시스템 및 이를 이용한 굴착 방법 Download PDF

Info

Publication number
WO2012044138A2
WO2012044138A2 PCT/KR2011/007322 KR2011007322W WO2012044138A2 WO 2012044138 A2 WO2012044138 A2 WO 2012044138A2 KR 2011007322 W KR2011007322 W KR 2011007322W WO 2012044138 A2 WO2012044138 A2 WO 2012044138A2
Authority
WO
WIPO (PCT)
Prior art keywords
waterjet
excavation
nozzle
blasting
free surface
Prior art date
Application number
PCT/KR2011/007322
Other languages
English (en)
French (fr)
Other versions
WO2012044138A3 (ko
Inventor
조계춘
오태민
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to EP11829644.1A priority Critical patent/EP2623706B1/en
Priority to JP2013531506A priority patent/JP5721842B2/ja
Priority to BR112013006841-8A priority patent/BR112013006841B1/pt
Priority to US13/876,782 priority patent/US9140122B2/en
Priority to CN201180046495.6A priority patent/CN103221627B/zh
Priority to SG2013023742A priority patent/SG189172A1/en
Publication of WO2012044138A2 publication Critical patent/WO2012044138A2/ko
Publication of WO2012044138A3 publication Critical patent/WO2012044138A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1066Making by using boring or cutting machines with fluid jets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/60Slitting by jets of water or other liquid
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • E21D9/004Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines using light beams for direction or position control
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/006Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by making use of blasting methods
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1053Making by using boring or cutting machines for making a slit along the perimeter of the tunnel profile, the remaining core being removed subsequently, e.g. by blasting

Definitions

  • the present invention relates to a tunneling technique based on explosive blasting, and more particularly, to a technique for suppressing shock or vibration propagation due to blasting generated in a tunneling process. More specifically, the present invention relates to an excavation system using a waterjet and an excavation method using the same, in which a series of continuous spaces, so-called free surfaces, are formed along the outer circumferential surface of the tunnel using a waterjet so that vibration during blasting does not propagate to the ground surface.
  • blasting process using explosives is frequently performed.
  • the blasting process has the advantage of efficiently removing rock or other obstacles through explosive force of explosives, vibration and noise inevitably generated during blasting propagate to the ground, which adversely affects buildings and various structures.
  • the shock wave propagated from the width source is significantly attenuated according to the distance, but part of the energy generated at this time is propagated in the form of an elastic wave, causing ground vibration (blast vibration). If there are buildings or subway facilities that are relatively close to the source, there is a possibility that this will be a serious problem.
  • the drilling structure and method for blocking blasting vibration using the Republic of Korea Patent No. 0531985 line drilling hole drills two or more lines of drilling holes around the area for blasting among the rocks to be excavated, but staggers the line drilling holes of each row.
  • Disclosed is a technique for deploying.
  • the Republic of Korea Patent No. 0599982 tunnel blasting method using a large diameter armored hole spaced apart from the outer periphery of the tunnel, a crack induction hole perforated to be disposed between these armed holes, a plurality of enlarged holes drilled in the inner side of the armed medicine The technique is disclosed.
  • a common feature of these prior arts is that the plurality of holes drilled in the tunnel traveling direction are utilized as vibration suppressing means when blasting. However, even when a plurality of holes are drilled, a connection area exists between the holes and the holes. Blasting vibrations propagating through this connection area are not blocked. In other words, the drilling holes utilized by the prior art are incomplete vibration suppressing means.
  • An object of the present invention for solving the above-mentioned conventional problems is to provide a waterjet equipment and an excavation method that effectively suppresses the transmission of shock, vibration and noise due to blasting generated during the excavation process.
  • an object of the present invention is to improve the stability of the tunnel by minimizing the damage zone formed by the blasting.
  • an object of the present invention is to maximize the working efficiency in the excavation of the tunnel, so that effective work can be made.
  • the inventor of the present invention regards the connection area existing between the perforated holes revealed in the problems of the prior art as a detrimental factor and defines the best form of the free surface, which is a series of continuous spaces along the outer circumferential surface of the tunnel. did.
  • the main solution to this best practice is the introduction of water jet technology and abrasives.
  • the waterjet system of the present invention includes a mobile unit moving forward and backward toward the blasting target area for tunnel excavation, a multi-joint robot arm mounted on the mobile unit, a waterjet nozzle mounted on the tip of the robot arm, and high pressure water. It includes a supply for supplying the waterjet nozzle, the control unit for controlling the mobile unit and the robot arm and the waterjet nozzle. Preferably the waterjet nozzle may spray the abrasive with water.
  • the waterjet nozzle of the present invention includes a depth sensor unit for measuring the crushing depth of the excavation target surface by the high-pressure water, wherein the controller is characterized in that for controlling the robot arm and the supply using the crushing depth.
  • the waterjet nozzle a width sensor unit for measuring the crushing width of the excavation target surface for the high-pressure water; includes, the control unit includes controlling the robot arm and the supply using the crushing width.
  • a free surface having a predetermined depth is formed outside the blasting target region in the tunnel excavation direction. After the free surface is formed, it is blasted by charging to the blasting target area.
  • the actual geological analysis of the tunnel ahead area can be secured to ensure the safety of tunnel construction.
  • FIG. 1 is a configuration diagram of a water jet system for tunnel excavation according to an embodiment of the present invention.
  • FIG. 2 is a view showing a water tunneling equipment for tunnel excavation according to an embodiment of the present invention.
  • FIG. 3 is a view showing the movement of the tunneling waterjet equipment according to an embodiment of the present invention.
  • FIG. 4 is a view showing a water jet nozzle for drilling a tunnel according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating the degree of freedom of the articulated robot arm according to an embodiment of the present invention.
  • FIG. 6 is an exemplary view for explaining a free surface formed by the waterjet system of the present invention.
  • FIG. 7 is an exemplary view for explaining a line of a fracture pattern formed by the waterjet system of the present invention.
  • FIG. 8 is a view showing a water tunneling equipment for tunnel drilling according to another embodiment of the present invention.
  • FIG. 9 is a view for explaining a tunnel excavation method using a waterjet system of the present invention.
  • FIG. 10 is a view showing a charge hole of the excavation target surface formed free surface according to the present invention.
  • FIG. 11 is a view showing a frame-type tunnel excavation waterjet equipment according to another embodiment of the present invention.
  • FIG. 12 is an exemplary view for explaining a free surface formed by the waterjet system of FIG.
  • 15 is a diagram simulating a composite displacement in the XYZ direction.
  • 16 is a diagram simulating a horizontal displacement.
  • 17 is a diagram simulating a vertical displacement.
  • 21 is a conceptual diagram of the tunnel excavation according to the prior art and the present technology.
  • Fig. 23 shows the simulation value for the vertical displacement.
  • An articulated robot arm mounted on the mobile unit;
  • a waterjet nozzle mounted to a tip of the robot arm
  • a supply unit for supplying high pressure water to the waterjet nozzle
  • a control unit controlling the mobile unit, the robot arm, and the waterjet nozzle
  • FIG. 1 is a block diagram of a water tunnel system for tunnel excavation according to an embodiment of the present invention.
  • the excavation system using the waterjet equipment 600 according to the present invention relates to a technique for specifically suppressing the propagation of the shock or vibration caused by the blasting generated in the tunnel excavation process. More specifically, by using the water jet equipment 600 to form a series of continuous space, so-called free surface 20 along the outer circumferential surface (tunnel plan surface: see Fig. 21) of the excavation target surface 10, vibration during blasting It relates to an excavation system using the waterjet equipment 600 to prevent propagation to the ground surface.
  • the waterjet equipment 600 is largely mobile unit 100, articulated robot arm 200, waterjet nozzle 300, supply unit 400 and the control unit 500 is made.
  • the moving unit 100 is a moving means capable of moving back and forth in the excavation direction on the excavation target area.
  • the mobile unit 100 is a component that enables free movement before, after, left, and right of the waterjet device 600.
  • the moving unit 100 may be implemented in a plurality of wheels or a caterpillar form.
  • the mobile unit 100 is disposed on the front surface of the excavation target surface 10, which is a blasting target area, and is movable along the tunnel excavation direction, and the moving object is the articulated robot arm 200 having the waterjet nozzle 300.
  • the articulated robot arm 200 has a multi-joint structure form mounted on the mobile unit 100.
  • the articulated robot arm 200 is mounted on the upper portion of the mobile unit 100 and functions as a support for moving in space of the waterjet nozzle 300 mounted at the tip thereof.
  • the joint of the articulated robot arm 200 must withstand the repulsive force or reaction of the waterjet nozzle 300, it is preferably configured in a hydraulic manner.
  • the waterjet equipment 600 shown in FIG. 2 is illustrated as having both a rock crushing and a cutting process being horizontal (hereinafter, a horizontal process)
  • the articulated robot arm employed in the waterjet equipment 600 of the present invention ( 200) encompasses vertical as well as horizontal processes.
  • one articulated robot arm 200 is illustrated in FIG. 2 or FIG. 3, a plurality of robot arms may be mounted and operated as necessary.
  • the waterjet nozzle 300 is mounted at the front end of the articulated robot arm 200.
  • a plurality of waterjet nozzles 300 may be employed.
  • the waterjet nozzle 300 may be configured in a form capable of front and rear stretching.
  • a rod-shaped waterjet nozzle 300 having a predetermined length is mounted on the support frame 220.
  • the stretch length of the waterjet nozzle 300 may be controlled by the controller 500. In tunnel excavation, the depth required for one blasting depends on the geological characteristics of the rock, etc., but in general, the length of the nozzle 300 that is possible to cover the nozzle 300 is manufactured to cover it.
  • the waterjet nozzle 300 may be configured to rotate the portion so that a portion of the waterjet nozzle 300 is rotated in order to sufficiently transmit the destructive force of water sprayed from the waterjet equipment 600 to the ground.
  • the waterjet nozzle 300 includes a depth sensor 310 and a width sensor 320 capable of measuring the cut depth and width.
  • the waterjet nozzle 300 includes a depth sensor unit 310 for measuring the fracture depth of the free surface 20 by the high-pressure water, the control unit 500 using the fracture depth articulated robot The arm 200 and the supply unit 400 is controlled.
  • the waterjet nozzle 300 includes a width sensor unit 320 for measuring the crushing width of the free surface 20 by the high pressure water, the control unit 500 using the crushing width of the articulated robot arm 200 ) And the supply unit 400.
  • the depth sensor unit 310 and the width sensor unit 320 may be configured based on a laser.
  • the robot arm 200 includes a plurality of attitude control sensors for adjusting the tilt angle and length of the nozzle, and controls the nozzle in real time according to a sensing value. In addition, it is provided with a sensor for sensing when the rock collapses while the nozzle is drawn into the free surface during operation.
  • the waterjet nozzle 300 should be operated so that the nozzle 300 is bent back and forth while maintaining a constant distance from the rock, and measure the fracture of the rock through the distance sensor 310 and the width sensor 320 in real time.
  • the rock and the nozzle 300 to maintain the optimum distance.
  • the separation distance between the rock and the nozzle was determined to be the best performance within about 10cm.
  • the table below shows the measurement results of the free surface formation time according to the nozzle condition and separation distance. Experiment with two nozzles in pairs with a combined angle of 7.1 and 3.8 degrees when the nozzles are coupled from the side, but the separation distance from the rock and the moving speed of the nozzle And only the linear movement of right and left).
  • the cutting shape in the above table shows the cutting shape generated according to the separation distance between the rock and the nozzle when experimenting with a pair of nozzles.
  • the supply unit 400 generates high-pressure water and supplies it to the waterjet nozzle 300.
  • the supply unit 400 may supply the abrasive with the high pressure water to the waterjet nozzle 300.
  • This abrasive may be understood as particles such as sand.
  • the abrasive supplied to the waterjet nozzle 300 is accelerated by the high pressure water to increase the efficiency of crushing and cutting the excavation target surface 10 together with the water.
  • the pressure of the water injected through the waterjet nozzle 300 and the injection amount of the abrasive may be adjusted by the controller 500.
  • control unit 500 of the present invention controls the mobile unit 100, the articulated robot arm 200, and the waterjet nozzle 300.
  • the control unit 500 controls the movement of the mobile unit 100 configured with the waterjet nozzle 300 and the articulated robot arm 200, and the rotational speed of the rotating part of the waterjet nozzle 300 and sprayed from the waterjet nozzle 300. To control the water pressure and direction.
  • a line for recognizing a predetermined color line L painted on the excavation target surface 10 in order to be crushed to form the free surface 20 on the excavation target surface 10 using the waterjet device 600 of the present invention further comprises a recognition means (210). Such recognition may be performed in a manner in which a worker paints a line according to an expected tunnel plan surface in advance, and the equipment automatically recognizes the corresponding line through image recognition to control the operation of the equipment 600 for forming a free surface. .
  • the method of automatically recognizing a position to form the free surface by the device 600 may be performed as follows in addition to the method of image recognition.
  • the position measuring terminal detects a signal from the satellite to obtain its position, and each terminal transmits the position information into the tunnel including information related to its position.
  • the equipment 600 analyzes the location information received from the location measurement terminal to obtain distance information with each terminal and location information of the terminal, and recognizes its own three-dimensional location through calculation. Then, by matching the three-dimensional position information according to the tunnel plan previously input to form a free surface according to the tunnel excavation.
  • the relay terminal is installed in the middle of the tunnel so that the equipment can recognize the location.
  • the relay terminal checks its location, it stores its location and transmits the location information by using it, and the terminal installed at the tunnel entrance can be removed, and the terminal installed at the entrance can be used again as a relay. .
  • the equipment 600 further includes a position measuring unit (not shown) and a posture (leaning, grasp the position of the nozzle from the information according to the new cave of the nozzle), and a measuring unit (not shown). Allow the free face to form automatically.
  • the line L is a fracture pattern formed on the excavation target surface 10.
  • the line L has an arch shape in a fracture pattern drawn by a predetermined color line L on the excavation target surface 10.
  • the fracture pattern is based on the arcuate pattern, it may be formed as a pattern in which a zigzag pattern is combined.
  • the waterjet nozzle 300 breaks the rock along the zigzag pattern, and the free surface 20 on the excavation target surface 10 has a predetermined width.
  • control unit 500 controls the line L formed as the fracturing pattern so that the waterjet nozzle 300 follows the line L recognized by the line recognition unit 210. To control.
  • the line recognition means 210 for recognizing the line (L) may be made of a photographing means.
  • the line recognition means 210 is one of the position recognition methods of the equipment.
  • the position recognition of the equipment is completed, the surface 10 to be worked on is scanned, so that the state of the free surface to be worked on is the equipment 600.
  • Figure out the current state of whether it popped out in the) or in the digging direction.
  • the nozzle 300 is moved to the protruding portion to be shredded before the full-scale work is performed to perform the preliminary work.
  • the robot arm is operated by dividing the section as a whole.
  • the articulated robot arm 200 moves along the line L, and the waterjet nozzle 300 moves along the articulated robot arm 200 to draw a trajectory in an arcuate or zigzag shape.
  • the free surface 20 which is excavated in an arcuate or zigzag shape having a predetermined depth is formed outside the excavation target surface 10.
  • the free surface 20 is interposed between the excavation target surface 10 and the ground surface to surround the excavation target surface 10.
  • the waterjet device 600 may further include a line recognition unit 210 for recognizing a predetermined color line L painted on the excavation target surface 10. 5 to 7, an arched line L is painted on the excavation target surface 10. It may be understood that this line L is a substantial fracture pattern by the waterjet device 600 of the present invention.
  • the crushing pattern is based on an arcuate pattern, but may be formed as a pattern in which a zigzag pattern is combined.
  • the controller 500 controls the articulated robot arm 200 to follow the line L recognized by the waterjet nozzle 300 through the line recognition means 210.
  • the line recognition means 210 may be made of a photographing means.
  • the free surface 20 is formed along the line L described above.
  • the controller 500 basically controls the articulated robot arm 200 to follow an arch-shaped line L, but controls to draw a zigzag trajectory in consideration of the crushing width. You may.
  • the free surface 20 that is excavated in an arcuate or zigzag shape having a predetermined depth may be formed outside the excavation target surface 10.
  • the inside of the free surface is photographed through a camera mounted on the nozzle, and the condition of the rock is predicted to predict the possibility of future blasting or collapse during tunnel construction, thereby increasing safety in future construction.
  • FIG. 8 is a view showing another embodiment of the present invention.
  • FIG. 8 shows another embodiment of the waterjet device 300 equipped with the waterjet nozzle 300 of the waterjet device 600, and includes two articulated robot arms 200.
  • the articulated robot arm 200 supports the waterjet nozzle 300 and is provided to enable both height adjustment and length adjustment of the waterjet nozzle 300 as shown by arrows in the figure.
  • Each configuration may be configured to include a multi-joint robot arm 200, play distance measuring sensor and temperature monitoring sensor, suction system, depression detection system.
  • the articulated robot arm 200 is designed to solve the device malfunction according to the error of the free surface 20 and to control the movement speed of the articulated robot arm 200 in forming the free surface 20. do.
  • Gap distance measuring sensor is attached to the waterjet nozzle 300 is provided so that the operation is stopped if there is no target within a certain distance.
  • the temperature monitoring sensor is provided to measure the temperature range that can be recognized as a person at the excavation point aimed at the waterjet nozzle 300 to prevent an accident.
  • the suction system is provided when the rock is crushed and flows out with the water, so that it is sucked and discharged to other areas, so that deposition does not occur, and the speed of forming the free surface 20 is increased.
  • the depression detection system can detect the recessed position portion of the formed free surface 20 and check whether the waterjet nozzle 300 is damaged by the recessed ground. At this time, if the waterjet nozzle 300 is damaged, it is provided with a design or configuration that is easy to remove, replace and reassemble.
  • the waterjet equipment 600 advances to the excavation position using the mobile unit 100.
  • the position to form its own position and free surface is scanned to determine the current state, and the line work is performed using the nozzle 300.
  • the free surface is effectively formed by reciprocating along the line L while rotating the nozzle. It is preferable to form the free surface by operating the robot arm as a whole by constantly working the protruding portion according to the scan and constantly making the depth of the free surface.
  • the fracture pattern is selected by the composite pattern of the arch or zigzag form is painted on the excavation target surface 10 by a predetermined color line (L).
  • the controller 500 recognizes the line L formed on the excavation target surface 10 through the line recognition unit 210 and controls the waterjet nozzle 300 to follow the line L.
  • the controller 500 allows the articulated robot arm 200 to move along the line L, thereby forming the free surface 20 in the shape of the planned line L.
  • a free surface 20 having a predetermined depth is formed on the excavation target surface 10 by using the waterjet nozzle 300.
  • the crushing depth and the crushing width of the free surface 20 crushed by the waterjet nozzle 300 are measured in real time through a sensor.
  • the measured width or depth is less than the reference, by re-operating the nozzle 300 in the corresponding portion, it is possible to ensure the desired width and depth.
  • the initial execution command is executed.
  • the blast preparation step is performed.
  • the charge holes A step of blasting the explosives is carried out at (30).
  • the generated vibration, noise and destructive force is spread to all directions using the excavation target rock 10 as a medium.
  • the medium is different (rock, air) so that vibration, noise, and breaking force are reflected toward the excavation rock 10. This is similar to the principle that the sound generated in water can be transmitted well in water, but the medium cannot be heard in other air.
  • the free surface 20 effectively blocks and reduces the generated vibration and noise generated by the blasting.
  • the destructive force generated by the explosion propagates along the rock and in all directions, so that the loss is very small.
  • the destructive force is reflected by the free surface 20 and directed back inward (see Fig. 9). do. Therefore, by breaking the rock to be excavated even with a small explosive force, it is possible to reduce the explosive amount used.
  • a plurality of charge holes 30 having a predetermined depth to which explosives are mounted on the inside of the free surface 20 (the excavation target surface 10) are formed at equal intervals.
  • the charge hole 30 may work by using the waterjet by the method according to the present invention, or may be molded using the existing dot board reel equipment.
  • some robot arms may form a free surface, other robot arms 600 may be operated to form a charge hole.
  • the tunnel is excavated by the blasting of the excavation target surface (10).
  • the blasting order first blasts the explosives adjacent to the free surface 20, and then sequentially blasts toward the center and the bottom of the tunnel. In other words, blasting is started first in the portions adjacent to the front and left and right free surfaces and the upper free surface, and the charges of the inner and lower rock rocks are sequentially blasted.
  • the charge hole is generally formed to a depth of 2m to 3m, the charge installed in the charge hole may be blown at the same time instead of being blown up at the same time. For example, like peeling an onion peel, the outermost (adjacent to the front, left and right free surfaces) is first blown up, and the blasting is performed sequentially while going inside.
  • the blasting proceeds as described above, the amount of loading can be reduced by breaking the rock having many free surfaces first.
  • the waterjet system includes a frame 710, a moving unit 720, a waterjet nozzle 730, and a controller 740.
  • the frame 710 is disposed on the front surface of the excavation target surface 10.
  • Frame 710 is an arch shape similar to the longitudinal cross-sectional shape of the tunnel as shown in the figure, and can move along the tunnel excavation direction.
  • the rail 750 is provided on the frame 710.
  • the moving means 720 is movably engaged with the rail 750.
  • the vehicle 720 is reciprocated along the rail 750 under the control of the control device 740.
  • the moving means 720 moves the frame 710 using wheels or tracks.
  • the moving object of the moving unit 720 is a waterjet nozzle 730.
  • the waterjet nozzle 730 sprays high pressure water toward the front of the excavation target surface 10. This high pressure water is supplied by a water supply not shown.
  • the excavation target surface 10 is crushed (or crushed) through the water sprayed from the waterjet nozzle 730, and an abrasive may be used in combination to improve its performance.
  • the abrasive is particles such as sand and is supplied to the waterjet nozzle 730 through an abrasive feeder, not shown. Accordingly, in the waterjet nozzle 730, water and the abrasive accelerated by the water are sprayed onto the excavation target surface 10.
  • the water pressure and the amount of abrasive injected through the waterjet nozzle 730 may be controlled by the controller 740. Since the waterjet nozzle 730 is fixed to the moving unit 720, the waterjet nozzle 730 reciprocates along the rail 750.
  • the moving means 720 includes a rail 750, and the rail 750 may move the first rail 752 and the waterjet nozzle 730 to enable the front and rear movement of the frame 710. It consists of a second rail (754).
  • the first rail 752 is used to move the frame 710 forward and backward, and the second rail is positioned above the frame 710 to allow the waterjet nozzle 730 to move.
  • the movement means 720 is configured to reciprocate on the second rail 754 by mounting a waterjet nozzle 730.
  • the waterjet nozzle 730 may be mounted to the robot arm described above, the robot arm is mounted to the frame 710, it may be implemented by allowing the robot arm to move along the frame.
  • the waterjet nozzle 730 moves in dependence on the shape of the frame 710 to draw an arcuate trajectory. Therefore, an arcuate free surface 20 having a predetermined depth is formed outside the excavation target surface 10.
  • the free surface 20 is interposed between the excavation target surface 10 and the ground surface to surround the excavation target surface 10.
  • the waterjet nozzle 730 is movable through the moving means 720 may be used in plurality, one side of the waterjet nozzle 730 may include a measuring sensor 732 for measuring the cut depth. have.
  • control device 740 controls the moving speed of the moving means 720, the pressure and direction of water sprayed from the waterjet nozzle 730. At this time, the water sprayed through the waterjet nozzle 730 may be mixed with auxiliary materials such as abrasives to increase the efficiency of the excavation.
  • the frame 710 is advanced to the excavation position through the first rail 752. After advancing, the pressure of the waterjet nozzle 730, the conveying speed of the moving unit 720, and the abrasive amount are determined through the control device 740.
  • the waterjet nozzle 730 moves dependently on the shape of the frame 710 and thus draws an arcuate trajectory. Therefore, an arcuate free surface 20 having a predetermined depth is formed outside the excavation target surface 10.
  • the free surface 20 is interposed between the excavation target surface 10 and the ground surface to surround the excavation target surface 10.
  • the placenta of the blasting vibration reflected from the free surface 20 again acts as energy necessary for blasting. Therefore, the amount of explosives required for blasting may be less than the amount required in the absence of the free surface 20. In addition, the possibility of overbreak after blasting can be significantly reduced. This means that subsequent processes after blasting are unnecessary, which further leads to a reduction in construction cost and a shortening of construction period.
  • FIG. 13 to 20 are simulation results of blast vibration suppression according to free surface formation. As shown in FIG. 13, it shows the three-dimensional finite element analysis model, and shows the positions of the outermost hole 40 and the enlarged hole 30. As shown in FIG. 13, it shows the three-dimensional finite element analysis model, and shows the positions of the outermost hole 40 and the enlarged hole 30. As shown in FIG. 13, it shows the three-dimensional finite element analysis model, and shows the positions of the outermost hole 40 and the enlarged hole 30. As shown in FIG.
  • FIG. 14 is a diagram simulating the blasting pressure over time, (a) shows the blasting pressure in the enlarged hole 30 (b) shows the blasting pressure in the outermost hole (40).
  • the outermost hole (see Fig. 13) loading conditions are decoupling the precision explosive 17 mm diameter gurit (Gurit) and the expansion hole (see Fig. 13: 30) loading conditions are 32 mm diameter emulsion (Emulsion) loading.
  • the difference in the blasting pressure in the enlarged hole 30 and the outermost hole 40 is not noticeable.
  • the presence or absence of blasting of the outermost hole 40 does not have much influence on the blasting vibration.
  • FIG. 15 is a view simulating the composite displacement of the outermost hole 40 and the enlarged hole 30 in the XYZ direction
  • FIG. 16 is a diagram showing the horizontal displacement of the outermost hole 40 and the enlarged hole 30
  • 17 is a diagram simulating a vertical displacement.
  • (a) is the case where the outermost hole 40 and the enlarged hole 30 are blasted without forming the free surface 20
  • (b) is the case where the outermost hole and the enlarged hole are blown up after the free surface 20 is formed.
  • (c) is a case in which only the expansion hole 30 is blown up after the free surface 20 is formed.
  • Case 18 is a view showing the vertical displacement change with time at the top of the outermost hole (40) 1m.
  • Case A is a numerical value showing the vertical change of the blasting surface in general without forming the free surface 20
  • Case B is a numerical value showing the vertical change of the blasting surface after the free surface 20 is formed
  • Case C is the outermost hole ( 40 is a vertical change of the blasting cross section after blasting with only the expansion hole 30 without considering.
  • the blasting vibration is not greatly affected by the presence or absence of the outermost hole 40. This is linked to the reduction of the number of drilling and the reduction of the amount of construction cost reduction effect.
  • FIG. 19 to 20 are views showing the vertical displacement at the upper end of the blast point.
  • the magnitude of the blasting vibration is also reduced (see Fig. 19). It can be confirmed that the vibration width is attenuated when moving away from the blasting position.
  • the arrival time of the vibration wave also increases (see Fig. 19).
  • FIG. 20 is a graph simulating the vertical change according to the presence of the free surface and the depth of the free surface at the upper ground surface (position 20m away from the blasting point) of the tunnel blasting position. Referring to FIG. 20, it can be seen that the blasting vibration is attenuated by the deepening of the free surface 20.
  • the maximum vertical displacement of the upper surface is about 0.07 (see FIG. 20).
  • the maximum vertical displacement has an effect that is greatly reduced than when the free surface 20 is not formed.
  • the size of the maximum vertical displacement appearing at the upper surface of the tunnel gradually decreases, and when the free surface 20 having a depth of 4 m is applied, the free surface 20 is not applied.
  • the vibration reduction effect is more than 90%.
  • Figure 23 is a measurement of the vertical displacement value according to the blasting, the difference between the case of the installation of the line drill hole and the general tunnel blasting did not occur, but when the free surface is installed it was found that almost no vertical displacement in the upper portion. .
  • the present invention is applicable to explosive blasting-based tunnel excavation.
  • its utility is expected to be high in the construction of urban subway and underground facilities that require high levels of blast vibration suppression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Earth Drilling (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

본 발명은 워터젯을 이용한 터널굴착 기술에 속한다. 본 발명의 워터젯 시스템은 터널굴착을 위한 발파 대상영역을 향해 전후이동 가능한 이동유닛과, 상기 이동유닛에 탑재된 다관절 로봇팔과 굴착 대상영역을 향해 고압수와 연마제를 분사하는 워터젯 노즐 및 이들을 제어하는 제어부를 포함하여 구성된다. 이러한 구성의 워터젯 시스템에 의해 터널굴착 방향으로 굴착 대상영역의 소정 깊이의 자유면이 형성된다. 본 발명에 의하면, 자유면 형성 후 발파가 이루어지기 때문에 발파 진동이 효과적으로 억제된다.

Description

[규칙 제26조에 의한 보정 07.11.2011] 워터젯을 이용한 굴착 시스템 및 이를 이용한 굴착 방법
본 발명은 폭약 발파 기반의 터널굴착 기술에 관한 것으로, 구체적으로는 터널굴착 과정에서 발생하는 발파에 의한 충격 혹은 진동의 전파를 억제하기 위한 기술에 관한 것이다. 보다 구체적으로는 워터젯을 이용하여 터널의 외주면을 따라 일련의 연속된 공간, 이른바 자유면을 형성함으로써 발파시의 진동이 지표면으로 전파되지 않도록 하는 워터젯을 이용한 굴착 시스템 및 이를 이용한 굴착 방법에 관한 것이다.
건설 및 토목공사, 특히 지하 터널굴착에는 폭약을 이용한 발파공정이 빈번하게 이루어진다. 발파공정은 암반이나 기타 장애물을 폭약의 폭발력을 통해 효율적으로 제거할 수 있다는 장점은 있지만, 발파시 필연적으로 발생하는 진동과 소음이 지표면으로 전파되어 건물이나 각종 구조물에 좋지 않은 영향을 미친다. 부연하면, 발파공정에서 폭원으로부터 전파되는 충격파는 거리에 따라 현저하게 감쇄하지만 이때 발생하는 에너지의 일부는 탄성파의 형태로 전파되면서 지반의 진동(발파 진동, blast vibration)을 야기한다. 만약 폭원과 비교적 근접한 거리에 건물이나 지하철 시설물이 있는 경우에는 심각한 문제로 확대될 개연성이 있다.
상술한 발파 진동을 억제하기 위한 선행기술들을 살펴보면 다음과 같다. 먼저, 대한민국 등록특허 제0531985호 라인 드릴링공을 이용한 발파진동 차단을 위한 굴착구조 및 공법은 굴착될 암반 중 발파를 위한 영역 주변에 2열 이상의 라인 드릴링공을 천공하되 각 열의 라인 드릴링공을 서로 엇갈리게 배치하는 기술을 개시하고 있다. 또, 대한민국 등록특허 제0599982호 터널 발파공법은 터널 외곽부와 이격되어 천공된 대구경의 무장약공, 이들 무장약공 사이에 배치되도록 천공된 균열유도공, 무장약공의 내측으로 천공된 다수의 확대공들을 이용한 기술을 개시하고 있다.
이들 선행기술들의 공통점은 터널진행 방향으로 천공된 복수개의 구멍을 발파시의 진동 억제수단으로 활용함에 있다. 그러나 복수개의 구멍을 천공한다하더라도 구멍과 구멍 사이에는 연결영역이 존재한다. 이 연결영역을 통해 전파되는 발파진동은 차단되지 않는다. 즉, 선행기술들이 활용하고 있는 천공 구멍은 불완전한 진동 억제수단이다.
또한, 종래의 터널 발파공법들은 발파에 따라 인접암반에 데미지존을 형성시킴으로써, 터널의 붕괴를 야기시키는 문제점을 가지고 있다(도21 참조). 특히, 발파힘이 큰 경우,계획된 터널 공간보다 더 많이 파여 여굴이 발생되면, 빈공간에 숏크리트를 많이 타설해야하는 문제점을 가지고 있다. 반데로, 발파힘이 모자라는 경우 미굴이 발생되어 굴삭기나 차감기 등을 이용한 추가적인 작업이 필요하였다.
종래의 터널 굴착은 점보드릴을 이용하여 다수의 장약공을 만들고, 해당 부분에 화약을 넣어 폭파하는 방식을 취하고 있다. 장약공은 1회에 백여개 내외가 요구되고 있으며, 장약공 형성을 위한 작업은 점보드릴 운전자가 수동으로 조작하고 있어 작업 능률 개선이 요구되고 있다.
일반적으로, 터널을 굴착함에 있어서, 터널의 붕괴등을 막기 위하여 굴착 전방지역의 암반 상태를 점검하는 다양한 전방예측 방법들이 등장하고 있지만, 실질적인 검사가 아니라 암반 성질에 따른 저항값 측정과 같은 간접적인 검사로 이루어지기 때문에 검사의 신뢰성이 떨어지고 굴착중 터널붕괴와 같은 문제점을 가지고 있다.
상기한 종래 문제점을 해결하기 위한 본 발명의 목적은, 굴착 과정에서 발생하는 발파에 의한 충격, 진동 및 소음의 전달을 효과적으로 억제하는 워터젯 장비 및 굴착 방법을 제공함에 있다.
또한, 본 발명의 목적은 터널의 발파에 의해 발생되는 미굴이나 여굴을 발생시키지 않도록 하는데 있다.
또한, 본 발명의 목적은 발파에 따른 데미지존을 형성을 최소화하여 터널의 안정성을 증진시키는데 있다.
또한, 본 발명의 목적은 터널을 굴착함에 있어서, 작업효율을 극대화하여 효과적인 잡업이 이루어질 수 있도록 함에 있다.
또한, 본 발명의 목적은 터널의 전방 굴착지점에 관하여 실질적인 검사가 가능하도록 하는데 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 워터젯을 이용한 굴착 시스템 및 이를 이용한 굴착 방법은,
본 발명을 안출한 발명자는 선행기술의 문제점에서 드러난 천공된 구멍 사이에 존재하는 연결영역을 반드시 제거해야할 유해요소로 보고, 터널의 외주면을 따라 일련의 연속된 공간인 자유면의 형성을 최선안으로 정의했다. 이 최선안을 구현하기 위한 주요 해결 수단은 워터젯(water jet) 기술과 연마제 도입이다.
구체적으로 본 발명의 워터젯 시스템은, 터널굴착을 위한 발파 대상영역을 향해 전후 이동하는 이동유닛과, 상기 이동유닛에 탑재된 다관절 로봇팔과, 상기 로봇팔의 선단에 장착된 워터젯 노즐 및 고압수를 상기 워터젯 노즐에 공급하는 공급부와, 상기 이동유닛 및 로봇팔과 워터젯 노즐을 제어하는 제어부를 포함한다. 바람직하게 워터젯 노즐은 물과 함께 연마제를 분사할 수 있다.
본 발명의 워터젯 노즐은 상기 고압수에 의한 굴착대상면의 파쇄 깊이를 측정하는 깊이 센서부;를 포함하며, 상기 제어부는 상기 파쇄 깊이를 이용하여 상기 로봇팔 및 공급부를 제어하는 것을 특징으로 한다.
또한, 상기 워터젯 노즐은, 상기 고압수에 대한 굴착대상면의 파쇄 너비를 측정하는 너비 센서부;를 포함하며, 상기 제어부는 상기 파쇄 너비를 이용하여 상기 로봇팔 및 공급부를 제어하는 것을 포함한다.
상술한 구성을 가지는 워터젯 시스템을 통해 터널굴착 방향으로 발파 대상영역의 외곽에 소정 깊이의 자유면이 형성된다. 자유면이 형성된 후 발파 대상영역에 장약하여 발파한다.
본 발명에 따르면, 자유면을 통해 발파시의 진동 전파를 효과적으로 억제할 수 있다.
또한, 발파시의 여굴이 감소되기 때문에 추가적인 보강공사 비용을 줄일 수 있다.
또한, 미굴이 발생하지 않아 추가적인 작업이 불필요하며, 발파에 따른 데미지존 형성을 최소화하여 터널의 안정성을 증진시킬 수 있고, 작업효율을 증진시킬 수 있는 효과가 있다.
또한, 터널 굴착 전방지역에 대한 실질적인 지질 분석이 가능하여 터널 공사의 안전성을 확보할 수 있다.
도 1은 본 발명의 일실시예에 따른 터널굴착용 워터젯 시스템 구성도.
도 2는 본 발명의 일실시예에 따른 터널굴착용 워터젯 장비를 도시한 도면.
도 3은 도 2는 본 발명의 일실시예에 따른 터널굴착용 워터젯 장비의 움직임을 도시한 도면.
도 4는 본 발명의 일실시예에 따른 터널굴착용 워터젯 노즐을 도시한 도면.
도 5는 본 발명의 일실시예에 따른 다관절 로봇팔의 자유도를 예시한 도면.
도 6은 본 발명의 워터젯 시스템에 의해 형성되는 자유면을 설명하기 위한 예시도.
도 7은 본 발명의 워터젯 시스템에 의해 형성되는 파쇄패턴의 라인을 설명하기 위한 예시도.
도 8은 본 발명의 다른 일실시예에 따른 터널굴착용 워터젯 장비를 도시한 도면.
도 9는 본 발명의 워터젯 시스템을 이용한 터널굴착 방법을 설명하기 위한 도면.
도 10은 본 발명에 따른 자유면이 형성된 굴착대상면의 장약공을 도시한 도면.
도 11은 본 발명의 또 다른 일 실시예에 따른 프레임형 터널굴착용 워터젯 장비를 도시한 도면.
도 12는 도 11의 워터젯 시스템에 의해 형성되는 자유면을 설명하기 위한 예시도.
도 13은 3차원 유한요소 해석 모델을 나타낸 도면.
도 14는 시간에 따른 발파압력을 시뮬레이션한 도면.
도 15는 XYZ 방향의 합성변위를 시뮬레이션 한 도면.
도 16은 수평 방향 변위를 시뮬레이션한 도면.
도 17는 연직 방향 변위를 시뮬레이션한 도면.
도 18은 최외곽공 1M 상단에서의 시간에 따른 연직 변위 변화를 나타낸 도면.
도 19 및 도 20은 발파지점 상단에서의 연직 방향 변위를 나타낸 도면.
도 21은 종래 및 본 기술에 따른 터널 굴착 개념도.
도 22는 수직방향 수치해석을 위한 모델을 나타낸 도면.
도 23은 수직방향 변위에 대한 시뮬레이션값을 나타낸 도면.
도 24는 수직방향 변위에 대한 최대변위를 측정한 그래프.
상기한 목적을 달성하기 위한 본 발명은,
발파대상 영역 상에서 이동하는 이동유닛;
상기 이동유닛에 탑재된 다관절 로봇팔;
상기 로봇팔의 선단에 장착된 워터젯 노즐; 및
고압수를 상기 워터젯 노즐에 공급하는 공급부;
상기 이동유닛 및 로봇팔과 워터젯 노즐을 제어하는 제어부;
를 포함하는 워터젯을 이용한 굴착 시스템을 제공함으로써 달성하였다.
이하, 본 발명의 바람직한 실시 예를 첨부한 도면에 의하여 상세하게 설명한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 터널굴착용 워터젯 시스템 구성도이다. 도시된 바와 같이, 본 발명에 따른 워터젯 장비(600)을 이용한 굴착 시스템은 구체적으로는 터널굴착 과정에서 발생하는 발파에 의한 충격 혹은 진동의 전파를 억제하기 위한 기술에 관한 것이다. 보다 구체적으로는 워터젯 장비(600)를 이용하여 굴착대상면(10)의 외주면(터널계획면: 도 21 참조)을 따라 일련의 연속된 공간, 이른바 자유면(20)을 형성함으로써 발파시의 진동이 지표면으로 전파되지 않도록 하는 워터젯 장비(600)를 이용한 굴착 시스템에 관한 것이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 워터젯 장비(600)는 크게 이동유닛(100), 다관절 로봇팔(200), 워터젯 노즐(300), 공급부(400) 및 제어부(500)를 포함하여 이루어진다.
이동유닛(100)은 굴착대상 영역 상에서 굴착방향으로 전후이동 가능한 이동수단이다. 구체적으로 이동유닛(100)은 본 워터젯 장비(600)의 전,후,좌,우 자유이동을 가능케 하는 구성요소이다. 이동유닛(100)은 다수의 차륜 또는 무한궤도 형태로 구현될 수 있다. 이러한 이동유닛(100)은 발파 대상영역인 굴착대상면(10) 전면에 배치되어 터널굴착 방향을 따라 이동 가능하며, 이동 대상체는 워터젯 노즐(300)을 구비한 다관절 로봇팔(200)이다.
상기 다관절 로봇팔(200)은 이동유닛(100)에 탑재된 다관절 구조 형태를 가진다. 다관절 로봇팔(200)은 이동유닛(100)의 상부에 탑재되어 그 선단에 장착된 워터젯 노즐(300)의 공간상 이동을 위한 지지대 기능을 한다.
상기 다관절 로봇팔(200)의 관절은 워터젯 노즐(300)의 반발력 혹은 반작용을 견뎌야 하므로 유압방식으로 구성되는 것이 바람직하다. 참고로 도 2에 도시된 워터젯 장비(600)는 암반파쇄 및 절삭 공정이 모두 수평(이하, 수평 공정)으로 이루어지는 것으로 예시되어 있으나, 본 발명의 워터젯 장비(600)에 채용된 다관절 로봇팔(200)의 특성상 수평 공정뿐만 아니라 수직 공정을 포괄한다. 또한, 도2나 도3에서는 다관절 로봇팔(200)이 1개 도시되었으나, 필요에 따라 다수의 로봇팔이 장착되어 운영될 수 있다.
앞서 설명한 바와 같이 상기 다관절 로봇팔(200)의 선단에는 워터젯 노즐(300)이 장착된다. 워터젯 노즐(300)은 복수개가 채용되어도 좋다. 워터젯 노즐(300)은 전후신굴 가능한 형태로 구성될 수 있다. 도 4를 참조하면, 소정 길이를 가지는 막대형상의 워터젯 노즐(300)이 지지프레임(220)에 장착되어 있다. 이 워터젯 노즐(300)의 신굴 길이는 제어부(500)에 의해 제어될 수 있다. 터널 굴착에 있어서, 1회 발파를 위해 요구되는 깊이는 암반 등의 지질 특성에 따라 달라지지만, 일반적으로 2내지 3m로 노즐(300)의 신굴 가능길이는 이를 커버할 수 있도록 제작된다.
또한, 상기 워터젯 노즐(300)은 워터젯 장비(600)에서 분사되는 물의 파괴력을 지반에 충분히 전달하기 위해서 워터젯 노즐(300)의 일부가 회전되도록 회전부분을 구성할 수 있다.
워터젯 노즐(300)의 일측에는 절삭된 깊이와 너비를 측정할 수 있는 깊이 센서부(310)와 너비 센서부(320)를 포함한다. 구체적으로, 상기 워터젯 노즐(300)은 고압수에 의한 자유면(20)의 파쇄 깊이를 측정하는 깊이 센서부(310)를 포함하며, 상기 제어부(500)는 상기 파쇄 깊이를 이용하여 다관절 로봇팔(200) 및 공급부(400)를 제어한다. 또한, 워터젯 노즐(300)은 고압수에 의한 자유면(20)의 파쇄 너비를 측정하는 너비 센서부(320)를 포함하며, 제어부(500)는 상기 파쇄 너비를 이용하여 다관절 로봇팔(200) 및 공급부(400)를 제어한다. 이와 같이 깊이 센서부(310)와 너비 센서부(320)는 레이저 기반으로 구성될 수 있다.
로봇팔(200)은 노즐의 기울임 각도 조절 및 길이 조절을 위한 다수의 자세제어 센서를 구비하며, 센싱값에 따라 노즐을 실시간으로 제어하도록 한다. 또한, 작업중 노즐이 자유면 내로 인입된 상태에서 암반이 붕괴되는 경우 이를 센싱하기 위한 센서를 구비하고 있다.
워터젯 노즐(300)은 암반과 일정거리를 유지하면서, 노즐(300)을 전후신굴되도록 동작시켜야하는데, 거리센서(310) 및 너비센서부(320)를 통해 암반이 파쇄되는 것을 실시간으로 측정하고, 암반과 노즐(300)이 최적거리를 유지하도록 한다. 일반적으로 암반과 노즐의 이격거리는 10cm 내외에서 최적의 성능을 발휘하는 것으로 측정되었다.
아래 표는 노즐의 상태 및 이격거리 등에 따라 자유면 형성 시간을 실험을 통해 측정한 값이다. 실험은 2개의 노즐을 페어로하여 결합 각도(측면에서 노즐이 결합된 경우, 노즐간의 각도)를 7.1과 3.8도로 하여 실험하되, 암반과의 이격거리 및 노즐의 이동속도(전후진 신굴은 동작하지 않고, 좌우 직선 이동만 실시)에 따라 실험한 값이다.
표 1
노즐 이동속도 10mm/s
노즐각(도) 평균깊이[mm] 평균폭[mm] 이격거리[cm] 절삭 형태 시공시간2 pump[hr/1m] 시공시간3 pump[hr/1m] 시공시간4 pump[hr/1m]
7.1 70 37 10 W 1.0 0.7 0.5
7.1 60 45 20 V 1.2 0.8 0.6
7.1 45 45 30 V 1.5 1 0.8
3.8 50 60 10 W 1.4 0.9 0.7
3.8 38 65 20 W 1.8 1.2 0.9
3.8 35 70 40 V 2.0 1.3 1.0
표 2
노즐 이동속도 20mm/s
노즐각(도) 평균깊이[mm] 평균폭[mm] 이격거리[cm] 절삭 형태 시공시간2 pump[hr/1m] 시공시간3 pump[hr/1m] 시공시간4 pump[hr/1m]
7.1 45 37 10 W 0.8 0.5 0.4
7.1 40 45 20 V 0.9 0.6 0.5
7.1 30 45 30 V 1.2 0.8 0.6
3.8 25 60 10 W 1.4 0.9 0.7
3.8 25 65 20 W 1.4 0.9 0.7
3.8 20 70 40 V 1.7 1.2 0.9
표 3
노즐 이동속도 30mm/s
노즐각(도) 평균깊이 [mm] 평균폭 [mm] 이격거리 [cm] 절삭 형태 시공시간2 pump[hr/1m] 시공시간3 pump[hr/1m] 시공시간4 pump[hr/1m]
7.1 38 37 10 W 0.6 0.4 0.3
7.1 30 45 20 V 0.8 0.5 0.4
7.1 25 45 30 V 0.9 0.6 0.5
3.8 20 60 10 W 1.2 0.8 0.6
3.8 19 65 20 W 1.2 0.8 0.6
3.8 15 70 40 V 1.5 1.0 0.8
위 표에서 절삭 형태는 쌍으로된 노즐을 이용하여 실험하는 경우, 암반과 노즐의 이격거리에 따라 발생되는 절삭형태는 나타낸 것이다.
실험에 따른 조건은 아래 표와 같다.
워터젯 펌프
고유량 워터젯 장비 사용
표 4
최대압력 펌프힘[HP] 최대유량[1/min] 안정적 사용유량(80%효율) 사용된 유량/1개 노즐
2800bar 240 31 25 8.8
오리피스
No 24 orifice 사용 (dia. 0.061cm, 8.8리터/분@2500bar)
포커싱노즐
노즐 tip 내경: 0.09inch = 2.29mm
실험압력과 연마제 투입량
실험압력: 2500bar
연마제 투입량: 57g/s (개당)
한편, 공급부(400)는 고압수를 생성하여 워터젯 노즐(300)로 공급한다. 공급부(400)는 연마제를 고압수와 함께 워터젯 노즐(300)로 공급할 수 있다. 이 연마제는 모래 등의 입자로 이해해도 무방하다. 워터젯 노즐(300)로 공급된 연마제는 고압수에 의해 가속되어 물과 함께 굴착대상면(10)의 파쇄 및 절삭의 효율을 높인다. 물론 워터젯 노즐(300)을 통해 분사되는 물의 압력과 연마제의 투입량은 제어부(500)에 의해 조절 가능하다.
상술한 바와 같이 본 발명의 제어부(500)는 이동유닛(100) 및 다관절 로봇팔(200)과 워터젯 노즐(300)을 제어한다. 제어부(500)는 워터젯 노즐(300)과 다관절 로봇팔(200)이 구성된 이동유닛(100)의 이동을 제어하고, 워터젯 노즐(300)의 회전부분의 회전속도 및 워터젯 노즐(300)에서 분사되는 물의 압력 및 방향을 제어한다.
한편, 본 발명의 워터젯 장비(600)를 이용한 굴착대상면(10)에 자유면(20)을 형성하도록 파쇄하기 위해 굴착대상면(10)에 도색된 소정의 색상 라인(L)을 인식하는 라인인식수단(210)을 더 포함한다. 이와 같은 인식은 작업자가 미리 예상 터널계획면에 따른 라인을 도색하고, 장비가 화상인식을 통해 자동으로 해당 라인을 인식하여 자유면 형성을 위한 장비(600)의 동작을 제어하는 방식으로 이루어질 수 있다.
장비(600)가 자유면을 형성할 위치를 자동으로 인식하는 방법은 위 화상인식에 관한 방법 이외에 아래와 같이 이루어질 수 있다.
터널 입구쪽에 다수의 위치측정 단말기(바람직하게는 3개 이상)를 설치한다. 위치측정 단말기는 위성으로부터의 신호를 검출하여 자신의 위치를 획득하며, 각각의 단말기는 자신의 위치와 관련한 정보를 포함하여 터널 안쪽으로 위치정보를 송출한다. 장비(600)는 위치측정 단말기로부터 수신되는 위치정보를 분석하여 단말기 각각과의의 거리정보 및 단말기의 위치정보를 획득하고, 연산을 통해 자신의 3차원 위치를 인식한다. 이후, 미리 입력된 터널계획에 따른 3차원 위치정보를 매칭하여 터널 굴착에 따른 자유면을 형성한다. 이때, 터널의 길이가 길어 장비의 신호 수신이 불가능한 경우, 중계 단말기를 터널 중간에 더 설치하여 장비가 위치를 인식할 수 있도록 한다. 중계단말기가 자신의 위치를 확인하게 되면, 자신의 위치를 저장하고, 이를 이용하여 위치정보를 송출하도록 하면, 터널 입구쪽에 설치된 단말기는 제거해도 무방하며, 입구쪽에 설치된 단말기를 다시 중계기로 사용하도록 한다.
다른 방법으로는 레이저 등을 이용하여 가이드라인에 해당하는 정보를 후방의 특정 지점에서 굴착방향으로 발사하도록 하고, 이를 장비(600)가 감지하고 장비(600)의 3차원 위치를 인식하도록 한다. 발사된 레이저는 3차원 공간상에서 직선으로 나타나며, 단말기와 장비와의 거리 정보만 연산하면, 장비의 3차원 공간위치를 획득할 수 있게 된다. 이를 위해 장비(600)는 위치측정부(도시하지 않음) 및 자세(기울어짐, 노즐의 신굴에 따른 정보로부터 노즐의 위치 파악)측정부(도시하지 않음)를 더 구비하고, 장비(600)가 자유면을 자동으로 형성시킬 수 있도록 한다.
도 5 내지 도 7을 참조하면, 여기서, 상기 라인(L)은 굴착대상면(10)에 형성되는 파쇄패턴인 것이다.
상기 라인(L)은 굴착대상면(10)에 소정의 색상 라인(L)으로 그려지는 파쇄패턴으로 아치형태를 가진다.
또한, 상기 파쇄패턴은 아치형 패턴을 기본으로 하되, 지그재그 패턴이 복합된 패턴으로도 형성할 수 있다.
이때, 워터젯 노즐(300)은 지그재그 패턴을 따라 암반을 파쇄하게되며, 굴착대상면(10)에 자유면(20)은 소정의 너비를 가지게 된다.
여기서, 상기 파쇄패턴으로 형성된 라인(L)을 제어부(500)는 워터젯 노즐(300)이 상기 라인인식수단(210)을 통해 인식한 상기 라인(L)을 추종하도록 상기 다관절 로봇팔(200)을 제어한다.
이때, 상기 라인(L)을 인식하게 되는 라인인식수단(210)으로는 촬영수단으로 이루어질 수 있다.
라인의 인식 수단(210)은 앞서 설명한 바와 같이, 장비의 위치인식 방법의 하나로서, 장비의 위치인식이 완료되면, 작업할 면(10)을 스캐닝하여, 작업할 자유면의 상태가 장비(600)쪽으로 튀어 나왔는지, 굴착방향으로 들어갔는지의 현재 상태를 파악한다.
파악이 완료되면 본격적인 작업에 앞서, 먼저 파쇄하여야 할 튀어나온 부분에 노즐(300)을 이동시켜 선작업을 실시한다. 1단계 선작업이 완료되면, 전체적으로 구간을 분할하여 로봇팔을 동작시켜 작업을 진행한다.
즉, 굴착대상면(20)에 그려지는 라인(L)을 제어부(500)는 다관절 로봇팔(200)이 라인(L)을 따라 이동하도록 함에 상기 다관절 로봇팔(200)에 장착된 워터젯 노즐(300)이 라인(L) 형태로 자유면(20)으로 파쇄하게 된다.
이와 같이, 상기 다관절 로봇팔(200)은 라인(L)을 따라 이동하고, 상기 워터젯 노즐(300)은 다관절 로봇팔(200)을 따라 이동하면서 아치형 또는 지그재그형으로 궤적을 그린다.
따라서, 굴착대상면(10)의 외곽으로 소정 깊이를 가지는 아치형 또는 지그재그형으로 굴착된 자유면(20)이 형성된다. 이 자유면(20)은 굴착대상면(10)과 지표면 사이에 개재되어 굴착대상면(10)을 감싸는 형태이다.
한편, 워터젯 장비(600)는 굴착대상면(10)에 도색된 소정의 색상 라인(L)을 인식하는 라인인식수단(210)을 더 포함할 수 있다. 도 5 내지 도 7을 참조하면, 아치형태의 라인(L)이 굴착대상면(10)에 도색되어 있다. 이 라인(L)은 본 발명의 워터젯 장비(600)에 의한 실질적인 파쇄패턴인 것으로 이해해도 좋다. 상기 파쇄패턴은 아치형 패턴을 기본으로 하되, 지그재그 패턴이 복합된 패턴으로도 형성할 수 있다.
구체적으로, 제어부(500)는 워터젯 노즐(300)이 상기 라인인식수단(210)을 통해 인식한 상기 라인(L)을 추종하도록 상기 다관절 로봇팔(200)을 제어한다. 라인인식수단(210)으로는 촬영수단으로 이루어질 수 있다. 따라서 자유면(20)은 상기한 라인(L)을 따라 형성된다. 참고로 도 7에 예시된 바와 같이, 제어부(500)는 기본적으로 아치형태의 라인(L)을 추종하도록 다관절 로봇팔(200)을 제어하되, 파쇄너비를 고려하여 지그재그형 궤적을 그리도록 제어할 수도 있다. 결과적으로, 굴착대상면(10)의 외곽으로 소정 깊이를 가지는 아치형 또는 지그재그형으로 굴착된 자유면(20)이 형성될 수 있는 것이다.
자유면이 형성되면, 노즐에 장착된 카메라를 통해 자유면 안쪽을 촬영하고, 암반의 상태를 검사함으로써, 향후 장약 발파나 터널 공사중의 붕괴 가능성을 예측하여 향후 공사에 안전성을 배가시키도록 한다.
도 8은 본 발명의 또 다른 실시예를 도시한 도면이다. 도 8은 워터젯 장비(600)의 워터젯 노즐(300)을 장착한 워터젯 장비(300)에 대한 또 다른 실시예로서, 2개의 다관절 로봇팔(200)을 구비한다. 이때, 다관절 로봇팔은(200) 워터젯 노즐(300)을 지지하며 도면에 화살표로 도시한 바와 같이 워터젯 노즐(300)의 높낮이 조절과 길이를 조절이 모두 가능하도록 구비된다.
상기 워터젯 장비(600)를 살펴보면 다음과 같다. 각각의 구성으로는 다관절 로봇팔(200), 유격거리 측정 센서 및 온도 감시 센서, 석션시스템, 함몰 검출 시스템을 포함하여 구성될 수 있다.
보다 구체적으로, 다관절 로봇팔(200)은 자유면(20)을 형성함에 있어 자유면(20) 오차에 따른 기기오작동의 해결과 다관절 로봇팔(200)의 움직임 속도를 제어할 수 있도록 설계 한다.
유격거리 측정 센서는 워터젯 노즐(300)에 부착되어 일정거리 내에 표적이 없으면 동작이 정지되도록 구비한다.
또한, 온도 감시 센서는 워터젯 노즐(300)이 겨냥하는 굴착지점에 사람으로 인식 될 수 있는 온도 범위를 측정해 사고를 방지할 수 있도록 구비된다.
석션시스템은 암반이 파쇄되어 물과 함께 흘러나오면, 이를 흡입하여 여타 구역으로 배출시킴으로써, 침적이 발생하지 않도록 하며, 자유면(20)의 형성 속도를 증가시킬 수 있도록 구비한다. 함몰 검출 시스템은 형성된 자유면(20)의 함몰된 위치 부분 검출 및 함몰된 지반에 의한 워터젯 노즐(300)의 손상여부를 확인할 수 있도록 한다. 이때, 워터젯 노즐(300)이 손상되었다면 분리, 교체 및 재조립이 용이한 설계 또는 구성을 구비한다.
또한, 자유면(20) 형성 시 워터젯 노즐(300)의 움직임이 제대로 작동하지 않을 때 그 이유가 무엇인지 확인할 수 있도록 한다.
이하, 도 9 내지 도 10을 참조하여 본 발명의 실시예에 따른 워터젯을 이용한 굴착방법을 설명하면 다음과 같다.
먼저, 이동유닛(100)을 이용해 워터젯 장비(600)가 굴착위치로 전진한다.
장비(600)가 제자리를 잡으면, 자신의 위치 및 자유면을 형성하기 위한 부분을 스캐닝하여 현재 상태를 파악하고, 노즐(300)을 이용하여 선작업을 실시한다. 바람직하게는 노즐을 회전시키면서, 라인(L)을 따라 왕복운동을 시킴으로써, 효과적으로 자유면을 형성시킨다. 스캔에 따라 돌출된 부분을 먼저 작업하여, 일정 하게 자유면의 깊이를 만든 상태에서 전체적으로 로봇팔을 가동하여 자유면을 형성시키는 것이 바람직하다.
그리고, 굴착대상면(10)에 라인(L)으로 이루어지는 파쇄패턴을 형성한다.
이때, 상기 파쇄패턴은 아치형 또는 지그재그 형태의 복합패턴을 선택하여 굴착대상면(10)에 소정의 색상 라인(L)으로 도색된다.
제어부(500)는 굴착대상면(10)에 형성된 라인(L)을, 라인인식수단(210)을 통해 인식하고, 상기 라인(L)을 워터젯 노즐(300)이 추종하도록 제어한다.
이때, 다수의 로봇팔(200)을 구비하는 경우, 구획을 나누고 잡업을 진행할 수 있으며, 로봇팔(200) 상호간의 간섭을 고려하여 작업의 순서와 시간을 각각의 로봇팔별로 제어한다.
제어부(500)는 다관절 로봇팔(200)이 라인(L)을 따라 이동하도록 함으로써, 계획된 라인(L) 형태로 자유면(20)이 형성되도록 한다.
상기 워터젯 노즐(300)을 이용하여 굴착대상면(10)에 소정 깊이의 자유면(20)을 형성한다.
자유면(20)을 측정하는 단계는 워터젯 노즐(300)에 의해 파쇄된 자유면(20)의 파쇄 깊이 및 파쇄 너비를 실시간으로 센서를 통해 측정한다. 측정된 너비나 깊이가 기준 이하가되는 경우, 해당 부분에 노즐(300)을 재동작시킴으로서, 원하는 너비와 깊이를 확보할 수 있도록 한다.
자유면(20)의 깊이 및 공간이 확보되지 않았을 경우 초기 실행 명령을 이행하고, 자유면(20)의 깊이 및 공간이 확보되는 경우 발파준비 단계로 진행된다.
이와 같이 자유면(20) 형성 공정이 완료되면, 후속적으로 상기 워터젯 노즐(300)을 이용하여 상기 자유면(20)의 내측 영역에 다수의 장약공(30)을 형성한 후, 상기 장약공(30)에 폭약을 장약하여 발파하는 공정이 이루어진다.
아울러, 본 발명에 따른 파쇄패턴은 굴착부분의 굴착설계선의 라인(L)을 따라 충격, 진동 및 소음의 전달을 감소시키는 일련의 연속된 자유면(20)을 형성해 발파 진동을 억제할 수 있다. 터널의 굴착방향에 대하여 전방만 개방되고, 상하좌우 및 배면이 인접 암반으로 인해 밀폐된 상태에서 발파가 이루어지던 종래와는 달리, 본 발명은 하면 및 배면만 인접 암반에 의해 밀폐되고, 전방 및 상면, 좌우면이 개방된 상태에서 발파가 이루어지게된다. 따라서, 자유면(20) 늘어남으로 인해 필요 장약을 최소화함에 따라 충격, 진동 및 소음의 전달을 감소시켜 보다 안전하고 친환경적인 발파공정이 가능하다.
또한, 장약공(30)에 설치된 화약을 폭파시키는 경우, 발생되는 진동과 소음 및 파괴력은 매질인 굴착대상 암반(10)을 매질로 하여 사방으로 퍼지게 된다. 그러나, 자유면(20) 부분에서는 매질이 상이(암반, 공기)하여 진동과 소음 및 파괴력이 굴착대상 암반(10)쪽으로 반사된다. 이는 물속에서 발생된 소리가 물속에서는 전달이 잘 되지만, 매질이 다른 물 밖 공기중에서는 들리지 않는 원리와 같다.
따라서, 자유면(20)은 폭파로 인해 발생되는 발생되는 진동과 소음을 효과적으로 차단 감소시키게 된다.
종전의 경우, 폭발로 발생되는 파괴력이 암반을 따라, 사방으로 전파되어 손실이 매우 컷지만, 본 발명의 경우, 파괴력이 자유면(20)에 의해 반사되어 다시 안쪽으로 향하도록(도9 참조) 한다. 따라서, 적은 폭발력으로도 굴착대상 암반을 파괴시킴으로써, 폭약 사용량을 절감할 수 있게 된다.
한편, 도 10에 도시한 바와 같이, 자유면(20) 내측(굴착대상면: 10)에 폭약이 장착되는 소정의 깊이를 가지는 다수개의 장약공(30)을 등간격으로 형성시킨다.
장약공(30)은 본 발명에 따른 방식에 의해 워터젯을 이용하여 작업할 수도 있고, 기존의 점보드릴 장비를 이용하여 형설 시킬 수도 있다. 또한, 다수의 로봇팔(600)을 장착하는 경우, 일부 로봇팔은 자유면을 형성하고, 여타 로봇팔(600)은 장약공을 형성하도록 동작시킬 수도 있다.
아울러, 상기 굴착대상면(10)의 발파로 터널 굴착이 이루어진다.
발파의 순서는, 자유면(20)에 인접한 폭약을 먼저 발파하고, 이후 터널의 중심 및 저면을 향하여 순차적으로 발파한다. 즉, 전방 및 좌우 자유면과 상부 자유면에 인접한 부분에서 발파가 먼저 시작되도록 하고, 순차적으로 터널 안쪽 및 아래쪽 암반의 장약이 폭파되도록 한다. 또한, 장약공은 일반적으로 2m 내지 3m 깊이로 형성되기 때문에, 해당 장약공에 설치된 장약이 동시에 폭파되는 것이 아니라 다단발파가 이루어지도록 할 수 있다. 예를 들어, 양파껍질을 벗겨내듯이 최외곽에 위치한(전방, 좌우, 상부 자유면에 인접한) 장약을 먼저 폭파시키고, 안쪽으로 들어가면서 순차적으로 발파를 시행한다. 이와 같이 발파를 진행하게되면, 자유면이 많은 암반을 먼저 파쇄하도록 하여 장약량을 줄일 수 있다.
한편, 본 발명의 다른 일 실시형태의 워터젯을 이용한 굴착 시스템에 관한 것으로, 이하 이를 상세히 설명한다.
도 11 내지 도 12를 참조하면, 워터젯 시스템은 프레임(710), 이동수단(720), 워터젯 노즐(730) 및 제어장치(740)를 포함하여 구성된다.
보다 구체적으로 프레임(710)은 굴착대상면(10)의 전면에 배치된다. 프레임(710)은 도면과 같이 터널의 종단면 형태와 유사한 아치형이며, 터널굴착 방향을 따라 이동 가능하다. 프레임(710) 상부에는 레일(750)이 구비되어 있다. 레일(750)에는 이동수단(720)이 이동가능하게 계합된다. 이동수단(720)은 제어장치(740)의 제어 하에 레일(750)을 따라 왕복 순회된다. 바람직하게는 레일을 이용하지 않고, 이동수단(720)이 바퀴나 궤도를 이용하여 프레임(710)을 움직이게 한다.
상기 이동수단(720)의 이동 대상체는 워터젯 노즐(730)이다. 워터젯 노즐(730)은 굴착대상면(10)의 전면을 향해 고압의 물을 분사한다. 이 고압의 물은 미도시된 물 공급장치에 의해 공급된다. 본 발명은 워터젯 노즐(730)로부터 분사되는 물을 통해 굴착대상면(10)을 분쇄(혹은 파쇄)하는데, 그 성능향상을 위해 연마제를 병용할 수 있다. 연마제는 모래 등의 입자이며 미도시된 연마제 공급장치를 통해 워터젯 노즐(730)로 공급된다. 따라서 워터젯 노즐(730)에서는 물과 이 물에 의해 가속된 연마제가 굴착대상면(10)으로 분사된다. 워터젯 노즐(730)을 통해 분사되는 물의 압력과 연마제의 투입량은 제어장치(740)에 의해 조절 가능하다. 상술한 워터젯 노즐(730)은 이동수단(720)에 고정지지되어 있으므로 레일(750)을 따라 왕복 순회한다.
이때, 상기 이동수단(720)는 레일(750)을 포함한 것이며, 상기 레일(750)은 프레임(710)의 전후이동을 가능하게 하는 제1레일(752)과 워터젯 노즐(730)의 이동을 가능하게 하는 제2레일(754)로 구성된다.
상기 제1레일(752)은 프레임(710)의 전후이동을 위한 것이고, 제2레일은 프레임(710) 상부에 위치하여 워터젯 노즐(730)의 이동을 가능하게 한다. 이러한, 상기 이동수단(720)은 워터젯 노즐(730)을 장착하여 상기 제2레일(754) 상에서 왕복 순회할 수 있도록 구성된다. 또한, 워터젯 노즐(730)은 앞서 설명한 로봇팔에 장착되고, 로봇팔이 프레임(710)에 장착되어, 프레임을 따라 로봇팔이 움직이도록함으로써 구현될 수도 있다.
이같이, 상기 워터젯 노즐(730)은 프레임(710)의 형태에 종속적으로 이동하므로 아치형의 궤적을 그린다. 따라서 굴착대상면(10)의 외곽으로 소정 깊이를 가지는 아치형의 자유면(20)이 형성된다. 이 자유면(20)은 굴착대상면(10)과 지표면 사이에 개재되어 굴착대상면(10)을 감싸는 형태이다.
여기서, 상기 워터젯 노즐(730)은 이동수단(720)을 통해 이동가능하며 복수개가 사용될 수도 있으며, 상기 워터젯 노즐(730)의 일 측에는 절삭된 깊이를 측정하기 위한 측정센서(732)를 포함할 수 있다.
또한, 제어장치(740)는 이동수단(720)의 이동속도, 워터젯 노즐(730)에서 분사되는 물의 압력 및 방향을 제어한다. 이때, 워터젯 노즐(730)을 통해 분사되는 물에는 굴착의 효율성을 높이기 위해 연마제 등의 보조물질이 혼합될 수 있다.
이러한, 워터젯 시스템을 이용한 자유면(20) 형성을 설명하면 프레임(710)을 제1레일(752)을 통하여 굴착위치로 전진시킨다. 전진 후 제어장치(740)를 통하여 워터젯 노즐(730)의 압력, 이동수단(720)의 이송속도, 연마제 투입량 등을 결정한다.
워터젯 노즐(730)은 프레임(710)의 형태에 종속적으로 이동하므로 아치형의 궤적을 그린다. 따라서 굴착대상면(10)의 외곽으로 소정 깊이를 가지는 아치형의 자유면(20)이 형성된다. 이 자유면(20)은 굴착대상면(10)과 지표면 사이에 개재되어 굴착대상면(10)을 감싸는 형태이다.
이와 같이 자유면(20) 형성 공정이 완료되면, 굴착대상면(10)으로부터 제1레일(752)을 통해 후진시키고 후속적으로 굴착대상면(10)에 다수의 장약공을 형성한 후, 장약하여 발파하는 공정이 이루어진다. 발파시에는 폭원으로부터 발파 진동(진동 에너지)이 발생한다. 이 발파 진동은 자유면(20)에 의해 반사되므로 지표면을 비롯한 주변으로의 전파가 효과적으로 억제된다.
한편, 자유면(20)으로부터 반사된 발파 진동의 태반은 다시 발파에 필요한 에너지로 작용한다. 따라서 발파에 필요한 폭약의 양은 자유면(20)이 없을 경우에 요구되는 양보다 적어질 수 있다. 또, 발파 후 여굴(overbreak)의 가능성을 현저하게 줄일 수 있다. 이는 발파 후의 후속 공정이 불필요하다는 것을 의미하며, 나아가 공사비용의 절감과 공사기간의 단축으로 이어진다.
실험예
도 13 ~ 도 20은 자유면 형성에 따른 발파진동 억제 시뮬레이션 결과이다. 도 13과 같이, 3차원 유한 요소 해석 모델을 나타낸 도면이고 최외곽공(40)과 확대공(30)의 위치를 나타낸다.
도 14는 시간에 따른 발파압력을 시뮬레이션한 도면이고, (a)는 확대공(30)에서의 발파압력을 (b)는 최외곽공(40)에서의 발파압력을 나타낸다. 이때, 최외곽공(도13 참조: 40) 장전조건은 정밀폭약인 직경 17 mm 규릿(Gurit)을 디커플링하고 확대공(도 13 참조: 30) 장전조건은 직경 32 mm 에멀젼(Emulsion) 장전한다. 확대공(30)과 최외곽공(40)에서의 발파압력의 차이는 두드러지지 않는다. 최외곽공(40)의 발파유무는 발파진동에 많은 영향을 끼치지 않는다.
도 15는 최외곽공(40) 및 확대공(30)의 XYZ 방향의 합성 변위를 시뮬레이션한 도면이며 도 16은 최외곽공(40) 및 확대공(30)의 수평방향 변위를 나타낸 도면이고, 도 17은 연직방향 변위를 시뮬레이션 한 도면이다. (a)는 자유면(20)을 형성하지 않고 최외곽공(40)과 확대공(30)을 폭파시킨 경우이고, (b)는 자유면(20) 형성 후 최외곽공과 확대공을 폭파시킨 경우이고, (c)는 자유면(20) 형성 후 확대공(30)만 폭파시킨 경우이다. 도 15 내지 도 17에 도시한 바와 같이 자유면(20)을 형성함으로써 발파압력이 터널 주변 지표면으로 전달되지 않는다. 또한, (b) 와 (c)의 발파압력의 차이는 뚜렷이 나타나지 않는다.
도 18은 최외각공(40) 1m 상단에서는 시간에 따른 연직 변위 변화를 나타낸 도면이다. 여기서 Case A는 자유면(20)을 형성하지 않고 일반적인 발파단면의 연직변화를 나타낸 수치이고 Case B는 자유면(20)이 형성된 후 발파단면의 연직변화를 나타낸 수치이며 Case C는 최외곽공(40)을 고려하지 않고 확대공(30)만으로 발파를 한 후 발파단면의 연직변화이다. 발파진동은 최외곽공(40)의 존재 유무에 큰 영향을 받지 않는다. 이는, 천공수 감소 및 장약량 감소 등으로 연계되어 공사비 절감의 효과가 있다.
도 19 내지 도 20은 발파지점 상단에서의 연직 방향 변위를 나타낸 도면이다. 이때, 발파위치가 터널 상부에서 멀리 떨어질수록 발파진동의 크기도 감소된다(도19 참조). 발파 위치로부터 멀어지는 경우, 진동폭이 감쇄되는 것을 확인 할 수 있다. 더불어, 발파위치가 터널 상부에서 멀어질수록 진동파의 도달시간도 증가된다(도19 참조).
도 20은 터널 발파위치의 상단 지표면(발파 지점으로부터 20m 이격된 위치)에서 자유면의 유무 및 자유면의 깊이에 따른 연직변화를 시뮬레이션 한 그래프이다. 도20을 보면 자유면(20)의 깊이가 깊어짐에 발파진동이 감쇄되는 효과가 있음을 알 수 있다.
자유면(20)이 없는 경우 상단 지표면(발파 지점으로부터 20m 떨어진 지표면)의 최대 연직변위는 0.07 가량으로 나타난다(도 20 참조). 그러나 자유면(20)이 형성된 경우 최대 연직변위는 자유면(20)이 형성되지 않는 경우보다 크게 감소되는 효과가 있다. 또한, 자유면(20)의 깊이가 깊어짐에 따라 터널 상부 지표면에서 나타나는 최대 연직변위의 크기도 점차 줄어들며, 4m 깊이의 자유면(20)이 적용된 경우, 자유면(20)이 적용되지 않은 경우에 대비해 최대 90% 이상의 진동감소 효과가 있다.
도 22는 수직방향 변위에 대한 시뮬레이션을 위한 모델링으로, "Contour holes"(외곽공) 및 "Sotpping holes"(확대공)에는 아래 표과 같이 장약을 설치하여 폭파하는 조건으로 실험을 진행하였다.
표 5
장약 성분 비교 Stopping hole Contour hole
Properties Emulsion Gurit
Density (g/cm3) 1.2 1.0
Detonation velocity (ft/sec) 16404 13123
Diameter (mm) 32 17
"a"는 자유면 10cm 폭으로 깊이 1m를 설치한 경우이고, "b"는 자유면 없이 1열의 라인드릴공을, "c"는 자유면 없이 2열의 라인드릴공을 설치한 상태에서 발파를 진행하였다.
도 23은 발파에 따른 수직변위값을 측정한 것으로, 라인드릴공이 설치된 경우와 일반적인 터널 발파와는 별다른 차이점이 발생되지 않았으나, 자유면이 설치된 경우에는 상단 부분에서 수직변위가 거의 나타나지 않는 것으로 파악되었다.
도 24는 최대 수직변위에 대한 측정값을 나타낸 것으로, 자유면이 형성된 경우, 최대 변위가 0.6정도로 측정되었다. 일반적으로 0.7 이상의 최대변위가 발생되는 경우 데미지존이 형성되는 것으로 알려져 있다.
따라서 본 발명에 따라 자유면을 형성할 경우, 발파진동이 효과적으로 억제될 수 있음을 확인할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 발명은 폭약 발파 기반의 터널굴착에 이용가능성이 있다. 특히, 고수준의 발파 진동 억제가 요구되는 도심 지하철 및 지하 시설물 공사에서 그 효용성이 높을 것으로 기대된다.
100:이동유닛
200:다관절 로봇팔
300:워터젯 노즐
310:깊이 센서부
320:너비 센서부
400:공급부
500:제어부
600:워터젯 장비
L: 라인
710:프레임
720:이동수단
730:워테젯 노즐
732:측정센서
740:제어장치
750:레일
752:제1레일
754:제2레일

Claims (17)

  1. 발파대상 영역 상에서 이동하는 이동유닛;
    상기 이동유닛에 탑재된 다관절 로봇팔;
    상기 로봇팔의 선단에 장착된 워터젯 노즐; 및
    고압수를 상기 워터젯 노즐에 공급하는 공급부;
    상기 이동유닛 및 로봇팔과 워터젯 노즐을 제어하는 제어부;
    를 포함하는 워터젯을 이용한 굴착 시스템.
  2. 제1항에 있어서,
    상기 공급부는,
    상기 고압수와 함께 연마제를 공급하는 워터젯을 이용한 굴착 시스템.
  3. 제1항에 있어서,
    굴착대상면에 도색된 소정의 색상 라인을 인식하는 라인인식수단; 을 더 포함하며,
    상기 제어부는 워터젯 노즐이 상기 라인인식수단을 통해 인식한 상기 라인을 추종하도록 상기 로봇팔을 제어하는 것을 포함하는 워터젯을 이용한 굴착 시스템.
  4. 제3항에 있어서,
    상기 라인은 파쇄패턴인 워터젯을 이용한 굴착 시스템.
  5. 제1항에 있어서,
    상기 워터젯 노즐에 의한 굴착대상면의 파쇄패턴은 아치형 패턴인 것을 포함하는 워터젯을 이용한 굴착 시스템.
  6. 제5항에 있어서,
    상기 파쇄패턴은,
    아치형 패턴을 기본으로 하되, 지그재그 패턴이 복합된 패턴인 것을 더 포함하는 워터젯을 이용한 굴착 시스템.
  7. 제1항에 있어서,
    상기 워터젯 노즐은,
    상기 고압수에 의한 자유면의 파쇄 깊이를 측정하는 깊이 센서부;를 포함하며,
    상기 제어부는 상기 파쇄 깊이를 이용하여 상기 로봇팔 및 공급부를 제어하는 워터젯을 이용한 굴착 시스템.
  8. 제7항에 있어서,
    상기 워터젯 노즐은,
    상기 고압수에 대한 자유면의 파쇄 너비를 측정하는 너비 센서부;를 포함하며,
    상기 제어부는 상기 파쇄 너비를 이용하여 상기 로봇팔 및 공급부를 제어하는 워터젯을 이용한 굴착 시스템.
  9. 제7항에 있어서,
    상기 깊이 센서부는,
    레이저 기반으로 하는 것을 더 포함하는 워터젯을 이용한 굴착 시스템.
  10. 제8항에 있어서,
    상기 너비 센서부는,
    레이저 기반으로 하는 것을 더 포함하는 워터젯을 이용한 굴착 시스템.
  11. 제1항에 있어서,
    상기 워터젯 노즐은,
    다수의 로봇팔에 신축 가능하도록 장착되어 굴착대상면을 파쇄하는 워터젯을 이용한 굴착 시스템.
  12. 터널굴착을 위한 발파 대상영역을 향해 전후이동 가능한 아치형 프레임;
    아치형 프레임에 이동 가능하게 계합되는 이동수단;
    상기 이동수단에 지지고정되어 상기 발파 대상영역을 향해 고압의 물을 분사하는 워터젯 노즐; 및
    상기 이동수단 및 워터젯 노즐을 제어하는 제어장치
    를 포함하는 워터젯을 이용한 굴착 시스템.
  13. 청구항 12에 있어서,
    상기 이동수단은,
    상기 아치형 프레임 상부에 구비되는 레일에 계합되는 워터젯을 이용한 굴착 시스템.
  14. 제 13항에 있어서,
    상기 이동수단은 레일을 포함하며,
    상기 레일은 프레임의 전후이동을 가능하게 하는 제1레일과 워터젯 노즐의 이동을 가능하게 하는 제2레일을 더 구비하는 워터젯을 이용한 굴착 시스템.
  15. 워터젯을 이용하여 굴착대상면에 소정 깊이의 자유면을 형성하는 제1공정; 을 포함하는 워터젯을 이용한 굴착 방법.
  16. 제15항에 있어서,
    상기 워터젯을 이용하여 상기 자유면의 내측 영역에 장약공을 형성하는 제2공정; 을 더 포함하는 워터젯을 이용한 굴착 방법.
  17. 제16항에 있어서,
    상기 장약공에 폭약을 장약하여 발파하는 제3공정;을 더 포함하는 워터젯을 이용한 굴착 방법.
PCT/KR2011/007322 2010-10-01 2011-10-04 워터젯을 이용한 굴착 시스템 및 이를 이용한 굴착 방법 WO2012044138A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11829644.1A EP2623706B1 (en) 2010-10-01 2011-10-04 Excavation system using a water jet, and excavation method using the same
JP2013531506A JP5721842B2 (ja) 2010-10-01 2011-10-04 ウォータージェットを用いた掘削システム及びこれを用いた掘削方法
BR112013006841-8A BR112013006841B1 (pt) 2010-10-01 2011-10-04 Sistema e método de escavação
US13/876,782 US9140122B2 (en) 2010-10-01 2011-10-04 Excavation system using a water jet, and excavation method using the same
CN201180046495.6A CN103221627B (zh) 2010-10-01 2011-10-04 利用水射流的开挖系统及利用它的开挖方法
SG2013023742A SG189172A1 (en) 2010-10-01 2011-10-04 Excavation system using a water jet, and excavation method using the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2010-0095879 2010-10-01
KR20100095879 2010-10-01
KR20100102135 2010-10-19
KR10-2010-0102134 2010-10-19
KR10-2010-0102135 2010-10-19
KR20100102134 2010-10-19
KR10-2011-0029250 2011-03-31
KR20110029250 2011-03-31

Publications (2)

Publication Number Publication Date
WO2012044138A2 true WO2012044138A2 (ko) 2012-04-05
WO2012044138A3 WO2012044138A3 (ko) 2012-06-28

Family

ID=45893714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007322 WO2012044138A2 (ko) 2010-10-01 2011-10-04 워터젯을 이용한 굴착 시스템 및 이를 이용한 굴착 방법

Country Status (8)

Country Link
US (1) US9140122B2 (ko)
EP (1) EP2623706B1 (ko)
JP (1) JP5721842B2 (ko)
KR (4) KR20120034545A (ko)
CN (1) CN103221627B (ko)
BR (1) BR112013006841B1 (ko)
SG (1) SG189172A1 (ko)
WO (1) WO2012044138A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109296378A (zh) * 2018-10-23 2019-02-01 中交二航局第二工程有限公司 潜孔钻配合破碎锤掘进开挖施工方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043364B1 (ko) * 2012-07-25 2019-11-12 한국과학기술원 터널 자유면 형성을 위한 워터젯 노즐 구동장치
CN104018839B (zh) * 2014-06-21 2015-12-30 吉林大学 一种基于弹簧夹头控制伸缩水枪
KR101633281B1 (ko) * 2014-12-17 2016-06-27 연 근 박 암반을 이용한 납골당용 공동의 시공방법
JP6419585B2 (ja) * 2015-01-13 2018-11-07 株式会社小松製作所 掘削機械、掘削機械の制御方法及び掘削システム
KR101669669B1 (ko) 2015-04-30 2016-10-26 주식회사 성우사면 근접병설터널 시공방법
CN105571414A (zh) * 2015-12-15 2016-05-11 武汉大学 一种射流割缝辅助地下工程微震爆破方法
CN105863652A (zh) * 2016-05-30 2016-08-17 深圳市鸿淏高科产业发展有限公司 一种基于高压水枪的高效扩孔挖掘设备
CN106014428B (zh) * 2016-07-06 2018-08-07 中国电建集团华东勘测设计研究院有限公司 Tbm通过具有强岩爆风险绕行洞段的围岩预处理方法
CN106522962A (zh) * 2016-11-16 2017-03-22 西安科技大学 一种隧道掘进方法
KR102023695B1 (ko) * 2017-05-16 2019-09-23 이승훈 토양 굴착 및 응집용 조성물과 이를 이용한 굴착 방법
CN107217988B (zh) * 2017-05-24 2019-12-10 太原理工大学 一种煤矿掘进工作面高压水力割缝机
CN107448174A (zh) * 2017-08-02 2017-12-08 武汉大学 一种激光和水射流相结合的开采页岩气装置及方法
CN108425677B (zh) * 2018-02-05 2020-02-11 济南力稳岩土工程有限公司 一种隧道超欠挖监测钻孔施作方法
KR101878918B1 (ko) 2018-03-19 2018-08-16 노현희 수압을 이용한 계류앵커 블록 및 상기 블록의 매설 방법
KR101950770B1 (ko) 2018-09-27 2019-02-21 오성환 하우스용 공기순환장치
KR101959773B1 (ko) 2018-09-27 2019-07-15 오성환 하우스용 공기순환장치
KR102046482B1 (ko) 2019-03-25 2019-11-19 오성환 하우스용 공기순환장치
KR102046481B1 (ko) 2019-03-25 2019-12-02 오성환 하우스용 공기순환장치
KR102046480B1 (ko) 2019-03-25 2019-12-02 오성환 하우스용 공기순환장치
CN110030002A (zh) * 2019-05-06 2019-07-19 上海科煤机电设备制造有限公司 一种带有水切割功能的巷道修复机
CN110219662B (zh) * 2019-06-20 2020-10-02 中铁隧道局集团有限公司 一种利用高压水切割隧道前方孤石的装置及方法
US20210148229A1 (en) * 2019-11-15 2021-05-20 Hypersciences, Inc. Projectile augmented boring system
CN111594209A (zh) * 2020-05-29 2020-08-28 中铁工程装备集团有限公司 一种硬岩隧道掘进机及其施工方法
CN111854553A (zh) * 2020-08-05 2020-10-30 重庆交通大学 一种高压水射流轮廓切缝辅助爆破方法及轮廓切缝台车
US11624235B2 (en) * 2020-08-24 2023-04-11 Hypersciences, Inc. Ram accelerator augmented drilling system
CN112196543B (zh) * 2020-09-30 2022-08-19 中国铁建重工集团股份有限公司 一种掘进机及其磨料射流辅助破岩装置
CN112483114B (zh) * 2020-10-23 2023-07-25 中建路桥集团有限公司 一种采用高压水射流开挖隧道的施工装置
CN112627890A (zh) * 2020-12-24 2021-04-09 招商局重庆交通科研设计院有限公司 一种隧道二次衬砌结构无损快速的水射流拆除方法
CN112763308B (zh) * 2020-12-29 2022-11-25 哈尔滨工程大学 一种可连续调节实时监控多自由度冲蚀辅助系统
CN112847841B (zh) * 2021-01-14 2022-12-09 中铁工程装备集团有限公司 隧道掘进机用石块处理机器人及隧道掘进机
CN112943237B (zh) * 2021-02-20 2022-09-23 新疆大学 一种自动化水力切块煤巷掘进台车
CN113006787B (zh) * 2021-03-03 2023-03-14 淮南师范学院 一种煤矿用智能挖掘机器人
CN113294092B (zh) * 2021-05-06 2023-03-24 华北科技学院(中国煤矿安全技术培训中心) 一种自动化钻机及钻孔作业方法
CN113267140B (zh) * 2021-05-10 2022-09-23 贵州大学 一种隧道超挖欠挖检测的装置和检测方法
CN113294155B (zh) * 2021-05-21 2023-12-05 重庆大学 一种金属矿脉辅助开采装置
KR102422406B1 (ko) * 2021-12-16 2022-07-19 주식회사 에이치비씨 연마제 분사기능을 포함하는 회전노즐을 구비한 워터젯 대구경 암반 지반 천공기
KR20240033533A (ko) 2022-09-05 2024-03-12 부산대학교 산학협력단 워터젯을 이용한 암반 파쇄 장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531985B1 (ko) 2003-06-24 2005-11-30 주식회사 미래공영 라인 드릴링공을 이용한 발파진동 차단을 위한 굴착구조및 공법
KR100599982B1 (ko) 2004-06-08 2006-07-13 주식회사 일해토건 터널 발파 공법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3813126A (en) * 1972-10-02 1974-05-28 Bendix Corp Continuously operable underground mining vehicle
US4193634A (en) * 1977-12-05 1980-03-18 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for excavation
JPS5833200Y2 (ja) * 1979-09-06 1983-07-23 マツダ株式会社 トンネル掘さく装置
GB2095722A (en) * 1981-03-31 1982-10-06 Univ Exeter The Forming an erosive jet
JPS608786U (ja) * 1983-06-27 1985-01-22 マルマ重車輌株式会社 ジエツトウオ−タ−掘削機
JPS6315100A (ja) * 1986-07-03 1988-01-22 清水建設株式会社 地下空洞掘進における芯抜き発破方法
DE3739825A1 (de) * 1987-08-11 1989-02-23 Ciwj Co Int Water Jet Vorrichtung zum schneiden, bohren oder dergleichen bearbeiten von gestein, erzen, beton oder dergleichen
JPH0336394A (ja) * 1989-06-30 1991-02-18 Komatsu Ltd 小口径穿孔装置
JP2889402B2 (ja) 1991-06-18 1999-05-10 電源開発株式会社 液体ジェットを用いたみぞ掘削方法
US5411432A (en) * 1992-09-18 1995-05-02 Wyatt; Peter Programmable oscillating liquid jet cutting system
JP3096180B2 (ja) 1992-12-01 2000-10-10 広 幾世橋 ウォータージェット破砕工法
KR950019034A (ko) 1993-12-03 1995-07-22 백기출 저진동 터널굴착방법
CH691873A5 (de) * 1995-12-27 2001-11-15 Mbt Holding Ag Verfahren und Einrichtung zum Beschichten von Tunnelinnenwänden mit Spritzbeton.
US5765924A (en) * 1996-05-22 1998-06-16 Liesveld; Daniel J. High pressure water jet channeling horizontally into a solid mountain of granite
JPH1096627A (ja) 1996-09-25 1998-04-14 Furukawa Co Ltd さく孔装置の表示装置
JP2965938B2 (ja) * 1997-05-23 1999-10-18 マック株式会社 自動削孔システム
JP2001003677A (ja) 1999-06-24 2001-01-09 Maeda Corp ワークステーションタイプのトンネル拡幅装置およびトンネル拡幅工法
SE519788C2 (sv) * 2002-04-04 2003-04-08 Atlas Copco Rock Drills Ab Förfarande för lokalisering av ett med en bergborrigg borrat hål
JP4151776B2 (ja) * 2002-04-22 2008-09-17 古河機械金属株式会社 さく孔機のさく孔位置決めの修正装置及び修正方法
JP4224604B2 (ja) * 2003-03-25 2009-02-18 独立行政法人土木研究所 トンネル拡幅装置
JP2005097830A (ja) * 2003-09-22 2005-04-14 Nakaguro Kensetsu Kk 掘進機
SE530049C2 (sv) * 2006-06-22 2008-02-19 Aquajet Systems Holding Ab Anordning samt förfarande för förflyttning av ett strålorgan
KR100787204B1 (ko) * 2006-10-19 2007-12-21 이태노 터널 및 개착발파의 굴착선공 천공패턴 및 그것을 이용한조합형 조절발파공법
KR100827428B1 (ko) * 2006-12-27 2008-05-06 삼성물산 주식회사 워터젯 시스템
KR101054380B1 (ko) 2008-11-18 2011-08-04 김진형 터널굴착공법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531985B1 (ko) 2003-06-24 2005-11-30 주식회사 미래공영 라인 드릴링공을 이용한 발파진동 차단을 위한 굴착구조및 공법
KR100599982B1 (ko) 2004-06-08 2006-07-13 주식회사 일해토건 터널 발파 공법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623706A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109296378A (zh) * 2018-10-23 2019-02-01 中交二航局第二工程有限公司 潜孔钻配合破碎锤掘进开挖施工方法

Also Published As

Publication number Publication date
EP2623706A4 (en) 2016-08-10
KR101816078B1 (ko) 2018-01-30
KR101401652B1 (ko) 2014-06-03
JP2014505183A (ja) 2014-02-27
US9140122B2 (en) 2015-09-22
KR20140017469A (ko) 2014-02-11
KR20120034583A (ko) 2012-04-12
US20130200680A1 (en) 2013-08-08
BR112013006841B1 (pt) 2020-09-24
EP2623706A2 (en) 2013-08-07
SG189172A1 (en) 2013-05-31
CN103221627A (zh) 2013-07-24
KR20140021495A (ko) 2014-02-20
KR101780800B1 (ko) 2017-09-21
CN103221627B (zh) 2015-08-05
WO2012044138A3 (ko) 2012-06-28
JP5721842B2 (ja) 2015-05-20
EP2623706B1 (en) 2018-06-27
KR20120034545A (ko) 2012-04-12
BR112013006841A2 (pt) 2016-06-07

Similar Documents

Publication Publication Date Title
WO2012044138A2 (ko) 워터젯을 이용한 굴착 시스템 및 이를 이용한 굴착 방법
CN113107513B (zh) 破岩的隧道施工方法
CN112196546B (zh) 一种利用微波和高压水射流破岩的无滚刀硬岩掘进机
KR101144905B1 (ko) 방호쉴드를 이용한 초장대터널 굴착방법
KR20140138023A (ko) 자유면을 이용한 무진동 암반 굴착 방법
WO2016129924A1 (ko) 비제한적 구동형 마킹 시스템 및 그 마킹 방법
CN112677142A (zh) 蛇形臂连接结构及蛇形臂机器人
WO2013027924A1 (ko) 도장 장치
WO2021101241A1 (ko) 건설 기계의 작업 계획 작성 방법
US7048340B2 (en) Method for introducing and blowing rock dust and device for carrying out said method
KR20140014565A (ko) 터널 최외곽 자유면 형성을 위한 워터젯 노즐 구동장치
WO2023033272A1 (ko) 비산방지 가능한 스프레이건
US3854776A (en) Impact mining machine having conveyor extending on front and side
CN208763658U (zh) 盾构土仓破大卵石装置
KR20220062744A (ko) 쉴드 tbm터널공사에서 세그먼트 조립 안전관리장치, 안전관리시스템 및 안전관리방법
KR20140014564A (ko) 터널 자유면 형성을 위한 워터젯 노즐 구동장치
WO2023229408A1 (ko) 건설기계용 붐 에너지 회수 유압시스템
CN108915708A (zh) 盾构土仓破大卵石装置
JP2000226996A (ja) 移動式吹付け作業架台およびこれを用いたトンネル施工方法並びに吹付け作業の遠隔操作方法
CN109519185B (zh) 一种tbm用l1区喷混设备遮挡装置
US11591909B2 (en) Tunnel boring system
CN113323688B (zh) 一种高压水射流切割剥离装置及其使用方法
CN114251099B (zh) 一种交叉洞室爆破开挖方法
WO2021225361A1 (ko) 굴삭기 및 이의 제어 방법
WO2022215997A1 (ko) 교각 방호 구조물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829644

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13876782

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013531506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829644

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006841

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006841

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130325