WO2012043228A1 - 表面pvd処理用高硬度プリハードン冷間工具鋼およびその製造方法、ならびにその表面pvd処理方法 - Google Patents

表面pvd処理用高硬度プリハードン冷間工具鋼およびその製造方法、ならびにその表面pvd処理方法 Download PDF

Info

Publication number
WO2012043228A1
WO2012043228A1 PCT/JP2011/070945 JP2011070945W WO2012043228A1 WO 2012043228 A1 WO2012043228 A1 WO 2012043228A1 JP 2011070945 W JP2011070945 W JP 2011070945W WO 2012043228 A1 WO2012043228 A1 WO 2012043228A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
tool steel
tempering
surface pvd
mass
Prior art date
Application number
PCT/JP2011/070945
Other languages
English (en)
French (fr)
Inventor
伊達 正芳
中津 英司
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2012536337A priority Critical patent/JP5854332B2/ja
Priority to CN201180046371.8A priority patent/CN103119187B/zh
Publication of WO2012043228A1 publication Critical patent/WO2012043228A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to a high-hardness pre-hardened cold tool steel for surface PVD processing suitable for tool materials, particularly cold mold materials for molding home appliances, mobile phones and automobile-related parts, a method for producing the same, and a pre-hardened cold tool steel.
  • This relates to a surface PVD processing method.
  • a hardness of 60 HRC or more is obtained by quenching and tempering (hereinafter referred to as “tempering”) in order to improve the wear resistance.
  • tempering quenching and tempering
  • a working hardness of 60 HRC or more is used.
  • To temper since heat treatment deformation occurs in the tool due to tempering, after the tempering, final cutting is performed again to correct the deformation, and the final tool shape is adjusted.
  • the main cause of heat treatment deformation of the tool due to tempering is that the volume of the steel material expands due to transformation of the steel material that was a ferrite structure into a martensite structure in the annealed state.
  • a surface coating treatment is performed in which various hard films are coated on the work surface of the tool.
  • a CVD (chemical vapor deposition) process for forming a hard carbide
  • a PVD (physical vapor deposition) process for mainly forming a nitride.
  • the steel material is heated to a temperature equivalent to the quenching temperature during tempering (about 1000 ° C), so the hardness is greatly increased even when pre-hardened steel tempered in advance is used as the steel material. It changes and requires re-tempering. In addition, re-tempering is accompanied by re-cutting to correct heat treatment deformation.
  • the maximum temperature to which the steel material is exposed is generally as low as about 520 ° C., which is close to the typical tempering temperature of cold tool steel (about 500 ° C.). "Refined hardness" is difficult to change. Therefore, after the surface coating treatment, re-tempering is not required, and heat treatment deformation due to this cannot naturally occur. For this reason, for pre-hardened steel, if it can be combined with the technology to form the above hard coating by PVD processing after cutting it into the final tool shape, further improvement in wear resistance will be achieved in addition to its high tool manufacturing ability it can.
  • the cold tool steel disclosed in Patent Document 3 is an excellent pre-hardened steel that achieves both cutting workability to a tool shape and wear resistance when using the tool.
  • the tempered hardness is maintained by being exposed to about 520 ° C. by PVD processing, heat treatment deformation different in mechanism from that at the time of tempering occurs, and cutting for correcting the tool shape
  • processing was eventually necessary.
  • prehardened steel in order to prevent prehardened steel from being heated and softened above the tempering temperature, it has to contain a large amount of expensive alloy elements, particularly Mo and W, and there is a problem that cost reduction cannot be expected.
  • An object of the present invention is to provide a high-hardness pre-hardened cold tool steel for surface PVD treatment and a production thereof that has improved the problem of heat treatment deformation and softening when the surface PVD treatment is performed while ensuring good machinability as pre-hardened steel. It is an object of the present invention to provide a surface PVD treatment method for the pre-hardened cold tool steel of the present invention.
  • the present inventor examined the problem of heat treatment deformation of pre-hardened steel when surface PVD treatment was performed. As a result, it was found that the heat treatment deformation during the PVD treatment has a mechanism different from that during the tempering and is due to decomposition of residual austenite inherent in the prehardened steel. Then, when earnestly researching about the technique which can reduce the amount of retained austenite before PVD processing, it has been found that there is an optimum component composition in a narrow region for achieving the method. And in the pre-hardened steel having this component composition, preferable tempering conditions for achieving a hardness of 60 HRC or more and sufficient machinability at that time even if the addition amount of expensive elements such as Mo and W is reduced. As a result, the present invention has been achieved.
  • the present invention is mass%, C: 0.7 to 1.2% Si: 1.0 to 2.6%, Mn: 0.4 to 1.0%, S: 0.02 to 0.1%, Cr: 3.0 to 6.0%, Mo and W are single or composite (Mo + 1 / 2W): 0.4 to 1.0%, V: 0.2 to 1.0%, Nb: 0.1 to 0.3%, High-hardness pre-hardened cold for surface PVD treatment with excellent heat-resistant treatment deformability, comprising the balance Fe and unavoidable impurities, the hardness is 60 HRC or more, and the amount of retained austenite in the structure is 8% by volume or less Tool steel.
  • the hardness is preferably 62 HRC or more, or the component composition of the cold tool steel may contain 1.0% or less of Ni.
  • this invention is the mass%, C: 0.7 to 1.2% Si: 1.0 to 2.6%, Mn: 0.4 to 1.0%, S: 0.02 to 0.1%, Cr: 3.0 to 6.0%, Mo and W are single or composite (Mo + 1 / 2W): 0.4 to 1.0%, V: 0.2 to 1.0%, Nb: 0.1 to 0.3%,
  • the cold tool steel composed of the remaining Fe and inevitable impurities is quenched at a temperature of 1000 ° C. or more and tempered at a temperature of 520 ° C. or more, and the hardness is 60 HRC or more and the amount of retained austenite in the structure is 8% by volume.
  • the hardness is preferably 62 HRC or more, or the component composition of the cold tool steel may contain 1.0% or less of Ni.
  • the present invention is a surface PVD treatment method to the above-described high hardness prehardened cold tool steel for surface PVD treatment, the amount of retained austenite in the structure before the surface PVD treatment of the prehardened cold tool steel, A surface PVD treatment method for high-hardness pre-hardened cold tool steel for surface PVD treatment, characterized in that a difference from the amount of retained austenite in the structure after the treatment is within 5% by volume.
  • the problem of heat treatment deformation and softening can be drastically improved when surface PVD treatment is performed while ensuring good cutting workability as pre-hardened steel. Therefore, this technology is indispensable for the practical application of pre-hardened cold tool steel.
  • the feature of the present invention is that the tempered hardness at the time of supply can be 60 HRC or more, and the prehardened cold tool steel that can suppress heat treatment deformation when performing surface PVD treatment while maintaining such hardness. Is realized at low cost.
  • the tempering hardness of 60 HRC or more at the time of tempering is designed to have a component composition that develops at a tempering temperature corresponding to the temperature reached during the previous surface PVD treatment, and retained austenite at the time of surface PVD treatment. This is based on a technical idea that suppresses the decomposition of heat treatment and suppresses heat treatment deformation.
  • constituent requirements of the pre-hardened cold tool steel of the present invention, a preferable manufacturing method for achieving this, and a surface PVD treatment method for the pre-hardened cold tool steel of the present invention will be described.
  • the amount of retained austenite in the structure is 8% by volume or less.
  • the heat treatment deformation during the PVD treatment is caused by decomposition of retained austenite in the pre-hardened steel after tempering. Therefore, the reason why the amount of retained austenite before PVD treatment is set to 8% by volume or less is that, if this value is used, the above heat treatment deformation is small, and cutting for correction can be practically omitted.
  • it is 6 volume% or less, More preferably, it is 5 volume% or less. This regulated amount of retained austenite can be achieved at low cost by the component composition and tempering conditions described below, which are the characteristics of the present invention.
  • the ratio of diffraction intensities of the (200) plane, (220) plane, (311) plane in fcc of the crystal structure, and (200) plane, (211) plane in bcc can be sought.
  • Refining hardness is 60 HRC or more.
  • the reason why the tempering hardness is set to 60 HRC or more is to improve the adhesion of the hard film by the PVD treatment and to ensure the wear resistance during use.
  • Preferably it is 62 HRC or more.
  • This tempering hardness is achieved at a low cost by the component composition and tempering conditions described below, which are the characteristics of the present invention. And even if it passes through surface PVD process, since it maintains with high softening resistance, it is excellent in the adhesiveness of a hard film.
  • the composition is as follows by mass%. ⁇ C: 0.7-1.2% C is an important element that forms carbides in the steel and imparts hardness to the prehardened steel. When it is less than 0.7%, the amount of carbide formed is insufficient, and it is difficult to impart a hardness of 60 HRC or more. On the other hand, if the content is excessive, the machinability is reduced due to an increase in the amount of carbides, and wear of the cutting tool tends to progress when cutting into a tool shape in a pre-hardened state. Therefore, the C content is set to 0.7 to 1.2%. Preferably it is 0.8% or more and / or 1.1% or less.
  • Si 1.0-2.6%
  • Si is a ferrite-forming element, and has the effect of reducing the amount of retained austenite in the prehardened steel when added. Moreover, since it dissolves in the matrix of prehardened steel, the hardness is improved by solid solution strengthening. If it is 1.0% or more, the effect is high, but if it is too much, hardenability and toughness are remarkably lowered. Therefore, Si is set to 1.0 to 2.6%. Preferably it is 1.2% or more and / or 2.0% or less.
  • Mn is contained for improving hardenability.
  • it is an austenite forming element, if the amount added is too large, the amount of retained austenite after tempering increases. Therefore, in the present invention, it was set to 0.4 to 1.0%. Preferably they are 0.5% or more and / or 0.9% or less.
  • S 0.02 to 0.1%
  • S is a representative of embrittlement elements, and is an element regulated in the field of tool steel that requires weldability and high hardness. However, on the other hand, it is an element that improves the machinability by forming MnS.
  • MnS the toughness is improved by reducing the amount of carbides more than that, so only the difference can be added. Therefore, S is set to 0.02 to 0.1%. Preferably it is 0.03% or more and / or 0.08% or less.
  • ⁇ Cr 3.0-6.0% Cr imparts hardness to the prehardened steel by forming M 7 C 3 carbide in the tempered structure. If the Cr content is less than 3.0%, the amount of carbide formed is small, and it is difficult to impart a hardness of 60 HRC or higher. On the other hand, when it is added excessively, the amount of carbide formed is increased, so that it cannot be completely dissolved in the matrix at the time of quenching and remains as coarse carbide, so that machinability is lowered. For this reason, in order to establish the pre-hardened steel, it is important that Cr is in a narrow range of 3.0 to 6.0%.
  • Mo and W are single or composite (Mo + 1 / 2W): 0.4 to 1.0% Mo and W are important elements for achieving both heat-resistant treatment deformability and high hardness according to the present invention. That is, these elements are elements that improve hardness by precipitation strengthening (secondary hardening) of fine carbides during tempering during tempering. At the same time, however, the decomposition of residual austenite that occurs during tempering is delayed, so that a large amount of undecomposed austenite remains in the tempered structure. For this problem, pre-hardened cooling that can achieve both of the above-mentioned properties by examining the tempering conditions (described later) that can achieve high hardness of 60 HRC or higher even if the addition amount of Mo or W is reduced. The composition of the inter-tool steel was found.
  • the Mo equivalent (Mo + 1 / 2W) of the pre-hardened cold tool steel of the present invention was set to 0.4 to 1.0%.
  • the Mo equivalent By setting the Mo equivalent to 0.4% or more, a refining hardness of 60 HRC or more can be achieved.
  • the amount of residual austenite after tempering can be reduced by making Mo equivalent 1.0% or less.
  • the addition amount of Mo and W which are expensive elements can be suppressed, it is possible to achieve both excellent heat-resistant treatment deformability and high hardness at a low cost.
  • it is 0.6% or more, More preferably, it is 0.8% or more.
  • V is an element that increases the softening resistance. However, excessive addition increases MC carbide and causes a decrease in machinability. Therefore, V is set to 0.2 to 1.0%. Preferably they are 0.4% or more and / or 0.7% or less.
  • Nb forms MC carbide.
  • MC carbide does not dissolve at the quenching temperature, and the formation of retained austenite is reduced by suppressing coarsening of austenite crystal grains.
  • the heat resistance treatment deformability after PVD treatment is improved.
  • Nb is set to 0.1 to 0.3%. Preferably it is 0.2% or less.
  • Ni is an element which improves toughness and weldability, and may add 1.0% or less as needed.
  • tempering by quenching from a temperature of 1000 ° C. or higher and tempering by a temperature of 520 ° C. or higher is preferable.
  • the tempering conditions at that time are preferably quenching from a temperature of 1000 ° C. or higher and tempering at a temperature of 520 ° C. or higher. That is, in the special component composition steel of the present invention, the quenching temperature is set to 1000 ° C. or more because the solid solution of the undissolved carbide is promoted and the machinability is improved. More preferably, the quenching temperature is 1080 ° C.
  • the tempering temperature is set to 520 ° C. or more, because the amount of undecomposed residual austenite itself is reduced at this time, and tempering is performed at a temperature higher than the temperature at which the prehardened steel is exposed during the surface PVD treatment. This is because decomposition of the retained austenite during the surface PVD treatment is suppressed, and heat treatment deformation can be suppressed.
  • tempering is usually performed on the supplier side, so it is easier to perform tempering under setting conditions most suitable for the steel type compared to tempering on the consumer side.
  • the amount of residual austenite of 8% by volume or less in the structure before the PVD treatment and the residual austenite in the structure after the PVD treatment is preferably within 5% by volume.
  • the tempering temperature during tempering was lower than the temperature rising temperature during PVD treatment, for example, it was tempered at a general high-temperature tempering temperature of 500 ° C. In some cases, decomposition (heat treatment deformation) of not less than austenite may occur during PVD treatment.
  • a cutting process for correction is performed after the PVD process. Can be omitted. Specifically, by setting the tempering temperature during tempering to a temperature higher than the temperature rising temperature during PVD treatment, the difference in the amount of retained austenite in the structure before and after PVD treatment is within 5% by volume. Can be accommodated.
  • the material was melted using a high frequency induction melting furnace to produce an ingot having chemical components shown in Table 1. Next, these ingots were hot-rolled so that the forging ratio was about 10, and after cooling, annealing was performed at 860 ° C.
  • tempering process is performed twice at 500 degreeC which is a general tempering temperature, and pre-hardened cold tool steel which has been tempered is produced. did. Moreover, pre-hardened cold tool steel that had been tempered twice at 520 ° C. assuming the heating temperature at that time was also prepared as an evaluation of the state after the previous surface PVD treatment. Table 2 shows the hardness by tempering and the amount of retained austenite. The amount of retained austenite was measured under the above measurement conditions. In addition, for cold tool steel tempered at 500 ° C., the amount of undissolved M 7 C 3 carbide determined using thermocalc (a thermocalc software), which is a thermodynamic calculation program, as an index of machinability. Also write down.
  • thermocalc a thermocalc software
  • the pre-hardened cold work tool steel of the example of the present invention achieves a temper hardness of 60 HRC or more while reducing the addition amount of expensive alloy elements such as Mo and W, and the amount of retained austenite is also reduced to 8% by volume or less. is made of. And about what was tempered by 500 degreeC tempering, even if it reheats by the previous surface PVD process and decomposition
  • the pre-hardened cold tool steel of the present invention is supplied under general tempering conditions, the problems of heat treatment deformation and softening due to the surface PVD treatment can be solved. Furthermore, by controlling the Cr amount, the undissolved M 7 C 3 carbide after tempering (that is, at the time of supply) is less than 3% by volume, and the machinability is also improved.
  • the amount of retained austenite is reduced to 5% by volume or less.
  • the heat treatment deformation was further reduced because the tempering was performed by tempering close to the ultimate temperature at that time.
  • No. Nos. 21 and 22 achieved temper hardness exceeding 60 HRC by tempering at both 500 ° C and 520 ° C. However, the amount of retained austenite is high for those tempered by tempering at 500 ° C., and the amount of change in retained austenite after surface PVD treatment (that is, tempering at 520 ° C.) is large. And No. If 21 and 22 are tempered and supplied by tempering at 520 ° C., after surface PVD treatment, high hardness of 60 HRC or more may be maintained and heat treatment deformation may be reduced. However, no. In the case of 21 and 22, even after tempering at 520 ° C., the tempered structure still contains a large amount of undissolved M 7 C 3 carbide as in tempering at 500 ° C. Sex is not enough. No. 21 and 22 are not suitable as pre-hardened cold tool steel for PVD processing.
  • Table 1 shows the annealing material of the example of the present invention shown in Table 1, quenching treatment by air cooling from 1100 ° C. was performed. And assuming high temperature at the time of surface PVD processing, high temperature tempering was performed at a temperature of 540 ° C. or higher and 540 ° C. or higher. Table 3 shows the hardness and the amount of retained austenite at that time. The amount of retained austenite was measured under the above measurement conditions. In addition, the amount of undissolved M 7 C 3 carbide determined using the above thermocalc is also shown.
  • the pre-hardened cold tool steel of the present invention to which preferred tempering conditions were applied achieved a hardness of 60 HRC or higher.
  • No. 8 with reduced Cr amount and increased Si amount. 9 achieved a hardness of 62 HRC or higher even at high temperature tempering at 540 ° C.
  • the amount of retained austenite after tempering can also be reduced to 5 volume% or less.
  • the amount of undissolved M 7 C 3 carbide is less than 0.1% by volume, and machinability is also improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 表面PVD処理を行ったときの熱処理変形と軟化の問題を改善した表面PVD処理用高硬度プリハードン冷間工具鋼およびその製造方法、そして同プリハードン冷間工具鋼への表面PVD処理方法を提供する。 質量%で、 C:0.7~1.2%、 Si:1.0~2.6%、 Mn:0.4~1.0%、 S:0.02~0.1%、 Cr:3.0~6.0%、 MoおよびWは単独または複合で(Mo+1/2W):0.4~1.0%、 V:0.2~1.0%、 Nb:0.1~0.3%、 残部Feおよび不可避的不純物からなり、調質硬さが60HRC以上、かつ組織中の残留オーステナイト量が8体積%以下のプリハードン冷間工具鋼である。Niは1.0%以下を含有してもよい。調質条件は、1000℃以上からの焼入れと、520℃以上の焼戻しが好ましい。表面PVD処理前後での残留オーステナイトの変化量は5体積%以内とすることが好ましい。

Description

表面PVD処理用高硬度プリハードン冷間工具鋼およびその製造方法、ならびにその表面PVD処理方法
 本発明は、工具材料、特に家電、携帯電話や自動車関連部品を成形する冷間金型材料に適した表面PVD処理用高硬度プリハードン冷間工具鋼とその製造方法、そしてそのプリハードン冷間工具鋼の表面PVD処理方法に関するものである。
 室温での板材の曲げ、絞り、抜きなどのプレス成形に用いられる冷間工具においては、その耐摩耗性を向上するために、焼入れ焼戻し(以下「調質」という。)により60HRC以上の硬さを達成できる鋼素材が提案されている(特許文献1、2)。このような高硬度の鋼素材となると、調質後に工具形状に切削加工することが困難であるため、通常は、硬さの低い焼鈍状態で粗加工を行った後に、60HRC以上の使用硬さに調質する。この場合、調質により工具に熱処理変形が生じることから、調質後には、その変形分を修正するための再度の仕上げ切削加工を施して、最終工具形状に整えられる。調質による工具の熱処理変形の主な原因は、焼鈍状態ではフェライト組織であった鋼素材がマルテンサイト組織へと変態することで体積が膨張するためである。
 上記の鋼素材の他に、あらかじめ使用硬さに調質して供給されるプリハードン鋼が多く提案されている。プリハードン鋼では、最終工具形状まで一括して切削加工を行った後には、調質の必要がないため、調質に起因する工具の熱処理変形を除外でき、上記の仕上げ切削加工も省略できる有効な技術である。本技術に関しては、55HRCを超える調質硬さであっても優れた切削加工性を有する冷間工具鋼が提案されている(特許文献3)。
特開2008-189982号公報 特開2009-132990号公報 特開2001-316769号公報
 最近、冷間工具の耐摩耗性をさらに向上するために、工具の作業面に各種硬質皮膜を被覆する表面被覆処理が実施されている。表面被覆処理の一般的な手法としては、硬質炭化物を形成するCVD(化学蒸着)処理や、主に窒化物を形成するPVD(物理蒸着)処理がある。CVD処理では、鋼素材が調質時の焼入れ温度に相当する温度(約1000℃)にまで加熱されることから、あらかじめ調質されたプリハードン鋼を鋼素材として用いた場合でも硬さが大幅に変化し、再度の調質が必要となる。その上、再度の調質を行ったことで、熱処理変形を修正するための再度の切削加工も伴う。
 一方、PVD処理では、鋼素材が曝される最高温度は一般に約520℃と低く、冷間工具鋼の代表的な焼戻し温度(約500℃)に近いことから、調質後の硬さ(以下「調質硬さ」という。)が変化し難い。よって、表面被覆処理後には再度の調質は要せず、これに起因する熱処理変形も当然生じ得ない。このため、プリハードン鋼にとっては、それを最終工具形状に切削加工した後に、上記の硬質皮膜をPVD処理により形成する技術を併用できれば、その高い工具作製能に加えて耐摩耗性のさらなる向上が達成できる。
 特許文献3に開示される冷間工具鋼は、工具形状への切削加工性と工具使用時の耐摩耗性を両立する優れたプリハードン鋼である。しかしながら、PVD処理で約520℃に曝されることで、調質硬さは維持されるとしても、調質時のものとは機構の異なる熱処理変形が発生し、工具形状を修正するための切削加工が結局必要となるといった問題があった。また、プリハードン鋼が焼戻し温度以上に加熱されて軟化することを抑制するため、高価な合金元素、特にMoおよびWを多く含有しなければならず、低コスト化が期待できないといった問題があった。
 本発明の目的は、プリハードン鋼として良好な切削加工性を確保しつつ、表面PVD処理を行ったときの熱処理変形と軟化の問題を改善した表面PVD処理用高硬度プリハードン冷間工具鋼およびその製造方法、そして本発明のプリハードン冷間工具鋼への表面PVD処理方法を提供することである。
 本発明者は、表面PVD処理を行ったときのプリハードン鋼の熱処理変形の問題について検討した。その結果、PVD処理時の熱処理変形は、前記の調質時のものとは機構が異なり、プリハードン鋼に内在する残留オーステナイトの分解によるものであることを見いだした。そこで、PVD処理前の残留オーステナイト量を低減できる手法について鋭意研究したところ、その達成には狭域でなる最適な成分組成があることを突きとめた。そして、この成分組成を有するプリハードン鋼において、MoやWといった高価な元素の添加量を低減しても60HRC以上の硬さと、そのときの十分な切削加工性を達成するための好ましい調質条件をも明確にしたことで、本発明に到達した。
 すなわち、本発明は、質量%で、
C:0.7~1.2%、
Si:1.0~2.6%、
Mn:0.4~1.0%、
S:0.02~0.1%、
Cr:3.0~6.0%、
MoおよびWは単独または複合で(Mo+1/2W):0.4~1.0%、
V:0.2~1.0%、
Nb:0.1~0.3%、
残部Feおよび不可避的不純物からなり、硬さが60HRC以上、かつ組織中の残留オーステナイト量が8体積%以下であることを特徴とする耐熱処理変形性に優れた表面PVD処理用高硬度プリハードン冷間工具鋼である。硬さは62HRC以上が好ましく、あるいはさらに、冷間工具鋼の成分組成はNiを1.0%以下含有してもよい。
 そして、本発明は、質量%で、
C:0.7~1.2%、
Si:1.0~2.6%、
Mn:0.4~1.0%、
S:0.02~0.1%、
Cr:3.0~6.0%、
MoおよびWは単独または複合で(Mo+1/2W):0.4~1.0%、
V:0.2~1.0%、
Nb:0.1~0.3%、
残部Feおよび不可避的不純物からなる冷間工具鋼を、1000℃以上の温度からの焼入れと、520℃以上の温度による焼戻しによって、硬さを60HRC以上かつ、組織中の残留オーステナイト量を8体積%以下に調整することを特徴とする耐熱処理変形性に優れた表面PVD処理用高硬度プリハードン冷間工具鋼の製造方法である。硬さは62HRC以上が好ましく、あるいはさらに、冷間工具鋼の成分組成はNiを1.0%以下含有してもよい。
 さらに、本発明は、上述した表面PVD処理用高硬度プリハードン冷間工具鋼への表面PVD処理方法であって、前記プリハードン冷間工具鋼の表面PVD処理前の組織中にある残留オーステナイト量と、該処理後の組織中にある残留オーステナイト量との差を、5体積%以内とすることを特徴とする表面PVD処理用高硬度プリハードン冷間工具鋼の表面PVD処理方法である。
 本発明によれば、プリハードン鋼としての良好な切削加工性を確保しつつ、表面PVD処理を行ったときには熱処理変形と軟化の問題を飛躍的に改善することができる。よって、プリハードン冷間工具鋼の実用化にとって欠くことのできない技術となる。
 本発明の特徴は、その供給時の調質硬さを60HRC以上にすることができ、かかる硬度を維持しつつもなお、表面PVD処理を行ったときの熱処理変形は抑制できるプリハードン冷間工具鋼を、しかも低コストで実現したところにある。具体的には、調質時における60HRC以上の焼戻し硬さが、先の表面PVD処理中の到達温度に相当する焼戻し温度で発現する成分組成に設計することであり、表面PVD処理時の残留オーステナイトの分解を抑制して、熱処理変形を抑える技術思想に基づくものである。以下、本発明のプリハードン冷間工具鋼の構成要件と、これを達成するための好ましい製造方法、そして本発明のプリハードン冷間工具鋼に対する表面PVD処理方法について説明する。
(1)組織中の残留オーステナイト量が8体積%以下である。
 PVD処理時の熱処理変形は、調質後のプリハードン鋼に内在する残留オーステナイトの分解が原因である。そこで、PVD処理前の残留オーステナイト量を8体積%以下としたのは、この値であれば上記の熱処理変形が小さく、修正のための切削加工は実用上省略できるからである。好ましくは6体積%以下であり、さらに好ましくは5体積%以下である。この残留オーステナイトの規制量は、本発明の特徴とする後述の成分組成や調質条件によって低コストで達成できる。残留オーステナイト量の測定法としては、例えばX線回折を利用する方法がある。そして、X線源にはCoを用いて、結晶構造のfccにおける(200)面、(220)面、(311)面と、bccにおける(200)面、(211)面の回折強度の比から求めることができる。
(2)調質硬さが60HRC以上である。
 調質硬さを60HRC以上としたのは、PVD処理による硬質皮膜の密着性を向上し、使用中の耐摩耗性を確保するためである。好ましくは62HRC以上とする。この調質硬さは、本発明の特徴とする後述の成分組成や調質条件によって低コストで達成される。そして、表面PVD処理を経てもなお、高い軟化抵抗をもって維持されることから、硬質皮膜の密着性に優れる。
(3)質量%で、以下の成分組成でなる。
・C:0.7~1.2%
 Cは、鋼中で炭化物を形成し、プリハードン鋼に硬さを付与する重要な元素である。0.7%より少ない場合は、形成される炭化物量が不足し、60HRC以上の硬さを付与することが困難である。一方、過多の含有は、炭化物量の増加により被削性を低下させ、プリハードン状態で工具形状に切削加工しようとした場合に切削工具の摩耗が進行しやすい。よって、Cの含有量は0.7~1.2%とした。好ましくは0.8%以上および/または1.1%以下である。
・Si:1.0~2.6%
 Siは、フェライト形成元素であり、添加することでプリハードン鋼中の残留オーステナイト量を低減できる効果がある。また、プリハードン鋼のマトリックス中に固溶するため、固溶強化により硬さを向上する。1.0%以上であればその効果が高いが、多すぎると焼入れ性や靱性が著しく低下する。よって、Siは1.0~2.6%とした。好ましくは1.2%以上および/または2.0%以下である。
・Mn:0.4~1.0%
 Mnは、焼入れ性の向上のために含有する。しかし、オーステナイト形成元素であるため、添加量が多すぎると調質後の残留オーステナイト量が増加する。よって、本発明では0.4~1.0%とした。好ましくは0.5%以上および/または0.9%以下である。
・S:0.02~0.1%
 Sは、脆化元素の代表であり、溶接性や高硬度を求められる工具鋼の分野では規制のされる元素である。しかし一方では、MnSを形成して被削性を向上する元素である。本発明の場合、冷間工具鋼のスタンダード鋼種であるJIS-SKD11を基準にして、それよりも炭化物量を減らしたことで靱性を向上させているので、その差分だけの添加が可能である。よって、Sは0.02~0.1%とする。好ましくは0.03%以上および/または0.08%以下である。
・Cr:3.0~6.0%
 Crは、調質組織中にM炭化物を形成することでプリハードン鋼に硬さを付与する。Crが3.0%未満では形成される炭化物量が少なく、60HRC以上の硬さを付与することが困難である。一方、過多に添加すると、形成される炭化物量が増加し、焼入れ時にマトリックス中に固溶しきれず粗大な炭化物として残存してしまうため被削性が低下する。このため、プリハードン鋼として成立させるためには、Crは3.0~6.0%の狭域とすることが重要である。
・MoおよびWは単独または複合で(Mo+1/2W):0.4~1.0%
 MoおよびWは、本発明の耐熱処理変形性と高硬度の両立においては重要な元素である。つまり、これらの元素は、調質時の焼戻しにおいて、微細炭化物の析出強化(二次硬化)により硬さを向上させる元素である。しかし同時に、焼戻しで起こる残留オーステナイトの分解を遅滞させるため、調質後の組織には多量の未分解オーステナイトが残留するという、本発明にとっては相反する作用効果を有する元素である。この課題に対しては、MoやWの添加量を低減しても60HRC以上の高硬度を達成できる調質条件(後述)を併せて検討したことで、上記した特性の両立が可能なプリハードン冷間工具鋼の成分組成を見いだした。
 そして、上記の結果として、本発明のプリハードン冷間工具鋼のMo当量(Mo+1/2W)は0.4~1.0%とした。Mo当量を0.4%以上とすることで、60HRC以上の調質硬さを達成できる。そして、Mo当量を1.0%以下とすることで、調質後の残留オーステナイト量を低減できる。また、高価な元素であるMoおよびWの添加量を抑えることができるので、優れた耐熱処理変形性と高硬度を、低コストで両立させることができる。好ましくは0.6%以上、さらに好ましくは0.8%以上である。
・V:0.2~1.0%
 Vは、軟化抵抗を増大させる元素である。しかし、過多の添加はMC炭化物を増加させ、被削性を低下させる原因となる。よって、Vは0.2~1.0%とする。好ましくは0.4%以上および/または0.7%以下である。
・Nb:0.1~0.3%
 Nbは、MC炭化物を形成する。そして、調質時の焼入れにおいて、MC炭化物は焼入れ温度で固溶せず、オーステナイト結晶粒の粗大化を抑えることで、残留オーステナイトの形成を低減する。その結果、PVD処理後の耐熱処理変形性を改善する。しかし、Nbを過多に添加すると、粗大なMC炭化物が多数形成されて、靭性および被削性の低下をもたらす。よって、本発明ではNbを0.1~0.3%とする。好ましくは0.2%以下である。
・Ni:1.0%以下
 Niは、靭性や溶接性を改善する元素であり、必要に応じて1.0%以下を添加してもよい。
(4)以上のプリハードン冷間工具鋼を達成するには、1000℃以上の温度からの焼入れと、520℃以上の温度による焼戻しによる調質が好ましい。
 本発明のプリハードン冷間工具鋼を製造するにおいては、その時の調質条件は1000℃以上の温度からの焼入れと、520℃以上の温度による焼戻しを行うことが好ましい。つまり、本発明の特別な成分組成鋼にとって、焼入れ温度を1000℃以上とするのは、未固溶炭化物の固溶を促進し被削性が向上するためである。さらに好ましくは、焼入れ温度は1080℃以上であり、焼入れ温度を高めることで、被削性の向上に加え、少ないMo当量でありながら冷間工具として必要な硬さをさらに高められるからである。また、焼戻し温度を520℃以上とするのは、この時点で未分解の残留オーステナイト量自体を低減するのと、表面PVD処理中にプリハードン鋼が曝される温度よりも高い温度で焼戻ししておくことで、表面PVD処理中の残留オーステナイトの分解が抑制され、熱処理変形を抑えることができるからである。
 なお、プリハードン鋼においては通常供給者側で調質が行われるため、需要者側で調質を行う場合に比べて鋼種に最も適した設定条件で調質を行うことが容易である。
(5)以上のプリハードン冷間工具鋼に表面PVD処理を行う際には、該PVD処理前の組織中にある8体積%以下の残留オーステナイト量と、該PVD処理後の組織中にある残留オーステナイト量との差を、5体積%以内とすることが好ましい。
 本発明の表面PVD処理用高硬度プリハードン鋼においては、その調質時の焼戻し温度がPVD処理時の昇温温度よりも低かった場合、例えば一般的な高温焼戻し温度である500℃で焼戻しされた場合は、PVD処理時に少なからず残留オーステナイトの分解(熱処理変形)が生じるかも知れない。そこで、このような時であっても、PVD処理の前後では組織中の残留オーステナイト量の差が5体積%以内に納まるように該処理を行えば、PVD処理後には修正のための切削加工を省略できる。
 具体的には、調質時の焼戻し温度を、PVD処理時の昇温温度よりも高い温度に設定することにより、PVD処理の前後での組織中の残留オーステナイト量の差を5体積%以内に納まるようにすることができる。
 高周波誘導溶解炉を使用して材料を溶解し、表1に示す化学成分を有したインゴットを作製した。次に、これらのインゴットに対して、鍛造比が10程度になるように熱間圧延を行い、冷却後、860℃で焼鈍を行った。
Figure JPOXMLDOC01-appb-T000001
 そして、上記の焼鈍材に1030℃からの空冷による焼入れ処理を行った後、一般的な焼戻し温度である500℃で2回の焼戻し処理を行って、調質済みのプリハードン冷間工具鋼を作製した。また、先の表面PVD処理後の状態を評価するものとして、その際の加熱温度を想定した520℃で2回の焼戻し処理を行ったプリハードン冷間工具鋼も準備した。それぞれの焼戻しによる硬さおよび残留オーステナイト量を表2に示す。残留オーステナイト量の測定は、上記の測定条件により行った。なお、500℃で焼戻した冷間工具鋼については、被削性の指標として、熱力学計算プログラムであるサーモカルク(サーモカルクソフトウェア社製)を用いて求めた未固溶のM炭化物量も併記しておく。
Figure JPOXMLDOC01-appb-T000002
 本発明例のプリハードン冷間工具鋼は、MoやWといった高価な合金元素の添加量を低減していながら、60HRC以上の調質硬さを達成し、かつ残留オーステナイト量も8体積%以下に低減できている。そして、500℃の焼戻しで調質したものについては、先の表面PVD処理で再加熱され、残留オーステナイトの分解が進んでも、それを想定した520℃の焼戻し結果の通り、残留オーステナイトの変化量は5体積%以下に抑えられ、硬さも維持できる。よって、本発明のプリハードン冷間工具鋼は、一般的な調質条件で供給しても、表面PVD処理による熱処理変形や軟化の問題を解決できる。さらに、Cr量の管理により、調質後(つまり供給時)の未固溶のM炭化物は3体積%未満となっており、被削性も改善される。
 そして、もとより520℃の焼戻しで調質することで、残留オーステナイト量は5体積%以下にまで低減されている。これに表面PVD処理を行ったときには、その際の到達温度に近い焼戻しで調質したことから、熱処理変形はさらに低減される。
 一方、比較例においては、No.23、25~27は、500℃および520℃の両方の焼戻しで60HRCの調質硬さを得ることができなかった(No.25~27の残留オーステナイト量の測定は省略した)。No.24は、JIS-SKD11に相当し、500℃の焼戻しで60HRCを超える調質硬さを達成した。しかし、表面PVD処理時の加熱温度を想定した520℃の焼戻しの結果では、硬さが低下した。
 No.21、22は、500℃および520℃の両方の焼戻しで60HRCを超える調質硬さを達成した。しかし、500℃の焼戻しで調質したものについては、残留オーステナイト量が高く、表面PVD処理(つまり、520℃の焼戻し)後の残留オーステナイトの変化量が大きい。そして、No.21、22を、520℃の焼戻しで調質して供給すれば、表面PVD処理後は、60HRC以上の高い硬度を維持して、熱処理変形は低減されるかも知れない。しかし、Cr量の高いNo.21、22の場合、520℃の焼戻しであっても、その調質後の組織には、500℃の焼戻しに同様、未固溶のM炭化物が依然として多く存在しており、被削性が十分ではない。No.21、22は、PVD処理用プリハードン冷間工具鋼としては適し難い。
 表1に示した本発明例の焼鈍材を用いて、それに1100℃からの空冷による焼入れ処理を行った。そして、表面PVD処理時の到達温度を想定しては、520℃と、それよりも高い540℃以上の温度で高温焼戻しを行った。そのときの硬さおよび残留オーステナイト量を表3に示す。残留オーステナイト量の測定は、上記の測定条件により行った。また、上記のサーモカルクを用いて求めた未固溶のM炭化物量も併記しておく。
Figure JPOXMLDOC01-appb-T000003
 好ましい調質条件を適用した本発明のプリハードン冷間工具鋼は、60HRC以上の硬さを達成した。特に、Mo量およびV量の高いNo.3、7、11、12、Si量の高いNo.8、Cr量を低減しSi量を高めたNo.9は、540℃の高温焼戻しでも62HRC以上の硬さを達成した。また、調質後の残留オーステナイト量も5体積%以下に低減できている。さらに、未固溶のM炭化物量が0.1体積%未満であり、被削性も改善される。そして、このプリハードン冷間工具鋼に表面PVD処理を行ったときには、その際の到達温度よりも高い温度で焼戻ししたことから、残留オーステナイトは殆ど分解せず、よって熱処理変形はほぼ0にまで低減される。

 

Claims (7)

  1.  質量%で、
    C:0.7~1.2%、
    Si:1.0~2.6%、
    Mn:0.4~1.0%、
    S:0.02~0.1%、
    Cr:3.0~6.0%、
    MoおよびWは単独または複合で(Mo+1/2W):0.4~1.0%、
    V:0.2~1.0%、
    Nb:0.1~0.3%、
    残部Feおよび不可避的不純物からなり、硬さが60HRC以上、かつ組織中の残留オーステナイト量が8体積%以下であることを特徴とする表面PVD処理用高硬度プリハードン冷間工具鋼。
  2.  硬さは、62HRC以上であることを特徴とする請求項1に記載の表面PVD処理用高硬度プリハードン冷間工具鋼。
  3.  質量%で、Ni:1.0%以下をさらに含有することを特徴とする請求項1または2に記載の表面PVD処理用高硬度プリハードン冷間工具鋼。
  4.  質量%で、
    C:0.7~1.2%、
    Si:1.0~2.6%、
    Mn:0.4~1.0%、
    S:0.02~0.1%、
    Cr:3.0~6.0%、
    MoおよびWは単独または複合で(Mo+1/2W):0.4~1.0%、
    V:0.2~1.0%、
    Nb:0.1~0.3%、
    残部Feおよび不可避的不純物からなる冷間工具鋼を、1000℃以上の温度からの焼入れと、520℃以上の温度による焼戻しによって、硬さを60HRC以上かつ、組織中の残留オーステナイト量を8体積%以下に調整することを特徴とする表面PVD処理用高硬度プリハードン冷間工具鋼の製造方法。
  5.  硬さを62HRC以上に調整することを特徴とする請求項4に記載の表面PVD処理用高硬度プリハードン冷間工具鋼の製造方法。
  6.  冷間工具鋼は、質量%で、Ni:1.0%以下をさらに含有することを特徴とする請求項4または5に記載の表面PVD処理用高硬度プリハードン冷間工具鋼の製造方法。
  7.  請求項1~3のいずれかに記載の表面PVD処理用高硬度プリハードン冷間工具鋼への表面PVD処理方法であって、前記プリハードン冷間工具鋼の表面PVD処理前の組織中にある残留オーステナイト量と、該処理後の組織中にある残留オーステナイト量との差を、5体積%以内とすることを特徴とする表面PVD処理用高硬度プリハードン冷間工具鋼の表面PVD処理方法。

     
PCT/JP2011/070945 2010-09-27 2011-09-14 表面pvd処理用高硬度プリハードン冷間工具鋼およびその製造方法、ならびにその表面pvd処理方法 WO2012043228A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012536337A JP5854332B2 (ja) 2010-09-27 2011-09-14 表面pvd処理用高硬度プリハードン冷間工具鋼およびその製造方法、ならびにその表面pvd処理方法
CN201180046371.8A CN103119187B (zh) 2010-09-27 2011-09-14 表面pvd处理用高硬度预硬冷作工具钢及其制造方法、以及其表面pvd处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010215093 2010-09-27
JP2010-215093 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012043228A1 true WO2012043228A1 (ja) 2012-04-05

Family

ID=45892699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070945 WO2012043228A1 (ja) 2010-09-27 2011-09-14 表面pvd処理用高硬度プリハードン冷間工具鋼およびその製造方法、ならびにその表面pvd処理方法

Country Status (3)

Country Link
JP (1) JP5854332B2 (ja)
CN (1) CN103119187B (ja)
WO (1) WO2012043228A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030619A1 (ja) * 2012-08-20 2014-02-27 日立金属株式会社 冷間工具鋼の切削方法及び冷間金型材料の製造方法
WO2014156487A1 (ja) 2013-03-29 2014-10-02 日立金属株式会社 金型用鋼素材およびその製造方法、金型用プリハードン鋼材の製造方法、冷間加工用金型の製造方法
EP3199656A4 (en) * 2014-09-26 2017-09-20 Hitachi Metals, Ltd. Cold tool material and method for manufacturing cold tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259057A (ja) * 1987-04-16 1988-10-26 Daido Steel Co Ltd 金型用鋼
JPH09111400A (ja) * 1995-10-13 1997-04-28 Daido Steel Co Ltd 冷間工具鋼
JP2001316769A (ja) * 2000-05-10 2001-11-16 Daido Steel Co Ltd 冷間工具鋼
JP2003321749A (ja) * 2002-04-30 2003-11-14 Sanyo Special Steel Co Ltd 表面処理工具および部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001787B2 (ja) * 2002-07-01 2007-10-31 山陽特殊製鋼株式会社 疲労寿命に優れた冷間工具鋼およびその熱処理方法
JP2005290517A (ja) * 2004-04-02 2005-10-20 Sanyo Special Steel Co Ltd 表面処理に適した冷間金型用鋼および冷間金型
KR100908624B1 (ko) * 2006-03-02 2009-07-21 히타치 긴조쿠 가부시키가이샤 피삭성 및 인성이 향상된 프리하든 강 및 그 제조 방법
JP2008189982A (ja) * 2007-02-02 2008-08-21 Daido Steel Co Ltd 工具鋼
JP5338188B2 (ja) * 2007-10-31 2013-11-13 大同特殊鋼株式会社 合金工具鋼及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259057A (ja) * 1987-04-16 1988-10-26 Daido Steel Co Ltd 金型用鋼
JPH09111400A (ja) * 1995-10-13 1997-04-28 Daido Steel Co Ltd 冷間工具鋼
JP2001316769A (ja) * 2000-05-10 2001-11-16 Daido Steel Co Ltd 冷間工具鋼
JP2003321749A (ja) * 2002-04-30 2003-11-14 Sanyo Special Steel Co Ltd 表面処理工具および部品

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030619A1 (ja) * 2012-08-20 2014-02-27 日立金属株式会社 冷間工具鋼の切削方法及び冷間金型材料の製造方法
CN104640654A (zh) * 2012-08-20 2015-05-20 日立金属株式会社 冷作工具钢的切削方法和冷作模具材料的制造方法
CN104640654B (zh) * 2012-08-20 2017-05-10 日立金属株式会社 冷作工具钢的切削方法和冷作模具材料的制造方法
WO2014156487A1 (ja) 2013-03-29 2014-10-02 日立金属株式会社 金型用鋼素材およびその製造方法、金型用プリハードン鋼材の製造方法、冷間加工用金型の製造方法
JP2016106176A (ja) * 2013-03-29 2016-06-16 日立金属株式会社 金型用プリハードン鋼材の製造方法および冷間加工用金型の製造方法
JP6032582B2 (ja) * 2013-03-29 2016-11-30 日立金属株式会社 金型用鋼素材の製造方法
EP3199656A4 (en) * 2014-09-26 2017-09-20 Hitachi Metals, Ltd. Cold tool material and method for manufacturing cold tool

Also Published As

Publication number Publication date
CN103119187B (zh) 2015-09-16
JPWO2012043228A1 (ja) 2014-02-06
JP5854332B2 (ja) 2016-02-09
CN103119187A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
JP5423806B2 (ja) 高靱性耐摩耗鋼およびその製造方法
KR101145829B1 (ko) 강도 및 연성이 우수한 고탄소 강판
TWI440726B (zh) 冷作加工用模具之製造方法
JP7018510B2 (ja) 優れた硬度と衝撃靭性を有する耐摩耗鋼及びその製造方法
JP2001131713A (ja) Ti含有超高強度準安定オーステナイト系ステンレス鋼材および製造法
JP2009120886A (ja) 冷間金型用鋼および金型
JPWO2012090562A1 (ja) 耐発錆性および熱伝導性に優れた金型用鋼およびその製造方法
CN111356781B (zh) 弯曲性和低温韧性优异的高强度热轧钢板及其制造方法
JP6569845B1 (ja) 高炭素熱延鋼板およびその製造方法
JP5854332B2 (ja) 表面pvd処理用高硬度プリハードン冷間工具鋼およびその製造方法、ならびにその表面pvd処理方法
CN102363868A (zh) 一种管线钢及其生产方法
KR20230123913A (ko) 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강및 이의 제조 방법
KR20160010930A (ko) 우수한 내충격성을 겸비한 고내마모성 냉간공구강
JP7018509B2 (ja) 優れた硬度及び衝撃靭性を有する耐摩耗鋼及びその製造方法
JP2022514678A (ja) 高強度ステンレス鋼
CN109321829A (zh) 一种屈服强度900MPa级不锈钢板及制造方法
JP2019019374A (ja) 焼入れ性および靱性に優れた熱間工具鋼
JP2012153926A (ja) フェライト系ステンレス鋼板の製造方法
WO2014030619A1 (ja) 冷間工具鋼の切削方法及び冷間金型材料の製造方法
JP6359241B2 (ja) 鏡面性に優れた耐食性プラスチック成形金型用鋼
JP2006152356A (ja) 変寸抑制特性に優れた冷間ダイス鋼
CN107620013B (zh) 空调冷却水管及其制备工艺
JP2008038219A (ja) 被削性および靭性に優れたプリハードン鋼
JP4088886B2 (ja) 耐熱処理変形性および表面処理特性に優れた快削工具鋼と、それを用いた金型
JP2001064754A (ja) 溶接性及び被削性に優れ経年変化を抑制した工具鋼ならびにそれを用いた金型

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046371.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828788

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536337

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828788

Country of ref document: EP

Kind code of ref document: A1